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We analyze vacuum tunneling in quantum field theory in a general formalism by using the Wigner
representation. In the standard instanton formalism, one usually approximates the initial false vacuum state
by an eigenstate of the field operator, imposes Dirichlet boundary conditions on the initial field value, and
evolves in imaginary time. This approach does not have an obvious physical interpretation. However, an
alternative approach does have a physical interpretation: in quantum field theory, tunneling can happen via
classical dynamics, seeded by initial quantum fluctuations in both the field and its momentum conjugate,
which was recently implemented in Braden et al. [arXiv:1806.06069]. We show that the Wigner
representation is a useful framework to calculate and understand the relationship between these two
approaches. We find there are two, related, saddle point approximations for the path integral of the
tunneling process: one corresponds to the instanton solution in imaginary time and the other one
corresponds to classical dynamics from initial quantum fluctuations in real time. The classical
approximation for the dynamics of the latter process is justified only in a system with many degrees
of freedom, as can appear in field theory due to high occupancy of nucleated bubbles, while it is not
justified in single particle quantum mechanics, as we explain. We mention possible applications of the real
time formalism, including tunneling when the instanton vanishes, or when the imaginary time contour
deformation is not possible, which may occur in cosmological settings.
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I. INTRODUCTION

The subject of quantum mechanical tunneling is an
essential topic in modern physics, with a range of appli-
cations, including nuclear fusion [1], diodes [2], atomic
physics [3], quantum field theory [4], and cosmological
inflation [5]. In the context of a possible landscape of
classically stable vacua in field theory, motivated by
considerations in string theory [6], it is essential to
determine the quantum tunneling rate from one vacuum
to the next. This has ramifications for the stability of our
current electroweak vacuum [7], as well as for the viability
of inflationary models [8], and may have ramifications for
the cosmological constant problem [9].
In ordinary nonrelativistic quantum mechanics of a

single particle, quantum tunneling can be calculated in
principle by a direct solution of the time dependent

Schrödinger equation. However, our interest here is that
of quantum field theory. In this case, a direct solution
of the Schrödinger equation is notoriously difficult, and
so approximation schemes are needed. The most famous
approximation method, which is analogous to the Wentzel-
Kramers-Brillouin approximation in nonrelativistic quan-
tum mechanics, involves the computation of the Euclidean
instanton solution from one vacuum to another [10,11].
This leads to the well-known estimate for the decay rate per
unit volume Γ ∝ e−SE , where SE is the bounce action of a
solution of the classical equations of motion in imaginary
time. This method is generally thought to be accurate when
the bounce action SE is large, which evidently corresponds
to exponentially suppressed decay rates.
Since the above method involves nonintuitive features,

namely a restriction to Dirichlet boundary conditions on
the field and dynamics in imaginary time, it begs the
question whether there may be other formulations of the
tunneling process. Furthermore, if one moves to more
general settings, such as in cosmology, there may not
always be the usual instanton solution, so one wonders
whether other formulations can be employed instead. In
this paper we will investigate under what circumstances an
alternative approach to tunneling, from classical evolution
of fields whose initial conditions are drawn from some
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approximation to the initial wave function, can provide an
alternative formulation for decay.1

This work was motivated by the very interesting work of
Ref. [14]. In that work they numerically obtained a
tunneling rate from a false vacuum in (1þ 1)-dimensional
spacetime by solving for the classical dynamics of a scalar
field starting from initial conditions generated by a
Gaussian distribution. The method was to consider many
realizations of initial conditions and then to calculate the
ensemble-averaged tunneling rate. For their choice of
parameters they found that the tunneling rate was similar
to the one calculated by the instanton method.
This leads to several natural questions: (i) What is the

relationship between these two approaches? One is in an
imaginary time formalism, and the other is in a real time
formalism; so how, if at all, are they related? (ii) Under
what circumstances are the rates comparable to each other?
(iii) Under what circumstances are these approaches valid?
It is known that the instanton method requires the bounce
action to be large to justify a semiclassical approximation,
but what is the corresponding statement for the other real
time method?
In this paper, we address these questions. We will argue

that this real time analysis from classical dynamics is not
identical to, but is very closely related to, the instanton
tunneling process. We will show that for simple choices of
parameters, the two rates are parametrically similar.
However, things are more complicated for potentials with
unusual features, which we will discuss, and there can be
advantages to the real time formulation in special circum-
stances. Wewill make use of the Wigner representation as it
will provide a general formalism to cleanly identify these
two complementary approaches. We will discuss under
what circumstances the classical dynamics is justified,
explain why this would fail in single particle quantum
mechanics, and discuss some cosmological applications.
Our paper is organized as follows: In Sec. II we recap the

standard instanton contribution to the decay. In Sec. III we
present a more general formalism, using the Wigner
representation, which allows us to describe these two
approaches within a single framework. In Sec. IV we
discuss the conditions under which the classical dynamics
method is applicable. In Sec. Vwe estimate and compare the
tunneling rates. Finally, in Sec. VI we discuss our findings.

II. STANDARD EUCLIDEAN FORMALISM

Let us begin by recapping the standard approach to
vacuum decay, which occurs within the confines of a
Euclidean, or imaginary time, formalism. In this approach
the decay rate can be calculated from the imaginary part of
the vacuum energy E0 as

ΓI ¼ −2ImE0; ð1Þ

where

E0 ¼ −limT →∞
lnZ
T

; ð2Þ

and Z is defined by

Z≡ hϕije−HT jϕii: ð3Þ

Here we denote the (approximate) energy eigenstate around
a false vacuum as jϕii2 One may neglect the quantum
fluctuation around the false vacuum and approximate the
energy eigenstate by the eigenstate for the operator ϕ̂. In
this case, Z can be written as

Z ≈
Z

ϕðT Þ¼ϕi

ϕð0Þ¼ϕi

Dϕe−SE½ϕ&: ð4Þ

The path integral can be approximated by the contribu-
tion from a saddle point, which is known as the instanton
solution. One can also calculate the Gaussian integral for
the perturbation around the instanton solution. The result is
given by the well-known formula

ΓI ∼ ImKe−SE½ϕbounce&; ð5Þ

where ϕbounce is the so-called bounce solution in an
“upside-down” potential, with V → −V. Therefore, the
decay rate can be calculated from the path integral with
imaginary time T .
Strictly speaking, however, Eq. (5) is not a tunneling rate

from the false vacuum energy eigenstate because the
boundary condition for the path integral Eq. (4) implies
the transition between eigenstates for the operator ϕ̂. The
difference between the energy eigenstate and the eigenstate
for the operator ϕ̂ is negligible only if the zero-point
fluctuation around the local minimum is much smaller than
the typical scale of the potential.
In quantum field theory, the number of effective degrees

of freedom (d.o.f.) can be large, and hence the quantum
fluctuations can accidentally overcome the potential barrier.
This accidental arrangement and subsequent barrier pen-
etration was seen in the simulations of Ref. [14]. Hence, to
focus only on initial conditions that are eigenstates of the
field operator, as the usual instanton approach does, is not

1See Refs. [12,13] for a different approach using complex
classical trajectories.

2One may think that the imaginary part of the vacuum energy
is absent because Z defined in Eq. (3) is real. This issue has been
investigated in detail in Refs. [15,16]. They discussed that the
contour of the path integral should be deformed along the steepest
descent contour passing through the false vacuum. Fortunately,
the resulting tunneling rate can still be calculated by Eq. (5),
which is the standard formula to calculate the tunneling rate by
the instanton calculation.

MARK P. HERTZBERG and MASAKI YAMADA PHYS. REV. D 100, 016011 (2019)

016011-2



guaranteed to be the most natural choice of boundary
conditions. Therefore, we would like to utilize a formalism
that can accommodate general initial conditions on the
fluctuations for a more complete analysis of tunneling. In
the next section, we analyze tunneling within the Wigner
representation as it will allow us to systematically study
these different possibilities.

III. MORE GENERAL FORMALISM

Since vacuum decay is a time-dependent process, it is
natural to calculate it by using a real time formalism (or
Schwinger-Keldysh formalism), which can describe the
time evolution of observables. As we will see, this will
allow us to more systematically identify initial conditions
for the decay, rather than restricting to only those that are
useful in the standard imaginary time analysis.
The time evolution of the expectation value of an

observable Ô can in principle be calculated from

hÔðtÞi ¼ Tr½ρ̂T timee
i
R

Hdt0Ôe−i
R

Hdt0 &; ð6Þ

where ρ̂ is an initial density operator and T time is
Schwinger’s time-ordered operator. The operator Ô may
be taken to be an order parameter of the phase transition.
Instead, one may use an operator that gives zero around the
false vacuum and nonzero around the true vacuum. This
equation implies that the contour for the time integral is
given by the one shown in Fig. 1. We can define two kinds
of fields: forward (ϕf) and backward (ϕb) fields, depending
on the direction of time evolution. It is convenient to then
define

ϕc ¼
1

2
ðϕf þ ϕbÞ; ð7Þ

πc ¼
1

2
ðπf þ πbÞ; ð8Þ

ϕq ¼
1

2
ðϕf − ϕbÞ; ð9Þ

πq ¼
1

2
ðπf − πbÞ; ð10Þ

where π is the canonical conjugates of the field ϕ. Here ϕc
and πc are effectively classical fields, as we will explain

shortly, while ϕq and πq are effectively quantum fluctua-
tions. The path integral can then be written as

hÔðt1Þi

¼
ZZ

dϕc;0dπc;0W0ðϕc;0;πc;0Þ

×
Z

DϕcðtÞDπcðtÞDϕqðtÞDπqðtÞOWðϕcðt1Þ;πcðt1Þ; t1Þ

× exp
!
i
Z

t1

0
dt½2ϕq _πc − 2πq _ϕc

þHWðπc þ πq;ϕc þϕq; tÞ−HWðπc − πq;ϕc −ϕq; tÞ&
"
;

ð11Þ

where the Wigner function W0 is defined as the Weyl
transform of the density matrix ρ̂ in the field representation.
It is given by

W0ðϕc;0; πc;0Þ ¼
Z

dϕqρðϕc;0 − ϕq;ϕc;0 þ ϕqÞe2iπcϕq :

ð12Þ

Momentarily we focus on only one particular mode for
notational simplicity, but will generalize shortly. The
functions HW and OW are the Hamiltonian H and observ-
able O in the Wigner representation, respectively. In
particular,

OWðϕc; πcÞ ¼
Z

dϕqdπqOðϕc − ϕq; πc þ πqÞe−2iϕqπq ;

ð13Þ

whereOðϕ; πÞ is the function obtained from the operator Ô
by direct substitution ϕ̂ → ϕ and π̂ → π. For related work,
see Refs. [17,18].

A. Classical approximation

Now we shall rewrite the above path integral by using
some approximations. We will discuss the meaning and
justification of these assumptions in the next section.
If the quantum fluctuations are much smaller than the

classical quantities, we can approximate HW as

HWðπc þ πq;ϕc þ ϕq; tÞ −HWðπc − πq;ϕc − ϕq; tÞ

≃ 2πq
∂HWðπc;ϕc; tÞ

∂πc þ 2ϕq
∂HWðπc;ϕc; tÞ

∂ϕc
: ð14Þ

Then we can perform the integrations over ϕq and πq,
which give delta functions of the form

Forward

Backward

FIG. 1. Integration contour for the time variable in the real time
formalism.
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δ

#
dϕc

dt
−
∂HW

∂πc

$
δ

#
dπc
dt

þ ∂HW

∂ϕc

$
: ð15Þ

This means that indeed fϕc; πcg obey the classical equation
of motion. The integrals over the fields are determined by
the delta functions, and the result is given by

hÔi ≃
Z

dϕc;0dπc;0W0ðϕc;0; πc;0ÞOWðϕc; πc; tÞjclassical:

ð16Þ

If the initial quantum fluctuations are sufficiently small
at the false vacuum, we can approximate the potential by a
quadratic form; we will return to discuss under what
conditions this approximation is valid. We denote the mass
parameter as m at the false vacuum, i.e., V 00ð0Þ ¼ m2. The
ground state wave function can then be approximated as

ψ0 ≃
1

ðπ=ωkÞ1=4
e−ωkjϕc;0j2=2; ð17Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. The initial Wigner distribution W0

can then be estimated by the one for a free field:

W0 ¼
Z

dϕq;0ψ'ðϕc;0 þ ϕq;0Þψðϕc;0 − ϕq;0Þe2iπc;0ϕq;0

∝ exp
!
−
#
ωkjϕc;0ðkÞj2 þ

1

ωk
jπc;0ðkÞj2

$"
: ð18Þ

This can be regarded as a probability distribution for the
initial field values, with ϕ and π treated as independent
random variables. For quantum field theory in dþ 1
spacetime dimension, the full result for the initial
Wigner distribution is approximated as

W0 ∝ exp
!
−
Z

ddk
ð2πÞd

#
ωkjϕc;0ðkÞj2 þ

1

ωk
jπc;0ðkÞj2

$"
;

ð19Þ

where we integrate over all k-modes.
We can calculate the tunneling rate by evolving the

classical dynamics with an initial condition generated from
Eq. (19). Since the initial condition is generated randomly
by the Wigner distribution, we should perform a large
number of simulations to obtain a statistically reasonable
result. The tunneling rate is therefore given by the statistical
average of many realizations as done in Ref. [14]. We note
that the system has a translational symmetry and there is no
strong correlation between two distant points. This implies
that we can replace the ensemble average of many
simulations by the spatial average of a single simulation
with a large simulation box.
The operator Ô should be taken such that it is nonzero

around the true vacuum and is zero around the false vacuum.

This can be realized by, e.g., taking O¼θðϕ−ϕ'Þ
withϕ' being the field value at the other side of the potential
barrier. Then we can count the number of nucleated bubbles
per unit space as an exponential function of time. The
tunneling rate is the coefficient of the time variable at the
exponent [14].

B. Relation to the instanton calculation

The same result can be obtained by the saddle point
approximation for Eq. (11). In the classical limit, the path
integral can be approximated by saddle points of the
exponent of the integrand. Varying it with respect to ϕc,
ϕq, πc, and πq, and eliminating πc and πq, we obtain

2ϕ̈c ¼ −V 0ðϕc þ ϕqÞ − V 0ðϕc − ϕqÞ; ð20Þ

2ϕ̈q ¼ −V 0ðϕc þ ϕqÞ þ V 0ðϕc − ϕqÞ: ð21Þ

One of the solutions to this equation is ϕq ¼ 0 with ϕc

being the solution to the usual classical equation of motion,
with initial conditions drawn from the initial Wigner
distribution. This saddle point corresponds to Eq. (16).
We refer to this as the real time formalism from classical
dynamics, seeded by nontrivial initial conditions that
ultimately arise from a choice for the initial wave function.
Indeed we note that this process is absent if we were simply
to assume trivial initial conditions W0 ¼ δðϕc;0Þδðπc;0Þ,
which would be the “purely” classical behavior.
Now we show that there is another, related, contribution

to Eq. (11) that is nonzero even if we were to set
ϕc;0 ¼ πc;0 ¼ 0. Assuming W0 ¼ δðϕc;0Þδðπc;0Þ, we
rewrite Eq. (11) as

hÔi ¼
Z

DϕfDϕbOWððϕf þ ϕbÞ=2; t1Þ

× exp ½iSf − iSb&; ð22Þ

where we assume that OW is independent of πc and

Sf;b ¼ i
Z

t1

0
dtLf;b ð23Þ

are the actions for the forward and backward fields,
respectively. This can be rewritten as

hÔi ¼
Z

DϕOWðϕðt1Þ; t1Þ exp ½iS&; ð24Þ

by defining t0 ∈ ð−t1; t1Þ and ϕðtÞ ¼ ϕfðtÞ for t ∈ ð0; t1Þ
and ϕðtÞ ¼ ϕbð−tÞ for t ∈ ð−t1; 0Þ. This path integral can
be calculated by the standard instanton method by
deforming to imaginary time. Since we assume ϕc;0 ¼
πc;0 ¼ 0 in this calculation, this saddle point corresponds to
the transition from vanishingly initial classical fields. It also
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corresponds to the vanishing initial quantum field for
ϕq ¼ 0, though it leaves the initial condition for the
quantum field π unspecified. This is identical to the one
calculated by the instanton method discussed earlier in
Sec. II. It is therefore associated with going from a field
eigenstate with Dirichlet boundary conditions and again
returning, in imaginary time, to a field eigenstate with
Dirichlet boundary conditions. It is the so-called bounce
solution in imaginary time. Importantly, the difference from
the saddle point solution corresponding to Eq. (16) is the
initial condition (or the boundary condition at t ¼ 0).
Let us comment on how to rotate the time variable in the

imaginary space. If we naively take ϕq ¼ 0 in Eq. (11), the
exponent vanishes. This is not consistent with Eq. (24),
where the action does not vanish and gives the Euclidean
action in the imaginary time. This inconsistency comes
from the naive analytic continuation of the time variable.
We can use the epsilon prescription to specify a possible
way to change the integration contour in the imaginary
space. The Hamiltonian should include an imaginary mass
term that specifies the way to change the integration
contour. Therefore the time variable for the Hamiltonian
for ϕf should be rotated in the opposite way to the one for
ϕb. This is the reason that we obtain a nonzero exponent
even if we take ϕq ¼ 0 in Eq. (11). Later we will comment
on more general situations, which may occur in cosmology,
where this rotation to imaginary time may be more
problematic.

C. Comparison

In summary, there are two basic sets of initial conditions
one may utilize to implement the saddle point for the path
integral Eq. (11). The first one is given by Eq. (16), where
the initial condition is given by some approximation to the
initial wave function and the time evolution is purely given
by the classical equation of motion. The second one is
given by the saddle point of Eq. (24), where the initial
condition is ϕ ¼ 0 and the time evolution is deformed into
the complex plane to the imaginary time axis.
At first sight it may seem surprising that the first should

be associated with tunneling. But indeed tunneling can
occur because of the nontrivial initial conditions it can
make for rare events to take place even within the
framework of classical dynamics. This is the tunneling
process that was calculated in Ref. [14]. In this sense, this
contribution is complementary to the instanton contribu-
tion, though in appropriate regimes that we will discuss,
they can approximate each other quite well.

IV. CONDITIONS FOR THE CLASSICAL
APPROXIMATION

In this section we discuss conditions to calculate a
tunneling rate by Eq. (16) in the context of quantum field
theory. We first note that the distinction between quantum

and classical mechanics comes from the commutation
relation for quantum operators. In particular, the commu-
tation relation between creation and annihilation operators
is given by

âiâ
†
j − â†i âj ¼ δij: ð25Þ

However, the effect of the right-hand side is negligible
when the occupation numbers hâ†i âii are large. We then
expect that the high occupancy limit corresponds to the
classical limit of quantum systems. This implies that the
approximation Eq. (14) is justified when the number of
particles in the system is extremely large.
In Ref. [19], we have shown that the expectation values

of quantum operators are approximated by a corresponding
classical ensemble average over many classical microstates,
with initial conditions drawn from the initial quantum
wave function. Equation (16) is a mathematical expression
of this statement. It can be understood as an extension of
this discussion to the quantum regime, where the initial
state is not a high occupancy state, but a (quasi-)vacuum
state with zero point fluctuations. Due to the possible
production of bubbles, which arises due to rare accidental
arrangements from the nontrivial initial conditions, the
occupation number can be large enough to use the classical
description.
In this case, the approximation ϕq ≪ ϕc is satisfied,

except for the initial condition, and we can evolve ϕc by the
classical equation of motion. In the regime before the
tunneling, ϕq ≪ ϕc may not be satisfied. However, we can
still use Eq. (16) if the amplitude of fluctuations is small
enough to neglect terms in the potential that are higher
order than quadratic. This is because the Wigner approxi-
mation is exact for the free-field theory. We will discuss
situations in which the neglecting of these higher order
terms may not be valid.

A. Tension and pressure

Equation (16) can describe the classical dynamics of the
field after the bubble nucleation. This is different from the
instanton method, where we need to connect the Lorentzian
and Euclidean regimes to describe the dynamics of the
bubble after nucleation. The tunneling process calculated
by Eq. (16) can therefore describe the tunneling process
itself as well as the dynamics of nucleated bubble after the
nucleation.
Since the nucleated bubble obeys the classical equations

of motion, its behavior can be understood easily, particu-
larly for the thin-wall case. The bubble wall tends to shrink
to a point due to its tension while it tends to expand due to
the pressure of the vacuum energy. As we evolve the field
classically with an initial condition, a lot of small bubbles
are nucleated, but most of them do not have enough
pressure to overcome the tension of the wall. In order
for the bubble to expand after the nucleation, the pressure
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of the vacuum energy should overcome the tension of the
bubble. For a thin-wall bubble, this requires

Ad−1Rd−1σ ≲ VdRdϵ; ð26Þ

where R is the radius of the bubble, σ is the tension of the
wall, and ϵ is the difference of the vacuum energy. Here we
define area and volume factors in the unit d-dimensional
sphere:

Ad−1 ≡ 2πd=2

Γðd=2Þ
; ð27Þ

Vd ≡ πd=2

Γðd=2þ 1Þ
: ð28Þ

A similar type of inequality is expected to be satisfied for a
thick-wall bubble.

B. Occupation number

Now we examine under what conditions the occupation
number of the quanta describing nucleated bubbles is much
larger than unity. In this case the nucleated bubble is
essentially coherent and can be treated within the frame-
work of classical field theory.
We estimate the occupation number of nucleated bubble

in two simple cases. First we consider the case where the
scalar potential is described by typical values of the
curvature scale around vacua m, field value v, height of
the potential barrier Vh, and the difference of the vacuum
energy ϵ (see Fig. 2). We note that Vh must be smaller than
of order v2ðdþ1Þ=ðd−1Þ for d > 1 because of the unitarity
bound (e.g., in 3þ 1 dimensions this is related to the
familiar idea that the quartic coupling λϕ4 obeys λ≲ 1 to be
in a weakly coupled regime).

1. Thin wall

We assume ϵ ≪ Vh and use the thin-wall approximation
for now. In this case, the wall tension is given by

σ ¼
Z

dϕ
ffiffiffiffiffiffi
2V

p
∼ v

ffiffiffiffiffiffi
Vh

p
: ð29Þ

Using Eq. (26), we obtain a typical radius of the nucleated
bubble as

Rb ≃ d
σ
ϵ
: ð30Þ

Let us first report on the Euclidean instanton action
associated with the bubble, as it is the standard quantity to
compute tunneling in the literature, as

SE ≃
2Rdσ
dþ 1

≃
2dd

dþ 1

σdþ1

ϵd
ð31Þ

∼
#
Vh

ϵ

$
d
#
v2ðdþ1Þ=ðd−1Þ

Vh

$ðd−1Þ=2
: ð32Þ

However, in order to justify the alternative real time
tunneling from classical dynamics, we need to compute the
bubble’s occupancy number. We define it by the gradient
energy of the bubble in the unit of m,

N ≡ 1

m

Z
ddx

!
1

2
ð∇ϕÞ2

"

bubble
ð33Þ

≃
Ad−1Rd−1σ

m
ð34Þ

(if we were to reinstate factors of ℏ, the actual occupancy
number would be this divided by ℏ). It is roughly given by

N ∼
#
Vh

ϵ

$
d−1#v2ðdþ1Þ=ðd−1Þ

Vh

$d=2−1# v
mðd−1Þ=2

$
2=ðd−1Þ

:

ð35Þ

Note that every factor on the most right-hand side is larger
than unity for weakly coupled field theories, so the occupa-
tion number can in fact be quite large, N ≫ 1. [Note that
for d ¼ 1, it simplifies to N ∼ v2ðVh=ðm2v2ÞÞ1=2.]

2. Thick wall

The above suggests that the occupation number can be as
small as of order unity when the vacuum energy is not
degenerate and the difference of the vacuum expectation
value is as small as m. This implies that the bubble is a
thick-wall type and so we should reexamine the above
analysis. Here the scalar self-coupling could be as large as
Oð1Þ. We check that the occupation number is larger than
unity in this extreme case, too. We consider the following
potential:

VðϕÞ ¼ U0

!
1

2

#
ϕ
Λ

$
2

þ λ3
3!

#
ϕ
Λ

$
3
"
; ð36ÞFIG. 2. Schematic picture of a typical potential and parameters

describing its shape.
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where U0 and Λ (U0 ≲ Λ2ðdþ1Þ=ðd−1Þ) are dimension-full
parameters and λ3 [≲Oð1Þ] is a dimensionless constant.
Since ϕ ¼ 0 is a false vacuum, it can tunnel to the other side
of the potential hill. The tunneling action and the occupa-
tion number are given by

SE ≃ cSλ−23 Ad

#
Λ2ðdþ1Þ=ðd−1Þ

U0

$ðd−1Þ=2
; ð37Þ

N ≃ cN λ−23 Ad−1

#
Λ2ðdþ1Þ=ðd−1Þ

U0

$ðd−1Þ=2
; ð38Þ

where the numerical constants are given by cS ≃ 4.1 × 10
and cN ≃ 1.0 × 102 for d ¼ 3. Even in this extreme case,
the tunneling action and the occupation number are larger
than Oð10=λ23Þ. This justifies that the nucleated bubble can
be described classically (or a scalar condensate).

C. Single particle quantum mechanics

One may wonder if these arguments can extend to the
problem of single particle tunneling in ordinary nonrela-
tivistic quantum mechanics. In this case there is obviously
no such thing as a “bubble” that can be formed. So there is
no obvious sense in which there is any object at high
occupancy.
Nevertheless, we can formally view this problem as a

quantum field theory in 0þ 1 dimensions. So, for the sake
of completeness, let us formally take the result in Eq. (35)
and take d → 0. Then we formally obtain

N ∼
ϵ
m
: ð39Þ

Now we should note that in this case m, which is the
(square root) of curvature of the potential in quantum field
theory at the false vacuum, is just the characteristic
frequency of oscillation of the particle ω0 around the
metastable minimum in quantum mechanics.
However, what is important is that in quantum mechan-

ics, energy conservation tells us that the tunneling process
requires that the particle tunnel to a point at the same
potential energy as its starting values. Hence, ϵ here should
be the potential height difference, so it is in fact just ϵ ¼ 0.
This impliesN ¼ 0. So there is no sense in which one is at
high occupancy. This means that this procedure of sam-
pling from some Gaussian approximation to the wave
function and using this to determine tunneling will typi-
cally fail in ordinary quantum mechanics. Conversely, it
can be applicable in field theory in higher dimensions with
bubbles of high occupancy, as we discussed above.
Furthermore, in single particle mechanics, with a con-

fining potential, the system does not exhibit ergodicity.
On the other hand, some ergodicity is exhibited in the
field theory, providing the adequate time evolution for the

development of bubbles over time as the system explores
phase space.

V. TUNNELING RATE

Now we shall compare the tunneling rate (per unit
volume) via the standard Euclidean instanton to the
tunneling rate via classical dynamics with initial conditions
drawn some approximation to the wave function. The latter
one can be estimated in the following way.
Ideally the relevant initial fluctuations that ultimately

lead to the formation of the bubble are sufficiently small
that the potential can be approximated to be a quadratic
form around a false vacuum; we will revisit this shortly.
Then the initial distribution of fluctuations is given by the
Wigner distribution of a free massive scalar field with mass
m around the false vacuum Eq. (19). This distribution does
not change much even if we allow the field to classically
evolve in time. The tunneling rate can therefore be
estimated by the probability that ϕcðkÞ and πcðkÞ are large
enough to nucleate a classical bubble. A classical bubble
that expands after the nucleation must satisfy the condition
Eq. (26), and hence its radius must be larger than Rb ∼ σ=ϵ.
Now in order to completely determine the probability for

tunneling, one should perform a simulation of this non-
linear system of classical equations of motion, with the
appropriate initial conditions specified above. However, we
can give an estimate of the probability of bubble formation
by utilizing the initial wave function’s statistical distribu-
tion as a guide; we will return to this shortly. In order to
form a bubble there are two conditions that need to be
satisfied: (a) the field needs to be on the far side of the
barrier, and (b) the bubble needs to have sufficient energy to
avoid collapse. Let us estimate these probabilities in turn.
First, in order for the bubble to be on the other side of the

barrier, we need that the field value in position space obeys
ϕc ≳ v. In the k-space representation this condition means
that we need ϕcðkÞ > ϕðthÞ

c ðkÞ where

ϕðthÞ
c ðkÞ ¼

Z
ddxeikxϕðxÞ

&&&&
bubble

∼ Rd
bv; ð40Þ

for a bubble of radius Rn to be nucleated. The probability
Pa that ϕcðkÞ exceeds this threshold can be estimated from
the Wigner distribution as

− lnPa ∼
Z

ddk
ð2πÞd

ωkjϕ
ðthÞ
c ðkÞj2 ∼ ωbv2Rd

b; ð41Þ

where ωb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2b

q
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ R−2

b

q
is some character-

istic frequency, associated with the bubble associated with a
characteristic wave number kb ∼ 1=Rb.
However, this is not a sufficient condition for nucleation,

because if the bubble appears on the other side of the barrier
with arbitrarily low energy, then it can collapse. Suppose
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that a small bubble with radius Rini and kinetic energy
Rd
iniπ

2
c forms due to fluctuations. The kinetic energy must

be larger than the energy of the bubble with radius Rb so
that the bubble can expand after the nucleation. This means
we need πc > πðthÞc where

Rd
iniðπ

ðthÞ
c Þ2 ∼ Rd

bϵ: ð42Þ

Note that this πðthÞc is the conjugate momentum in
position space. It can be written in terms of πðkÞ in the
momentum space as πðthÞc ¼ 1=ð2πÞd

R
ddke−ikxπcðkÞ∼

πðthÞc ðk ∼ 1=RiniÞR−d
ini . The probability Pb to have sufficient

energy can then again be estimated from the Wigner
distribution as

− lnPb ∼
Z

ddk
ð2πÞd

1

ωk
jπðthÞc ðkÞj2 ∼ ϵ

ωb
Rd
b: ð43Þ

A. Tunneling rate

According to the Wigner representation, the variables ϕc
and πc are taken as independent random variables. This
says that the probability that both (a) and (b) occur is the
product PaPb. This allows us to estimate the tunneling rate
(per unit volume) within this real time formalism as

ΓR ∼ cRe−γR ; ð44Þ

with

γR ¼ aωbv2Rd
b þ b

ϵ
ωb

Rd
b; ð45Þ

where a and b are Oð1Þ prefactors.
We can compare this to the usual result for tunneling

using the Euclidean imaginary time formalism given earlier
in Eq. (5) as

ΓI ∼ cIe−γI ; ð46Þ

with

γI ¼ SE ∼ ϵRdþ1
b : ð47Þ

The instanton rate is calculated for the thin-wall case, but
the result is not qualitatively different for the thick-wall
case once we identify ϵ as the difference of the vacuum
energy between the false vacuum and the tunneling point.
Since this involves an extra factor of Rb compared to the
scaling in γR, we need an estimate for the bubble radius,
which is roughly

Rb ∼
v

ffiffiffiffiffiffi
Vh

p

ϵ
: ð48Þ

This allows us to make the estimate

γI ∼ v
ffiffiffiffiffiffi
Vh

p
Rd
b; ð49Þ

for the instanton tunneling exponent. In this final expres-
sion we have still kept a factor of Rd

b for convenience, since
this is a common factor that appears in Eq. (45) also.

B. Examples

We now use the above results to compare the tunneling
rates that we have estimated in these different formalisms.

1. Weakly broken Z2 Symmetry

Let us consider a potential of the form

VðϕÞ ¼ λðϕ2 − v2Þ2 þ δVðϕÞ; ð50Þ

where δVðϕÞ is a term that weakly breaks theZ2 symmetry.
This potential is similar to the kind of potential shown
in Fig. 2 with Vh ∼m4=λ. In this case the bubble thickness
is approximately set by the Compton wavelength as
λC ∼ 1=m. However, the bubble radius is at least this large,
i.e., mRb ≳ 1. This ensures the frequency ωb can be
approximated by the mass ωb ≃m. By noting that ϵ is
bounded to be of the order of or much smaller than
V ∼ v2m2, we can conclude that the probability Pa ≲ Pb.
Hence, the rate γR is approximated as

γR ∼mv2Rd
b: ð51Þ

Then from Eq. (49), with Vh=m ∼mv2, we have γI ∼ γR.

2. Standard Model Higgs

As another example, let us consider the Higgs potential
in the minimal standard model. Upon renormalization
group running of the Higgs self-coupling λ, the top mass,
and other couplings, one finds that the Higgs potential turns
over and then goes negative. This happens at around
v ∼ 1011 GeV, or so. In this example, the potential is
dominated by the quartic term near the tunneling point. In
this case, we can use the above formula by taking
ϵ → Vh ∼ λv4. The bubble radius is now of order or larger
than

Rb ∼
1ffiffiffi
λ

p
v
∼ 10−10 GeV−1 ð52Þ

(using λ ∼ 0.01 in this regime). This radius is much smaller
than the Compton wavelength of the Higgs which is
m−1 ∼ 10−2 GeV−1. Hence now we are in a regime in
which ωb ∼ 1=Rb. In this regime, both Pa and Pb are
comparable, and they both give

γR ∼
1

λ
ð53Þ
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(we naturally focus here on the physical case of 3þ 1
dimensions). This is comparable to the instanton rate
γI ∼ 1=λ, so we again have γI ∼ γR.
We note that in this case with Rb ≪ m, giving ωb ≫ m,

and probing deep into the quartic term in the potential, it
was not guaranteed that the Gaussian approximation based
on the free theory would suffice. However, parametrically it
is of the right order.

3. Flat hilltop

Suppose the hilltop is very flat, more so than it appears in
Fig. 2. To be clear, let us imagine that it is so flat that
Vh ≪ m2v2, which would be the naive value based on
dimensional analysis. Such a potential is perhaps unusual
from the microscopic point of view, but it is allowed in
principle. In this case the instanton gives an exponent
(normalized to bubble volume) that is linear in the barrier
width γI=Rd

b ∝ v. On the other hand, if we turn to the real
time formalism, we obtain different estimates. From Eq. (43)
the contribution from the kinetic energy effect gives
γR=Rd

b ∝ v0, which is too small. On the other hand, from
Eq. (41) the contribution from the need to be on the other
side of the barrier gives γR=Rd

b ∝ v2, which is too large.
In this case, the Gaussian approximation for the initial

wave function is not accurate, since it assumes that the
fields’mass ism, but for such a potential, the effective mass
in the barrier is smaller. Instead we need to alter our simple
estimates. We need to essentially replace the frequency of
the bubble by some appropriate effective mass, from the
effective curvature of the potential, namely meff ∼

ffiffiffiffiffiffi
Vh

p
=v.

This leads to

− lnPa → meffv2Rd
b ∼ v

ffiffiffiffiffiffi
Vh

p
Rd
b; ð54Þ

which is indeed of the order of the instanton rate.
On the other hand, if we persist with the original Wigner

distribution, we believe that it is plausible that a simulation
can arrive at roughly the correct tunneling rate anyhow.
This is because even though the initial distribution is not an
accurate representation of the false vacuum eigenstate,
these initial conditions may be partially washed away in
the simulation, leading to the appropriate rate.

VI. DISCUSSION

We have used a general Wigner representation to establish
two formulations of tunneling with slightly different boun-
dary conditions and dramatically different dynamics: in
addition to the usual formulation of the imaginary time
saddle point contribution to the decay amplitude with
Dirichlet boundary conditions on the field, there is another
real time formulation based on classical dynamics with
initial conditions set by some estimate for the initial wave
function. While the former one is the familiar one from the
instanton action, the latter one is an ensemble average of

classical field theory dynamics seeded by quantum zero
point fluctuations. We note that this ensemble average can be
practically realized by a spatial average of a single simu-
lation by appealing to a form of ergodic theorem. Since
we use the Wigner approximation for the initial wave
function in the real-time approach, we do not expect that
the resulting rate is exactly the same as the one calculated in
the imaginary-time approach. However, we have checked
that the exponent in the tunneling rate is parametrically the
same in both approaches in several examples.

A. Classicality

In order to justify the classicality of the field in this latter
approach, the quantum fluctuations have to organize into a
bubble and the occupation number has to be much larger
than unity. This can be realized only if the d.o.f. in the
system are large enough, as is possible in quantum field
theory, as it is for the nucleated bubbles. We note, however,
that much of the universe would remain at low occupancy,
so it is not entirely guaranteed that the classical dynamics is
extremely accurate, but perhaps only roughly accurate.
Furthermore, this approach is ordinarily not valid in single
particle quantum mechanics as the notion of high occu-
pancy there does not seem to be valid.
One may wonder if the tunneling rate depends sensi-

tively on the initial fluctuations. This is actually the case
when the number of d.o.f. in the system is not much larger
than of order unity. However, we are interested in the
tunneling process in quantum field theory, where the
number of relevant d.o.f. can be quite large. In this case,
all relevant modes may interact with each other somewhat
chaotically and the distribution will be randomized after an
ergodic time. So one expects dynamical evolution to wash
away some features of the initial condition. (We may have
to wait for a time scale longer than the time scale of
oscillation around a false vacuum so that some features of
the initial condition are washed away. This condition is
similar to T=Tslosh → ∞ for the “direct method” that was
introduced in Refs. [15,16].)
However, our simple estimates for the tunneling rates did

involve a dependence on the mass of the field defined
around the initial false vacuum, as it affects the initial
Gaussian approximation to the wave function. So these
simple estimates involve some sensitivity to initial con-
ditions, especially in the case of potentials with extreme
features. But in the case in which the bubble has character-
istic wave number k values (k≲m), we are not sensitive to
the UV behavior of the initial conditions. Furthermore,
more general estimates could be made in more extreme
situations also.

B. Applications

As an application of these results, suppose there is an anti
de Sitter vacuum between two dS vacua. The tunneling rate
from a dS vacuum to the other dS vacuum cannot be
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calculated by using the standard instanton method because
there is no instanton solution. However, the transition rate
must be nonzero because anything can happen in quantum
theory according to the path integral expression [20]. In
fact, the “classical tunneling” discussed in this paper is
expected to give a nonzero transition rate. This is the only
practical way we are aware of to calculate the transition rate
in such a case. This transition process is complementary to
the standard instanton tunneling process. In this sense, the
result gives a lower bound on the tunneling rate.
As another application, consider a dynamical setting,

such as during preheating after inflation. In this case a field
may exhibit a strongly time dependent effective potential
from its interactions with the inflaton or the metric, etc. If
such a field is also trapped in a type of false vacuum, then it
may be highly nontrivial to implement the standard
instanton tunneling procedure, as this requires deforming

the contour to the imaginary time axis. If there is (quasi-)
periodic behavior in the time domain, it will reorganize into
growing exponential behavior in imaginary time, which
may be an obstruction to an efficient implementation of the
Euclidean instanton analysis. Furthermore, if there is some
form of nonanalytic structure to the time dependence, such
as from a steplike time behavior, then this may be an
obstruction to deforming the contour. In these cases it may
be more intuitive and more practical to perform a real time
analysis.
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