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Abstract. There exists some evidence of a suppression in power in the CMB multipoles
around [ ~ 20-30. If taken seriously, this is in tension with the simplest inflationary models
driven by a single scalar field with a standard type of slowly varying potential function
V(¢). Such potential functions generate a nearly scale invariant spectrum and so they do
not possess the requisite suppression in power. In this paper we explore if canonical two-
derivative inflation models, with a step-like feature in the potential, can improve agreement
with data. We find that improvement can be made when one utilizes the standard slow-roll
approximation formula for the power spectrum. However, we find that in order to have a
feature in the power spectrum that is sufficiently localized so as to not significantly disrupt
higher [ or lower [, the potential’s step-like feature must be so sharp that the standard
slow-roll approximations break down. This leads us to perform an exact computation of
the power spectrum by solving for the Bunch-Davies mode functions numerically. We find
that the corresponding CMB multipoles do not provide a good agreement with the data. We
conclude that, unless there is fine-tuning, canonical inflation models do not fit this suppression
in the data.
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1 Introduction

The cosmic microwave background (CMB) provides the clearest information we have about
the details of the early universe [1, 2]. Its approximate isotropy can be accommodated
beautifully within the theory of cosmic inflation [3, 4]. Furthermore, inflation accounts for
the approximate homogeneity and fluctuations in the large scale structure of the universe.
Detailed measurements are broadly in agreement with the predictions of the simplest infla-
tionary models; namely that of a nearly scale invariant spectrum of fluctuations, with a small
red tilt, adiabatic and Gaussian fluctuations, and a universe that is spatially flat.

However, recent observations of the CMB suggest that the fluctuations on a range of
scales deviate from scale invariance in an interesting way. In particular if one decomposes
the CMB into multipole moments DITT and looks at the measured power in each multipole,
one finds that while there is broad agreement with the predictions of inflation, there is a
breaking of scale invariance seen in the appearance of a suppression in power in multipoles
around [ ~ 20-30 [5] (see the data in figures 4 & 5). Other works have focussed on a possible
overall suppression in power for all low-I modes, which may be possible in open inflation [6],
but this will not be our focus here.

Now it is entirely possible that this suppression for [ ~ 20-30 is just a statistical fluke,
since inflation is a statistical theory built on the principles of quantum mechanics. So some
variability in the measured power on various scales is expected, and since these scales are
rather large, there is appreciable cosmic variance. Moreover, one should always be careful
with regards to the “look elsewhere effect”, whereby one can always data mine and find
anomalies if one looks at the data in certain ways; the significance is often reduced when
a global statistical analysis is performed. However, it is at least plausible that this effect
should be taken seriously, and suggests that the simplest inflationary models, which predict
a nearly scale invariant spectrum, are in tension with the latest data.

In general, however, it is difficult to definitively rule out the idea of inflation, since the
theory is at such high energies and at very large field values. In this regime, the rules of
relativity and quantum mechanics allow for a large number of operators to be relevant in
controlling the physics. This is to be contrasted to the situation at low energies when we



expand around the vacuum. In particular, if we consider a scalar field’s self interactions of the
form V(¢) =, ¢, ¢" /A", one can usually be confident that the higher order terms in this
expansion are irrelevant as they are suppressed by some large mass scale A (we are working
in 3+1 dimensions). However, in the inflationary phase, the inflaton ¢ is usually at such large
field values that the entire tower of terms may be important. It has sometimes been suggested
that this is the trouble with inflation; that it is not especially predictive. But this misses the
target. The trouble is that the rules of quantum mechanics and relativity themselves permit
this tower of terms and so they have somewhat limited predictive power in this particular
extreme regime (while obviously being amazingly predictive in other regimes); inflation is
simply a particular phase that is plausibly allowed by these over-arching principles.

Moreover, there appears to be tremendous freedom allowed by relativity and quantum
mechanics on the number of scalar fields and on many other types of operators, namely
higher derivative interactions, such as ~ (9¢)*. However this is where the general principles
of effective field theory provide a great amount of guidance. If one is in a regime in which such
higher derivative terms are important, then one is somewhat near the cutoff of the effective
theory. While it is possible to tune parameters to be in a regime in which (a) these higher
derivative terms are important and (b) the effective field theory is still valid, it generally
requires special pleading of parameters. Furthermore, such models are not suggested by
any existing data, as such scenarios tend to predict large non-Gaussianity, while the data
is consistent with Gaussianity. Also, while it is interesting to study multi-field models (an
interesting example is ref. [7]), in the absence of special pleading, inflation usually leads to
single field attractor behavior.

All together, the class of models with a single scalar field governed by a standard
two-derivative action, are by far the most well motivated from the general considerations of
effective field theory. In these models the only residual freedom is the potential function V' (¢)
mentioned above, leaving a single functional freedom in the theory; these are the “canonical
inflation models”.

In this paper, we focus on these canonical inflation models, and explore if some potential
function V' (¢) can accommodate the suppression in power on scales [ ~ 20-30. To do so, one
must introduce a feature into the potential so as to create a dip in power on just the right
set of scales. It is not clear what the microphysics underlying such a feature would be, but
it is allowed in principle, so long as the feature isn’t so sharp that particle scattering is in
conflict with unitarity.

A suppression in power can be obtained from a steep potential. Furthermore, in order
to not disrupt the nearly scale invariant spectrum for [ < 20 and [ > 30, we need this steep
part of the potential to be localized. Hence this leads us to consider a class of potential
functions that have a step-like feature, with a height, width, and location that we shall
take as adjustable parameters (related work includes refs. [8-10] and references therein). We
find that with these potentials and using the slow-roll approximations to obtain the power
spectrum we can obtain moderate improvement in the data compared to standard potentials
without this feature. However, we find that in order to improve the fit to data, the width
of the step needs to be so small that the standard slow-roll approximations break down. We
then perform an exact analysis by solving for the Bunch-Davies mode functions numerically.
We then find that the power spectra exhibit significant oscillations, which does not fit the
data well. We conclude that in order to obtain agreement with data, one needs a highly
fine-tuned potential that has a range of features that conspire to remove these prominent
oscillations.



Our paper is organized as follows: in section 2 we outline the class of models we study.
In section 3 we layout the computation of power spectra both in an approximate slow-roll
form and an exact form. In section 4 we illustrate the predictions for the CMB multipole
moments. In section 5 we perform a systematic exploration of the fit to data, by computing
the sum of squared differences between theory and data. Finally, in section 6 we discuss our
results.

2 Class of models

As explained above, the most well motivated model for inflation, based on the general prin-
ciples of effective field theory, is the standard two-derivative action for gravity with a single
scalar field. In this case we can always exploit field re-definitions of the metric g,, to go
to Einstein frame and field redefinitions of the scalar ¢ to make the kinetic term canonical.
This gives the following action (signature + — —— and units A =c = 1)

1 1
5= [atev=g [QM;R + 10,000 - V(0)| (2.1)

where R is the Ricci scalar and My = 1/4/87Gy is the reduced Planck mass.

In order to specify a class of models, we would like to begin with a standard type of
potential function Vy(¢) that gives rise to a nearly scale invariant spectrum, as this is in
rough agreement with data. We then deform the potential by introducing a step-like feature
into it V' (¢) to try to obtain the requisite suppression in power on the appropriate scales.
The total potential is then

V(¢) = Vo(¢) +0V(9). (2.2)

A useful starting point is the simplest inflationary potential, namely a quadratic poten-
tial [11]
1

L2 (2.3)

AOEE

The overall measured amplitude of the variance in fluctuations, A ~ 2.2 x 1072, can be
accommodated by choosing the mass to be m ~ 1.6 x 10" GeV. This model predicts a
spectral index of ns ~ 1-2/N,, where N, is the number of e-foldings of inflation. If we
take N, ~ 50-60, this predicts a spectral index of ng ~ 0.96, which is in good agreement
with data. On the other hand, this model predicts a tensor-to-scalar ratio of r ~ 8/N.,
giving r ~ 0.15, which is slightly higher than existing bounds on primordial B-modes. Hence
one should more realistically move to models with an overall flatter potential to avoid over-
production of gravitational waves. Nevertheless this model is sufficiently simple that it is
useful to illustrate the basic idea, and we will make use of it. It is simple to generalize our
method to flatter potentials.

In order to introduce a feature into the potential we would like to add a piece 6V that
is localized around some special value ¢*, leaving the potential of the quadratic form for
¢ < ¢" and ¢ > ¢*. In between we would like to add some step-like function that has an
amplitude and width that are adjustable parameters. The idea is that the feature introduces
a localized steepness into the potential. This is important because (at least within the slow-
roll approximation) the power is inversely proportional to €; (see ahead to eq. (3.10)) and
a steep potential has a larger €; and therefore a suppression in power. The specific form of



the potential is not too important, just so long as it has these qualitative features. But for
concreteness we choose the following functional form which has all of these properties

v (¢ — ¢%)

WV(p) =« tanh[ M,

a0, (24)
where « is a dimensionless measure of its amplitude and 7 is a dimensionless measure of its
(inverse) width. A plot of this form of the potential is given in figure 1. We have checked
that our basic conclusions extends to any qualitatively similar set of potential functions. For
v < 1, the UV cutoff on the effective theory is the Planck scale as usual. However, we will be
interested in relatively sharp step-like features and so we will be exploring v > 1. In this case
the UV cutoff on the effective theory can be below the Planck scale. If one series expands the
above potential, one finds that higher order operators are suppressed by a factor of M/
(times an overall factor involving m? and «), which suggest that higher energy scattering of
particles may violate the unitarity bound at the scale

M
Avy ~ ?p‘ (2.5)

which acts as the cutoff on the effective theory. However we will not study ~ that are
extremely large. The maximum we will explore is v ~ 100. So the cutoff will remain higher
than both the Hubble scale during inflation and the energy density of inflation to the one-
quarter power. Thus the effective theory can be used.

For ¢ < ¢*, tanh[y(¢ — ¢*)/M,] — —1, and the total potential becomes V(¢) ~
m?(1 — a)¢?/2. For ¢ > ¢*, tanh[y(¢p — ¢*)/Mp] — 1, and the total potential becomes
V(¢) =~ m?(1 + a)p?/2. By taking a < 1 we ensure that the overall effective mass is not
shifted significantly between the ¢ < ¢* and the ¢ > ¢* regimes. Hence it will still be the
case that m ~ 1.6 x 10'3 GeV to approximately match the overall measured amplitude of the
variance in fluctuations. However, small adjustments in the value of m will be made in order
to provide an optimal fit to the data.

3 Power spectra

Our goal is to compute the spectrum of fluctuations in this class of models and compare to
the latest CMB observations from Planck. In order to do so we need to first compute the
homogeneous background evolution of the field ¢, and metric, and then compute the first
order fluctuations.

The homogeneous background evolution is straightforward. In a spatially flat universe,
the corresponding Friedmann and field equations are as usual

op+3Hoy +V'(¢p) = 0, (3.1)

2 1 L.y
- 3z (59 + V). (32
where H = a/a is the Hubble parameter, with a the scale factor, and dots indicate derivatives
with respect to time.
A phase of acceleration occurs when the following first slow-roll parameter €; is less
than 1 .
H

—5 (3.3)

€1 =



200} ]

:g 150} ]
£
S

S 100} ]
s
b=
8

& 50} |

0_ i

0 5 10 15 20

Field ¢ [Mp]]

Figure 1. A representation of the kind of potentials V' (¢) considered in this paper. The gray curve is
a standard quadratic potential V(¢), while the orange curve is the full potential including a step-like
feature dV(¢), with o = 0.05 (though we will often focus on smaller a values in the remainder of the
paper), v = 5, and ¢* = 15.243 M.

In all our parameter searches, we ensure that €; < 1 is satisfied. The corresponding number
of e-foldings until inflation ends is determined by the following integral

tend
N(t) = H(t)dt, (3.4)
t
where t is the time at which one is computing the number of e-foldings and te,q is the time at
which inflation ends. Furthermore, a condition to trust the standard slow-roll approximations
is that the following second slow-roll parameter is also small

€1
He'

€2 = (3.5)
In figure 2 we plot €2 over time and see that for sufficiently large 7y, €2 becomes large when
the field passes through the step-like feature in the potential.

3.1 Density perturbations

We are interested in computing scalar perturbations around the homogeneous background
(a related analysis can be carried out for tensor perturbations). Scalar perturbations arise
in the scalar field 6¢ and the metric dg,, in a gauge dependent fashion. In the linear theory
there is a useful gauge independent quantity which measures the curvature perturbation ¢
and has the convenient feature that it is frozen on super-horizon scales.

In the Gaussian approximation, the fluctuations in { are entirely characterized by its
two-point correlation function. Statistical translation and rotation invariance implies that it
can be described by a single function of one variable, the power spectrum P (k). It is defined
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Figure 2. The second slow-roll parameter €5 versus the number of e-foldings N, until inflation ends,
with o = 0.0015, ¢* = 15.243 M,,|, and for different values of the inverse width parameter; orange is
v = 5, purple is v = 10, brown is v = 30, and black is v = 50.

implicitly by

212 P (k)
k3

where we have chosen to scale out a factor of 1/k3 for convenience. Note that this leaves

P (k) dimensionless, and if it were independent of k, it would correspond to a scale-invariant

spectrum. Here k£ = |k| is the magnitude of the wavevector and is defined in comoving

co-ordinates.

At the linear level there is an exact way to determine the power spectrum. We decom-
pose the quantum field in terms of mode functions vy (the Mukhanov-Sasaki variable [12, 13]).
This is related to the curvature perturbation mode functions by (; = vi/(av/2¢€1), which
obeys the following second order equation of motion

d*

d
@t <2+62>aHd§f +K2G =0, (3.7)

(Ck) {(K) = (2m)6° (k + K') (3.6)

where n = [ dt/a(t) is conformal time. To fully specify the mode function, we must impose
boundary conditions. In order for each mode to begin sub-horizon in the usual Minkowski
space vacuum, we impose the following boundary condition

e—ikn
V2K’

in the distant past; this defines the so-called Bunch-Davies vacuum. The corresponding
ground state wave-functional is a Gaussian with a variance that specifies the power spectrum
Pe. It is straightforward to show that this is related to the square of the mode functions as

_ FIG?
271'2]\451

Vi —

(3.8)

P (k) (3.9)



Now an important approximation emerges if the background always exhibits standard
slow-roll inflation in quasi de Sitter phase, where the Hubble parameter and its derivatives
change very slowly in time, implying €2 < 1. By solving eq. (3.7) in this slow-roll limit,
one finds that the mode functions approach |(x| — Hj/(21/k? €1 1), where Hy, and €; ) (the
Hubble parameter factor and first slow-roll parameter, respectively) are evaluated at the time
when the corresponding mode k crosses the horizon, i.e., when N, = In(kenq/k), where keng
is the scale that leaves the horizon at t = to,q. This gives the following well known slow-roll
approximation to the power spectrum
;

Pelk) v ———5—.
¢(k) 87T2M§1€17]€

(3.10)

In this work we will compare the results of using this approximate form eq. (3.10), which
is often sufficient in describing the predictions of inflation, to the exact form eq. (3.9). In the
case of our potential with a step-like feature it is possible to be in the regime in which this
approximate form will be inaccurate as we discuss below.

3.2 Numerical results

Using the above potential we have obtained the power spectrum in both the approximate
and exact methods. In figure 3 we give some representative results of this primordial power
spectrum. We have introduced the step-like feature at ¢* = 15.243 M},;, which is around
N, ~ 55 e-foldings before the end of inflation. This will have an imprint on the CMB on
large scales, as we analyze in the next section.

The plot shows that as we increase the parameter -, that controls the (inverse) width
of the step-like feature, the approximate method becomes less and less accurate. Instead the
exact numerical method shows that for sufficiently large v the true answer involves significant
oscillations. This makes good physical sense for the following reasons: all modes begin in
the Bunch-Davies vacuum on sub-horizon scales. In this regime, the modes are oscillating
and they carry different phases depending on their wave-number. As the modes red-shift
they eventually encounter the feature in the potential. Different modes will encounter the
feature in the potential with different phases, and therefore can have different responses;
some modes get enhanced and some modes do not, leading to oscillations. Modes then move
super-horizon and get frozen (for other discussion, see ref. [14]).

We see that the approximate result clearly exhibits the desired dip in the power and
is localized in k-space, while it can be more complicated when one turns to the exact re-
sult. There exists some interesting work on computing the spectrum accurately using the
“Generalised Slow Roll” formalism [15, 16]. However, since the potential may be so sharp, it
suffices to do this numerically. We leave it as possible further work to develop an analytical
understanding of the resulting behavior.

In the first and second plots in figure 3, one sees that both the approximate and the
exact spectra exhibit this desired suppression. However, since the parameter v = 3 and
~v = 10 in these plots is not very large, the corresponding width of wavenumbers that are
affected is appreciable. We shall investigate if any of these types of power spectra are helpful
in matching CMB data next.

4 Predictions for CMB

The primordial power spectrum is not directly observable on the largest of scales. Though
we can gain information by turning to large scale structure; this is ultimately connected to
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Figure 3. The primordial power spectrum P¢(k) vs. wavenumber k for the potential egs. (2.3), (2.4);
the blue curves are from using the approximate method eq. (3.10) and the red curves are from using
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the primordial spectrum and this mapping is perhaps best quantified in the framework of the
effective field theory or large scale structure [17-19]. However, the cleanest and most precise
information we have on the primordial power spectrum comes directly from the CMB.

In the linear theory it is straightforward in principle to convert the primordial power
spectrum P¢(k) into a prediction for the fluctuations in the CMB. The primordial spectrum
provides the initial conditions for the early radiation and matter dominated eras. This can
be evolved using standard plasma and gravitational physics.

The CMB temperature fluctuation across the 2-sphere T'(6, ¢) is decomposed into the
spherical harmonic basis Y}, (8, ¢) as

T Z Aim lm (41)

where in principle an amplitude a;, can be measured for each [ and m. To approximate
the ensemble average of the two-point correlation function (AT(6, ) AT(6',¢’)), a sum over
m = —I,—l+1,...,1 — 1,1 is performed for each [. The summed power in each squared
multipole moment is designated DITT (up to an overall constant prefactor for convenience) as

m=

l+ 1
DT = 2, 4.2

The theoretical prediction for the ensemble average of these multipole moments can be
done efficiently numerically, and we make use of the publicly available CLASS program [20]
to carry this out. To do this we have first computed the primordial power spectrum using
the above approximate and exact methods. We then inserted this into the CLASS code,
running at high precision, and obtained a range of different results.. We used the best fit
cosmological parameters taken from table 3 of ref. [2], namely

wp = 0.02222, w,. = 0.1197,
7=0.078, Hy=67.31kms ! Mpc!, (4.3)

with current CMB mean temperature of Ty = 2.7255 K.

In figure 4 we give a representative plot of the CMB multipole moments using the
approximate method. We have chosen parameters that coincide with those of the bottom
plot of figure 3. The parameters are chosen such that we obtain a clear dip in the spectrum
(blue points) compared to the nearly scale invariant theory with potential Vo = m?¢?/2 (green
points). This shows reasonable agreement with the Planck data [21] (magenta points), and
in particular improves agreement with the suppression in power around [ ~ 20-30 as desired.

However, as was to be anticipated from figure 3, the results using the exact method
are rather different. The presence of multiple oscillations in the primordial power spectrum
translates into oscillations in the CMB multipoles. In fact whenever we make +, the (inverse)
width, sufficiently large to attempt to localize the dip using the approximate method, we
find that this gives rise to a break down in the slow-roll condition €5 <« 1 and the exact
method exhibits poor agreement with data, as seen in figure 5. This was to be anticipated
from figure 2. However, in order to quantify the comparison between theory and data we
now turn to a statistical analysis.
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5 Statistical analysis

A measure of the difference between theory and data is the sum of squares of the differences,
normalized to the variance. This is the so-called x? statistic. It counts the number of degrees
of freedom in the case in which we have the correct theory. Here we can define it as a sum
over multipoles [ as

— i( l theory Dl data) (5 1)
-1 l

min

where the first factor of Dthheory

imate or exact method, and Dl data Tefers to the measured central value of the Planck data.

refers to the theoretical prediction, using either the approx-

The variance is in general a combination of the theoretical uncertainty aftheory, since inflation
is a statistical theory based on quantum mechanics, and statistical uncertainty 012 data> due to
the fact that detectors are imperfect, the presence of foregrounds, and cosmic variance. For
concreteness we take this factor in the denominator to be

2 2 2
o = Max {Ul,theorw Ul,data} ) (5'2)
with theoretical variance 5
2 2
Ul,theory = 20 + IDl,theoryv (53)

and statistical variance al2 data 18 Tead off from the reported Planck error bars. The multipole
moments begin from i, — 2 and we 20 up to lpax = 2500.

We need to choose a value of the inflaton mass m in order to specify our model. As
is true of essentially any inflationary model this overall scale of the potential needs to be
optimized to fit the data; as there is no known microphysics that determines m. We have
selected m by optimizing our x? statistic. A plot of x?, for fixed «, 7, and ¢*, as a function
of m is given in figure 6. The optimal choice of m is the one that minimizes x?.
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Having optimized for the overall scale m, we turn to how our statistic varies as we change
the shape parameters of the potential. Since our interest is the change in our statistical
measure 2 in the new theory with the step-like feature 6V from the standard potential
without it X(2)7 we will in fact report on the difference

AX2 = X2 — X(Q). (5.4)

In figure 7 we show the value of Ax? as a function of a (top panel) and as a function of
(bottom panel). We observe that using the approximate method (based on the assumption of
slow-roll) there is some moderate reduction in the value of x? (as seen in the negative values
of Ax?). This is in accord with what one can see by eye in figure 4; the presence of the dip
in the power spectrum leads to a suppression in power in the multipole moments in just the
right place to improve agreement with data around [ ~ 20-30. The reduction in x? compared
to the standard theory x2 is at most around ~ 7 (i.e., Ax? ~ —7). We note that this is larger
than the number of new parameters in the model of 3 for {«, 7, ¢*} (or effectively only 2 as
we make 7y very large). We do not claim that this is highly significant, nevertheless according
to the slow-roll approximation, a moderate improvement in y? is achievable.

However, when we turn to the exact method (which does not assume slow-roll) we see
the situation is much worse. Generally as we increase both v and « to large values, the theory
does a much worse job in fitting the data than the standard nearly scale invariant theory,
as seen in the significant growth of Ay? in figure 7. This was to be expected from figure 5
in which it was seen that large oscillations occur in the multipole moments, which are not
seen in the data in this fashion. We note that for small values of a and ~, we do obtain
Ax? < 0. However the best we achieve is Ax? ~ —3, which is comparable to the number
of new parameters in the model of 3. So overall there is really no improvement when the
exact computation is performed. In general we believe that this type of problem will likely
persist for any relatively simple model of inflation that attempts to explain the suppression
in the data.

6 Discussion

We have shown that models which provide a suppression in power on the appropriate scales
arise from a potential that has a step-like feature. However, to provide a significant improve-
ment, this feature needs to be so sharp to that the standard slow-roll approximation for the
power spectrum breaks down and an exact numerical approach is required. In this case the
same potential functions in fact lead to rapid oscillations in the spectrum and affects other
scales too, which does not fit the data well.

A possible future approach is to “reverse engineer” the potential V', by instead starting
with the data, and constructing a potential function that can reproduce it. This would
be similar to the idea of ref. [22] that did this in order to construct an appropriate spike
in the matter power spectrum leading to primordial black holes. We anticipate, however,
that in order to obtain a localized suppression in power without the large oscillations, the
corresponding potential V', if it exists, will have an extremely peculiar shape. It must be of a
very special form for all these oscillations to conspire to cancel out among the various features
of the potential. One may attempt to use a potential which itself has an oscillatory feature
that may give rise to a sharp feature upon Fourier transforming, but for this to extend to
the CMB multipoles in just the right way, appears rather difficult (interesting work includes
ref. [23]). We also note that models with non-trivial features in the potential may also give
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Figure 7. A statistical measure of the comparison between theory and data Ay? = x? — x2 in the
potential with a feature versus the featureless potential as a function of the parameters in the model.
Top panel: we vary o at fixed v = 50 and ¢* = 15.243 M. Bottom panel: we vary « at fixed
a = 0.0015 and ¢* = 15.243 My;. The blue points are from using the approximate method and the
red points are from using the exact method.

rise to significant non-Gaussianity, which could also rule them out for independent reasons,
so this is another important constraint to satisfy.

This suggests that a potential function that leads to just the desired feature of a dip in
the spectrum would likely be highly fine-tuned from the microscopic point of view. On the
other hand, an overall suppression in power in all low [-modes may be possible. However, we
leave a detailed exploration for future work.
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