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The cornea, the transparent tissue in the front of the eye,

along with the sclera, plays a vital role in protecting the

inner structures of the eyeball. The precise shape and me-

chanical strength of this tissue are mostly determined by the

unique microstructure of its extracellular matrix (ECM). A

clear picture of the 3D arrangement of collagen fibrils within

the corneal ECM has recently been obtained from the sec-

ondary harmonic generation images. However, this impor-

tant information about the through-thickness distribution of

collagen fibrils was seldom taken into account in the consti-

tutive modeling of the corneal behavior. The present work

creates a generalized structure tensor (GST) model to in-

vestigate the mechanical influence of collagen fibril through-

thickness distribution. It then uses numerical simulations of

the corneal mechanical response in inflation experiments to

assess the efficacy of the proposed model. A parametric study

is also done to investigate the influence of model parameters

on numerical predictions. Finally, a brief comparison be-

tween the performance of this new constitutive model and a

recent angular integration (AI) model from the literature is

given.

1 Introduction

The cornea protects the inner contents of the eye against

external insults, provides about two-thirds of eye’s refractive

power, and transmits nearly 90% of the incident light onto

the lens [1, 2]. The proper optical function of the cornea de-
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pends on its ability to maintain its precise shape under phys-

iological loading conditions. The corneal extracellular ma-

trix, stroma, constitutes almost the entire corneal thickness

and serves as the key component in providing the mechani-

cal strength necessary to resist external and internal forces.

The microstructure of the stroma resembles a lat-

tice structure, where collagen fibrils are embedded in thin

parallel-to-the-surface lamellae [3, 4]. The X-ray scattering

methods gave detailed information about the preferred col-

lagen fibril orientation in the corneal stroma [5, 6, 7, 8, 9].

In particular, it was found that although collagen fibrils

are oriented along with two preferred directions, i.e., nasal-

temporal (N-T) and inferior-superior (I-S) within the central

region of the human cornea, they tend to be aligned circum-

ferentially in the limbus region. Unlike the human cornea,

collagen fibrils in bigger mammals such as bovine are found

to be aligned mainly in the I-S direction [10, 11]. The de-

gree of in-plane dispersion varies in depth, i.e., although col-

lagen fibrils are more aligned along with N-T and I-S di-

rections within the posterior thirds, they are more isotrop-

ically oriented within the anterior thirds [12]. The images

obtained from the X-ray scattering technique could not fully

characterize the 3D dispersion of collagen fibrils through the

corneal thickness. Nevertheless, the second harmonic gen-

eration (SHG) images, about a decades ago, provided a re-

construction of 3D collagen fibril orientation [13, 14]. These

images showed that collagen fibrils are highly interwoven in

the anterior region but are parallel to each other in the poste-

rior region.

The early works utilized simple linear-elastic or hyper-

elastic models for representing the corneal constitutive re-

sponse [15, 16]. Later, linear transverse anisotropic mod-

els were used to account for the anisotropic response [17,
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18]. Hyperelastic models considering both isotropic and

anisotropic contributions were also used. In these models,

the dispersion of collagen fibrils was not considered in early

works [19, 20], but was added later [21, 22, 23, 24, 25, 11,

26]. These recent models could be categorized into two

groups: the angular integration (AI) models and the gener-

alized structure tensor (GST) models.

The AI-based models have a straightforward formula-

tion, where the free energy corresponding to the continuous

collagen fibril distribution is obtained by performing the di-

rect angular integration of an infinitesimal fraction of fibers

in a given direction. The statistical description of the col-

lagen fibril distribution could be represented by either dis-

tribution probability density function or direct extrapolation

of the X-ray scattering data. The AI models with differ-

ent forms of PDFs have been applied to various soft tissues

[27, 28, 29, 30, 31, 32, 33]. The AI models provide rela-

tively good representations of the mechanical response of bi-

ological tissues. However, their main disadvantage is that the

numerical implementation of their required direct angular in-

tegration scheme is complicated and time-consuming.

On the other hand, the GST models are relatively faster.

They use the generalized structure tensor with a dispersion

parameter to quantify the collagen fibril dispersion [34].

Once the dispersion parameter is specified, the stretching

of collagen fibrils at any given macroscopic deformation is

known and the required angular integration can be evaluated.

However, this model can be used with the limited number of

PDFs for collagen fibril orientation because the derivation of

analytical relations between PDFs and dispersion parameters

is not trivial [34, 35].

The collagen fibril distribution in SHG images suggests

that both in-plane and out-of-plane dispersions are essen-

tial. In this work, we use a GST model that takes into ac-

count both in-plane and out-of-plane collagen fibril distribu-

tion throughout the cornea. The in-plane distribution is ap-

proximated by fitting the normal distribution function in po-

lar coordinates to the X-ray scattering data [9]. The out-of-

plane distribution of collagen fibrils at a given thickness level

has been represented by fitting Gaussian curves to the cutoff

angle histogram obtained from the SHG images [14]. We nu-

merically implement the proposed GST model in a commer-

cial finite element software Abaqus/Standard [36] by writing

a user-defined material subroutine (UMAT). The model per-

formance is studied by simulating the results of inflation tests

[37] using six different collagen fibril distribution of trans-

versely isotropic, isotropic, perfect alignment, planar disper-

sion, planar isotropic, and full-thickness variation. A para-

metric study is also performed to determine the effects of col-

lagen fibril interweaving on stress profiles across the corneal

thickness. Lastly, it is shown that the proposed model has

similar functionality as the available AI model from the lit-

erature [26], yet cheaper in terms of the computational ex-

penses.

The remainder of this paper is organized as follows. In

Section 2, we review the continuum mechanical framework

and present the main constitutive equations. The governing

equation is briefly summarized in Section 3. The numerical

results are shown in Section 4. Lastly, we finish in Section 5

with some concluding remarks. In Appendix A, we present

the details of our code verification.

2 Continuum mechanical framework

This section covers the large deformation kinematics re-

quired for describing the hyperelastic anisotropic behavior of

the corneal stroma. A similar framework has been previously

applied to soft materials [38, 39, 40].

2.1 Kinematics

Let xR represent an arbitrary material point in the fixed

reference configuration of the body BR. The referential body

BR undergoes a motion x = χ(xR, t) to the deformed body Bt

with deformation gradient given by

F = ∇χ, and J = detF > 0. (1)

The right and left Cauchy-Green tensors are given by C =
F⊤F and B = FF⊤, respectively. The deformation gradient

admits the polar decomposition, F = RU, where R is the ro-

tation and U =
√

C is the stretch. The distortional part of the

deformation gradient is

Fdis = J−1/3F, and detFdis = 1. (2)

The distortional right and left CauchyGreen deformation ten-

sors are

Cdis = F⊤
disFdis = J−2/3C and

Bdis = FdisF
⊤
dis = J−2/3B,

(3)

respectively. We assume there are two families of collagen

fibrils in the corneal stroma with their mean referential direc-

tions denoted by unit vectors a4
0 and a6

0, respectively. Addi-

tionally, we introduce a unit vector an – normal to the plane

spanning by a4
0 and a6

0 – to identify the out-of-plane direc-

tion. The invariants Ī1, Ī4, Ī6 and Īn are written as

Ī1 = trCdis, Īi = Cdis : ai
0 ⊗ ai

0 for i = 4,6,

and Īn = Cdis : an ⊗ an.
(4)

We use the generalized structure tensor Hi to quantify the

dispersion of both families of collagen fibrils [35, 41]

Hi = A1+Bai
0⊗ ai

0 +(1− 3A−B)an⊗ an for i = 4,6
(5)

with constants A and B written as

A = 2κipκop and B = 2κop(1− 2κip). (6)

Note that κip and κop in the above expression are in-plane

and out-of-plane dispersion parameters whose characteristics

will be discussed in the following.

2



2.2 PDFs for collagen fibrils with dispersion

The detailed collagen fibril microstructural information

could be obtained from the SHG images, which fully char-

acterize their in-plane and out-of-plane angular distributions

[13, 14, 26]. Here, the mean orientation of the collagen

fibrils at the reference state is represented by a unit vec-

tor N in terms of two Eulerian angles Θ ∈ [0,2π] and Φ ∈
[−π/2,π/2]. We assume that the base vector e3 is the out-

e1

e2

e3

x1

x2

x3
N

Fig. 1. The mean orientation of collagen fibrils is represented by a

unit vector N in terms of two Eulerian angles Θ and Φ.

of-plane direction (see Figure 1). We use the bivariate Von-

Mises distribution function ρ(Θ,Φ) = ρip(Θ)ρop(Φ) to de-

scribe the dispersion of collagen fibrils over the unit sphere

[35],

ρip(Θ) =
exp[acos2(Θ± ξ)]

I0(a)
and

ρop(Φ) = 2

√

2b

π

exp[b(cos2Φ− 1)]

erf(
√

2b)
,

(7)

where a and b denote the concentration parameters for each

distribution function ρip(Θ) and ρop(Φ), ξ denotes the an-

gle between the mean collagen fibril orientation and the base

vector e1, and I0(a) denotes the modified Bessel function of

the first kind of order 0. According to Holzapfel et al. [35],

both in-plane and out-of-plane dispersion parameters are de-

fined as

κip =
1

2π

∫ 2π

0
ρip(Θ)sin2 ΘdΘ, and

κop =
1

4

∫ π/2

−π/2
ρop(Φ)cos3 ΦdΦ.

(8)

The closed-form relations between dispersion parameters

and concentration parameters are obtained from equations

(7) and (8),

κip =
1

2
− I1(a)

2I0(a)
, κop =

1

2
− 1

8b
+

1

4

√

2

πb

exp(−2b)

erf(
√

2b)
, (9)

where κip ∈ [0,1] and κop ∈ [0,1/2] are dispersion param-

eters, and I1(a) is the modified Bessel function of the first

kind of order 1. In Figure 2, we project the total PDF in

equation (7) onto the surface of a unit sphere with different

combinations of in-plane and out-of-plane dispersion param-

eters; here one family of fibers with orientation a0 that is

aligned with the unit vector N = [1,0,0]⊤ is considered. The

out-of-plane normal is set to be an = [0,0,1]⊤. As a → 0

and b → 0, the collagen fibrils are evenly distributed. Con-

versely, as a→∞ and b→∞, the collagen fibrils are perfectly

aligned long with the mean orientation. The collagen fibrils

are isotropically distributed within x1−x2 plane as a→ 0 and

b → ∞, and are isotropically distributed within x1 − x3 plane

as a → ∞ and b → 0. Accordingly, the generalized structure

tensor H for one family of fibers could be simplified into five

special cases:

Perfect alignment – H = a0 ⊗ a0;

Isotropic dispersion – H = (1/3)1;

Transversely isotropic – H = κ1+(1−3κ)a0⊗a0 when

κ = 1− 2κop;

Planar dispersion – H = kI+(1− 2κ)a0 ⊗ a0 when I is

the 2D identity and k is the dispersion parameter in the

plane;

Planar isotropic – H = (1/2)1.

2.3 Free energy

The free energy ψR of corneal stroma per unit reference

volume is additively decomposed into 1) isotropic contribu-

tion from underlying matrix ψm
R

, and 2) anisotropic contribu-

tion from two families of collagen fibrils ψ
f i
R ,

ψR = ψm
R
(Ī1,J)+ ∑

i=4,6

ψ f i
R
(Cdis,Hi). (10)

The matrix domain is treated as a nearly-incompressible

neo-Hookean material,

ψm
R
=

1

2
G0(Ī1 − 3)+

1

2
K(lnJ)2 (11)

with G0 denotes the ground state shear modulus, and K de-

notes the bulk modulus.

The mechanical response of collagen fibrils is modeled

by the following exponential form [34],

ψ f i
R
=

k1

2k2

(

exp
(

k2(Ī
∗
i − 1)2

)

− 1

)

for i = 4,6, (12)
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Fig. 2. The total PDF ρ(Θ,Φ) in equation (7) is projected onto the surface of a unit sphere considering different in-plane and out-of-plane

distributions. The main collagen fibril orientation is N = [1,0,0]⊤ with an out-of-plane normal of an = [0,0,1]⊤.

where k1 and k2 denote two the stress-like parameters. The

distortional generalized invariant Ī∗i is given by

Ī∗i = tr(HiCdis)

= AĪ1 +BĪi+(1− 3A−B)Īn for i = 4,6.
(13)

It is worth noting that the collagen fibril free energy does

not have any volumetric contribution to the total free energy.

Furthermore, collagen fibrils are not able to withstand any

compression, so if Ī4 ≤ 1 and Ī6 ≤ 1, the free energy ψ
f i
R is

completely omitted in equation (10).

Based on thermodynamic restrictions, the Cauchy stress

is then given through

T = 2J−1F
∂ψR

∂C
F⊤ = Tm + ∑

i=4,6

T f i, (14)

where

Tm = J−1[G0(Bdis)0 +K(lnJ)1] (15a)

(Bdis)0 = Bdis −
1

3
tr(Bdis) (15b)

and

T f i =2J−5/3[k1(Ī
∗
i − 1)exp(k2(Ī

∗
i − 1)2)][FHiF

⊤

− 1

3
tr(HiC)1]

(16)

are the stress contributions from the underlying matrix and

collagen fibrils, respectively.

3 Governing equations

The balance of linear momentum in the deformed body

Bt under the equilibrium condition is given by

divT = 0, (17)

where T the total Cauchy stress given by equation (14). The

surface traction on the deformed body surface ∂Bt is given

by

t(n) = [[T]]n, (18)
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where n is the out-normal to ∂Bt , and [[•]] is the jump opera-

tor, defined as the difference between the quantity inside and

outside the domain.

4 Results and Discussion

The proposed model is implemented numerically in

Abaqus/Standard [36] by writing a user-defined material

subroutine (UMAT), and its verification is found in Ap-

pendix A. In this section, we investigate the capabilities of

the proposed model by simulating the standard inflation test.

4.1 Experimental measurements

We use the previous inflation experimental resultsof An-

derson et al. [37]. In these experiments, porcine corneal

samples, with the narrow ring of surrounding scleral tissue,

were mounted such that the portion that connects the limbus

and the sclera was fully fixed. An internal pressure with a

maximum value of 100 mmHg was gradually (quasi-static

condition) applied to the samples’ posterior surface. Mean-

while, the apical displacement was continuously monitored

by a CCD laser displacement sensor and plotted against the

pressure.

x1

x2

Central  

Inferior

Superior

Nasal Temporal

Limbus

s = 0

s = 1
x1

x3

Anterior

Posterior
Sclera

Fig. 3. Schematics of the human cornea. The top view is drawn

based on the work from [42]. The key components are Central – a

circular region with a radius about 4.5 mm; Limbus – a ring border

about 1.5 to 2 mm wide that encircles the periphery of the central re-

gion; Sclera – the opaque tissue of the eye; Nasal – the side near the

nose; Inferior – the south side; Temporal – the opposite side of nasal;

Superior – the north side; Anterior – the outer surface; Posterior – the

innermost surface. The inset is a typical SHG image [14] showing the

variation of collagen fibril distribution across the thickness.

4.2 Geometry and boundary conditions

The first step in any numerical simulation is to define an

accurate geometrical representation of the sample. Since we

do not have any information about the exact geometry used in

inflation tests [37], a generic but popular form is adopted. In

particular, we use a biconic surface equation in a cylindrical

coordinate system {Θ,r,x3} for both anterior and posterior

surfaces of the cornea [24],

x3 −G+
r2E

1+
√

1− r2F
= 0 (19)

with

E =
cos2(Θ−Θx1

)

Rx1

+
sin2(Θ−Θx1

)

Rx2

(20)

and

F = (Qx1
+ 1)

cos2(Θ−Θx1
)

R2
x1

+(Qx2
+ 1)

sin2(Θ−Θx1
)

R2
x2

.

(21)

Here, G is the maximum vertical height at r = 0, both Rx1
and

Rx2
are the maximum curvatures of the principal meridians

along x1 and x2 directions, respectively. Θx1
is the direction

of the steepest principal meridian, both Qx1
and Qx2

are the

asphericity parameters in the directions Θx1
and Θx1

+π/2,

respectively.

We use referential unit vectors a4
0 and a6

0 to represent

the two mean orientations of collagen fibrils (see Figure 4a).

In the central region, two families of the collagen fibrils are

running from N-T (red) and I-S (blue) directions in a 3-D

curved fashion. In the limbus region, one family of collagen

fibrils (red) is running circumferentially, and another (blue)

is pointing outwards from the center. Additionally, the out-

of-plane direction is denoted as the unit vector an (black).

For simplicity, we assume that both families of colla-

gen fibrils share the same in-plane dispersion parameter κip.

Guided by the previous study on X-ray scattering images [9],

the spatial distribution of in-plane dispersion is given by [24]

κip(Θ) =

(

κmin
ip +κmax

ip

2

)

−
(

κmax
ip −κmin

ip

2

)

cos4Θ, (22)

where κmax
ip = 0.5 and κmin

ip = 0.1 are the maximum and min-

imum value, respectively. After adding the r dependency,

equation (22) becomes

κip(Θ,r) = κmin
ip +

1

2

(

κip(Θ)−κmin
ip

)

(

1− cos
2πr

RTZ

)

, (23)

where RTZ = 5.5 mm denotes the radius of the transition

zone. Note that we assigned a homogeneous in-plane dis-

persion κip = 0.5 in the limbus region. The visualization of

equation (23) is shown in Figure 5a. In the process of assign-

ing the out-of-plane parameter κop across the thickness, we

used a local coordinate s ∈ [0,1] parallel to the out-of-plane
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a)

Limbus

P

b)

Fig. 4. Assignment of mean collagen fibril orientation and finite ele-

ment mesh. a) The main orientation of two families of collagen fibrils

is represented as two unit vectors of a4
0 (red) and a6

0 (blue). The out-

plane direction is denoted by the unit vector an (black). b) The finite

element mesh, along with the applied boundary conditions. A quarter

of the entire geometry is shown here for clarity.

unit vectors. The local coordinate s = 0 at the anterior sur-

face, while s = 1 at the posterior surface (see inset plot in

Figure 3). Guided by the SHG image, where the degree of

interweaving between collagen fibrils is found to be varying

exponentially across the thickness, we link the out-of-plane

dispersion parameter κop to the local coordinate s via the fol-

lowing function,

κop(s) = κmin
op +(κmax

op −κmin
op )

(

1− exp(−γds)
)

, (24)

where κmin
op = 1/3 and κmax

op = 1/2 are minimum and max-

imum value, respectively, and the constant γd controls the

non-linearity of the function (see Figure 5b).

The geometry is discretized into U3D8 elements with

six elements spanning the thickness, and only a quarter of

the entire mesh is presented for clarity (see Figure 4b). For

boundary conditions, we fully fix the surface linking the lim-

bus and sclera and applied an internal pressure of P = 100

mmHg to the posterior surface.

Before running the simulation, one should pay extra at-

0.100

0.134

0.168

0.203

0.237

0.271

0.305

0.339

0.373

0.407

0.442

0.476

0.510

0.096

ip

a)

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

b)

Fig. 5. a) The variation of the in-plane dispersion parameter κip as

a function of space, b) the variation of the out-of-plane dispersion

parameter as a function of corneal thickness s.

tention to the starting point of the simulation. Given that

the in-vivo measured dimensions Xphysio of the cornea un-

der a physiological loading of Pphysio = 16 mmHg, we first

obtain the stress-free geometry though a zero-pressure algo-

rithm [43, 44]. In the algorithm, the mesh connectivity is

kept unchanged while the zero-pressure nodal coordinates

Xk+1 are iteratively updated through

Xk+1 = Xk +(Xdef
k −Xphysio), (25)

where Xk and Xdef
k denote the zero-pressure and deformed

coordinates at kth step. Meanwhile, the mean collagen fib-

ril orientations are consistently mapped back to the zero-

pressure configuration. Here, the iteration is terminated

based on the global error e = ||Xdef
k −XPhysio||∞. The param-

eters of the biconic equation (19) used for the anterior sur-

face under P = 16 mmHg are obtained from previous stud-

ies [24], i.e., Rx1
= 7.71 mm, Rx2

= 7.87 mm, Θx1
= 0.51π,

Qx1
= Qx2

=−0.41 and G = 2.52 mm. The parameters used

for the posterior surface under P = 16 mmHg are Rx1
= 6.36

mm, Rx2
= 6.69 mm, Θx1

= 0.51π, Qx1
= Qx2

= −0.52 and

G= 1.89 mm. We plot the physiological coordinates as black

stars, while the deformed and zero-pressure coordinates at
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each iteration as red and blue stars (see Figure 6a). It is

observed that the global error is minimized quickly within

about ten iterations (see Figure 6b).

0 2 4 6
x (mm)

0

1

2

3

4

y
(m

m
)

Physio

Deformed

Zero-pressure

a)

2 4 6 8 10
Iteration

0

10

20

30

40

50

e

b)

Fig. 6. The zero-pressure algorithm. a) The side view of the con-

verged stress-free configuration. b) The convergence plot.

4.3 Comparison

We consider six different collagen fibril distributions,

i.e., transversely isotropic (T.I.), perfect alignment (P.A.),

isotropic (I.), planar dispersion (P.D.), planar isotropic (P.I.),

and full-thickness variation (F.V.) in our simulation, which

are based on material parameters given in Table 1. The pa-

rameters are selected, such that the apical rise - pressure

curves of both F.V. and T.I. fall onto the experimental data

as close as possible (see Figure 9a). The other four cases are

simulated using their respective dispersion parameters while

keeping mechanical parameters unchanged.

We compare the contours of Von-Mises stress among all

cases under internal pressure of P = 100 mmHg (see Figure

7). For the cases of T.I., P.A., and P.D., the contours share

a similar pattern – a cross mark in the central region – indi-

cating that the collagen fibrils along N-T and I-S directions

are under tension. In the case of F.V., the Von-Mises stress

is much lower at the anterior surface. It is because collagen

fibrils near the posterior surface are almost perfectly aligned,

making them exhibit an earlier stretch-locking than the col-

lagen fibrils at the anterior surface. In the cases of I. and P.I.,

no significant stretching of the collagen fibrils is observed.

Echoing the main focus of the current study – model-

ing structural variation in collagen fibrils across the corneal

thickness – we plot in Figure 8 the side view of the same

Von-Mises stress contour . The F.V. case could predict a rea-

sonable stress profile across the thickness that is in line with

the observed collagen fibril distribution in SHG images. On

the other hand, the stress is found to be more concentrated at

the anterior surface in the cases of T.I., P.A., and P.D. There

is no apparent stress gradient across the thickness in the cases

of I. and P.I.

In Figure 9a, the simulated apical rise - pressure curves

are plotted as lines, while the experimental data obtained

from Anderson et al. [37] are plotted as circles. The cases of

T.I. and F.V. can capture the experimental results quite well.

The case of P.A. exhibits the earliest stretch-locking behav-

ior, while the case of I. shows no fiber engagement under the

same boundary conditions. Interestingly, for planar cases of

P.D. and P.I., the collagen fibrils exhibit a relatively earlier

stretch-locking behavior caused by the narrower dispersion

space.

0.000

0.063

0.125

0.188

0.250

0.313

0.375

0.438

0.500

0.563

0.625

0.688

0.750

VM

Transversely isotropic

Perfect alignment

Full thickness

Isotropic

Planar dispersion Planar isotropic

Fig. 7. The distribution of Von-Mises stress (MPa) for six different

cases at an internal pressure of P = 100 mmHg.

4.4 Parametric study

Here we investigate the influence of decay rate constant

γd on the mechanical response of corneal stroma under in-
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Table 1. Material parameters used in the simulation

T.I. P.A. I. P.D. P.I. F.V.

G0 (MPa) 0.06 0.06 0.06 0.06 0.06 0.06

K (MPa) 5.5 5.5 5.5 5.5 5.5 5.5

k1 (kPa) 20 20 20 20 20 0.5

k2 (-) 400 400 400 400 400 900

κ [24] 0 1/3 N/A N/A N/A

κip N/A N/A N/A Figure 5a 1/2 Figure 5a

κop N/A N/A N/A 1/2 1/2 Figure 5b

γd N/A N/A N/A N/A N/A 2.5

0.000

0.063

0.125

0.188

0.250

0.313

0.375

0.438

0.500

0.563

0.625

0.688

0.750

VM

Transversely isotropic

Perfect alignment

Full thickness

Isotropic

Planar dispersion

Planar isotropic

Fig. 8. The through-thickness distribution of Von-Mises stress

(MPa) for six different cases at an internal pressure of P = 100

mmHg.

flation. Figure 9b compares the apical rise - pressure curves

under different values of γd . It is seen that the “stretch lock-

ing” behavior occurs earlier as γd increases. It is because

a large fraction of collagen fibrils with the narrower out-of-

plane dispersion is engaged in the deformation. The case

with γd = 2.5 has a good agreement with the experimental

results. More interestingly, as Figure 10 shows, the spots

of high-stress concentration move from the posterior to the

anterior side as γd increases. This result could be useful in

terms of predicting the location of the highest stress across

the thickness with the known collagen fibril architecture.

4.5 Numerical expensiveness

In this section, we compare the proposed model against

a recent AI model [26], in which the collagen fibril free en-

ergy is obtained from the angular integration over the unit
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b)

Fig. 9. The apical rise - pressure curves. a) The comparison be-

tween experimental data and six different numerical cases of the

present work, b) the effects of the exponential decay parameter γd

on the numerically obtained apical rise - pressure curves.

sphere Ω,

ψAI
R

= ψm
R
+

1

m

∫
Ω

ρ(a0)w(λf)dΩ (26)
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Fig. 10. The effect of different decay rate values constant γd on the

distribution of Von-Mises stress (MPa) across corneal thickness at

P = 100 mmHg.

with dΩ = sinΦdΦdΘ denotes the differential unit sphere,

a0 denotes the referential collagen fibril orientation, ψm
R

de-

notes the matrix free energy, and w denotes the collagen fib-

ril strain energy, which is a function of fiber stretch λf. The

integral in equation (26) is normalized by m =
∫

Ω ρ(a0)dΩ.

We implement the AI model numerically in Abaqus/Standard

[36] by writing UMAT. The simulated apical rise - pressure

curve using the AI model, is shown in Figure 9a as the dotted

black line, which shows a good agreement with the experi-

mental data. The CPU elapsed time of simulations under the

different number of unconstrained degrees of freedom ndof is

recorded. It is found that the CPU elapsed time ratio between

the two models tAI/tGST is proportional to the number of un-

constrained degrees of freedom ndof (see Figure 11). Since

the double angular integration in equation (26) is evaluated

by the Gaussian quadrature scheme, the number of Gauss

points has a significant impact on the numerical expensive-

ness, where the time ratio is nearly 100 at ndof = 140 by using

64 Gauss points. Overall, the proposed model has almost the

same feature as the AI one, but it is cheaper in terms of the

simulation cost.

5 Concluding remarks

This work develops a continuum mechanics model con-

sidering collagen fibril out-of-plane dispersion across the

corneal thickness. In particular, the function that links the

out-of-plane dispersion parameter to the corneal thickness

serves as one of the important contributions of the current

work. The proposed model is numerically implemented, and

its capabilities are demonstrated by performing numerical

simulations of inflation experiments using six different colla-

gen fibril orientations, i.e., transversely isotropic, isotropic,

perfect alignment, planar dispersion, planar isotropic, and

full-thickness variation.

The results show that the proposed model can replicate

the experimental pressure displacement curves very well. It

also predicts a reasonable stress profile across the corneal

thickness. A parametric study on the decay rate constant in-

ndof

102

t A
I/
t G

S
T

100

101

102 64pt

50pt

40pt

30pt

20pt

10pt

Fig. 11. CPU elapsed time ratio between AI and GST approach

tAI/tGST as a function of the total numbers of unconstrained de-

grees of freedoms ndof. The effects of Gauss points have also been

investigated.

dicates that the stress profile across the thickness is sensitive

to the collagen fibril out-of-plane dispersion. From the per-

spective of computational expenses, compared to a recent AI

model [26], the performance of the proposed model stands

out because while it requires much less computational power,

it has almost the same functionality.

Looking towards the future, more work yet remains. For

example, the model could be strengthened by incorporating

more detailed collagen fibril structural information – the in-

teractions between collagen fibril layers. The model could

also be extended by adding dissipative mechanisms such as

viscoelasticity and considering the corneal gel-like behavior

– poroelasticity and fluid migration [45, 46].

Acknowledgements

The authors acknowledge the support in part by the

Grant 1635290 from the National Science Foundation, the

division of Civil, Mechanical, and Manufacturing Innova-

tion.

A Appendix: Verification of finite element implementa-

tion

To verify the numerical implementations, we compare

our simulated results with the analytically tractable solu-

tions. We prescribe a simple shear motion to a matrix cube

embedded with a family of collagen fibril with a mean di-

rection of a4
0 = [ax,ay,0]

⊤ and an out-of-plane direction of

an = [−ay,ax,0]
⊤ (see Figure 12a). To make sure they are

unit vectors, the condition of
√

a2
x + a2

y = 1 has to be ful-

filled. According to Gurtin [47], the simple shear deforma-
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tion is given by

[

F
]

=





1 γ 0

0 1 0

0 0 1



 ,
[

B
]

=





1+ γ2 γ 0

γ 1 0

0 0 1



 ,

[

C
]

=





1 γ 0

γ γ2 + 1 0

0 0 1





(27)

with γ = tanθ denotes the amount of shear. Referring to

equation (5), the generalized structure tensor is given by

[

H
]

=





A+Ba2
x +Ca2

y Daxay 0

Daxay A+Ba2
y +Ca2

x 0

0 0 A



 (28)

with C = 1− 3A−B and D = 2B+ 3A− 1. Next, the gener-

alized invariant in equation (13) is now given by

I∗4 = 2A+Ba2
x +Ca2

y + 2Daxayγ

+
(

A+Ba2
y +Ca2

x

)

(γ2 + 1).
(29)

Since the simple shear deformation is a volume preserved

motion (i.e., J = 1), the Cauchy stress in equation (14) could

be written as

T =G0B+ 2
[

k1(I
∗
4 − 1)exp

(

k2(I
∗
4 − 1)2

)][

FHF⊤]

+P1,
(30)

where P is a constitutively indeterminate pressure that is in-

troduced to satisfy the incompressibility constraint. On the

numerical side, a single element (U3D8) in Abaqus/Standard

[36] is prescribed with the same deformation. We also take

K = 103G0 to secure a nearly incompressible condition in the

simulations.

Figure 12b compares the analytical solutions against the

numerical solutions for the shear stress given by

T12 = G0γ+ 2
[

k1(I
∗
4 − 1)exp

(

k2(I
∗
4 − 1)2

)][

α+βγ], (31)

where two constants are α = (2B + 3A − 1)axay and β =
A+Ba2

y +(1− 3A−B)a2
x , respectively. The stress is nor-

malized by the matrix shear modulus G0, and three differ-

ent combinations of dispersion parameters are considered.

The excellent agreement between the numerical and analyt-

ical solutions suggests that our numerical implementation is

fully verified.
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