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We compute the distribution of sizes of inflating and noninflating regions in an eternally inflating
universe. As a first illustrative problem, we study a simple scenario of an eternally inflating universe in the
presence of a massless scalar field ¢ whose field values lie within some finite domain ¢ € (—¢,.., @), with
+¢., marking the onset of thermalization/crunching. We compute many important quantities, including the
fractal dimension, the distribution of field values among inflating regions, and the number of inflating and
noninflating Hubble regions. With the aid of simulations in one spatial dimension, we show this eternally
inflating universe reaches a steady state in which average sizes of inflating regions grow only as a power
law in the field’s crunch value ~@2, (extension to higher dimensions is ~¢®?), contrary to a naive
expectation of an exponential dependence. Furthermore, the distribution in sizes exhibits an exponential
falloff for large distances (with an initial power law for inflating regions). We leave other interesting cases
of more realistic potentials and time varying Hubble parameters for future work, with a possible application

to the SM Higgs in the early universe.
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I. INTRODUCTION

Cosmological inflation is currently the best known
explanation for large scale homogeneity and isotropy in
our observable universe, as well as provides a detailed
account of fluctuations [1,2]. Eternally inflating scenarios,
in which the universe on the largest of scales continues
to inflate forever, leading to a giant universe with both
inflating and noninflating patches, are quite generic and
naturally occur in many inflationary models; see [3,4]. It is
possible then that our own observable universe is one of
these currently noninflating (thermalized) regions within a
giant eternally inflating universe. A natural question to ask
then is about the structure and distribution of inflating and
noninflating patches of such a giant universe. For example,
it was shown in Ref. [5] that the eternally inflating universe
ultimately forms a fractal structure, and the fractal dimen-
sion was computed in various cases. Other important work
includes Refs. [6,7].

Important outstanding issues that remain are the sizes of
inflating and thermalizing regions that would be present in
this eternally inflating universe. What are the typical
sizes? What is their distribution? We will address such
questions in this work. An important scenario is that of an
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eternally inflating universe in the presence of one or more
scalar fields such that regions within some domain of field
space continue to inflate, while regions in another domain
of field space exit inflation. The field(s) could be either the
inflaton itself or some other spectator field(s). For the
former scenario, our observable universe could be one of
the thermalized regions surrounded by eternally inflating
ones. The latter case could also be that of our own
universe with the scalar being the SM Higgs whose
potential within the minimal SM can plausibly exhibit
these different types of domains. That is, regions in which
the Higgs goes beyond the instability scale (arising due to
quantum corrections from its interactions with other heavy
particles such as the top quark and the W, Z bosons [8,9])
are marked as “crunched” while regions in which it
remains within the instability scale are still inflating.'
These regions can perhaps thermalize after a while either
through some exit mechanism or due to the inflaton
decaying itself, in order for our observable universe to
be produced. For the present paper, we will not be focused
on the exact crunching/thermalizing mechanisms but on
the underlying structure of the eternally inflating universe.
Alterations and applications to more realistic models,

'"The question of Higgs instability and inflation in the early
universe has been studied in the literature; see [10-13] and
references therein.
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and close connection to the SM Higgs, are left for
future work.

In this paper, we analyze a scenario in which there is a
single scalar field ¢ that controls the eternal inflating
dynamics. For simplicity, we take the field’s potential to
be constant V(¢) = const, with a constant Hubble H,
within the field’s domain ¢ € (—¢.,, ¢.,) (related work
includes Ref. [14]). Here ¢,, is some “crunch” value, such
that in the domain |¢| > ¢, inflation ends locally; here the
universe either forms an AdS crunch or perhaps just
thermalizes and reheats, but in any case it no longer
inflates. We refer to this as a “cliff” potential. The global
structure of the universe is dictated by the motion of ¢ as it
determines whether local Hubble patches inflate. The
specific model that approximates this dynamics is given
ahead in Eq. (8) for the regime in which the field is within
(=@¢r, @cr)- Once it goes outside of this domain, the patch
is declared to no longer inflate (for simplicity we will
simply then take such a patch to become static, neither
growing nor decaying, when we present the distribution of
sizes of these noninflating patches). So although any
individual Hubble patch will eventually stop inflating, this
basic process continues eternally throughout the universe
since daughter patches are always spawned at a sufficiently
fast rate that some always survive and inflation never ends
globally. This results in an assortment of “regions” of
collections of inflating Hubble patches surrounded by
noninflating ones at any moment in time. Furthermore,
after waiting for some initial transient behavior to wash
away, we are left in a steady state behavior of this variety.

In this paper we determine the statistics for the sizes of
inflating and noninflating regions, along with other related
quantities of interest such as the fractal dimension and the
number density function for inflating patches, some of
which have already been addressed in the literature [5].
Also, we shall assume no drastic dynamics at the bounda-
ries separating inflating and noninflating regions. With the
aid of simulations in one dimension, we shall show that the
eternally inflating universe gets to a steady state in which
the total fractions of inflating and noninflating regions
become constants. The distributions in sizes exhibit expo-
nential decay for large distances, while average sizes of
inflating regions grow only as a power law (~¢2, and

~(p%D in general). Furthermore, we develop a steady state,

quasianalytical, formalism to understand these results.. We
leave more interesting cases of V(¢) # const and in which
classical drift can dominate over quantum fluctuations
(semiclassical random walk), as well as a time dependent
H, for future work, along with an application to the case of
SM Higgs during inflation in the light of its instability at
high energies.

The organization of the paper is as follows: In Sec. II, we
review the well known stochastic approach toward a scalar
field’s dynamics in inflationary background. In Sec. III we
point out that the eternally inflating universe reaches a

steady state, simultaneously calculating various quantities
of interest. We also point out a kernel evolution technique,
particularly useful to not only test the discrete simulations
but also provide a smooth interpolation to the continuous
regime. In Sec. IV we describe two simulation networks
that we used to model the scenario in one dimension, and
we compare the calculated quantities with them. In Secs. V
and VI, we provide simulation results for the statistics of
sizes of inflating regions and noninflating regions, respec-
tively, along with their analytical understanding. In Sec. VII
we summarize and discuss our findings. Finally, in the
Appendix we provide some high order moments of the
distribution.

II. STOCHASTIC DYNAMICS

We shall adopt a sort of semiclassical approach in which
one decomposes the scalar field into a low frequency part
and a high frequency part and focus only on the low
frequency part. In order to set up the problem, let us recap
the dynamics of quantum fluctuations a)(x) of a massless
real scalar field [V(¢) = const] in pure D-dimensional de
Sitter space (D is the number of spatial dimensions) in
which the Hubble parameter is H = const. Recall that the
mode functions ¢ (¢), which can be defined as usual via the
following Fourier decomposition:

R de eik.x R
¢(x, t) = /Wﬁ¢k(r)ak+H‘C" (1)

where @ is the canonically normalized annihilation oper-
ator, obey the following equation of motion:

.. . k2
¢r + DHep, +;¢k =0. (2)

Here dots represent time derivatives and a o e/’ is the scale
factor. This is a linear second order ordinary differential
equation and the solutions can be readily found for any
arbitrary D in terms of spherical Bessel functions. In one
spatial dimension D = 1, the solutions are simply sinus-
oids.” Requiring only positive frequency modes and choos-
ing a unique vacuum (Bunch-Davies) as t - —oo as usual
give
(1) = e, (3)
Now, we may decompose the field ¢(x) into two pieces:
a low frequency part that we call $(x) with all comoving
modes in (¢H,eaH), and a high frequency part with all
comoving modes greater than eaH, and we focus on the
low frequency part only. Here ¢ is an O(1) number that sets
the cutoff scale. The two point correlation function is

*We believe our results can be extended to higher dimensions
in a straightforward fashion. Also our analytical estimates will
often be performed with a general D. When we compare with
one-dimensional simulations, we will set D = 1.

023513-2



STATISTICS OF INFLATING REGIONS IN ETERNAL ...

PHYS. REV. D 100, 023513 (2019)

~ N dk |(Pk|2
GOP)) = [abmﬂﬁm

- % (Ci(reH) Ci (rgaH )) (4)

and |x — y| = r is the physical (not comoving) separa-
tion. Here Ci is the cosine integral function: Ci(x)=
— [* dt cos(t)/t. For superhorizon scales with ae™'H™! >
r > e"'H~! we have logarithmically dying out correlations

@00 =5 1oe( ) +om

while for subhorizon scales r < e '!H™! we have the
random walk behavior

(67) = 514 0(7). (©

One may also look at the mean field squared fluctuations
(69%)(r) = ((p(x) — @(y))?), which according to the above
can be written as

(6¢)(r) =

<Ht — Ci(reH) + Q(’ZH )) L)
which goes to zero as r — 0 (subhorizon scales) and has a
logarithmic growth ~ log(rH ) for superhorizon scales [with
O(1) correction factors]. This behavior of correlations
means that (the low frequency part of) field values in any
two regions separated by some physical distance r perform
the random walk together (when r < H™') until their
separation is bigger than the horizon (when r> H™'),
and after that they start to wander off in separate random
walk trajecton'es.3 This well known stochastic random walk
behavior of field fluctuations is quite useful in modeling
semiclassical dynamics of a scalar field during inflation. In
particular, under slow-roll approximation one can generalize
the dynamics of these fluctuations for V(¢) # const by
adding a classical drift to the quantum diffusion, by using the
Langevin equation

dp V'(p)
aN D2 N

(8)

where N is the number of e-foldings, 77, is arandom variable
that exhibits Gaussian white noise ((7y#7y') = 6(N — N')),
and « is the random walk step size per e-folding (that we
shall refer to as the “kick™).

*Notice that this behavior is qualitatively independent of the
choice of cutoff &, whose value will be of relevance only when we
compare to discrete simulations.

III. STEADY STATE ANALYSIS OF
ETERNAL INFLATION

In addition to the Langevin equation (8) describing field
values in each Hubble patch, one can also write a differ-
ential (Fokker-Planck) equation for the number density
p(@,N) of inflating Hubble patches:

b_21v)) e

— ——+ Dp.
oN o |DE2"| T a2+ ®)

Note the additional term on the right-hand side compared to
the standard Fokker-Planck equation; this takes into account
the changing normalization due to cosmic expansion.

A. Simplified boundary conditions:
Imposing nodes

Now this Fokker-Planck equation is only to apply within
the field’s domain ¢ € (=@, p..), while near the boun-
daries, we anticipate a sudden change in behavior. This can
perhaps be met by having nodes at +¢,, at all times, at
least as a first approximation, as was advocated in Ref. [4].
We shall improve upon this approximation in the
upcoming Sec. III B. For our cliff potential V'(¢) = 0 for
@ € (—@er» @.r), and for initial condition p(¢p,0) = §(¢),
one obtains [5]

Zc

crm

2 1 (D (2m+|)21(27<2>N
() e

giving the total number of inflating Hubble patches
(integral from —¢,, to ¢..) equal to

(p/.‘r
1) = [ doploN)
—Per
By S o

m=0 2m + 1

, (11)

which for large N is dominated by the first term m = 0.
Now let us define the inflating fractal dimension as

InI(N
DFEn( ),
N

(12)

which is the (normalized logarithm of) the total volume of
the universe that is inflating in the model relative to the total
volume that would be inflating if crunches were not
allowed (so Dy = D if crunching did not occur). At large
N this is

n’K?

D (o) :D—Wa

(13)

and the normalized number density
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p(p.N)
I(N)

p(p.N) = (14)

goes to a constant function

V4 b27)
- . 15
4., cos <2¢cr) (15)

Note that we evidently need to have ¢, > zk/(2v/2D) in

order for eternal inflation to occur with Dy > 0. For the

critical value ., = 7k/(2v/2D), we have an equilibrium
situation where there is no net inflation and the number of
inflating regions does not change with time.

Now since we know the total number of inflating Hubble
patches as a function of N, we can also calculate the
number that have exited: For a small discretization step ¢,
the number of regions I that exited inflation in between N
and N + ¢ is equal to the difference of the number of
regions that would have inflated in between N and N + ¢ if
there were no exiting, with that of the actual number that
did inflate in between N and N + ¢. That is, we have the
following simple differential equation:

plg, )

dl dl
=Dl —— 16
dN dN’ (16)
Note the implicit assumption made here that exited Hubble
patches just accumulate as time goes on, without expand-

ing. With the initial condition 7(0) = 0, we have

- 4(2m+ 1)7x? [E(D_%)N_ 1}

(17)

With both I(N) and I(N) increasing with the same
exponentials, the fraction of inflating and noninflating
patches

I(N) - 1 (N)
for s Je s (18)
I(N) +1(N) I(N) +1(N)
become constants eventually, and we have
K2 - w22
@) =1=grm. J)=gap. (19)

Since they approach constants at late times, we establish
steady state behavior. The meaning of this can perhaps be
best visualized in comoving coordinates [with scale factor
a x exp(D;(o0)N/D)] where this eternally inflating uni-
verse is in equilibrium between creating regions that
inflating and creating regions exit. Note that the fraction
of inflating patches does not go to unity exponentially
fast with increasing ¢.., which will be important for
understanding the statistics for the sizes of inflating

regions. Furthermore, it is important to point out that the
number of e-foldings it takes to converge toward steady
state is quadratic in ¢, /x. Another important feature is that
this steady state behavior does not depend sensitively on
the choice of initial conditions; as long as the initial field
value is far enough from ¢., so that eternal inflation is
possible, we are guaranteed to approach this steady state.

B. Accurate boundary conditions:
Kernel propagation

Now to improve upon our assumption of having nodes at
¢ = £¢.,, we point out a simple yet very useful technique
to get these fractions and normalized number density
functions, which will also provide an interpolation between
the discrete simulation and the continuous theory.

First, let us construct a version of the Langevin equation
[Eq. (8)] that is discretized in time, with time step 6¢ = ¢, as

Pn — Pn-1

V/ ((pn—l )
€ + DH?

with 7, a random variable implementing a discrete version
of quantum diffusion. It has the following Gaussian
probability density:

Pl = |2t e1)

In general we can construct the kernel that propagates the
(discretized) number density p,,

2
| on=on1 V'on_)
e 22 (22)
2rKkle ’

with no support outside of the domain (—¢.,, ¢.,). This
leads to the recursion relation

= K]y, (20)

K((Pn, Pn—-1> 6) =

Per
ﬂn(%,ne) = / d(pn—lK((pnv gon—l’e)pn—l((pn—l)
~QPer

nl
Per
/ do;K(@is1.9i.€)po(90.0).  (23)

Per

This is an iterative matrix multiplication technique (upon
discretization of field space) and will converge to the
dominant eigenstate of the kernel (the steady state number
density function). Also, the total number of inflating and
noninflating patches at any step n of the iteration is

Per

I, = / d(pnpn ((ﬂn)v (24)
—@Pcr

jn :in—1+€Deln—l _In’ (25)

with initial values I, = 1 and I, = 0. From this we can
easily get the fractions f,, f, and the fractal dimension Dy
at any step,
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- _. 26
o= (26)
- 1
= " 27
o= (27)
Dy = n(1,) (28)
=—In .
F, ne n

For the simple model here, V = const, giving a relatively
simple random walk kernel.

IV. SIMULATED NETWORKS

We now describe our simulation setup in order to
numerically see the evolution. We work with two different
networks to simulate inflation in one spatial dimension.
The second network will be the same as that of Aryal and
Vilenkin [5]. The kickis k = 1/ /27 in one dimension, and
in both networks we double the size of the physical
universe at every step (a 2-folding with ¢ =In2). The
Langevin equation for each Hubble patch (with V' = const)

is then
In2
i = Qi1+ EC;‘ = @i +6¢; (29)

with {; a Gaussian random variable with variance = 1. We
generate random variables d¢’s at each step in order to
update the field values in each “cell” (representative
of a Hubble patch). In “network-I,” we have a literal
expansion of the universe in which we create more and
more cells at every step, while “network-II" essentially
involves unfolding a comoving volume that is to become
the final universe at the end. The precise construction and
details of these networks are explained next.

A. Network-I

In this setup, we start with a single cell with field value
@ = 0, and then we double the number of cells at the next
step (2-folding) with the field values in the two daughter
cells set by two (independent) 5¢’s according to the above
Langevin equation. Then at the next step each of the two
cells spawn two new daughter cells with their field values
chosen according to the same prescription, and so on. If at
any step a cell goes outside the domain (—@,,,®.,), it
crunches/thermalizes, and then we just keep it as it is in the
next step. A pictorial representation of network-I is given
in Fig. 1.

Now a complete model of inflation would exhibit
statistical translation invariance, since the Bunch-Davies
wave function does so. So although any particular reali-
zation of the universe breaks translation invariance, it is
recovered in an ensemble averaged sense. However, this
particular network model does not maintain translational
invariance even after ensemble averaging due to its treelike

no. of 2—foldings

R

%

space

FIG. 1. A pictorial representation of network-I for four
2-foldings. Grey cells correspond to inflating Hubble patches,
while black cells correspond to ones that have exited.

structure. This can be seen clearly from the ensemble
averaged two point correlation function (¢(x)¢p(y)) shown
in Fig. 2 (ignoring crunching for simplicity).

However, for a given observer, they obviously do not see
the ensemble average anyhow. Instead, at best one can
compare volume averaging to observations. Here we will
show that for volume averaging, correlations are, in fact, in
rather good agreement with theory. At any step n in the
simulation, for a given distance r (an integer in units
H = 1) there exists a zy = Ceil(log,(1 + r)) such that for

1 500 1025
1F] : 1
T
o 5007 {500
c
3
>
1025 t ! \41025

1 500 1025
X (units of H™")

FIG. 2. A color coded plot of the ensemble averaged (over 100
independent runs) two point correlation function {@(x)@(y)) for
network-I with ten 2-foldings and no thermalization/crunching. It
is evident that the correlation function breaks statistical trans-
lation invariance as it has a dependence on x + y (upper right to
lower left diagonals), and the branching treelike structure is
apparent from the presence of square boxes.
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every integer z in [zg,z0 + 1,20 + 2, ..., n], the number of
pairs of cells (r apart) with mean field squared fluctuations
equal to 2x%ez is {(2% — )25, 220~ yn=%0=2 p},
respectively. Therefore, on average we have the following
mean field squared fluctuations:

5 2K%e o n .
(097)(r) = o | (20 = )2 ozg 7 Y 20
-r z=zp+1
2k%e
— R (2 = =2) (30)
which for a large n limit gives
N 2
(6¢9%) (r) :ﬂezo+0(1). (31)

For r = 0 (being equivalent to the subhorizon scale), we
have zero since all cells undergo the random walk, while
for 2" > r> 1 (being equivalent to the superhorizon
scale), we have a log correlation. This is in qualitative
agreement with the continuum behavior of the full
theory [Eq. (7)] and proves that network-I has the right
structure for volume averaging. Also, in order to match
the network’s correlations exactly with the theory, we
must make the right choice for the cutoff e, which we
can simply obtain by matching the O(1) correction
terms; we get & =7 =4/¢’ where y is Euler’s
constant. Ahead in Fig. 5 we show the volume averaged
two point correlation function along with the theory
result with this chosen ¢, showing good agreement. This
exact matching, however, is not qualitatively important
for our purposes since it can be roughly captured by an
O(1) scaling of r without changing the overall func-
tional dependence of volume averaged quantities that are
of interest.

On the other hand, one may be concerned that volume
averaging was required to enforce translational variance in
this network. For this reason we also work with another
simulation setup which improves upon this, which we
describe next.

B. Network-I1

Our second simulation setup is the same as that of
Ref. [5] in one spatial dimension. We begin with an
array of 2" cells where n is the total number of
2-foldings that the simulation will run for, and with
field values equal to zero in all of them. Then at the first
step we choose an arbitrary lattice site as the origin and
divide the array into “h regions” (in the language of
Ref. [5]) of size 2"~! each. We generate independent
o@’s for each h region with every cell in it updated by
the same ¢, and so on. At any kth step we create h
regions of sizes 2"~ from an arbitrary chosen lattice site

no. of 2—foldings

space

FIG. 3. A pictorial representation of network-II for four
2-foldings. Grey cells correspond to inflating comoving patches,
while black cells correspond to ones that have exited. Red lines
mark the boundaries of / regions.

and generate those many d¢’s, with cells in an & region
updated with the same &6¢. The h regions at the
boundaries are generally not complete. At the last step
we have 2" h regions; i.e., each cell is an & region and is
updated by its own d¢. In any step if a cell thermalizes,
we do not update its field value anymore and just keep
the value as it is in further steps. A pictorial represen-
tation of network-II is given in Fig. 3.

This network enjoys statistical translational variance
(since we do not have a fixed center), which can be seen
from the ensemble averaged two point correlation function
shown in Fig. 4. However, for volume averaging it will
always be less efficient than network-I. This is because we
need to choose a random origin at each step, and for any
given distance r this network can never produce more
correctly correlated pairs [(2% — r)2"%] than the previous
network. It can only match it for a run where at every step
there happens to be a boundary of an /4 region at the center.
For a typical run, this will not be the case. This difference,
however, will be prominent only for smaller ’s, while for
larger r’s it will have the same qualitative structure.
Therefore, this network will also serve our purposes for
volume averaged quantities.

Figure 5 also shows the volume averaged two point
correlation function of network-II (along with network-I).
Note that due to this added randomness of the choice
of origin, in order for this network’s correlations to
exactly match the analytical result, we need to have a
different ¢ than before. However, as mentioned earlier,
this is not qualitatively important, and we put these
details aside. Also, since we start with the total number
of cells and zoom in at every step in powers of 2
irrespective of the arrangement of thermalized/crunched
cells, we formally inflate these regions as well. However,
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1 500 1025
T i 11

T
o 5007 1300
c
]
>
1025 ¢! - : ~11025
1 500 1025

X (units of H™")

FIG. 4. A color coded plot of ensemble averaged (100 inde-
pendent runs) two point correlation function (@(x)@(y)) for
network-IT with ten 2-foldings and no thermalization/crunching.
This evidently improves upon translation invariance relative to
the network-I result of Fig. 2.

this is only by way of appearance and has no conse-
quence for the statistics of the nonthermalized/noncrunched
regions.

Our final results are very similar for both networks
upon volume averaging. The objection toward the first
not maintaining translational invariance exactly is not so
important since we are always interested in volume

2 b . . . .
1 5 10 50 100

r (in units of H™")

FIG. 5. Plot of volume averaged two point correlation
functions (gpg)(r) after thirteen 2-foldings (with no thermal-
ization/crunching) and averaged over 100 independent runs.
Dashed blue curve is the theory result of Eq. (4) with
e =4/e’, while red and magenta curves are for network-I and
network-II, respectively.

0.001 ¢ -
\'\.

0 2 4 6 8 10

PerlK
1 L 4
0.100 ¢ q

w T
~ 0010} e 1
~—
LN
e
\.\

0.001 | \\
0 2 4 6 8 10

Pl
FIG. 6. Change in fractal dimension 1— Dy vs ¢,./x. Top

panel is network-I, and bottom panel is network-II. Dark red
(magenta) dots are simulation data up to eighteen 2-foldings, the
two green curves are from kernel evolution with ¢ = In2 for the
solid curve, while ¢ =1In1.1 and steady state for the dashed
curve. The dashed blue curve is the analytical result [Eq. (13)].

averaged quantities from the point of view of a single
observer anyhow.

C. Comparison with simulations

Having discussed both networks, we now show various
plots of the above calculated quantities for D =1 and
compare with simulations. For each of the two networks,
we have simulated 20 independent universes for ¢.,’s
(in units of k =1/ V27) in between 1 and 10, and up to
eighteen 2-foldings. From kernel propagation, we obtain
two sets of curves, one to compare with simulations
(usually also evolved up to the corresponding number
of 2-foldings as simulations) and another to interpolate
between ¢ = In2 and ¢ = 0 at steady state. To obtain steady
state behavior from kernel propagation, we compare the
norm of the normalized number density p in between two
successive steps until they are different by 1 part in 103
Also, we have adopted a convention of keeping green color
for curves obtained from kernel propagation while blue is
used for the analytical results. Red and magenta curves are
for simulation networks-I and -II, respectively.

023513-7



MUDIT JAIN and MARK P. HERTZBERG

PHYS. REV. D 100, 023513 (2019)

o 1 o e o
o = - N N
o S} o o 3

Normalized number density

o
o
s}

0.25

0.20

o o
o o
o a

o
o
a

Normalized number density

°
o
S

-3 -2 -1 0 1 2 3
@l

FIG. 7. Number density p vs crunch value ¢/« for ¢../x = 3.
Top panel is network-I and bottom panel is network-II. All
the red (magenta) curves in increasing darkness represent
simulation runs for twelve, fifteen, and eighteen 2-foldings,
respectively. The solid green curve is from kernel propagation
with € = In2 at steady state, while the dashed green curve is for
e =In1.1 at steady state. Dashed blue is the analytical result
Eq. (15).

First, we compare fractal dimensions. Figure 6 shows
the comparison between analytics and simulation for
network-I (upper panel) and network-II (lower panel).
Note that since we have only gone up to eighteen
2-foldings in this figure, we have only converged to
the steady state behavior for ¢,,/k around ~3.5 or so.
The interpolation between discrete and continuous
regimes also suggests that the theory calculation gives
the right behavior.

Next, we present plots for the normalized number
density p, for the two networks. Figure 7 is for ¢.,/x=3,
and Fig. 8 is for ¢../k = 7. The curves are for twelve,
fifteen, and eighteen 2-foldings. The aforementioned
convergence is evident from these plots.

In Fig. 9 we show the comparison between the
number of inflating Hubble patches in network-I and
the kernel propagation method. This shows excellent
agreement. Furthermore, we also show the comparison
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FIG. 8. Number density p vs crunch value ¢/« for ¢../x = 7.
Top panel is network-I and bottom panel is network-II. The
convention is the same as in Fig. 7. Here it has yet to properly
converge to the steady state distribution.

between the number of thermalized/crunched Hubble
patches, and we see excellent agreement also. For
network-II the number of inflating patches is very
similar. However, the number of thermalized/crunched
Hubble patches is artificially enhanced by the method,
and so this particular quantity is not of interest to report
on here.

Having shown these various results, which provide
evidence in support of the simulation networks
and point toward steady state behavior, we can now
move on to the discussion of the distribution of sizes
of inflating regions within this eternally inflating
universe.

V. STATISTICS OF INFLATING REGIONS

Before reporting on our simulation results and under-
standing, we would like to point out that there are two
naive arguments regarding typical sizes of inflating
regions (I). Both lead to the expectation that the typical
distance is exponentially large in some power of the
crunch value ¢.,. In the first argument, one begins by
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FIG. 9. Top panel: Number of inflating Hubble patches vs
@.r/x for twelve, fifteen, and eighteen 2-foldings. Bottom panel:
Number of thermalized/crunched patches vs ¢.,./k for twelve,
fifteen, and eighteen 2-foldings. Both plots are for network-I. In
network-II there is an unphysical exponential growth in the size
of the thermalized/crunch regions, so it is of little interest to
plot here. Dots (in increasing order of redness) represent
simulation data while the corresponding green curves represent
kernel evolution with ¢ = In2 and the corresponding number of
2-foldings.

saying that the typical number of e-foldings it takes for
the field to get from its starting value ¢ = O to its crunch
value ¢ = +¢,, is of the order of Ny, ~ ¢2,/k* owing to
its simple random walk. But by this time, the universe
has expanded by eMw» and thus the typical distance
between noninflating regions (or equivalently, the typical
size of inflating regions) is ~e“1%:/< where ¢, = O(1)
prefactor.

In the second argument, one tries to improve on this by
arguing that in order to estimate typical sizes, we must
make sure that we have a clustered set of Hubble
patches (or a connected chain in the simple case of one
dimension). With the random walk behavior of the field, a
naive calculation for the probability for a single Hubble
patch to stay within (—¢,,.¢,,) gives Erf(¢p../(vV2Nk)).
Treating each Hubble patch independently, one then raises

this probability to eV and demands that this quantity be an
order 1 number. This calculation gives Ny, ~ ¢.,/k, and

therefore the typical size of inflating regions is ~e¢%er/x,
where ¢, = O(1) prefactor.

However, both of these naive pictures, in fact, miss a
crucial aspect of the physics. While the second school of
thought tries to improve on the first one by demanding a
clustered region of inflating Hubble patches, both of
them completely ignore the steady state behavior of this
eternally inflating universe. Since the fractions of inflat-
ing and noninflating patches go to constants, this means
that the probabilities to find either of them become
constants, too. After noting this crucial fact, if one then
treats each of the inflating Hubble patches as being
roughly independent, one finds a very different answer.
The probability that a patch is inflating is simply equal
to the fraction f. In one spatial dimension, given an
inflating Hubble patch, the probability that there is a
clustered region of I such patches is ~f'~! (modulo an
overall normalization) giving an exponential distribution
in sizes [ (in units of Hubble H™'),

f(l—l) -
Prrs = (=07 6
with a corresponding average size
= 1
Iy~ (1- 1N = (——), 33
W=y u = () e

which for large ¢, goes to the following [using Eq. (19)
with D =1 and x = 1/v2x]:

1697,
() ~—.
T

(34)

So the growth with ¢, is only a mere power law,
rather than exponential. Furthermore, in D spatial
dimensions, the generalization of this reasoning is to

the power law (/) « @*[P. So for higher D, the growth
with ¢, is expected to be even slower.

Figure 10 shows the trend of average sizes of inflating
regions as we increase the number of 2-foldings. The
converging trend of simulation red (magenta) curves
toward a linear curve is in agreement with our estimates
(note that this is on a log-log scale). Again we note
that we have converged to the steady state behavior
only up to around ¢../k ~3.5 even for the maximum
number of 2-foldings shown. The upward trend is
consistent with the theoretical expectation (given by
the green curve) and is anticipated to approach a straight
line (on this log-log scale) as we increase the number of
2-foldings.
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FIG. 10. Average distances () vs ¢.,/x. Top panel is network-I
and bottom panel is network-II. Red (magenta) curves with
increasing darkness are for twelve, fifteen, and eighteen
2-foldings, respectively. The solid and dashed green curves are
from kernel propagation with ¢ =In2 only up to eighteen
2-foldings and € = In 1.1 at steady state, respectively. The dashed
blue curve is the theoretical expectation in steady state for high
@.r/x Eq. (34). Note that this is on a log-log scale, so that as
curves asymptote to a straight line, it implies power law
dependence on @,,.

Next, for the distribution of sizes of inflating regions, we
do indeed find an indication of a decaying exponential
behavior, at least for sufficiently large sizes. This is seen
clearly in Fig. 11 with ¢_,/x = 3 (note the log-linear scale).
For small to reasonably large sizes, however, the falloff
appears to be only a power law, so there is still a nontrivial
chance to obtain regions with sizes appreciably larger than
the average. This is due to correlations among nearby
Hubble patches that is not captured in the above simplistic
analysis. This can be seen more clearly in Fig. 12 with

0.100 ¢ i

0.010 ¢ i

0.001 ¢ E

1074 E

Probability distribution

1079 | :

0 20 40 60 80 100
Length of inflating chains (in units of H™")

0.100
0.010
0.001

1074

Probability distribution

1075

106

0 20 40 60 80 100
Length of inflating chains (in units of H‘1)

FIG. 11. Distribution in lengths for inflating regions for
@./k =3 for twelve, fifteen, and eighteen 2-foldings (in
increasing darkness). Top panel is network-I and bottom panel
is network-II.

@.r/x =5 outto [ ~ 50 or so. However, at larger distances,
we again see exponential suppression.

VI. STATISTICS OF NONINFLATING REGIONS

For the sizes of noninflating regions, we again find a
power law behavior as suggested by the steady state
combinatorics. The fraction of noninflating regions is f
giving the following exponentially decaying distribution in
sizes [ (in units of H~!):

A Y
IR 70 V7 :
22:1 FU=D
with the corresponding average size

Dra-pY I = (). 6o

which for large ¢, goes to the following [using Eq. (19)
with D =1 and x = 1/+/2x]:
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FIG. 12. Distribution in lengths for inflating regions for
@./k =5 for twelve, fifteen, and eighteen 2-foldings (in
increasing darkness). Top panel is network-I and bottom panel
is network-II.

- 7
Hhrel+—s5. 37
M1+ (37)
Similarly as before in D spatial dimensions, the

generalization of this reasoning is to the power law
(Iy ~ (1 +O(1)x?/?2,)"/P. Figure 13 shows the trend of
average sizes of noninflating regions as we increase the
number of 2-foldings, and Fig. 14 shows the distributions in
sizes for ¢../k = 3 and 5, respectively.

VII. SUMMARY AND DISCUSSION

To summarize, we have found that in a simple illustrative
scenario of eternal inflation (with H = const) in the
presence of a scalar field ¢ with a constant potential V(¢)
within (-¢,,, ¢.,), the average size of inflating regions
only grows as a power law in ¢,.,, and the distributions
in sizes fall off exponentially for sufficiently large
distances. This result is quite different from a naive
understanding of general eternal inflation scenarios,
where one might expect average sizes of inflating
regions to have some sort of exponential dependence
on ¢... We have found this not to be the case since this
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(Pcr/K

FIG. 13. Average distances (I) vs ¢,,/x from network-I. Red
curves with increasing darkness are for twelve, fifteen, and
eighteen 2-foldings, respectively. The solid and dashed green
curves are from kernel propagation with ¢ =1n2 only up to
eighteen 2-foldings and ¢ = 1In 1.1 at steady state, respectively.
The dashed blue curve is the theoretical expectation in steady
state for high ¢.,/x Eq. (37).

eternally inflating universe ultimately gets to an equi-
librium situation where the fractions of inflating (non-
inflating) Hubble patches become constant(s) and only
grow to unity (dying out to zero) power law fast in ¢,,.
However, the distribution does have some large width to
it due to correlations among nearby Hubble patches, so
there is still a nontrivial probability to create regions that
are much larger than the average. Similarly for non-
inflating regions we have found that the distribution is an
exponential decay law with typical sizes decaying as a
power law in 1/¢,,.

We have also established a simple kernel/integral
evolution technique that not only serves to provide
interpolation between discrete simulation and continuous
theory but also is useful for investigating more interesting
and involved scenarios where the potential of the scalar
field has some slope, resulting in a dominant slow roll
phase making analytical calculations formidable in gen-
eral. We leave more interesting cases of V(¢) # const
and time varying H for future work, along with an
application of our results to the case of SM Higgs in the
early universe. In the latter case the multicomponent
nature of the Higgs doublet can play an important role in
its statistics [15].

Improved analytical estimates can be made in future
work. The (relatively small) mismatch between analytics
and simulation for the average sizes of inflating regions
(seen here in Figs. 10 and 13) seems to be due to two
reasons. First, we are comparing with discrete simulation,
which requires choosing the right cutoff for the theory.
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FIG. 14. Distribution in lengths for noninflating regions for
twelve, fifteen, and eighteen 2-foldings (in increasing darkness),
from network-1. Top panel is for ¢,,/x = 3 and bottom panel is
for ¢.,./k = 5.

Second, and perhaps more important, treating each Hubble
patch independently in the simplified combinatorics is
obviously not precise since nearby patches have some
correlation, and so there is ambiguity in how many
Hubble patches to treat as one independent entity. What
is important, however, is the power law dependence of
average sizes over ¢,.,, which indeed is in agreement.

In order to understand the nature of distributions
even better, we have also looked at several statistical
moments in order to check if they grow with an
increasing number of 2-foldings or if they have some
power law behavior in their tails. We did not find any
such behavior for both inflating and noninflating sizes.
In Appendix we provide some plots for these higher
moments (for network-I).

Although the average sizes of inflating (and noninflat-
ing) regions is only power law in ¢, rather than exponential,
it should be noted that this by no means undermines the
general idea of inflation, which is to provide a huge
homogeneous/isotropic universe. The growth of higher
central moments with ¢, indicates a nontrivial chance
of obtaining much larger regions. Also, what we have
studied here is that of a flat potential for a field that falls
off with a cliff to sudden thermalization/crunching; this
is a universe that is completely dominated by quantum
diffusion. The introduction of a tilted potential that allows
for a prolonged phase of classical domination over quantum
diffusion can lead to the production of much larger
(thermalized) homogeneous regions. The corresponding
distribution of sizes is anticipated to be rather different and
will be the subject of future work [16].
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APPENDIX: HIGHER MOMENTS FOR
DISTRIBUTION IN SIZE OF REGIONS

Figure 15 shows some central moments for network-I
for twelve, fifteen, and eighteen 2-foldings (in increasing
darkness) for lengths of inflating regions. Since the
moments do not grow with more 2-foldings, it is suggestive
that the tail of the distribution falls off faster than a power
law. Results for network-II are similar. Similarly, Fig. 16
shows some central moments for network-I for twelve,
fifteen, and eighteen 2-foldings (in increasing darkness) for
lengths of noninflating regions. Note that the apparent
increment in moments as we go higher in 2-foldings is
suggestively due to not having enough statistics in the tail
of the distribution for smaller 2-foldings.
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