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We investigate the extent to which quintessence models for dark energy are fine-tuned in the context 
of recent swampland conjectures. In particular, the issue is whether there is a double fine-tuning in 
which both V and |∇V | are fine-tuned, or whether there is only a single fine-tuning due to the relation 
|∇V | ∼ V /MPl arising naturally. We find that indeed this relation arises naturally in simple string 
compactifications for some scalars, such as the dilaton and volume modulus, when treated classically. 
However, we find that quantum effects can spoil this natural relation, unless the scalar is conformally 
coupled to the matter sector. Furthermore, it is well known that such conformal couplings are generically 
ruled out by fifth force tests. To avoid these fifth forces, an interesting proposal is to assume the scalar 
(quintessence) only couples to the hidden sector. However, we then find quantum corrections to V from 
visible sector Standard Model particles generically spoil the relation. A possible way out of all these 
problems is to have the scalar conformally coupled to a dark sector that is an exact copy of the Standard 
Model. This ensures the relation |∇V | ∼ V /MPl is maintained naturally even when matter particles run 
in the loop. However, we find that quantum corrections from quintessons or gravitons in the loop spoil 
the relation if the effective theory has a cutoff greater than ∼ 0.1 GeV.

 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

There is increasing evidence that many effective field theories 
do not possess a sensible UV completion into a quantum theory 
of gravity. In the context of string theory, such effective theo-
ries are said to be part of the “swampland” of theories and do 
not arise in any 4-dimensional compactification [1]. A useful way 
of delineating the space of inconsistent theories is in the form 
of so-called “swampland conjectures”. For example, the “distance 
conjecture” holds that scalar fields cannot exhibit field excursions 
much larger than the Planck scale [2], while the “weak gravity con-
jecture” states that the lightest particles of a theory cannot carry a 
mass larger than their charge in Planck units [3].

An issue of fundamental importance is whether effective theo-
ries that exhibit de Sitter vacua can be embedded within quantum 
gravity, or whether they too are part of the swampland. This is 
a topic of immense importance due to observations that our uni-
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verse is accelerating [4]. The observations are consistent with dark 
energy of current value ∼ 10−120 M4

Pl (MPl ≡ 1/
√

8πG is the re-
duced Planck mass) and an equation of state w ∼ −1. The simplest 
version of this is that of a positive cosmological constant, and so 
it is natural to ask if this can be incorporated within string theory. 
In Ref. [5] it was shown that an entire class of simple compactifi-
cations do not possess any de Sitter vacua regardless of the details 
of the internal manifold. In Ref. [6] it was shown that not only are 
there no de Sitter vacua in an entire class of simple compactifica-
tions in type IIA theory, but that a highly restrictive inequality on 
the 4-dimensional potential V (φi) could be derived. Namely it was 
shown that

|∇V | ≥ c
V

MPl
, (1.1)

everywhere in field space, where c = √
54/13 in the above IIA ex-

ample (here the gradient ∇V is a vector derivative in field space 
and the absolute value |∇V | means a contraction with respect to 
the metric on field space). Many important follow up develop-
ments have appeared, strengthening the argument that it is dif-
ficult to realize de Sitter space in string theory, including Refs. [7]. 
In Ref. [8] this inequality was greatly generalized and promoted 
to a conjecture about all string compactifications (at least in cases 
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where the second derivative of the potential is not too negative 
[9]). The general statement is that the coefficient c is some O(1)
number, whose absolute minimum value is not currently deter-
mined. If true, this implies that ordinary models of early universe 
slow-roll inflation would be in the swampland. In terms of late 
time acceleration, this precludes a positive cosmological constant, 
but does not preclude some form of quintessence [10], in which 
acceleration is driven by a very light rolling scalar field (at least 
if one can construct models in which the coefficient c can be 
made a factor of a few smaller than what appears in known com-
pactifications). Some follow up discussion of the viability of these 
conjectures includes Refs. [11].

Although the idea of quintessence is a very interesting one, it 
appears to be problematic from a theoretical point of view. In par-
ticular, a major objection to quintessence is that invoking it does 
not solve the cosmological constant problem, as it does not pre-
vent large contributions to the cosmological constant from loop 
effects, Higgs potentials, QCD condensates, etc, which are gener-
ically much larger that the observed dark energy density. Addi-
tionally, it appears to exacerbate the problem by requiring that 
the field is slowly rolling. In short, this seems to replace a sin-
gle fine-tuning by (at least) two; namely both V ∼ 10−120 M4

Pl and 
|∇V | ∼ 10−120 M3

Pl need to be extremely small. However, the re-
cent swampland conjecture suggests that this effective field theory 
based reasoning may be too naive. In particular, if one can natu-
rally saturate the inequality in Eq. (1.1) it may avoid this additional 
fine-tuning.

The idea that quintessence in effective field theories is fine-
tuned was pointed out almost as soon as the idea was first dis-
cussed. It was first noted in Ref. [12] that a viable quintessence 
model requires fine-tuning of not only the potential energy, but 
also its derivatives as well. In Ref. [13] a coupling to matter was 
introduced, and the resulting cosmology was determined to place 
(weak) constraints on its value. In Ref. [14] Coleman-Weinberg 
style loop corrections were studied for some quintessence poten-
tials, finding that quantum corrections can be small, though they 
only studied quintessence self-coupling and in the regime φ > MPl. 
Coupling to fermions was considered in Ref. [15], where it was 
found that loop corrections ruin the quintessence potential un-
less severe constraints are placed on the couplings. These authors 
even comment on a special form of the coupling that evades their 
bounds, but do not connect it with the conformally coupled the-
ory that we will discuss, perhaps because their retention of the 
quadratic divergence alters the specific requirement. Loop correc-
tions were also shown to induce a non-minimal coupling between 
the quintessence field and gravity in Ref. [16]. A scenario of a 
quintessence potential that is protected by a shift symmetry and 
yet whose field values remain sub Planckian, at the expense of be-
ing mildly strongly coupled, is presented in Ref. [17]. Other related 
discussions includes Refs. [18].

In fact, trying to evade this multiple tuning has been exten-
sively considered in constructions of explicit models of quint-
essence. In [19], a string axion model was outlined, and the fact 
that the tuning must occur over an entire field range was stressed. 
Severe constraints on matter couplings needed to preserve the 
form of the potential were placed, and it was noted that such 
constructions require an excessive degree of tuning on the ini-
tial conditions in order to arrange a cosmologically viable model. 
A model where the quintessence potential is protected from quan-
tum corrections by a symmetry was written down in [20]; here, 
the quintessence field couples to a four form, and is only deriva-
tively coupled to matter. A model based on monodromy was ex-
plored in [21]; quantum corrections due to moduli stabilization, 
the Kahler potential and the warped throat geometry were com-
puted, as well as associated cosmological effects. Again in this 

model, matter coupling is argued to be suppressed. Observational 
constraints on these types on models are explored in more de-
tail in [22]. Finally, a model based on supersymmetric large extra 
dimensions is constructed in [23]. There, the quintessence was 
constructed out of a fiber modulus, which naturally suppresses 
coupling to matter and avoids other typical tuning problems.

The common thread through all these models is the search 
for specific setups within the framework of supersymmetry where 
quantum corrections to the quintessence potential are absent (usu-
ally due to some symmetry). Some suppression of the coupling to 
matter is essential as well, due to the large corrections these other-
wise generate. The swampland criteria are generally not adhered to 
in any of these constructions, which either explicitly invoke small 
slopes, or large field excursions, or both. It remains to be shown 
whether any model that satisfies the swampland bounds can also 
alleviate the double tuning inherent in generic quintessence mod-
els, and indeed whether such a model can be self-consistently 
constructed.

In this paper, we systematically study the fine-tuning in 
quintessence models, paying attention to the inequality in Eq. (1.1)
in the context of string compactifications. Our goal is to examine 
whether this inequality can be naturally saturated, hence alleviat-
ing multiple fine-tunings, as has been claimed. Firstly, we begin 
by discussing simple compactifications in string theory, these be-
ing the best examples of models which do indeed lead to V being 
related to |∇V |, and whose effective field theory is under some 
level of control. These have energy densities that are dominated 
by huge classical effects, preventing them from being realistic dark 
energy models, but they are taken as useful inspiration for what 
a dark energy model may qualitatively look like. We then turn to 
our primary investigation of quantum effects in generic theories, 
whose typical value is much larger than the observed dark energy 
density. We search for special classes of quintessence theories that 
can preserve the relation between the derivative of the potential 
to its current value in the face of quantum corrections. In these 
cases, the multiplicity of fine-tunings is an illusion and the level of 
fine-tuning of quintessence is the same as that of the cosmolog-
ical constant. In fact we identify such a class of theories, namely 
those that involve conformally coupled scalars. These are stable 
under radiative corrections; at least when only matter particles 
run in the loop. However, they tend to be in conflict with observa-
tional bounds on fifth forces. Any deviation from the special form 
we consider, such as only coupling to dark matter, will decouple 
the potential and its derivative and reintroduce the second tun-
ing. A possible loop-hole to this argument is a dark sector that is 
an exact copy of the Standard Model. However, when quintessons 
and/or gravitons run in the loop, the relation between V and |∇V |
is once again spoiled, and we compute the size of this effect. We 
conclude by noting that there is no evidence that a theory which 
can satisfy the currently formulated swampland bounds, possess 
the same level of fine tuning as the cosmological constant, and 
obey all experimental bounds, exists.

Our paper is organized as follows: In Section 2 we present some 
classical potential functions from string theory. In Section 3 we 
compute some leading order quantum corrections. In Section 4 we 
examine a conformally coupled scalar, and in Section 5 we discuss 
the possibility of a dark copy of the Standard Model. In Section 6
we compute quantum corrections from quintessons and gravitons, 
and in Section 7 we discuss our results and future directions.

2. Simple classical examples

In this section we provide some concrete examples of (rela-
tively) simple compactifications in string theory, in which there 
exist regimes in field space where |∇V | ∼ V /MPl arises very nat-
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Fig. 1. One-loop contributions to V eff(φ) from matter particles (solid lines) in the loop: left diagram is cosmological constant and right diagram is linear term in φ.

urally. These will be entirely classical treatments. In the later sec-
tions we will consider quantum loop corrections from matter par-
ticles, such as the Standard Model, and analyze how they alter this 
conclusion.

2.1. M-theory

Let us illustrate this idea in a simple compactification in M-
theory, including flux on a compact curved space. Let φ be the 
(canonically normalized) volume modulus and let ψi be the resid-
ual moduli. Building on earlier work in Ref. [5], it was shown in 
Ref. [8] that the 4-dimensional potential takes the following sim-
ple form

V = AG(ψi) e
− 10√

14
φ/MPl + AC (ψi) e

− 6√
14

φ/MPl , (2.1)

where AG is non-negative and AC can have either sign. By tak-
ing a derivative with respect to φ it is simple to show that |∇V | ≥
c V /MPl everywhere in field space, with c = 6/

√
14 for AC > 0 and 

c = 10/
√

14 for AC ≤ 0. Furthermore, this inequality can be satu-
rated by placing the matter fields ψi at some extrema, ∂V /∂ψi = 0, 
and going to large positive or negative φ as appropriate. Therefore, 
by allowing the heavy fields in the theory ψi to all relax to their 
local minima, one finds that the inequality is saturated. Thus, as 
long as the overall scale of V is very small (which itself appears 
to involve fine-tuning), φ could act as a potential candidate for 
quintessence.

2.2. Type IIA theory

As a slightly more complicated example, consider type IIA 
string theory. Following Ref. [24], we consider the supergravity 
limit, compactified on a Calabi-Yau, allowing for several p-form 
fields (p = 0, 2, 4) as well as D6-branes and O6-planes. This leads 
to interesting models that can essentially stabilize all moduli in 
a regime of parametric control (though the validity of the full 
description of these solutions is called into question in [25]). In 
Ref. [6] (also see Ref. [26]) it was shown that the general form of 
the classical 4-dimensional potential V can be expressed in terms 
of (the canonically normalized) dilaton φd and the volume modu-
lus φv as follows

V = A3(ψi) e−(
√

6 φv+
√

2 φd)/MPl

+
∑

p

Ap(ψi) e−(
√

2
3 (p−3)φv+2

√
2 φd)/MPl

+ A6(ψi) e
− 3√

2
φd/MPl , (2.2)

where A3, Ap are non-negative and A6 can have either sign. By 
taking derivatives with respect to φd and φv it can be readily 
shown that there are no de Sitter vacua and that in fact |∇V | ≥
c V /MPl, with c = √

54/13 [6]. Furthermore, by going to limit-
ing values of φv or φd one finds regions in which the potential 
is positive and that |∇V | ∼ c V /MPl is allowed, meaning that the 
dilaton or the volume modulus could potentially be candidates for 
quintessence (although c = √

54/13 is a factor of a few too large 
for a viable quintessence model).

3. Quantum corrections

In the above we gave two examples of classical string compact-
ifications, which not only obey the swampland conjecture |∇V | ≥
c V /MPl, but can saturate the bound quite naturally by letting 
heavy fields relax to their minima, while leaving other fields (such 
as the volume modulus/dilaton) free to roll. In order for these re-
maining fields to act as a form of quintessence in the universe 
today, one must ultimately construct models in which the over-
all vacuum energy density is extremely small V ∼ 10−120 M4

Pl. For 
such extremely small energy densities, we are not free to compute 
only the leading order contributions from classical compactifica-
tions, but must also include all sorts of effects, such as those from 
quantum loops of particles within the Standard Model. In this sec-
tion we illustrate the problems this can lead to.

3.1. Leading quantum contribution

For a simple representation of a matter sector, consider a set 
of massive scalars σi , that are coupled to the quintessence field φ
and minimally coupled to gravity as follows

S =
∫

d4x
√−g

(
1
2
(∂φ)2 +

∑

i

[
1
2
(∂σi)

2 − 1
2

f i(φ)m2
i σ

2
i

])

,

(3.1)

where the function f i(φ) may be an exponential f i(φ) = eciφ/MPl , 
though not necessarily so. For definiteness let us expand around 
φ = 0 and parameterize the linear piece of f i as

f i(φ) = 1 + ci φ

MPl
+ . . . . (3.2)

We first compute the contribution to the cosmological constant 
& from a scalar σi running in a loop; see the diagram in the left of 
Fig. 1. By expanding the metric as gµν = ηµν + hµν , the relevant 
3-point interaction is

)L = −1
2

hµν
∑

i

[
∂µσi∂νσi − 1

2
ηµν(∂σi)

2 + 1
2
ηµνm2

i σ
2
i

]
.

(3.3)

The generated cosmological constant is the counter-term
−hµνηµν&/2. This is readily determined to be

& =
∑

i

∫
d4 p

(2π)4

1
4 p2 + 1

2 m2
i

p2 + m2
i

=
∑

i

m4
i

64π2 ln

(
m2

i

µ2

)

, (3.4)

where we have Euclideanized the integral. Here we have ignored 
power law divergences, as they can be re-absorbed into bare cou-
plings, and kept only the logarithmic divergence with cut-off µ; 
this piece is formally related to a type of RG flow of the cosmolog-
ical constant.

We now consider the contribution to the effective poten-
tial from the 3-point interaction in the above Lagrangian )L =
− 

∑
i ci φ m2

i σ
2
i /(2MPl). The required counter-term at one-loop is 

given by the tadpole diagram in the right of Fig. 1, which is
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)V 1 =
∑

i

1
2

ci φ m2
i

MPl

∫
d4 p

(2π)4

1

p2 + m2
i

=
∑

i

2
ci φ

MPl

m4
i

64π2 ln

(
m2

i

µ2

)

, (3.5)

where again we have Euclideanized and only extracted the loga-
rithmic piece of the integral.

By combining the above classical potential, generated cosmo-
logical constant, and generated linear term in φ, we obtain the 
following effective potential V eff at one-loop

V eff(φ,σi) =
∑

i

[
1
2

m2
i σ 2

i

(
1 + ci φ

MPl

)

+ m4
i

64π2 ln

(
m2

i

µ2

)(
1 + 2

ci φ

MPl

)]

. (3.6)

Note that for generic values of ci the potential does not factorize 
and therefore it is not ordinarily the case that ∂V /∂φ is related to 
V . So in general we need

c1 = c2 = . . . = c (3.7)

in order to make this relation natural. However, even assuming 
this, we see that the factor of 2 in the final term still prevents 
factorization.

3.2. More general corrections

More generally, suppose the Lagrangian has a (classical) poten-
tial term V of the form that factorizes

V (φ,σi) = f (φ)
∑

i

Ai(σi). (3.8)

Then, using the Coleman-Weinberg formula for the one-loop ef-
fective potential, and only allowing σi particles to run in the loop 
(we will consider φ and/or gravitons in the loop in Section 6), we 
obtain

V eff(φ,σi) = f (φ)
∑

i

Ai(σi) + f (φ)2
∑

i

(A′′
i (σi))

2

64π2 ln
(

A′′
i

µ2

)
.

(3.9)

Hence, the factorization of the initial classical potential is broken in 
the quantum corrected potential for any non-trivial f (φ). So even 
if f (φ) = ec φ/MPl , or similar, which means that the classical po-
tential can obtain |∇V | = c V /MPl, with σi set to their equilibrium 
values, this is ruined after quantum corrections.

It is possible that both V and ∂V /∂φ are still small enough 
for φ to act as a viable quintessence field, but here it represents 
(at least) a double fine-tuning, as any relation that may have been 
imposed on the tree level potential is spoiled by quantum effects. 
Note that this applies through phase transitions, so that if at a 
certain time the potential and its derivative are tuned to be small, 
this will generically no longer hold after the phase transition.

4. Conformal coupling

In the above we found that quantum corrections from matter 
loops generically spoil any relationship between V and ∇V that 
may have been imposed on the classical theory. However one can 
investigate if there is any type of special class of coupling that can 

avoid this problem. The new ingredient that could lead to this pos-
sibility is to consider a quintessence field φ that not only couples 
to the mass term of matter fields, but also couples to their kinetic 
terms as well. At the level of effective theories, this is a perfectly 
reasonable possibility.

4.1. One-loop analysis

For the sake of greater generality, we will couple φ both to a 
set of scalars σi as well as fermions ψ j as follows

L = 1
2
(∂φ)2 +

∑

i

[
1
2

gi(φ)(∂σi)
2 − 1

2
f i(φ)m2

i σ
2
i

]

+
∑

j

[
i h j(φ)ψ̄ j/∂ψ j − j j(φ)m jψ̄ jψ j

]
, (4.1)

where we have allowed various coupling functions: gi, f i to 
scalars and h j, j j to fermions.

Again, we will focus on one-loop quantum corrections from 
matter particles running in the loop. This can be computed directly 
by expanding the functions gi, f i, h j, j j around some reference 
φ value (say φ = 0) and proceeding perturbatively. While this is 
straightforward, it is rather tedious for non-trivial functions. In-
stead we can compute the effects of matter loops very easily, by 
noting that the external φ is slowly varying. In this case it is con-
venient to re-scale the matter fields as follows

σi → σi/
√

gi(φ), ψ j → ψ j/
√

h j(φ), (4.2)

which renders the kinetic terms for the matter sector canonical for 
slowly varying φ. Then one can readily use the Coleman-Weinberg 
formula for the one-loop effective potential. We find

V eff(φ,σi,ψi) =
∑

i

[
1
2

f i(φ)m2
i σ

2
i + f i(φ)2

gi(φ)2

m4
i

64π2 ln

(
m2

i

µ2

)]

+
∑

j

[

j j(φ)m jψ̄ jψ j − j j(φ)4

h j(φ)4

m4
j

64π2 ln

(
m2

j

µ2

)]

.

(4.3)

In order for the original form to be preserved without additional 
tuning, it is necessary that all the functions are related to a single 
function f (φ) as follows

f (φ) = f i(φ) = gi(φ)2 = j j(φ) = h j(φ)4/3. (4.4)

These conditions are precisely those for the quintessence field 
to be conformally coupled to matter. This ensures that the cou-
pling completely factorizes for any choices of mass parameters for 
scalars or fermions. This is reminiscent of the observation in [27]
that the enhanced symmetry of this theory prevents corrections to 
the equivalence principle from appearing due to matter loops.

4.2. All orders analysis

The above derivation assumed that there were no interactions 
in the matter sector, so that the analysis could be truncated at 
one-loop. However, it is very important to consider interactions in 
the matter sector, such as from gauge interactions. For example, 
at two-loops one has the diagrams of Fig. 2. In this case a direct 
computation becomes more and more difficult. However for the 
case of a conformally coupled scalar there is a straightforward way 
to proceed.
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Fig. 2. Some representative contributions to V eff(φ) allowing matter particles (solid lines) and gauge bosons (wiggly lines) in the loop.

Consider the following action for the matter sector

SM =
∫

d4x
√−g f (φ)LM(σi,ψ j, Aµ

k , gµν

√
f (φ)), (4.5)

where we have indicated that this sector may contain scalars σi , 
fermions ψ j , gauge bosons Aµ

k , etc. This action defines a con-
formally coupled scalar (in the Einstein frame). Namely, the cou-
pling is of the following simple form: one merely replaces gµν →
gµν

√
f (φ) for a set of matter fields that are otherwise minimally 

coupled to gravity. If the matter sector involves only massive par-
ticles and no interactions this will reproduce the above matter 
Lagrangian in Eq. (4.1), with relations given in Eq. (4.4). In the case 
of interacting particles, this provides a complete non-linear defi-
nition of what we mean by conformal coupling (note we are not
assuming the matter sector carries conformal symmetry, which is a 
separate idea).

As above, we now wish to consider quantum effects from mat-
ter particles running in loops, but not scalars or gravitons (we turn 
to this issue in Section 6). Since φ is therefore only external and 
slowly varying, it is convenient to define an auxiliary metric Gµν

as

Gµν ≡ gµν

√
f (φ). (4.6)

Then, the quantization of matter species σi, ψ j, Aµ
k proceeds in 

the standard way as for any matter fields in a background curved 
space-time Gµν . We know that, in general relativity, the lead-
ing order interactions have a universal coupling to the graviton, 
and that this maintained under renormalization (otherwise there 
would be a gauge anomaly as it would destroy the diffeomorphism 
redundancy needed to consistently couple to a massless spin 2 
field). Hence, since the matter sector is also assumed to univer-
sally couple to φ, that universal coupling will also be maintained 
under renormalization.

In flat space, due to any number of loops in the matter sec-
tor, one expects a potential function, Aeff(σi, ψ j), for the matter 
fields to be generated. In the presence of a background met-
ric Gµν , this provides a contribution to the action of the form 
)S = − 

∫
d4x

√−G Aeff(σi, ψ j). By making φ explicit, we can read 
off the full effective potential as

V eff(ψ,σi,ψ j) = f (φ) Aeff(σi,ψ j). (4.7)

Hence, the factorization is maintained exactly under any num-
ber of matter loops, including interactions. This suggests that a 
conformally coupled scalar may be a very natural candidate for 
quintessence. In particular, if f (φ) has the property

f ′(φ) ∼ f (φ)

MPl
, (4.8)

(which is quite reasonable for some of the moduli in string com-
pactifications) then not only can this saturates the swampland 
bound of Eq. (1.1), but it can lead to a potentially viable model 
of dark energy. At this stage this only involves a single fine-tuning, 
namely to explain why Aeff(σi, ψ j) is very small (at least when 
matter fields are placed at their vacuum expectation values).

4.3. Fifth forces

At first sight the above scenario of a conformally coupled 
quintessence field seems rather promising. However, it has im-
mediate observational consequences. In particular, it will couple 
to the Standard Model of particle physics, and so it is subject 
to fifth force constraints. In the case of conformal coupling, the 
field couples to matter universally, and so it does not upset tests 
of the weak equivalence principle (while a non-conformally cou-
pled scalar would violate the weak equivalence principle, leading 
to the bound c ! 10−5 [28]). Nevertheless, since a quintessence 
field should have an extremely small mass (typically mφ ∼ H0 ∼
10−33 eV), it is subject to solar system tests of gravity, and affects 
light bending. In this case it can be constrained in a fashion similar 
to Brans-Dicke models, which leads to the bound c ! 0.01 [29].

At this point one may conclude that fifth forces may be generic 
predictions of quantum theories of gravity that obey the conjecture 
of Eq. (1.1) and incorporate dark energy. Arguably, the idea of try-
ing to find models that simultaneously obey the conjecture as well 
as current observational bounds may be on the wrong track, as the 
generic predictions of this framework seem to have already been 
invalidated. Nevertheless there may be possible ways to avoid this 
conclusion, which we will discuss in the remainder of this paper.

5. Dark copy of the standard model

We now discuss what appears to be the only way to avoid the 
above obstructions from multiple fine-tunings and fifth force con-
straints. Consider a theory in which the quintessence field φ is 
conformally coupled to a dark sector, but not directly coupled to 
the Standard Model. To be precise, we consider the action

S =
∫

d4x
√−g

[
f (φ)LD S(σ̃i, ψ̃ j, Ãµ

k , gµν

√
f (φ))

+ LS M(σi,ψ j, Aµ
k , gµν)

]
, (5.1)

where LD S is the dark sector Lagrangian and LS M is the Standard 
Model Lagrangian. This will trivially evade both laboratory and so-
lar system based fifth force constraints. However, if this dark sector 
involves the dark matter of the universe, then there are still non-
trivial constraints on the equivalence principle on galactic scales 
[30].

On the other hand, the model appears to re-introduce the fine-
tuning problems that we discussed in Section 3, since we are not 
conformally coupled to the entire matter sector. In particular, the 
contributions to V from Standard Model particles destroys the re-
lation between the slope and the potential. If we denote the ef-
fective potential in the dark sector as Aef f ,D S and the effective 
potential in the Standard Model sector as Aef f ,S M , then the total 
effective potential is

V eff(φ,σi, σ̃i,ψ j, ψ̃ j) = f (φ) Aef f ,D S(σ̃i, ψ̃ j) + Aef f ,S M(σi,ψ j),

(5.2)

which shows that V and ∂V /∂φ are generically unrelated to each 
other.
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Fig. 3. One-loop correction to V eff(φ) including a φ (dashed line) running in the 
loop with a matter particle (solid line). The spray of external lines is shorthand for 
the full sum of diagrams with any number of external φ particles.

However, there appears to be one way to avoid this problem. 
Suppose the dark sector is an exact copy of the Standard Model, 
including the same particle content, the same couplings, etc. (Note 
that we are not postulating this for the dark matter necessarily, 
only the dark sector. We can imagine that such a dark sector is 
not as populated as the visible sector in the early universe, hence 
avoiding problems with big bang nucleosynthesis and other cos-
mological constraints [31]. Also, we can be agnostic about the 
details of the dark matter; for example, it could be of the “mir-
ror dark matter” variety [32] or it could simply be primordial black 
holes, etc). In this special case, we have Aef f ,D S = Aef f ,S M . By plac-
ing matter fields at their vacuum expectation values, we then have

|∇V |
V

= f ′(φ)

f (φ) + 1
. (5.3)

Therefore, for simple choices of the function f (φ) we could natu-
rally have |∇V | ∼ V /MPl, while evading fifth forces in the visible 
sector entirely. In addition, we can trivially extend this to multiple 
dark copies of the Standard Model if desired.

Note that even if we have a dark copy of the Standard model, 
there are two possible dimension 4 operators allowed that can 
couple the two sectors

)L = −ε

4
Fµν F̃ µν − δ H† H H̃† H̃, (5.4)

where ( F̃ ) F is the (dark) hypercharge field strength and (H̃ ) H is 
the (dark) Higgs field. In order to not spoil the above result, we 
would need these two sectors to remain essentially decoupled (ex-
cept obviously through gravity; more on this in the next Section). 
This means that the coefficients ε and δ must be extremely small. 
We note that such an assumption is stable under renormalization, 
so although it may appear to be a type of fine-tuning, it is a tech-
nically natural assumption.

6. Quintessons and gravitons in the loop

Thus far, we have shown that so long as we only consider 
matter particles in the loop, and so long as they are conformally 
coupled, we can maintain the relation |∇V | ∼ V /MPl under renor-
malization due to the non-perturbative proof of Section 4.2. How-
ever, that proof relied on taking φ and the metric as external fields 
only. It does not hold if we consider a member of the gravitational 
sector – either the quintesson or the graviton – to run in the loop.

If the matter sector begins at quadratic order in the fields, 
then the first diagram that can involve φ or gravitons in the loop 
begins at two-loop order, which is moderately complicated. There-
fore, for the sake of simplicity, let us consider a matter sector that 
includes a term that has a linear potential for the matter fields 
V (σ ) ∝ σ , which leads to the possibility of φ running in the loop 
at only one-loop order. For concreteness, consider the following 
Lagrangian with scalars σi and a conformally coupled scalar φ

Fig. 4. Two-loop correction to V eff(φ) including a φ running in the loop.

L = 1
2
(∂φ)2 +

∑

i

[
1
2

√
f (φ) (∂σi)

2 − f (φ)γ 3
i σi

]
, (6.1)

where γi is a mass scale. This may seem to be an unusual action, 
since we are not expanding around a vacuum, but it will suffice 
to illustrate the main point. In addition to a tiny renormalization 
of γi and the generation of a tiny mass for σi , there is a potential 
for φ generated from the diagrams of Fig. 3. Focusing on this new 
contribution, we find the effective potential is

V (φ,σi) =
∑

i

[

f (φ)γ 3
i σi + 9γ 6

i f ′(φ)2

512π2
√

f (φ)
ln

(
M2

i

µ2

)]

, (6.2)

where M2
i is some effective mass associated with the potential, 

whose details are not too important. We see that for generic 
choices of the conformal coupling function f (φ) this evidently 
spoils the relation between V ′ and V , since the φ dependence 
does not factorize. In order to obtain factorization, we would need 
f ′(φ)2/

√
f (φ) ∝ f (φ), which implies f (φ) = (1 + c φ/MPl)

4. How-
ever this special form for f (φ) is peculiar to the assumption of a 
linear potential in σ and does not work for generic matter.

Furthermore, for generic coupling function f (φ) we can Tay-
lor expand the above to obtain a mass for the scalar as )mφ ∼
c2 γ 3/(4π M2

Pl). A related issue occurs when we consider massive 
fields ψi . At two-loops we have diagrams such as those in Fig. 4, 
which again spoil the relationship between V ′ and V . Furthermore, 
they generate a mass for the quintessence field as

)mφ ∼
c2 m3

ψ

(4π)2M2
Pl

. (6.3)

There are similar corrections from gravitons running in a loop, al-
though we will not go into those details other than to note that 
they introduce )mφ ∼ γ 3/(4π M2

Pl) or )mφ ∼ m3
ψ/((4π)2 M2

Pl) for 
the above models.

Assuming c ∼ 1, the quintesson and graviton loop contributions 
to the mass of φ are of a similar order. Therefore, barring some 
unexpected cancellations (see discussion), we anticipate that the 
scalar mass will obtain corrections )mφ ∼ m3

ψ/((4π)2 M2
Pl). This is 

suppressed by two powers of the Planck mass, rendering it rather 
small. This should be compared to a non-conformally coupled 
scalar, for which the mass correction from just a matter particle in 
the loop gives )mφ ∼ m2

ψ/(4π MPl), which is suppressed by only 
one power of the Planck mass. The conformal coupling leaves only 
this quintesson/graviton loop correction, which is therefore much 
smaller.

However this contribution is not negligible. In particular, if 
the matter particles include the entire (dark) Standard Model, in-
cluding the (dark) top quark, then this leads to a mass for the 
quintessence field of the order )mφ ∼ 10−24 eV. While this is very 
small compared to masses of particles in the Standard Model, it is 
still much larger than the observed Hubble value H0 ∼ 10−33 eV, 
which is the natural value for quintessence. Intriguingly, if the 
heaviest particle the quintessence couples to have mass mψ ∼
0.1 GeV, such as pions, we obtain )mφ ∼ H0 the desired mass 
value. However, only coupling to a portion of the full sector com-
promises the cancellation of all matter loops.
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7. Discussion

We have identified two obstacles to implementing string the-
ory inspired quintessence models; (i) to avoid multiple fine-tuning 
one would like to conformally couple the quintessence field, which 
generically leads to fifth forces; if this can be avoided by only 
coupling to the dark sector in a special fashion (a dark copy of 
the Standard Model) then (ii) quintessons and graviton loop cor-
rections nevertheless introduce some amount of fine-tuning from 
matter particles with masses above ∼ 0.1 GeV.

A possible way out of these conclusions is to suppose that 
the effective theory for the quintessence field is only valid up to 
&U V ∼ 0.1 GeV (or smaller), forbidding heavier particles, such as 
(dark) Higgs or tops, for example, from running in the loop. This 
begs the question as to what might be the new physics entering at 
this scale, which is an interesting avenue for exploration.

Another question is if a cancellation can arise between quintes-
sons and gravitons from a special choice of the coupling function 
f (φ). We do not have evidence that such a cancellation can oc-
cur for a non-trivial matter sector, nor do we have evidence that it 
could persist to higher loop order, but it may be worth exploring 
carefully.

A possible way to avoid fifth forces is to appeal to a type of 
screening mechanism (for a review see Ref. [33]). The most rele-
vant one is the “chameleon mechanism” [34], whereby the effec-
tive mass of the quintessence field becomes large when the local 
density is large, and thereby shuts down the extra scalar force. 
Such models appeal to an unusual diverging potential function and 
are known to exhibit their own levels of fine-tuning. Rather strin-
gent constraints already exist on these models [35], but it is worth 
exploring if they can be realized within string theory.

Generically, however, it appears that quintessence models face 
significant fine-tuning and/or fifth forces beyond the usual prob-
lems for pure vacuum energy. We note that this does not neces-
sarily mean that the swampland conjectures are wrong. It could 
be that they are correct, but then obtaining a natural and con-
sistent model for dark energy in the framework of string theory 
would appear rather difficult. Alternatively, such conjectures may 
need further refinement. These important issues deserve further 
investigation.
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