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We compute the distribution of sizes of inflating and noninflating regions in an eternally inflating
universe. As a first illustrative problem, we study a simple scenario of an eternally inflating universe in the
presence of a massless scalar field φwhose field values lie within some finite domain φ ∈ ð−φcr;φcrÞ, with
#φcr marking the onset of thermalization/crunching. We compute many important quantities, including the
fractal dimension, the distribution of field values among inflating regions, and the number of inflating and
noninflating Hubble regions. With the aid of simulations in one spatial dimension, we show this eternally
inflating universe reaches a steady state in which average sizes of inflating regions grow only as a power
law in the field’s crunch value ∼φ2

cr (extension to higher dimensions is ∼φ2=D), contrary to a naive
expectation of an exponential dependence. Furthermore, the distribution in sizes exhibits an exponential
falloff for large distances (with an initial power law for inflating regions). We leave other interesting cases
of more realistic potentials and time varying Hubble parameters for future work, with a possible application
to the SM Higgs in the early universe.
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I. INTRODUCTION

Cosmological inflation is currently the best known
explanation for large scale homogeneity and isotropy in
our observable universe, as well as provides a detailed
account of fluctuations [1,2]. Eternally inflating scenarios,
in which the universe on the largest of scales continues
to inflate forever, leading to a giant universe with both
inflating and noninflating patches, are quite generic and
naturally occur in many inflationary models; see [3,4]. It is
possible then that our own observable universe is one of
these currently noninflating (thermalized) regions within a
giant eternally inflating universe. A natural question to ask
then is about the structure and distribution of inflating and
noninflating patches of such a giant universe. For example,
it was shown in Ref. [5] that the eternally inflating universe
ultimately forms a fractal structure, and the fractal dimen-
sion was computed in various cases. Other important work
includes Refs. [6,7].
Important outstanding issues that remain are the sizes of

inflating and thermalizing regions that would be present in
this eternally inflating universe. What are the typical
sizes? What is their distribution? We will address such
questions in this work. An important scenario is that of an

eternally inflating universe in the presence of one or more
scalar fields such that regions within some domain of field
space continue to inflate, while regions in another domain
of field space exit inflation. The field(s) could be either the
inflaton itself or some other spectator field(s). For the
former scenario, our observable universe could be one of
the thermalized regions surrounded by eternally inflating
ones. The latter case could also be that of our own
universe with the scalar being the SM Higgs whose
potential within the minimal SM can plausibly exhibit
these different types of domains. That is, regions in which
the Higgs goes beyond the instability scale (arising due to
quantum corrections from its interactions with other heavy
particles such as the top quark and the W, Z bosons [8,9])
are marked as “crunched” while regions in which it
remains within the instability scale are still inflating.1

These regions can perhaps thermalize after a while either
through some exit mechanism or due to the inflaton
decaying itself, in order for our observable universe to
be produced. For the present paper, we will not be focused
on the exact crunching/thermalizing mechanisms but on
the underlying structure of the eternally inflating universe.
Alterations and applications to more realistic models,
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1The question of Higgs instability and inflation in the early
universe has been studied in the literature; see [10–13] and
references therein.
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and close connection to the SM Higgs, are left for
future work.
In this paper, we analyze a scenario in which there is a

single scalar field φ that controls the eternal inflating
dynamics. For simplicity, we take the field’s potential to
be constant VðφÞ ¼ const, with a constant Hubble H,
within the field’s domain φ ∈ ð−φcr;φcrÞ (related work
includes Ref. [14]). Here φcr is some “crunch” value, such
that in the domain jφj > φcr inflation ends locally; here the
universe either forms an AdS crunch or perhaps just
thermalizes and reheats, but in any case it no longer
inflates. We refer to this as a “cliff” potential. The global
structure of the universe is dictated by the motion of φ as it
determines whether local Hubble patches inflate. The
specific model that approximates this dynamics is given
ahead in Eq. (8) for the regime in which the field is within
ð−φcr;φcrÞ. Once it goes outside of this domain, the patch
is declared to no longer inflate (for simplicity we will
simply then take such a patch to become static, neither
growing nor decaying, when we present the distribution of
sizes of these noninflating patches). So although any
individual Hubble patch will eventually stop inflating, this
basic process continues eternally throughout the universe
since daughter patches are always spawned at a sufficiently
fast rate that some always survive and inflation never ends
globally. This results in an assortment of “regions” of
collections of inflating Hubble patches surrounded by
noninflating ones at any moment in time. Furthermore,
after waiting for some initial transient behavior to wash
away, we are left in a steady state behavior of this variety.
In this paper we determine the statistics for the sizes of

inflating and noninflating regions, along with other related
quantities of interest such as the fractal dimension and the
number density function for inflating patches, some of
which have already been addressed in the literature [5].
Also, we shall assume no drastic dynamics at the bounda-
ries separating inflating and noninflating regions. With the
aid of simulations in one dimension, we shall show that the
eternally inflating universe gets to a steady state in which
the total fractions of inflating and noninflating regions
become constants. The distributions in sizes exhibit expo-
nential decay for large distances, while average sizes of
inflating regions grow only as a power law (∼φ2

cr and
∼φ2=D

cr in general). Furthermore, we develop a steady state,
quasianalytical, formalism to understand these results.. We
leave more interesting cases of VðφÞ ≠ const and in which
classical drift can dominate over quantum fluctuations
(semiclassical random walk), as well as a time dependent
H, for future work, along with an application to the case of
SM Higgs during inflation in the light of its instability at
high energies.
The organization of the paper is as follows: In Sec. II, we

review the well known stochastic approach toward a scalar
field’s dynamics in inflationary background. In Sec. III we
point out that the eternally inflating universe reaches a

steady state, simultaneously calculating various quantities
of interest. We also point out a kernel evolution technique,
particularly useful to not only test the discrete simulations
but also provide a smooth interpolation to the continuous
regime. In Sec. IV we describe two simulation networks
that we used to model the scenario in one dimension, and
we compare the calculated quantities with them. In Secs. V
and VI, we provide simulation results for the statistics of
sizes of inflating regions and noninflating regions, respec-
tively, along with their analytical understanding. In Sec. VII
we summarize and discuss our findings. Finally, in the
Appendix we provide some high order moments of the
distribution.

II. STOCHASTIC DYNAMICS

We shall adopt a sort of semiclassical approach in which
one decomposes the scalar field into a low frequency part
and a high frequency part and focus only on the low
frequency part. In order to set up the problem, let us recap
the dynamics of quantum fluctuations ϕ̂ðxÞ of a massless
real scalar field [VðϕÞ ¼ const] in pure D-dimensional de
Sitter space (D is the number of spatial dimensions) in
which the Hubble parameter is H ¼ const. Recall that the
mode functions ϕkðtÞ, which can be defined as usual via the
following Fourier decomposition:

ϕ̂ðx; tÞ ¼
Z

dDk
ð2πÞD

eik:xffiffiffiffiffiffiffiffiffi
2jkj

p ϕkðtÞâk þ H:c:; ð1Þ

where âk is the canonically normalized annihilation oper-
ator, obey the following equation of motion:

ϕ̈k þDH _ϕk þ
k2

a2
ϕk ¼ 0: ð2Þ

Here dots represent time derivatives and a ∝ eHt is the scale
factor. This is a linear second order ordinary differential
equation and the solutions can be readily found for any
arbitrary D in terms of spherical Bessel functions. In one
spatial dimension D ¼ 1, the solutions are simply sinus-
oids.2 Requiring only positive frequency modes and choos-
ing a unique vacuum (Bunch-Davies) as t → −∞ as usual
give

ϕkðtÞ ¼ e−i
k
aH: ð3Þ

Now, we may decompose the field ϕ̂ðxÞ into two pieces:
a low frequency part that we call φ̂ðxÞ with all comoving
modes in ðεH; εaHÞ, and a high frequency part with all
comoving modes greater than εaH, and we focus on the
low frequency part only. Here ε is anOð1Þ number that sets
the cutoff scale. The two point correlation function is

2We believe our results can be extended to higher dimensions
in a straightforward fashion. Also our analytical estimates will
often be performed with a general D. When we compare with
one-dimensional simulations, we will set D ¼ 1.
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hφ̂ðxÞφ̂ðyÞi ¼
Z

εaH>jkj>εH

dk
ð2πÞ

jφkj2

2jkj
eik

ðx−yÞ
a

¼ 1

2π

"
CiðrεHÞ − Ci

"
rεH
a

##
ð4Þ

and jx − yj ≡ r is the physical (not comoving) separa-
tion. Here Ci is the cosine integral function: CiðxÞ≡
−
R∞
x dt cosðtÞ=t. For superhorizon scales with aε−1H−1 ≫

r ≫ ε−1H−1 we have logarithmically dying out correlations

hφ̂ðxÞφ̂ðyÞi ¼ 1

2π
log

"
a
rH

#
þOð1Þ ð5Þ

while for subhorizon scales r ≪ ε−1H−1 we have the
random walk behavior

hφ̂2i ¼ H
2π

tþOðr2Þ: ð6Þ

One may also look at the mean field squared fluctuations
hδφ̂2iðrÞ≡ hðφ̂ðxÞ − φ̂ðyÞÞ2i, which according to the above
can be written as

hδφ̂2iðrÞ ¼ 2

2π

"
Ht − CiðrεHÞ þ Ci

"
rεH
a

##
; ð7Þ

which goes to zero as r → 0 (subhorizon scales) and has a
logarithmic growth∼ logðrHÞ for superhorizon scales [with
Oð1Þ correction factors]. This behavior of correlations
means that (the low frequency part of) field values in any
two regions separated by some physical distance r perform
the random walk together (when r≲H−1) until their
separation is bigger than the horizon (when r≳H−1),
and after that they start to wander off in separate random
walk trajectories.3 This well known stochastic random walk
behavior of field fluctuations is quite useful in modeling
semiclassical dynamics of a scalar field during inflation. In
particular, under slow-roll approximation one can generalize
the dynamics of these fluctuations for VðφÞ ≠ const by
adding a classical drift to the quantumdiffusion, by using the
Langevin equation

dφ
dN

þ V 0ðφÞ
DH2

¼ κηN; ð8Þ

whereN is the number of e-foldings, ηN is a randomvariable
that exhibits Gaussian white noise (hηNηN0 i ¼ δðN − N0Þ),
and κ is the random walk step size per e-folding (that we
shall refer to as the “kick”).

III. STEADY STATE ANALYSIS OF
ETERNAL INFLATION

In addition to the Langevin equation (8) describing field
values in each Hubble patch, one can also write a differ-
ential (Fokker-Planck) equation for the number density
ρðφ; NÞ of inflating Hubble patches:

∂ρ
∂N ¼ ∂

∂φ
$
V 0ðφÞ
DH2

ρ

%
þ κ2

2

∂2ρ
∂φ2

þDρ: ð9Þ

Note the additional term on the right-hand side compared to
the standard Fokker-Planck equation; this takes into account
the changing normalization due to cosmic expansion.

A. Simplified boundary conditions:
Imposing nodes

Now this Fokker-Planck equation is only to apply within
the field’s domain φ ∈ ð−φcr;φcrÞ, while near the boun-
daries, we anticipate a sudden change in behavior. This can
perhaps be met by having nodes at #φcr at all times, at
least as a first approximation, as was advocated in Ref. [4].
We shall improve upon this approximation in the
upcoming Sec. III B. For our cliff potential V 0ðφÞ ¼ 0 for
φ ∈ ð−φcr;φcrÞ, and for initial condition ρðφ; 0Þ ¼ δðφÞ,
one obtains [5]

ρðφ;NÞ¼ 1

φcr

X∞

m¼0

cos
"
ð2mþ1Þπφ

2φcr

#
e

&
D−ð2mþ1Þ2π2κ2

8φ2cr

'
N
; ð10Þ

giving the total number of inflating Hubble patches
(integral from −φcr to φcr) equal to

IðNÞ ¼
Z

φcr

−φcr

dφρðφ; NÞ

¼
X∞

m¼0

4

ð2mþ 1Þπ
e

&
D−ð2mþ1Þ2π2κ2

8φ2cr

'
N
; ð11Þ

which for large N is dominated by the first term m ¼ 0.
Now let us define the inflating fractal dimension as

DF ≡ ln IðNÞ
N

; ð12Þ

which is the (normalized logarithm of) the total volume of
the universe that is inflating in the model relative to the total
volume that would be inflating if crunches were not
allowed (so DF ¼ D if crunching did not occur). At large
N this is

DFð∞Þ ¼ D −
π2κ2

8φ2
cr
; ð13Þ

and the normalized number density

3Notice that this behavior is qualitatively independent of the
choice of cutoff ε, whose value will be of relevance only when we
compare to discrete simulations.

STATISTICS OF INFLATING REGIONS IN ETERNAL … PHYS. REV. D 100, 023513 (2019)

023513-3



ρ̃ðφ; NÞ ¼ ρðφ; NÞ
IðNÞ

ð14Þ

goes to a constant function

ρ̃ðφ;∞Þ ¼ π
4φcr

cos
"

πφ
2φcr

#
: ð15Þ

Note that we evidently need to have φcr ≥ πκ=ð2
ffiffiffiffiffiffiffi
2D

p
Þ in

order for eternal inflation to occur with DF > 0. For the
critical value φcr ¼ πκ=ð2

ffiffiffiffiffiffiffi
2D

p
Þ, we have an equilibrium

situation where there is no net inflation and the number of
inflating regions does not change with time.
Now since we know the total number of inflating Hubble

patches as a function of N, we can also calculate the
number that have exited: For a small discretization step ϵ,
the number of regions Ī that exited inflation in between N
and N þ ϵ is equal to the difference of the number of
regions that would have inflated in between N and N þ ϵ if
there were no exiting, with that of the actual number that
did inflate in between N and N þ ϵ. That is, we have the
following simple differential equation:

dĪ
dN

¼ DI −
dI
dN

: ð16Þ

Note the implicit assumption made here that exited Hubble
patches just accumulate as time goes on, without expand-
ing. With the initial condition Īð0Þ ¼ 0, we have

ĪðNÞ¼
X∞

m¼0

4ð2mþ1Þπκ2

ð8Dφ2
cr−ð2mþ1Þ2π2κ2Þ

h
e
ðD−ð2mþ1Þ2π2κ2

8φ2cr
ÞN
−1

i
:

ð17Þ

With both IðNÞ and ĪðNÞ increasing with the same
exponentials, the fraction of inflating and noninflating
patches

f ¼ IðNÞ
IðNÞ þ ĪðNÞ

; f̄ ¼ ĪðNÞ
IðNÞ þ ĪðNÞ

ð18Þ

become constants eventually, and we have

fð∞Þ ¼ 1 −
π2κ2

8φ2
crD

; f̄ð∞Þ ¼ π2κ2

8φ2
crD

: ð19Þ

Since they approach constants at late times, we establish
steady state behavior. The meaning of this can perhaps be
best visualized in comoving coordinates [with scale factor
a ∝ expðDfð∞ÞN=DÞ] where this eternally inflating uni-
verse is in equilibrium between creating regions that
inflating and creating regions exit. Note that the fraction
of inflating patches does not go to unity exponentially
fast with increasing φcr, which will be important for
understanding the statistics for the sizes of inflating

regions. Furthermore, it is important to point out that the
number of e-foldings it takes to converge toward steady
state is quadratic in φcr=κ. Another important feature is that
this steady state behavior does not depend sensitively on
the choice of initial conditions; as long as the initial field
value is far enough from φcr so that eternal inflation is
possible, we are guaranteed to approach this steady state.

B. Accurate boundary conditions:
Kernel propagation

Now to improve upon our assumption of having nodes at
φ ¼ #φcr, we point out a simple yet very useful technique
to get these fractions and normalized number density
functions, which will also provide an interpolation between
the discrete simulation and the continuous theory.
First, let us construct a version of the Langevin equation

[Eq. (8)] that is discretized in time, with time step δt ¼ ϵ, as

φn − φn−1
ϵ

þ V 0ðφn−1Þ
DH2

¼ κηn; ð20Þ

with ηn a random variable implementing a discrete version
of quantum diffusion. It has the following Gaussian
probability density:

PðηnÞ ¼
ffiffiffiffiffiffi
ϵ
2π

r
e−

ϵ
2η

2
n : ð21Þ

In general we can construct the kernel that propagates the
(discretized) number density ρn,

Kðφn;φn−1; ϵÞ ¼
eDϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
2πκ2ϵ

p e−
ϵ

&
φn−φn−1

ϵ þ
V0ðφn−1Þ

DH2

'
2

2κ2 ; ð22Þ

with no support outside of the domain ð−φcr;φcrÞ. This
leads to the recursion relation

ρnðφn; nϵÞ ¼
Z

φcr

−φcr

dφn−1Kðφn;φn−1; ϵÞρn−1ðφn−1Þ

¼
Yn−1

i¼0

Z
φcr

−φcr

dφiKðφiþ1;φi; ϵÞρ0ðφ0; 0Þ: ð23Þ

This is an iterative matrix multiplication technique (upon
discretization of field space) and will converge to the
dominant eigenstate of the kernel (the steady state number
density function). Also, the total number of inflating and
noninflating patches at any step n of the iteration is

In ¼
Z

φcr

−φcr

dφnρnðφnÞ; ð24Þ

Īn ¼ Īn−1 þ eDϵIn−1 − In; ð25Þ

with initial values I0 ¼ 1 and Ī0 ¼ 0. From this we can
easily get the fractions fn, f̄n and the fractal dimensionDFn

at any step,
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fn ¼
In

In þ Īn
; ð26Þ

f̄n ¼
Īn

In þ Īn
; ð27Þ

DFn
¼ 1

nϵ
lnðInÞ: ð28Þ

For the simple model here, V ¼ const, giving a relatively
simple random walk kernel.

IV. SIMULATED NETWORKS

We now describe our simulation setup in order to
numerically see the evolution. We work with two different
networks to simulate inflation in one spatial dimension.
The second network will be the same as that of Aryal and
Vilenkin [5]. The kick is κ ¼ 1=

ffiffiffiffiffiffi
2π

p
in one dimension, and

in both networks we double the size of the physical
universe at every step (a 2-folding with ϵ ¼ ln 2). The
Langevin equation for each Hubble patch (with V ¼ const)
is then

φi ¼ φi−1 þ
ffiffiffiffiffiffiffi
ln 2
2π

r
ζi ≡ φi−1 þ δφi ð29Þ

with ζi a Gaussian random variable with variance ¼ 1. We
generate random variables δφ’s at each step in order to
update the field values in each “cell” (representative
of a Hubble patch). In “network-I,” we have a literal
expansion of the universe in which we create more and
more cells at every step, while “network-II” essentially
involves unfolding a comoving volume that is to become
the final universe at the end. The precise construction and
details of these networks are explained next.

A. Network-I

In this setup, we start with a single cell with field value
φ ¼ 0, and then we double the number of cells at the next
step (2-folding) with the field values in the two daughter
cells set by two (independent) δφ’s according to the above
Langevin equation. Then at the next step each of the two
cells spawn two new daughter cells with their field values
chosen according to the same prescription, and so on. If at
any step a cell goes outside the domain ð−φcr;φcrÞ, it
crunches/thermalizes, and then we just keep it as it is in the
next step. A pictorial representation of network-I is given
in Fig. 1.
Now a complete model of inflation would exhibit

statistical translation invariance, since the Bunch-Davies
wave function does so. So although any particular reali-
zation of the universe breaks translation invariance, it is
recovered in an ensemble averaged sense. However, this
particular network model does not maintain translational
invariance even after ensemble averaging due to its treelike

structure. This can be seen clearly from the ensemble
averaged two point correlation function hφðxÞφðyÞi shown
in Fig. 2 (ignoring crunching for simplicity).
However, for a given observer, they obviously do not see

the ensemble average anyhow. Instead, at best one can
compare volume averaging to observations. Here we will
show that for volume averaging, correlations are, in fact, in
rather good agreement with theory. At any step n in the
simulation, for a given distance r (an integer in units
H ¼ 1) there exists a z0 ¼ Ceilðlog2ð1þ rÞÞ such that for

FIG. 1. A pictorial representation of network-I for four
2-foldings. Grey cells correspond to inflating Hubble patches,
while black cells correspond to ones that have exited.

FIG. 2. A color coded plot of the ensemble averaged (over 100
independent runs) two point correlation function hφðxÞφðyÞi for
network-I with ten 2-foldings and no thermalization/crunching. It
is evident that the correlation function breaks statistical trans-
lation invariance as it has a dependence on xþ y (upper right to
lower left diagonals), and the branching treelike structure is
apparent from the presence of square boxes.
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every integer z in ½z0; z0 þ 1; z0 þ 2;…; n', the number of
pairs of cells (r apart) with mean field squared fluctuations
equal to 2κ2ϵz is fð2z0 − rÞ2n−z0 ; r2n−z0−1; r2n−z0−2;…; rg,
respectively. Therefore, on average we have the following
mean field squared fluctuations:

hδφ2iðrÞ ¼ 2κ2ϵ
2n − r

$
ð2z0 − rÞ2n−z0z0 þ r

Xn

z¼z0þ1

2n−z
%

¼ 2κ2ϵ
2n − r

½2nz0 þ rð2n−z0þ1 − n − 2Þ'; ð30Þ

which for a large n limit gives

hδφ2iðrÞ ¼ 2

2π
ϵz0 þOð1Þ: ð31Þ

For r ¼ 0 (being equivalent to the subhorizon scale), we
have zero since all cells undergo the random walk, while
for 2n ≫ r ≫ 1 (being equivalent to the superhorizon
scale), we have a log correlation. This is in qualitative
agreement with the continuum behavior of the full
theory [Eq. (7)] and proves that network-I has the right
structure for volume averaging. Also, in order to match
the network’s correlations exactly with the theory, we
must make the right choice for the cutoff ε, which we
can simply obtain by matching the Oð1Þ correction
terms; we get ε ¼ e2ϵ−γ ¼ 4=eγ where γ is Euler’s
constant. Ahead in Fig. 5 we show the volume averaged
two point correlation function along with the theory
result with this chosen ε, showing good agreement. This
exact matching, however, is not qualitatively important
for our purposes since it can be roughly captured by an
Oð1Þ scaling of r without changing the overall func-
tional dependence of volume averaged quantities that are
of interest.
On the other hand, one may be concerned that volume

averaging was required to enforce translational variance in
this network. For this reason we also work with another
simulation setup which improves upon this, which we
describe next.

B. Network-II

Our second simulation setup is the same as that of
Ref. [5] in one spatial dimension. We begin with an
array of 2n cells where n is the total number of
2-foldings that the simulation will run for, and with
field values equal to zero in all of them. Then at the first
step we choose an arbitrary lattice site as the origin and
divide the array into “h regions” (in the language of
Ref. [5]) of size 2n−1 each. We generate independent
δφ’s for each h region with every cell in it updated by
the same δφ, and so on. At any kth step we create h
regions of sizes 2n−k from an arbitrary chosen lattice site

and generate those many δφ’s, with cells in an h region
updated with the same δφ. The h regions at the
boundaries are generally not complete. At the last step
we have 2n h regions; i.e., each cell is an h region and is
updated by its own δφ. In any step if a cell thermalizes,
we do not update its field value anymore and just keep
the value as it is in further steps. A pictorial represen-
tation of network-II is given in Fig. 3.
This network enjoys statistical translational variance

(since we do not have a fixed center), which can be seen
from the ensemble averaged two point correlation function
shown in Fig. 4. However, for volume averaging it will
always be less efficient than network-I. This is because we
need to choose a random origin at each step, and for any
given distance r this network can never produce more
correctly correlated pairs [ð2z0 − rÞ2n−z0] than the previous
network. It can only match it for a run where at every step
there happens to be a boundary of an h region at the center.
For a typical run, this will not be the case. This difference,
however, will be prominent only for smaller r’s, while for
larger r’s it will have the same qualitative structure.
Therefore, this network will also serve our purposes for
volume averaged quantities.
Figure 5 also shows the volume averaged two point

correlation function of network-II (along with network-I).
Note that due to this added randomness of the choice
of origin, in order for this network’s correlations to
exactly match the analytical result, we need to have a
different ε than before. However, as mentioned earlier,
this is not qualitatively important, and we put these
details aside. Also, since we start with the total number
of cells and zoom in at every step in powers of 2
irrespective of the arrangement of thermalized/crunched
cells, we formally inflate these regions as well. However,

FIG. 3. A pictorial representation of network-II for four
2-foldings. Grey cells correspond to inflating comoving patches,
while black cells correspond to ones that have exited. Red lines
mark the boundaries of h regions.
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this is only by way of appearance and has no conse-
quence for the statistics of the nonthermalized/noncrunched
regions.
Our final results are very similar for both networks

upon volume averaging. The objection toward the first
not maintaining translational invariance exactly is not so
important since we are always interested in volume

averaged quantities from the point of view of a single
observer anyhow.

C. Comparison with simulations

Having discussed both networks, we now show various
plots of the above calculated quantities for D ¼ 1 and
compare with simulations. For each of the two networks,
we have simulated 20 independent universes for φcr’s
(in units of κ ¼ 1=

ffiffiffiffiffiffi
2π

p
) in between 1 and 10, and up to

eighteen 2-foldings. From kernel propagation, we obtain
two sets of curves, one to compare with simulations
(usually also evolved up to the corresponding number
of 2-foldings as simulations) and another to interpolate
between ϵ ¼ ln 2 and ϵ ¼ 0 at steady state. To obtain steady
state behavior from kernel propagation, we compare the
norm of the normalized number density ρ̃ in between two
successive steps until they are different by 1 part in 103.
Also, we have adopted a convention of keeping green color
for curves obtained from kernel propagation while blue is
used for the analytical results. Red and magenta curves are
for simulation networks-I and -II, respectively.

FIG. 6. Change in fractal dimension 1 −DF vs φcr=κ. Top
panel is network-I, and bottom panel is network-II. Dark red
(magenta) dots are simulation data up to eighteen 2-foldings, the
two green curves are from kernel evolution with ϵ ¼ ln 2 for the
solid curve, while ϵ ¼ ln 1.1 and steady state for the dashed
curve. The dashed blue curve is the analytical result [Eq. (13)].

FIG. 4. A color coded plot of ensemble averaged (100 inde-
pendent runs) two point correlation function hφðxÞφðyÞi for
network-II with ten 2-foldings and no thermalization/crunching.
This evidently improves upon translation invariance relative to
the network-I result of Fig. 2.

FIG. 5. Plot of volume averaged two point correlation
functions hφφiðrÞ after thirteen 2-foldings (with no thermal-
ization/crunching) and averaged over 100 independent runs.
Dashed blue curve is the theory result of Eq. (4) with
ε ¼ 4=eγ , while red and magenta curves are for network-I and
network-II, respectively.
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First, we compare fractal dimensions. Figure 6 shows
the comparison between analytics and simulation for
network-I (upper panel) and network-II (lower panel).
Note that since we have only gone up to eighteen
2-foldings in this figure, we have only converged to
the steady state behavior for φcr=κ around ∼3.5 or so.
The interpolation between discrete and continuous
regimes also suggests that the theory calculation gives
the right behavior.
Next, we present plots for the normalized number

density ρ̃, for the two networks. Figure 7 is for φcr=κ¼3,
and Fig. 8 is for φcr=κ ¼ 7. The curves are for twelve,
fifteen, and eighteen 2-foldings. The aforementioned
convergence is evident from these plots.
In Fig. 9 we show the comparison between the

number of inflating Hubble patches in network-I and
the kernel propagation method. This shows excellent
agreement. Furthermore, we also show the comparison

between the number of thermalized/crunched Hubble
patches, and we see excellent agreement also. For
network-II the number of inflating patches is very
similar. However, the number of thermalized/crunched
Hubble patches is artificially enhanced by the method,
and so this particular quantity is not of interest to report
on here.
Having shown these various results, which provide

evidence in support of the simulation networks
and point toward steady state behavior, we can now
move on to the discussion of the distribution of sizes
of inflating regions within this eternally inflating
universe.

V. STATISTICS OF INFLATING REGIONS

Before reporting on our simulation results and under-
standing, we would like to point out that there are two
naive arguments regarding typical sizes of inflating
regions hli. Both lead to the expectation that the typical
distance is exponentially large in some power of the
crunch value φcr. In the first argument, one begins by

FIG. 7. Number density ρ̃ vs crunch value φ=κ for φcr=κ ¼ 3.
Top panel is network-I and bottom panel is network-II. All
the red (magenta) curves in increasing darkness represent
simulation runs for twelve, fifteen, and eighteen 2-foldings,
respectively. The solid green curve is from kernel propagation
with ϵ ¼ ln 2 at steady state, while the dashed green curve is for
ϵ ¼ ln 1.1 at steady state. Dashed blue is the analytical result
Eq. (15).

FIG. 8. Number density ρ̃ vs crunch value φ=κ for φcr=κ ¼ 7.
Top panel is network-I and bottom panel is network-II. The
convention is the same as in Fig. 7. Here it has yet to properly
converge to the steady state distribution.
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saying that the typical number of e-foldings it takes for
the field to get from its starting value φ ¼ 0 to its crunch
value φ ¼ #φcr is of the order of Ntyp ∼ φ2

cr=κ2 owing to
its simple random walk. But by this time, the universe
has expanded by eNtyp and thus the typical distance
between noninflating regions (or equivalently, the typical
size of inflating regions) is ∼ec1φ2

cr=κ2 , where c1 ¼ Oð1Þ
prefactor.
In the second argument, one tries to improve on this by

arguing that in order to estimate typical sizes, we must
make sure that we have a clustered set of Hubble
patches (or a connected chain in the simple case of one
dimension). With the random walk behavior of the field, a
naive calculation for the probability for a single Hubble
patch to stay within ð−φcr;φcrÞ gives Erfðφcr=ð

ffiffiffiffiffiffiffi
2N

p
κÞÞ.

Treating each Hubble patch independently, one then raises

this probability to eDN and demands that this quantity be an
order 1 number. This calculation gives Ntyp ∼ φcr=κ, and
therefore the typical size of inflating regions is ∼ec2φcr=κ,
where c2 ¼ Oð1Þ prefactor.
However, both of these naive pictures, in fact, miss a

crucial aspect of the physics. While the second school of
thought tries to improve on the first one by demanding a
clustered region of inflating Hubble patches, both of
them completely ignore the steady state behavior of this
eternally inflating universe. Since the fractions of inflat-
ing and noninflating patches go to constants, this means
that the probabilities to find either of them become
constants, too. After noting this crucial fact, if one then
treats each of the inflating Hubble patches as being
roughly independent, one finds a very different answer.
The probability that a patch is inflating is simply equal
to the fraction f. In one spatial dimension, given an
inflating Hubble patch, the probability that there is a
clustered region of l such patches is ≈fl−1 (modulo an
overall normalization) giving an exponential distribution
in sizes l (in units of Hubble H−1),

Pl ≈
fðl−1Þ

P∞
l¼1 f

ðl−1Þ ¼ ð1 − fÞfl−1; ð32Þ

with a corresponding average size

hli ≈ ð1 − fÞ
X∞

l¼1

lfðl−1Þ ¼
"

1

1 − f

#
; ð33Þ

which for large φcr goes to the following [using Eq. (19)
with D ¼ 1 and κ ¼ 1=

ffiffiffiffiffiffi
2π

p
]:

hli ≈ 16φ2
cr

π
: ð34Þ

So the growth with φcr is only a mere power law,
rather than exponential. Furthermore, in D spatial
dimensions, the generalization of this reasoning is to
the power law hli ∝ φ2=D

cr . So for higher D, the growth
with φcr is expected to be even slower.
Figure 10 shows the trend of average sizes of inflating

regions as we increase the number of 2-foldings. The
converging trend of simulation red (magenta) curves
toward a linear curve is in agreement with our estimates
(note that this is on a log-log scale). Again we note
that we have converged to the steady state behavior
only up to around φcr=κ ∼ 3.5 even for the maximum
number of 2-foldings shown. The upward trend is
consistent with the theoretical expectation (given by
the green curve) and is anticipated to approach a straight
line (on this log-log scale) as we increase the number of
2-foldings.

FIG. 9. Top panel: Number of inflating Hubble patches vs
φcr=κ for twelve, fifteen, and eighteen 2-foldings. Bottom panel:
Number of thermalized/crunched patches vs φcr=κ for twelve,
fifteen, and eighteen 2-foldings. Both plots are for network-I. In
network-II there is an unphysical exponential growth in the size
of the thermalized/crunch regions, so it is of little interest to
plot here. Dots (in increasing order of redness) represent
simulation data while the corresponding green curves represent
kernel evolution with ϵ ¼ ln 2 and the corresponding number of
2-foldings.
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Next, for the distribution of sizes of inflating regions, we
do indeed find an indication of a decaying exponential
behavior, at least for sufficiently large sizes. This is seen
clearly in Fig. 11 with φcr=κ ¼ 3 (note the log-linear scale).
For small to reasonably large sizes, however, the falloff
appears to be only a power law, so there is still a nontrivial
chance to obtain regions with sizes appreciably larger than
the average. This is due to correlations among nearby
Hubble patches that is not captured in the above simplistic
analysis. This can be seen more clearly in Fig. 12 with

φcr=κ ¼ 5 out to l ∼ 50 or so. However, at larger distances,
we again see exponential suppression.

VI. STATISTICS OF NONINFLATING REGIONS

For the sizes of noninflating regions, we again find a
power law behavior as suggested by the steady state
combinatorics. The fraction of noninflating regions is f̄
giving the following exponentially decaying distribution in
sizes l̄ (in units of H−1):

Pl̄ ≈
f̄ðl̄−1Þ

P∞
l̄¼1

f̄ðl̄−1Þ
¼ ð1 − f̄Þf̄l̄−1; ð35Þ

with the corresponding average size

hl̄i ≈ ð1 − f̄Þ
X∞

l̄¼1

l̄ f̄ðl̄−1Þ ¼
"

1

1 − f̄

#
; ð36Þ

which for large φcr goes to the following [using Eq. (19)
with D ¼ 1 and κ ¼ 1=

ffiffiffiffiffiffi
2π

p
]:

FIG. 11. Distribution in lengths for inflating regions for
φcr=κ ¼ 3 for twelve, fifteen, and eighteen 2-foldings (in
increasing darkness). Top panel is network-I and bottom panel
is network-II.

FIG. 10. Average distances hli vs φcr=κ. Top panel is network-I
and bottom panel is network-II. Red (magenta) curves with
increasing darkness are for twelve, fifteen, and eighteen
2-foldings, respectively. The solid and dashed green curves are
from kernel propagation with ϵ ¼ ln 2 only up to eighteen
2-foldings and ϵ ¼ ln 1.1 at steady state, respectively. The dashed
blue curve is the theoretical expectation in steady state for high
φcr=κ Eq. (34). Note that this is on a log-log scale, so that as
curves asymptote to a straight line, it implies power law
dependence on φcr.
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hl̄i ≈ 1þ π
16φ2

cr
: ð37Þ

Similarly as before in D spatial dimensions, the
generalization of this reasoning is to the power law
hl̄i ∼ ð1þOð1Þκ2=φ2

crÞ1=D. Figure 13 shows the trend of
average sizes of noninflating regions as we increase the
number of 2-foldings, and Fig. 14 shows the distributions in
sizes for φcr=κ ¼ 3 and 5, respectively.

VII. SUMMARY AND DISCUSSION

To summarize, we have found that in a simple illustrative
scenario of eternal inflation (with H ¼ const) in the
presence of a scalar field φ with a constant potential VðφÞ
within ð−φcr;φcrÞ, the average size of inflating regions
only grows as a power law in φcr, and the distributions
in sizes fall off exponentially for sufficiently large
distances. This result is quite different from a naive
understanding of general eternal inflation scenarios,
where one might expect average sizes of inflating
regions to have some sort of exponential dependence
on φcr. We have found this not to be the case since this

eternally inflating universe ultimately gets to an equi-
librium situation where the fractions of inflating (non-
inflating) Hubble patches become constant(s) and only
grow to unity (dying out to zero) power law fast in φcr.
However, the distribution does have some large width to
it due to correlations among nearby Hubble patches, so
there is still a nontrivial probability to create regions that
are much larger than the average. Similarly for non-
inflating regions we have found that the distribution is an
exponential decay law with typical sizes decaying as a
power law in 1=φcr.
We have also established a simple kernel/integral

evolution technique that not only serves to provide
interpolation between discrete simulation and continuous
theory but also is useful for investigating more interesting
and involved scenarios where the potential of the scalar
field has some slope, resulting in a dominant slow roll
phase making analytical calculations formidable in gen-
eral. We leave more interesting cases of VðφÞ ≠ const
and time varying H for future work, along with an
application of our results to the case of SM Higgs in the
early universe. In the latter case the multicomponent
nature of the Higgs doublet can play an important role in
its statistics [15].
Improved analytical estimates can be made in future

work. The (relatively small) mismatch between analytics
and simulation for the average sizes of inflating regions
(seen here in Figs. 10 and 13) seems to be due to two
reasons. First, we are comparing with discrete simulation,
which requires choosing the right cutoff for the theory.

FIG. 13. Average distances hl̄i vs φcr=κ from network-I. Red
curves with increasing darkness are for twelve, fifteen, and
eighteen 2-foldings, respectively. The solid and dashed green
curves are from kernel propagation with ϵ ¼ ln 2 only up to
eighteen 2-foldings and ϵ ¼ ln 1.1 at steady state, respectively.
The dashed blue curve is the theoretical expectation in steady
state for high φcr=κ Eq. (37).

FIG. 12. Distribution in lengths for inflating regions for
φcr=κ ¼ 5 for twelve, fifteen, and eighteen 2-foldings (in
increasing darkness). Top panel is network-I and bottom panel
is network-II.
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Second, and perhaps more important, treating each Hubble
patch independently in the simplified combinatorics is
obviously not precise since nearby patches have some
correlation, and so there is ambiguity in how many
Hubble patches to treat as one independent entity. What
is important, however, is the power law dependence of
average sizes over ϕcr, which indeed is in agreement.

In order to understand the nature of distributions
even better, we have also looked at several statistical
moments in order to check if they grow with an
increasing number of 2-foldings or if they have some
power law behavior in their tails. We did not find any
such behavior for both inflating and noninflating sizes.
In Appendix we provide some plots for these higher
moments (for network-I).
Although the average sizes of inflating (and noninflat-

ing) regions is only power law in φ, rather than exponential,
it should be noted that this by no means undermines the
general idea of inflation, which is to provide a huge
homogeneous/isotropic universe. The growth of higher
central moments with φcr indicates a nontrivial chance
of obtaining much larger regions. Also, what we have
studied here is that of a flat potential for a field that falls
off with a cliff to sudden thermalization/crunching; this
is a universe that is completely dominated by quantum
diffusion. The introduction of a tilted potential that allows
for a prolonged phase of classical domination over quantum
diffusion can lead to the production of much larger
(thermalized) homogeneous regions. The corresponding
distribution of sizes is anticipated to be rather different and
will be the subject of future work [16].
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APPENDIX: HIGHER MOMENTS FOR
DISTRIBUTION IN SIZE OF REGIONS

Figure 15 shows some central moments for network-I
for twelve, fifteen, and eighteen 2-foldings (in increasing
darkness) for lengths of inflating regions. Since the
moments do not grow with more 2-foldings, it is suggestive
that the tail of the distribution falls off faster than a power
law. Results for network-II are similar. Similarly, Fig. 16
shows some central moments for network-I for twelve,
fifteen, and eighteen 2-foldings (in increasing darkness) for
lengths of noninflating regions. Note that the apparent
increment in moments as we go higher in 2-foldings is
suggestively due to not having enough statistics in the tail
of the distribution for smaller 2-foldings.

FIG. 14. Distribution in lengths for noninflating regions for
twelve, fifteen, and eighteen 2-foldings (in increasing darkness),
from network-I. Top panel is for φcr=κ ¼ 3 and bottom panel is
for φcr=κ ¼ 5.
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FIG. 16. Central moments of crunched regions for network-I
for twelve, fifteen, and eighteen 2-foldings (in increasing dark-
ness) with the rough prediction from combinatorics (and kernel
propagation) for comparison (green curve). Top panel is second
central moment, middle panel is fourth central moment, and
bottom panel is sixth central moment.

FIG. 15. Central moments of inflating regions for network-I for
twelve, fifteen, and eighteen 2-foldings (in increasing darkness)
with the rough prediction from combinatorics (and kernel
propagation) for comparison (green curve). Top panel is second
central moment, middle panel is fourth central moment, and
bottom panel is sixth central moment.

STATISTICS OF INFLATING REGIONS IN ETERNAL … PHYS. REV. D 100, 023513 (2019)

023513-13



[1] A. H. Guth, The inflationary Universe: A possible solution
to the horizon and flatness problems, Phys. Rev. D 23, 347
(1981) [Adv. Ser. Astrophys. Cosmol. 3, 139 (1987)].

[2] A. D. Linde, A new inflationary Universe scenario: A
possible solution of the horizon, flatness, homogeneity,
isotropy and primordial monopole problems, Phys. Lett.
108B, 389 (1982) [Adv. Ser. Astrophys. Cosmol. 3, 149
(1987)].

[3] A. D. Linde, Chaotic inflation, Phys. Lett. 129B, 177 (1983).
[4] A. Vilenkin, The birth of inflationary Universes, Phys. Rev.

D 27, 2848 (1983).
[5] M. Aryal and A. Vilenkin, The fractal dimension of infla-

tionary Universe, Phys. Lett. B 199, 351 (1987).
[6] A. D. Linde and A. Mezhlumian, Stationary universe,

Phys. Lett. B 307, 25 (1993).
[7] A. D. Linde, D. A. Linde, and A. Mezhlumian, From the

Big Bang theory to the theory of a stationary universe,
Phys. Rev. D 49, 1783 (1994).

[8] M. Sher, Precise vacuum stability bound in the standard
model, Phys. Lett. B 317, 159 (1993); Addendum, Phys.
Lett. B 331, 448 (1994).

[9] J. A. Casas, J. R. Espinosa, and M. Quiros, Improved Higgs
mass stability bound in the standard model and implications
for supersymmetry, Phys. Lett. B 342, 171 (1995).

[10] J. R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, L.
Senatore, A. Strumia, and N. Tetradis, The cosmological
Higgstory of the vacuum instability, J. High Energy Phys.
09 (2015) 174.

[11] J. Kearney, H. Yoo, and K. M. Zurek, Is a Higgs vacuum
instability fatal for high-scale inflation?, Phys. Rev. D 91,
123537 (2015).

[12] W. E. East, J. Kearney, B. Shakya, H. Yoo, and K. M. Zurek,
Spacetime dynamics of a Higgs vacuum instability during
inflation, Phys. Rev. D 95, 023526 (2017).

[13] K. Kohri and H. Matsui, Higgs vacuum metastability in
primordial inflation, preheating, and reheating, Phys. Rev. D
94, 103509 (2016).

[14] G. Barenboim, W. I. Park, and W. H. Kinney, Eternal hilltop
inflation, J. Cosmol. Astropart. Phys. 05 (2016) 030.

[15] M. P. Hertzberg and M. Jain, Counting of states in Higgs
theories, Phys. Rev. D 99, 065015 (2019).

[16] M. Jain and M. P. Hertzberg (to be published).

MUDIT JAIN and MARK P. HERTZBERG PHYS. REV. D 100, 023513 (2019)

023513-14

https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(83)90837-7
https://doi.org/10.1103/PhysRevD.27.2848
https://doi.org/10.1103/PhysRevD.27.2848
https://doi.org/10.1016/0370-2693(87)90932-4
https://doi.org/10.1016/0370-2693(93)90187-M
https://doi.org/10.1103/PhysRevD.49.1783
https://doi.org/10.1016/0370-2693(93)91586-C
https://doi.org/10.1016/0370-2693(94)91078-2
https://doi.org/10.1016/0370-2693(94)91078-2
https://doi.org/10.1016/0370-2693(94)01404-Z
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1007/JHEP09(2015)174
https://doi.org/10.1103/PhysRevD.91.123537
https://doi.org/10.1103/PhysRevD.91.123537
https://doi.org/10.1103/PhysRevD.95.023526
https://doi.org/10.1103/PhysRevD.94.103509
https://doi.org/10.1103/PhysRevD.94.103509
https://doi.org/10.1088/1475-7516/2016/05/030
https://doi.org/10.1103/PhysRevD.99.065015

