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1 Introduction

The history of oxygen, as both a planetary biosignature of and a requisite for all

complex life, has been the focus of a growing research community for decades

(e.g., Holland, 2006). To understand and trace how the surface of Earth evolved

from largely anoxic to an oxygenated system of rich ecological diversity,

numerous proxies have been proposed, developed, and cross-examined thor-

oughly in a wide variety of geologic records (e.g., Lyons et al., 2014). More and

more nuances in Earth’s oxygen history are being revealed, revising earlier

conceptual models into reconstructions of oxygen levels in four dimensions

(3-D space and time) at ever increasing spatial and temporal resolution. Rather

than the “classical” model of a two-step rise in oxygen to modern levels in

Earth’s atmosphere and oceans, additional oxygenation events have been pro-

posed for the generally low-oxygen world of Proterozoic and even early

Paleozoic times (e.g., Dahl et al., 2010; Diamond et al., 2018). In addition, an

increasing number of oxygen depletion events have been suggested as punctu-

ating the high-oxygen world of the Phanerozoic Eon (e.g., Jenkyns, 2010).

There is an emerging need to better constrain and calibrate proxies for individ-

ual components of the Earth system (e.g., atmosphere, surface ocean, deep

ocean), and for individual redox windows (e.g., oxic–hypoxic, hypoxic–anoxic,

anoxic–euxinic). Regardless of the wave of paleo-redox proxy development

sweeping across the periodic table, there are, clearly, open niches for proxies

based on carbonate records, proxies specifically targeting relatively shallow and

surficial parts of the water column, and proxies for the oxic–suboxic redox

window. For such applications, the carbonate iodine-to-calcium ratio (I/Ca) has

been developed as the iodine proxy for oxygen (iprOxy).

2 Proxy Systematics

Iodine is a redox-sensitive biophilic element. Its fluxes in/out of seawater are

small relative to the amount of iodine recycled within the water column through

biological production and remineralization (Lu et al., 2010). Iodine has a long

residence time of ~300 kyr (Broecker and Peng, 1982), and it has

a biointermediate element distribution rather than a nutrient-like or scavenging

distribution (Farrenkopf et al., 1997b). The redox chemistry of iodine in the

atmosphere and seawater may involve many different iodine species. However,

the iodine species most relevant to the I/Ca proxy are iodide (I−) and iodate

(IO3
−), which are thermodynamically most stable in anoxic and oxic seawaters,

respectively. A number of studies have been dedicated to the redox chemistry of

iodine in seawater (Amachi et al., 2007; Cutter et al., 2018; Farrenkopf et al.,

1997a; Farrenkopf and Luther, 2002; Luther and Campbell, 1991; Luther et al.,
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terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108688604
Downloaded from https://www.cambridge.org/core. IP address: 73.218.21.228, on 15 Sep 2020 at 14:58:30, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108688604
https://www.cambridge.org/core


1995; Rue et al., 1997; Wong and Brewer, 1977; Wong and Cheng, 2008; Wong

and Zhang, 2003; Wong et al., 1985). The reduction of iodate to iodide is

generally fast, leading to the predominant presence of iodide in low-oxygen

water, with very limited exceptions (e.g., Cutter et al., 2018; Rue et al., 1997).

The oxidation of iodide to iodate can be kinetically slow (e.g., Hardisty et al.,

2020), which may cause low concentrations of iodide to persist in oxygenated

waters (e.g., Chance et al., 2014).

Laboratory crystal synthesis experiments (Lu et al., 2010; Zhou et al., 2014),

synchrotron studies (Kerisit et al., 2018; Podder et al., 2017), and modeling

(Feng and Redfern, 2018) show that iodate is incorporated in the calcite

structure by substituting for the carbonate ion with charge compensation

through Ca2+ substitution (e.g., Na+), whereas iodide may be excluded from

the mineral lattice. Hence, I/Ca values of carbonate should record changes in

iodate concentrations in the water. If the dissolved oxygen level is the dominant

control on the iodate concentration, then I/Ca can, to a first-order approxima-

tion, be used as a proxy for dissolved oxygen.

The advantages of I/Ca in calcite as a proxy are several-fold. It is a relatively

simple, fast, and cost-effective analysis on the inductively coupled plasma-mass

spectrometry (ICP-MS), allowing the possibility to construct records at high

temporal resolution. Small volumes of sample materials are required for analyses,

allowing measurements on micro-drilled samples and microfossils such as for-

aminifera (<0.5 mg). I/Ca should record local redox conditions, and therefore can

be used as a complementary tool and combined with other proxies reflecting

global changes. Multiple I/Ca records for the same time interval from different

locations and water depths (e.g., Lu et al., 2020; Zhou et al., 2015) can provide

a unique opportunity to reconstruct ocean oxygenation truly in four dimensions

(3D space and time). Since the conversion between iodide and iodate is very

sensitive to low levels of dissolved oxygen (instead of euxinia, with H2S present),

I/Ca signals are expected to track hypoxia or suboxia, which cannot be recon-

structed by most redox proxies commonly used in Earth System Science.

However, it is important to note the main limitations of I/Ca. I/Ca is certainly

not immune to post-depositional alteration (Hardisty et al., 2017), just as any

other carbonate-based proxy. With a rising interest in measuring I/Ca in differ-

ent laboratories, it is important to maintain consistency in analytical methods.

Owing to the local nature of the I/Ca signal, sampling density may impact the

statistical distribution of values. The potentially slow kinetics of iodide reox-

idation imply that low iodate –high O2 waters may exist, highlighting the

possibility of I/Ca signals influenced by both oxygenation and water mass

mixing. Based on all the foregoing, a major pitfall in the use of I/Ca is applying

this proxy prematurely for quantitative interpretation of past oxygen levels.

2 Geochemical Tracers in Earth System Science
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3 Methods

Iodine concentrations in carbonate were first measured through pyrohydrolysis

followed by ICP-MS measurement of the trap solutions (Muramatsu and

Wedepohl, 1998). That method was modified to measure I/Ca in carbonate rocks

(Lu et al., 2010). In preparation, rock samples are crushed (or drilled) and hom-

ogenized to a fine powder. Then ~4 mg of powdered sample is weighed and

thoroughly rinsed with 18 MΩ water to remove soluble iodine (adsorbed or

residual salt). Diluted nitric acid (3%) is added to dissolve carbonate. The solutions

are diluted to a consistent matrix with ~50 ppm Ca, and 5 ppb indium and cesium

are used as internal standards. The final solutions contain 0.5% tertiary amine to

stabilize iodine in solution and ensure a reasonably short rinse time on the ICP-MS.

The measurements immediately follow solution preparation to minimize changes

in iodine speciation or volatilization. Fresh calibration standards are made from

KIO3 powders daily, for each batch of measurements. In the past, nitric acid was

added to the final solutions loaded into the nebulizer to make them mildly acidic,

and iodine was measured with a range of trace elements such as Mn, Sr, and rare

earth elements (Lu et al., 2010). However, this methodology has evolved to use of

an alkaline matrix andmeasurement of iodine with Ca andMg only, to better avoid

iodine speciation change due to the addition of acids, while all other trace elements

are measured in separate runs in acidic solutions (e.g., Lu et al., 2016).

I/Ca measurements can be performed on a sensitive quadrupole ICP-MS (e.g.,

Varian/Bruker models) or magnetic sector ICP-MS (Thermo Element Series).

The sensitivity of I-127 is typically tuned to 80,000–100,000 counts per second

for a 1 ppb standard at Syracuse University and formerly at the University of

Oxford. It is important to report the sensitivity of the 1 ppb I-127 standard on

different instruments, especially when attempting to resolve I/Ca signals of 0–1

µmol/mol or even 0–0.5 µmol/mol. Instruments with lower sensitivity can

produce useful data in some cases, such as large stratigraphic variations in I/Ca.

The reliability of I/Ca data in a particular study should not be judged solely by the

instrument sensitivity, but should be evaluated in the broader context, including

stratigraphic settings and multiproxy comparison. However, the instrumental

sensitivity on I-127 should be reported as metadata, so that the community can

gradually develop a sense for which instruments are suitable for which types of I/

Ca applications. Furthermore, I-127 concentrations in the solutions fed into the

ICP-MS should be monitored over time. For example, groundwater and marine

porewater may contain high levels of iodine and raise instrumental background,

making it difficult for carbonate I/Ca measurements.

JCp-1 (coral, aragonite) is a calcium carbonate reference material with

a published iodine concentration (Chai and Muramatsu, 2007), suitable for

3Earth History of Oxygen and the iprOxy
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quality control and interlaboratory comparison. Earlier measurements of JCp-1

resulted in I/Ca values of 4.33 ± 0.36 µmol/mol (n = 5) (Gakushuin University,

Japan) (Chai and Muramatsu, 2007) and 4.27 ± 0.06 µmol/mol (n = 8)

(University of Oxford, UK) (Lu et al., 2010). More recent work reported

lower values of 3.82 ± 0.39 µmol/mol (n = 60) (GEOMAR, Kiel, Germany)

(Glock et al., 2014), with similar values reported in Hardisty et al. (2017) (UC

Riverside, USA). The long-term (2012–2018) records of JCp-1 at the Syracuse

University laboratory yielded an average I/Ca value of 3.70 ± 0.27 (1 standard

deviation) µmol/mol (n = 2,280) (Fig. 1). A JCp-1 measurement is now run

between every three to six unknown samples at the Syracuse laboratory. To

ensure long-term consistency, the I/Ca values of unknown samples are corrected

by adjusting the value of the adjacent JCp-1 measurements to 4.27.

Unfortunately, JCp-1 has been banned from export from Japan in recent years,

so an in-house standard (synthetic calcite) has been produced and calibrated to

JCp-1. The protocol of preparing synthetic calcite was described in the supple-

mentary materials in Lu et al. (2010). Existing batches of synthetic calcite showed

I/Ca values of 3.52 ± 0.27 µmol/mol (n = 248) after corrections with the JCp-1

value measured immediately before the in-house standard. After the I/Ca value

has become consistently reproducible in different batches of this in-house stand-

ard over a few years, it will be made available to other laboratories on request.

Foraminiferal tests are commonly used in paleoceanographic applications,

including isotope and trace element analyses. The cleaning procedure for

monospecific foraminiferal tests for I/Ca analyses are modified after Barker

et al. (2003) and Lu et al. (2010) and include the removal of clays by rinsing

ultrasonically with deionized water, and removal of organic matter by oxidative

cleaning with NaOH–H2O2 solutions (Glock et al., 2014; Hoogakker et al.,

Figure 1 I/Ca values measured in reference material JCp-1 at Syracuse

University laboratory in 2011–2018 (n = 2,280).

4 Geochemical Tracers in Earth System Science
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2018; Lu et al., 2016). In addition to typical ICP-MS measurements, foraminif-

eral I/Ca measurements on individual specimens have been attempted with

secondary ion mass spectrometry (SIMS) (Glock et al., 2016). High-

resolution SIMS-derived I/Ca values within individual specimens (inter- and

intratest) may provide information on short-term oxygen variability, whereas

bulk ICP-MS analyses on whole specimens may be more suitable for relatively

longer term oxygen reconstructions (Glock et al., 2016).

4 Sample Materials and Post-depositional Alterations

Criteria for selecting marine carbonate materials for I/Ca analysis depend on the

specific application or research question. For early (e.g., Precambrian) Earth

studies, relatively well-preserved dolomites or limestones are suitable for bulk

carbonate I/Ca measurements. For samples of younger ages, bivalve shells

should be avoided when measuring bulk carbonate I/Ca, since they seem to

exclude iodine completely during calcification. Corals and foraminifera gener-

ally contain measurable iodine.

A large set of Neogene–Quaternary bulk carbonates (rather than specific fossils)

with a varying degree of preservation was used to study the impact of diagenetic

processes on the I/Ca signal (Hardisty et al., 2017). Carbonate recrystallization

during subaerial exposure to meteoric waters, marine burial in anoxic pore waters,

and dolomitization are most likely to reduce carbonate-associated iodine concen-

trations, likely reflecting the tendency of iodate to be reduced in pore waters. No

post-depositional processes tested so far increase the I/Ca in carbonates. Thus,

carbonate I/Ca values of ancient rocks provide minimum estimates of local

seawater iodate levels (Hardisty et al., 2017). I/Ca analysis can be paired with

typical diagenetic screening, such as Mg, Mn, δ13 C, δ18O, and cathodolumines-

cence (e.g., Edwards et al., 2018; Lu et al., 2017; Wei et al., 2019; Wörndle et al.,

2019). It is unlikely that any diagenetic proxy will be able to quantitatively and

reliably resolve the primary signal of I/Ca. Like any other paleo-environmental

proxy, I/Ca should be interpreted carefully, with multiproxy comparison and data-

model comparison, and evaluation of the status of carbonate preservation.

5 Long-Term I/Ca Trends Through Earth History

5.1 I/Ca Excursions and pO2 Rise

I/Ca has been applied at different timescales throughout Earth history, with the

long-term record showing both excursions and step changes. I/Ca peaks were

recorded in marine carbonates at almost all previously documented major

instances of atmospheric O2 rise, whether well-established or debated (Fig. 2).

5Earth History of Oxygen and the iprOxy
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No I/Ca signal was detected in the Archean, whereas I/Ca signals can be

measured for times during and after the Great Oxidation Event (GOE) at

~2.4 Ga (Hardisty et al., 2014).

Measurement of I/Ca across the GOE is a straightforward application of this

proxy to detect the presence of dissolved oxygen during the first rise of O2 in the

atmosphere. The Lomagundi Event at ~2.1 Ga, sometimes considered to be part of

Figure 2 Summary of the long-term carbonate I/Ca record, modified from Lu

et al. (2018), and updated with sections from Lowery et al. (2018), Shang et al.

(2019), Wei et al. (2019), and Young et al. (2019). The eukaryotic evolution is

modified from Knoll (2014). The δ13C record is from Saltzman and Thomas

(2012). The “modern-like eukaryotes” include both “calcifying eukaryote

marine plankton” and “the modern evolutionary fauna” in marine vertebrates

and invertebrates in the sense of Sepkoski (1981).
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the GOE, was suggested to be an “overshoot” of pO2 (Bekker and Holland, 2012).

The I/Ca values then declined in post-GOE Paleoproterozoic andMesoproterozoic

carbonates (~2–1 Ga), with notable exceptions at ~1.4 Ga (Hardisty et al., 2017)

and ~1.56 Ga (Shang et al., 2019). Emerging evidence is building for a transient

oxygenation event at ~1.4 Ga, for example, frommolybdenum isotopes (Diamond

et al., 2018) and uranium isotopes (Yang et al., 2017). Several I/Ca peaks in the

Neoproterozoic and early Paleozoic (~800–400Ma) provide evidence for oxygen-

ation events, generally supported by independent geochemical proxies: the Bitter

Springs carbon isotope anomaly at ~ 800Ma (Isson et al., 2018;Wei et al., 2018b),

the Ediacaran Shuram carbon isotope excursion at ~ 580 Ma (Sahoo et al., 2016;

Shi et al., 2018; Tostevin et al., 2019; Wei et al., 2018a), and the rise of land plants

at ~400 Ma (Dahl et al., 2010; He et al., 2019; Wallace et al., 2017).

Relatively high oxygen regions in the early oceans might have been present in

a patchy oasis-like fashion (Olson et al., 2013). In addition, a post-depositional

decrease in signals would make high I/Ca values harder to find in ancient

carbonates. Thus, when maximum values above a low background are used to

argue for an oxygenation event, there commonly is the potential caveat associ-

ated with sampling density in time and space in these relatively deep time

studies, and it is not surprising that higher maximum I/Ca values appear to be

found when more sections and more samples per section are measured (Fig. 3).

Figure 3 Sampling density vs. maximum I/Ca in each section (data shown

in Fig. 2).
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However, such cross-plots may exaggerate the sampling bias, particularly in

Proterozoic studies. It is a common practice to measure more samples on parts

of sections showing high values during preliminary studies (or across a well-

known “event”), to obtain better stratigraphic constraints, when the target is

high I/Ca values as an indicator of higher oxygen levels. To evaluate whether

the maximum I/Ca values differentiating two time intervals were influenced by

sampling density, total numbers of sections for each time interval should be

compared, as well as total numbers of samples and time resolution.

5.2 Step Changes in I/Ca Baseline

In addition to the high values commonly associated with a global pO2 increase,

background I/Ca values show significant stepwise increases, first across the

GOE and then in the Mesozoic (Fig. 2). Increasing diagenetic alteration with

increasing age is predicted to cause gradual decreases in I/Ca, and changes in

lithology (e.g., dolostone–limestone) do not correlate with the step changes

observed here (Hardisty et al., 2017; Lu et al., 2018). Carbonate rocks selected

for paleo-environmental reconstructions were precipitated primarily from/in the

upper water column; thus the bulk carbonate I/Ca signal is largely controlled by

the local upper ocean iodate gradient. I/Ca values are not expected to always

correlate with redox proxies responding oxygenated seafloor globally.

Atmospheric pO2 controls the upper boundary of the vertical iodate gradient,

whereas subsurface O2 consumption in the upper water column (e.g., oxygen

minimum zone [OMZ] or oxycline) controls its lower boundary. The two step-

changes in the I/Ca record (Fig. 2) likely mark fundamental changes in these

boundary conditions. In the pre-GOE scenario, the whole ocean was dominated

by iodide in anoxic waters. After the GOE, in contrast, the shallow ocean

became oxygenated through mixing with the atmosphere, and at this time the

iodate concentration decreased from the sea surface toward the deeper boundary

with anoxic waters. Hence the step change across the GOE was related to the

pO2 rise, increasing the iodate concentration at the upper boundary of the iodate

gradient. In contrast, the step change in I/Ca in the early Mesozoic was more

likely to have been caused by changes in the lower boundary of the iodate

gradient, that is, related to an increasing oxycline depth. Similarly low I/Ca

baselines in the Neoproterozoic and Paleozoic did not follow the second atmos-

pheric pO2 rise after the GOE but instead were dominated by the oceanic

oxygen signal (shallow oxycline in the water column). This is not surprising,

since I/Ca is mainly an oceanic oxygen proxy, though also sensitive to major

changes in atmospheric oxygen. Iodate concentrations are typically low above

marine OMZs even under modern high atmospheric oxygen condition,
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implying that high pO2 should not be automatically assumed to produce high I/

Ca baseline in long-term geologic records.

Oxycline depth is controlled by temperature-dependent solubility, ocean

ventilation, and organic matter remineralization (Keeling et al., 2009). In the

modern ocean, the surface water IO3
− concentration can be low locally, during

shallow hypoxic events (Truesdale and Bailey, 2000). Thus, high I/Ca meas-

ured in upper ocean carbonates requires both high pO2 and a deep oxycline.

Among the three factors (temperature-dependent solubility, ocean ventilation,

and organic matter remineralization), the only one likely to behave in

a stepwise manner on long timescales is the remineralization of organic

matter, driven by biological evolution as well as environmental conditions.

The influence of remineralization depth on oxycline and OMZ positions was

modeled (Meyer et al., 2016). There was no proxy record demonstrating the

timing of OMZ changes in the Phanerozoic, whereas the timing for prolifer-

ation of calcifying plankton is relatively well known (Fig. 2). The Phanerozoic

I/Ca record tentatively points to the early Mesozoic for oxycline changes,

consistent in timing with the diversification of calcifying plankton, although

more work is needed to constrain the exact timing and rate of change (Lu et al.,

2018).

6 Short-Term Ocean Deoxygenation Events

6.1 Paleozoic Extinctions

The Cambrian–Ordovician interval is known for several trilobite extinction events

that have been linked to ocean anoxia (Saltzman et al., 2015). Two out of three

sections in the Great Basin region, western United States, recorded lower I/Ca

values coincident with a 30% extinction of standing generic diversity (Edwards

et al., 2018). Coeval δ13 C and δ34S excursions have been used to argue for

increased global carbon burial and anoxia expansion. The same combination of

proxy records (δ13 C, δ34S, I/Ca) links Silurian events to ocean anoxia (Young

et al., 2019 and Bowman et al., 2020). During the end-Devonian mass extinction

(~359Ma), low I/Ca marked an interval of deoxygenation more expanded than the

interval of Hangenberg black shale deposition. The deoxygenation indicated by

I/Ca is overall coeval with time intervals of carbon isotope excursion and biotic

crisis indicated by fossil evidence (Liu et al., 2020).

The Permo-Triassic (P-T) mass extinction (~252 Ma) is the most severe

biotic crisis in the Phanerozoic, during which possibly ~90% of marine species

went extinct (Payne et al., 2004). Many lines of evidence, based on biotic

proxies as well as organic and inorganic chemical proxies, document pervasive

and widespread anoxia and even euxinia during this extinction event (e.g.,
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Algeo et al., 2015; Brennecka et al., 2011; Elrick et al., 2017; Lau et al., 2016;

Zhang et al., 2018). An early attempt to use carbonate iodine content as a redox

proxy found very low I/Ca values across the P-T boundary, but concluded that

these could be attributed to diagenesis (Loope et al., 2013).

6.2 Mesozoic Oceanic Anoxic Events

As a proof-of-concept, the iprOxy was first tested across Mesozoic Oceanic

Anoxic Events (OAEs), generally associated with rapid warming and changes

in the nutrient cycle, leading to large-scale, low-oxygen conditions in the oceans

(Jenkyns, 2010). One iconic signature of OAEs is the positive carbon isotope

excursions (CIE), reflecting enhanced global burial of organic matter. Records

of the Toarcian OAE (~182 Ma) and the Cenomanian–Turonian OAE 2

(~92 Ma) generally show lower I/Ca during CIEs, as expected during the

buildup of widespread reducing conditions in the oceans (Lu et al., 2010). In

a follow-up study, carbonate I/Ca records across OAE 2 were obtained from

seven sections and compared with Earth system modeling results (Zhou et al.,

2015). Upper ocean oxygenation changes were spatially variable, and locally,

some deoxygenation developed before the global CIE (Zhou et al., 2015),

a scenario supported by trace metal and isotopic data (Owens et al., 2017;

Them et al., 2018). I/Ca responded to a brief episode of reoxygenation due to

global cooling during the Plenus cold event in the first half of OAE 2 (Zhou

et al., 2015).

The I/TOC (total organic carbon) ratios in modern surface-subsurface sedi-

ments correlate with bottom water oxygen levels (Kennedy and Elderfield,

1987a, b; Lu et al., 2008; Price and Calvert, 1973). I/TOC records of the OAE

2 consistently show expansion of bottom-water deoxygenation during the CIE

and a latitudinal gradient in agreement with ventilation patterns in an Earth

system model (Zhou et al., 2017). The sedimentary iodine sink in the global

ocean appears to be dependent on the flux of organic matter burial in oxygen-

ation bottom water, since iodate (the oxidized form) is much more efficiently

adsorbed onto organicmatter than iodide (Zhou et al., 2017). Thus, the degree of

global iodine drawdown during OAEs may be limited by iodate reduction in

anoxic water lowering the efficiency of iodine adsorption onto organic

materials.

OAEs were not generally associated with mass extinctions, possibly due to

the presence of well-oxygenated ocean refuges, which may have existed, as

suggested by I/Ca data for OAE 2. Alternatively, the seafloor area under anoxic

waters may have been smaller than commonly considered (Clarkson et al.,

2018). Another possibility is that Mesozoic faunas had greater physiological
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tolerance to warming and low-oxygen conditions, because they were adapted to

a greenhouse world (Penn et al., 2018).

6.3 The Cretaceous–Paleogene Mass Extinction
and Paleocene–Eocene Thermal Maximum

The Cretaceous–Paleogene (K–Pg) mass extinction (~66 Ma) destroyed

~76% of species on Earth, and was probably mainly caused by the impact

of an asteroid (Schulte et al., 2010). There have been arguments that the

K–Pg impact was followed by low-oxygen conditions; evidence for hyp-

oxia appears to be local-regional, for example, at Caravaca and Agost

(Spain) and Stevns Klint (Denmark) (Alegret et al., 2003; Vellekoop

et al., 2018). Within the Chicxulub impact crater, well-oxygenated condi-

tions existed during the recovery of the ecosystem after the asteroid

impact, as suggested by bulk carbonate I/Ca values (Lowery et al.,

2018). However, I/Ca data could not be reported for older intervals in

that core at the impact site, in order to estimate oxygen levels prior to the

event. There is thus as yet no evidence for global oceanic anoxia following

the K–Pg impact, and bottom waters were not globally oxygen depleted, as

shown by the nonextinction of benthic foraminifera (e.g., Alegret et al.,

2003; Thomas, 1990).

The Paleocene–Eocene Thermal Maximum (PETM) (~55 Ma) was a rapid

global warming event with a 5–8°C global temperature rise, associated with

a major extinction of benthic foraminifera (McInerney and Wing, 2011).

Globally low oceanic oxygen levels at this time were suggested by S-isotope

(Yao et al., 2018) and Mo-isotope data (Dickson et al., 2012), and regional

anoxia may have occurred in large epicontinental basins, for example, in the

northern and eastern Tethys (Dickson et al., 2014). I/Ca in the bulk coarse

fraction and planktic foraminifera provides evidence for upper ocean deoxy-

genation during the PETM, showing interbasinal oxygen gradients consistent

with modeled oxycline depths (Zhou et al., 2014). I/Ca in deep-sea open ocean

benthic foraminifera qualitatively indicates that bottom water oxygen levels

were lower at intermediate depths during the late Paleocene–early Eocene

(Zhou et al., 2016), broadly supporting redox-sensitive metal data at the same

sites (Chun et al., 2010; Pälike et al., 2014).

7 Quaternary Glacial–Interglacial Cycles

Reconstructing glacial–interglacial changes in oceanic oxygen is important

both for understanding the impact of changes in the carbon cycle on past climate

conditions and for improving Earth system models that are commonly used to
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forecast future ocean deoxygenation. Glacial deep waters have been argued to

have contained significantly lower mean O2 because of increased oceanic

carbon storage, possibly on the order of 10% (Broecker and Peng, 1982).

However, establishing proxies to measure these relatively subtle changes in

dissolved O2 reliably is still challenging today.

Planktic foraminifera from Holocene core-top sediments contain low I/Ca

(<2.5 μmol/mol) near OMZs and high I/Ca (e.g., >4 μmol/mol) in well-

oxygenated locations (Lu et al., 2016, 2019). These core-top data further

indicate that empirically planktic I/Ca is most sensitive to the hypoxic O2

threshold (~70–100 μmol/kg), distinguished from δ15N, sensitive to the suboxic

O2 threshold (~5–10 μmol/kg) (Lu et al., 2019). However, researchers should

use caution when interpreting planktic I/Ca as a proxy for in situ O2 conditions

strictly at the foraminiferal habitat. High O2–low I/Ca or low IO3
− conditions

occur in the Southern Benguela region, with O2 conditions highly variable on

temporal and spatial scales (Lu et al., 2019). Low foraminiferal I/Ca values in

this area may reflect short-lived low O2 conditions, and/or the diffusion/advec-

tion of low-O2 signal from nearby locations. A down-core planktic I/Ca record

from the Pacific sector of the Southern Ocean indicates O2-depleted waters

close to planktic foraminiferal habitats during glacial periods, in contrast to the

well-oxygenated interglacial periods (Lu et al., 2016). An I/Ca record from the

eastern tropical Pacific relatively close to OMZs exhibited persistently low I/Ca

values during the last 40 ka (Hoogakker et al., 2018).

Modern living benthic foraminifera from Peruvian OMZs show a positive

relationship between I/Ca and a narrow range of ambient bottom water O2

concentrations (2–35 μmol/kg) (Glock et al., 2014). I/Ca in epifaunal species

(living above the water–sediment interface) are more likely to record bottom

water O2 signals, whereas I/Ca in infaunal species (living within the sedi-

ments, with the possibility of migrating vertically) are affected by pore water

O2 changes and thus may not well represent bottom water conditions. Data on

epifaunal Cibicidoides spp. from global oceans show that epifaunal I/Ca does

not linearly correlate with bottom water O2, but decreases rapidly below an

O2 threshold (Lu et al., 2020). This threshold has not been precisely con-

strained, and a multiproxy approach leveraging additional independent oxy-

genation proxies [e.g., surface porosity of the foraminiferal test (Rathburn

et al., 2018); Δδ13C (Hoogakker et al., 2015)] will likely provide more

reliable (semi-)quantitative estimates bottom water O2 in down-core studies

(Lu et al., 2020). I/Ca values in multiple benthic species in a core in the

northeastern Pacific Ocean (955 m water depth) suggest that the bottom

waters were well oxygenated during the Last Glacial Maximum (Taylor

et al., 2017). A global compilation of five down-core I/Ca records and
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published (semi-)quantitative oxygenation proxy records indicates that

low-O2 waters (<50 μmol/kg) may have been more extensive in the glacial

Atlantic and Pacific Oceans than today (Lu et al., 2020). The application of I/

Ca in benthic foraminifera thus is promising, but as of today cannot be used

to derive fully quantitative estimates of bottom water oxygen and requires

more calibration and proxy development.

8 Future Prospects

There are many potential future applications and developments of I/Ca that can

be targeted by different research communities. High Precambrian I/Ca values

likely will continue to provide evidence for brief intervals of oxygenation (at

least locally-regionally) against a generally low-oxygen background, contribut-

ing to the discussions about the dynamics of the transition from an anaerobic to

aerobic world. The Paleozoic may be the period of final transition between low

pO2 and high pO2 stasis, as argued by studies of carbon cycle perturbations

(Bachan et al., 2017; Saltzman, 2005). Paleozoic oceans have traditionally been

considered as well oxygenated, largely because of the abundant presence of

eukaryote life forms including animals (Berner, 2006; Holland, 2006). More

recent estimates of Paleozoic pO2 levels, however, are notably different from

the results of the GEOCARB family of models (Lenton et al., 2018; Sperling

et al., 2015). pO2 rise and ocean anoxia appear to be intertwined during the

Paleozoic, and the relationship between them may need to be better illustrated.

I/Ca may be a particularly useful tool to address this question, especially during

the Devonian expansion of land plants, and marine extinction events possibly

caused by anoxia (e.g., Frasnian–Famennian, end of Devonian).

The seawater iodine budget likely changed on tectonic timescales (Zhou

et al., 2016), being controlled by the balance between sources and sinks that

need to be better constrained (Lu et al., 2010). If increased organic matter burial

and expanded bottom water anoxia forms a negative feedback preventing rapid

drawdown of iodine during OAEs (Zhou et al., 2015), then the global iodine

budget during oxygenation events becomes an intriguing object of study.

Stratigraphic records featuring decreases in I/Ca from high background

values probably will reveal more nuance about ocean deoxygenation in a high

pO2 world. Increasing numbers of proxy data show deoxygenation both during

warm greenhouse time periods (OAEs) and during cold glacial periods of the

recent past and deep time (e.g., Bartlett et al., 2018; Hoogakker et al., 2018;

Song et al., 2017). The temperature-controlled gas solubility thus does not by

itself seem to dominate the dissolved O2 levels in the ocean interior. More future

research is needed to address the critical roles of ocean ventilation and the
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strength of the biological pump in determining ocean oxygenation under con-

trasting climatic conditions across geological timescales. Earth system models

will likely form part of the solution to these questions.

Most Cenozoic intervals remain unexplored with regard to I/Ca. Recent

studies suggest that large redox changes might have occurred in the

Paleogene, including the potential presence of sulfidic conditions during the

PETM (Yao et al., 2018), and widespread water column denitrification in the

early Cenozoic (Kast et al., 2019). To compare I/Ca data with these redox

proxies (e.g., S, N), the redox window to which foraminiferal I/Ca is sensitive

needs to be calibrated. Single genus/species foraminiferal data from individual

sites are needed, combined with additional information (e.g., on paleogeog-

raphy, circulation patterns, paleo-productivity), in order to understand the

dynamics of Cenozoic trends.

Foraminiferal I/Ca has great potential of serving as a semiquantitative proxy:

I/Ca values below a certain threshold can be linked to dissolved O2 values. It

will likely be difficult to calibrate I/Ca to a numerical expression for

a continuous range of O2 values, as has been done for many fully quantitative

proxies (e.g., Mg/Ca; Elderfield and Ganssen, 2000). The use of the quantitative

Δδ13C proxy for dissolved O2 (the δ13C difference between epifaunal benthic

foraminiferal Cibicidoides wuellerstorfi and infaunal Globobulimina spp.), as

an example, is limited in its application to the occurrence of particular species of

foraminifera, which are available in limited locations and relatively recent time

intervals only (Hoogakker et al., 2015). Thus, a semiquantitative iprOxy with

versatile applications likely will assist reconstructing the coevolution of bio-

sphere and geosphere, and contribute useful and unique information to Earth

System Science.
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