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The cornea, the transparent tissue in the front of the eye,
along with the sclera, plays a vital role in protecting the
inner structures of the eyeball. The precise shape and me-
chanical strength of this tissue are mostly determined by the
unique microstructure of its extracellular matrix (ECM). A
clear picture of the 3D arrangement of collagen fibrils within
the corneal ECM has recently been obtained from the sec-
ondary harmonic generation images. However, this impor-
tant information about the through-thickness distribution of
collagen fibrils was seldom taken into account in the consti-
tutive modeling of the corneal behavior. The present work
creates a generalized structure tensor (GST) model to in-
vestigate the mechanical influence of collagen fibril through-
thickness distribution. It then uses numerical simulations of
the corneal mechanical response in inflation experiments to
assess the efficacy of the proposed model. A parametric study
is also done to investigate the influence of model parameters
on numerical predictions. Finally, a brief comparison be-
tween the performance of this new constitutive model and a
recent angular integration (Al) model from the literature is
given.

1 Introduction

The cornea protects the inner contents of the eye against
external insults, provides about two-thirds of eye’s refractive
power, and transmits nearly 90% of the incident light onto
the lens [1, 2]. The proper optical function of the cornea de-
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pends on its ability to maintain its precise shape under phys-
iological loading conditions. The corneal extracellular ma-
trix, stroma, constitutes almost the entire corneal thickness
and serves as the key component in providing the mechani-
cal strength necessary to resist external and internal forces.

The microstructure of the stroma resembles a lat-
tice structure, where collagen fibrils are embedded in thin
parallel-to-the-surface lamellae [3, 4]. The X-ray scattering
methods gave detailed information about the preferred col-
lagen fibril orientation in the corneal stroma [5, 6, 7, 8, 9].
In particular, it was found that although collagen fibrils
are oriented along with two preferred directions, i.e., nasal-
temporal (N-T) and inferior-superior (I-S) within the central
region of the human cornea, they tend to be aligned circum-
ferentially in the limbus region. Unlike the human cornea,
collagen fibrils in bigger mammals such as bovine are found
to be aligned mainly in the I-S direction [10, 11]. The de-
gree of in-plane dispersion varies in depth, i.e., although col-
lagen fibrils are more aligned along with N-T and I-S di-
rections within the posterior thirds, they are more isotrop-
ically oriented within the anterior thirds [12]. The images
obtained from the X-ray scattering technique could not fully
characterize the 3D dispersion of collagen fibrils through the
corneal thickness. Nevertheless, the second harmonic gen-
eration (SHG) images, about a decades ago, provided a re-
construction of 3D collagen fibril orientation [13, 14]. These
images showed that collagen fibrils are highly interwoven in
the anterior region but are parallel to each other in the poste-
rior region.

The early works utilized simple linear-elastic or hyper-
elastic models for representing the corneal constitutive re-
sponse [15, 16]. Later, linear transverse anisotropic mod-
els were used to account for the anisotropic response [17,



18]. Hyperelastic models considering both isotropic and
anisotropic contributions were also used. In these models,
the dispersion of collagen fibrils was not considered in early
works [19, 20], but was added later [21, 22, 23, 24, 25, 11,
26]. These recent models could be categorized into two
groups: the angular integration (AI) models and the gener-
alized structure tensor (GST) models.

The Al-based models have a straightforward formula-
tion, where the free energy corresponding to the continuous
collagen fibril distribution is obtained by performing the di-
rect angular integration of an infinitesimal fraction of fibers
in a given direction. The statistical description of the col-
lagen fibril distribution could be represented by either dis-
tribution probability density function or direct extrapolation
of the X-ray scattering data. The AI models with differ-
ent forms of PDFs have been applied to various soft tissues
[27, 28, 29, 30, 31, 32, 33]. The AI models provide rela-
tively good representations of the mechanical response of bi-
ological tissues. However, their main disadvantage is that the
numerical implementation of their required direct angular in-
tegration scheme is complicated and time-consuming.

On the other hand, the GST models are relatively faster.
They use the generalized structure tensor with a dispersion
parameter to quantify the collagen fibril dispersion [34].
Once the dispersion parameter is specified, the stretching
of collagen fibrils at any given macroscopic deformation is
known and the required angular integration can be evaluated.
However, this model can be used with the limited number of
PDFs for collagen fibril orientation because the derivation of
analytical relations between PDFs and dispersion parameters
is not trivial [34, 35].

The collagen fibril distribution in SHG images suggests
that both in-plane and out-of-plane dispersions are essen-
tial. In this work, we use a GST model that takes into ac-
count both in-plane and out-of-plane collagen fibril distribu-
tion throughout the cornea. The in-plane distribution is ap-
proximated by fitting the normal distribution function in po-
lar coordinates to the X-ray scattering data [9]. The out-of-
plane distribution of collagen fibrils at a given thickness level
has been represented by fitting Gaussian curves to the cutoff
angle histogram obtained from the SHG images [14]. We nu-
merically implement the proposed GST model in a commer-
cial finite element software Abaqus/Standard [36] by writing
a user-defined material subroutine (UMAT). The model per-
formance is studied by simulating the results of inflation tests
[37] using six different collagen fibril distribution of trans-
versely isotropic, isotropic, perfect alignment, planar disper-
sion, planar isotropic, and full-thickness variation. A para-
metric study is also performed to determine the effects of col-
lagen fibril interweaving on stress profiles across the corneal
thickness. Lastly, it is shown that the proposed model has
similar functionality as the available AI model from the lit-
erature [26], yet cheaper in terms of the computational ex-
penses.

The remainder of this paper is organized as follows. In
Section 2, we review the continuum mechanical framework
and present the main constitutive equations. The governing
equation is briefly summarized in Section 3. The numerical

results are shown in Section 4. Lastly, we finish in Section 5
with some concluding remarks. In Appendix A, we present
the details of our code verification.

2 Continuum mechanical framework

This section covers the large deformation kinematics re-
quired for describing the hyperelastic anisotropic behavior of
the corneal stroma. A similar framework has been previously
applied to soft materials [38, 39, 40].

2.1 Kinematics
Let x;, represent an arbitrary material point in the fixed
reference configuration of the body B;. The referential body
B, undergoes a motion x = (X, ?) to the deformed body B,
with deformation gradient given by
F=Vy, and J=detF >0. (1)
The right and left Cauchy-Green tensors are given by C =
F'F and B = FF", respectively. The deformation gradient
admits the polar decomposition, F = RU, where R is the ro-
tation and U = +/C is the stretch. The distortional part of the
deformation gradient is
Fas=J 'PF, and detFg,=1. )

The distortional right and left CauchyGreen deformation ten-
sors are

Cais = Fy Fais = J2/3C  and
(3)
Bais = FaisFl =/ 2/°B,

respectively. We assume there are two families of collagen
fibrils in the corneal stroma with their mean referential direc-
tions denoted by unit vectors aé and ag, respectively. Addi-
tionally, we introduce a unit vector a, — normal to the plane
spanning by a3 and a$ — to identify the out-of-plane direc-
tion. The invariants I;, I+, I and I, are written as

I = tr Cgis, I_[:Cdiszaf)®af) for i=4,6, @

and I, = Cgi : a, @a,.

We use the generalized structure tensor H; to quantify the
dispersion of both families of collagen fibrils [35, 41]

H; = Al +Ba)®a)+ (1 —3A —B)a,®a, for i=4,6
5)
with constants A and B written as
A =2Kipkop and B =2Kep(1 —2K;p). 6)
Note that K;, and Kp in the above expression are in-plane

and out-of-plane dispersion parameters whose characteristics
will be discussed in the following.



2.2 PDFs for collagen fibrils with dispersion

The detailed collagen fibril microstructural information
could be obtained from the SHG images, which fully char-
acterize their in-plane and out-of-plane angular distributions
[13, 14, 26]. Here, the mean orientation of the collagen
fibrils at the reference state is represented by a unit vec-
tor N in terms of two Eulerian angles ® € [0,27] and ® €
[-7/2,m/2]. We assume that the base vector e3 is the out-
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Fig. 1. The mean orientation of collagen fibrils is represented by a
unit vector N in terms of two Eulerian angles ® and .

of-plane direction (see Figure 1). We use the bivariate Von-
Mises distribution function p(®,®) = pip(®)pop(P) to de-
scribe the dispersion of collagen fibrils over the unit sphere
[35],

Pip(®) = expla C(I)Os(i()(a =) and
2D explb(cos2® — 1)]

pop(q)) =2 ? erf(\/ﬂ) )

(N

where a and b denote the concentration parameters for each
distribution function pi,(®) and pep(P), & denotes the an-
gle between the mean collagen fibril orientation and the base
vector e, and Ip(a) denotes the modified Bessel function of
the first kind of order 0. According to Holzapfel et al. [35],
both in-plane and out-of-plane dispersion parameters are de-
fined as

1

21
Kip = 5 /0 Pip(®)sin”@d®, and

Koy — / ™2 50y (@) cos’ DL,
P 4 x> P

The closed-form relations between dispersion parameters
and concentration parameters are obtained from equations

(7) and (8),

1 I(a) 11 1 [2 exp(—2b)
Kip =3 2y(a)’ Ko =575 T3V erf(v2b)’ 2

where K;, € [0,1] and %,p € [0,1/2] are dispersion param-
eters, and /) (a) is the modified Bessel function of the first
kind of order 1. In Figure 2, we project the total PDF in
equation (7) onto the surface of a unit sphere with different
combinations of in-plane and out-of-plane dispersion param-
eters; here one family of fibers with orientation ag that is
aligned with the unit vector N = [1,0,0]" is considered. The
out-of-plane normal is set to be a, = [0,0,1]". Asa — 0
and b — 0, the collagen fibrils are evenly distributed. Con-
versely, as a — oo and b — oo, the collagen fibrils are perfectly
aligned long with the mean orientation. The collagen fibrils
are isotropically distributed within x; — x> plane as @ — 0 and
b — oo, and are isotropically distributed within x; — x3 plane
as a — oo and b — 0. Accordingly, the generalized structure
tensor H for one family of fibers could be simplified into five
special cases:

Perfect alignment — H = ag ® agp;

Isotropic dispersion — H = (1/3)1;

Transversely isotropic — H = k1 + (1 — 3k)ag ® ap when
K=1—2Kop;

Planar dispersion — H = kI + (1 — 2K)ag ® ag when I is
the 2D identity and k is the dispersion parameter in the
plane;

Planar isotropic - H = (1/2)1.

2.3 Free energy

The free energy Y, of corneal stroma per unit reference
volume is additively decomposed into 1) isotropic contribu-
tion from underlying matrix Wy}, and 2) anisotropic contribu-
tion from two families of collagen fibrils \V{i,

Ve =V, 0)+ Y Wl (Cais, Hy). (10)

=46

The matrix domain is treated as a nearly-incompressible
neo-Hookean material,

1 _ 1
Y = Go(l =3) + 5K (InJ)* (11)

with G denotes the ground state shear modulus, and K de-
notes the bulk modulus.

The mechanical response of collagen fibrils is modeled
by the following exponential form [34],

1 T 2 .
yll = % <exp(k2(li -1) )—1) for i=4,6, (12)



1/2 ¢

0 b oo
1/3 1/2

op

Fig. 2. The total PDF p(@, CID) in equation (7) is projected onto the surface of a unit sphere considering different in-plane and out-of-plane
distributions. The main collagen fibril orientation is N = [1,0,0]" with an out-of-plane normal of a,, = [0,0, 1].

where k1 and k, denote two the stress-like parameters. The
distortional generalized invariant I is given by

I} = tr (H;Cais) 03

= Al +Bl;+ (1-3A—B)I, for i=4,6.

It is worth noting that the collagen fibril free energy does
not have any volumetric contribution to the total free energy.
Furthermore, collagen fibrils are not able to withstand any
compression, so if Iy < 1 and Iy < 1, the free energy \V,f' is
completely omitted in equation (10).

Based on thermodynamic restrictions, the Cauchy stress
is then given through

oy ‘
T=2/"'"F=2EF =T" T/ 14
¢ + i§6 : (14)
where

T = 7 '[Go(Bgis)o + K (InJ)1] (15a)

1
(Buis)o = Buis — 3t (Bais) (15b)

and

T/ =27 Bk (IF — 1) exp(ka (] —1)*)][FHF"
| (16)
~ (O]

are the stress contributions from the underlying matrix and
collagen fibrils, respectively.

3 Governing equations
The balance of linear momentum in the deformed body
B; under the equilibrium condition is given by
divT =0, a7
where T the total Cauchy stress given by equation (14). The

surface traction on the deformed body surface 9B is given
by

(18)



where n is the out-normal to 0B, and [[e]] is the jump opera-
tor, defined as the difference between the quantity inside and
outside the domain.

4 Results and Discussion

The proposed model is implemented numerically in
Abaqus/Standard [36] by writing a user-defined material
subroutine (UMAT), and its verification is found in Ap-
pendix A. In this section, we investigate the capabilities of
the proposed model by simulating the standard inflation test.

4.1 Experimental measurements

We use the previous inflation experimental resultsof An-
derson et al. [37]. In these experiments, porcine corneal
samples, with the narrow ring of surrounding scleral tissue,
were mounted such that the portion that connects the limbus
and the sclera was fully fixed. An internal pressure with a
maximum value of 100 mmHg was gradually (quasi-static
condition) applied to the samples’ posterior surface. Mean-
while, the apical displacement was continuously monitored
by a CCD laser displacement sensor and plotted against the
pressure.
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Fig. 3. Schematics of the human cornea. The top view is drawn
based on the work from [42]. The key components are Central — a
circular region with a radius about 4.5 mm; Limbus — a ring border
about 1.5 to 2 mm wide that encircles the periphery of the central re-
gion; Sclera — the opaque tissue of the eye; Nasal — the side near the
nose; Inferior — the south side; Temporal — the opposite side of nasal;
Superior —the north side; Anterior — the outer surface; Posterior — the
innermost surface. The inset is a typical SHG image [14] showing the
variation of collagen fibril distribution across the thickness.
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4.2 Geometry and boundary conditions

The first step in any numerical simulation is to define an
accurate geometrical representation of the sample. Since we
do not have any information about the exact geometry used in

inflation tests [37], a generic but popular form is adopted. In
particular, we use a biconic surface equation in a cylindrical
coordinate system {®,r,x3} for both anterior and posterior
surfaces of the cornea [24],

G "E 0 (19)
X3 — _——
’ 1+V1-rF
with
£ cos’(@—0,,) sin’(®@—0,) 20)
R, Ry,
and
cos?(®@— 0O sin? (@ — @
F = (Qxl + 1)% 4 (sz + 1)(R72x1)
X1 X2
(21)

Here, G is the maximum vertical height at » = 0, both R, and
Ry, are the maximum curvatures of the principal meridians
along x; and x; directions, respectively. ®,, is the direction
of the steepest principal meridian, both Q,, and Qy, are the
asphericity parameters in the directions ®,, and @y, +7/2,
respectively.

We use referential unit vectors ag and ag to represent
the two mean orientations of collagen fibrils (see Figure 4a).
In the central region, two families of the collagen fibrils are
running from N-T (red) and I-S (blue) directions in a 3-D
curved fashion. In the limbus region, one family of collagen
fibrils (red) is running circumferentially, and another (blue)
is pointing outwards from the center. Additionally, the out-
of-plane direction is denoted as the unit vector a, (black).

For simplicity, we assume that both families of colla-
gen fibrils share the same in-plane dispersion parameter K;jp.
Guided by the previous study on X-ray scattering images [9],
the spatial distribution of in-plane dispersion is given by [24]

min max max min
Kip +Kip >_ (Kip _Kip

Kip(®) = < > ) cos4@®, (22)

where k;** = 0.5 and KMt = (.1 are the maximum and min-
imum value, respectively. After adding the » dependency,
equation (22) becomes

in 1 min 2nr
Kip(®,r) = K}E + 3 (Kip((a) —Kip ) <1 — cosR—TZ) , (23)

where Rtz = 5.5 mm denotes the radius of the transition
zone. Note that we assigned a homogeneous in-plane dis-
persion kj, = 0.5 in the limbus region. The visualization of
equation (23) is shown in Figure 5a. In the process of assign-
ing the out-of-plane parameter Ko, across the thickness, we
used a local coordinate s € [0, 1] parallel to the out-of-plane
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Fig. 4. Assignment of mean collagen fibril orientation and finite ele-
ment mesh. a) The main orientation of two families of collagen fibrils
is represented as two unit vectors of ag (red) and ag (blue). The out-
plane direction is denoted by the unit vector a,, (black). b) The finite
element mesh, along with the applied boundary conditions. A quarter
of the entire geometry is shown here for clarity.

unit vectors. The local coordinate s = 0 at the anterior sur-
face, while s = 1 at the posterior surface (see inset plot in
Figure 3). Guided by the SHG image, where the degree of
interweaving between collagen fibrils is found to be varying
exponentially across the thickness, we link the out-of-plane
dispersion parameter Koy to the local coordinate s via the fol-
lowing function,

Kop(s) = Kon" + (K& — k") (1 —exp(—Yas)),  (24)

where Kgg“ = 1/3 and kgg* = 1/2 are minimum and max-
imum value, respectively, and the constant y; controls the
non-linearity of the function (see Figure 5b).

The geometry is discretized into U3D8 elements with
six elements spanning the thickness, and only a quarter of
the entire mesh is presented for clarity (see Figure 4b). For
boundary conditions, we fully fix the surface linking the lim-
bus and sclera and applied an internal pressure of P = 100
mmHg to the posterior surface.

Before running the simulation, one should pay extra at-

K ip

0.510
0.476
0.442
0.407
0.373
0.339
0.305
0.271
0.237
0.203
0.168
0.134
0.100
0.096

a)

0.5

0.45,

5 04 —ya =1
“ —Yd = 2.5
—Y =5
0.35 —q =10 |
—Ya =25
——Yd = 100
0.3 : : : :
0 0.2 0.4 0.6 0.8 1
s
b)

Fig. 5. a) The variation of the in-plane dispersion parameter Kj, as
a function of space, b) the variation of the out-of-plane dispersion
parameter as a function of corneal thickness s.

tention to the starting point of the simulation. Given that
the in-vivo measured dimensions Xphysio of the cornea un-
der a physiological loading of Pypysic = 16 mmHg, we first
obtain the stress-free geometry though a zero-pressure algo-
rithm [43, 44]. In the algorithm, the mesh connectivity is
kept unchanged while the zero-pressure nodal coordinates
Xi+1 are iteratively updated through

Xi1 = Xp + (X3 — Xpnysio) (25)

where X; and X,‘:Ef denote the zero-pressure and deformed
coordinates at kth step. Meanwhile, the mean collagen fib-
ril orientations are consistently mapped back to the zero-
pressure configuration. Here, the iteration is terminated
based on the global error e = | |X2ef — Xphysio| |- The param-
eters of the biconic equation (19) used for the anterior sur-
face under P = 16 mmHg are obtained from previous stud-
ies [24], i.e., Ry, = 7.71 mm, Ry, = 7.87 mm, O,, = 0.51m,
Oy, = Ox, = —0.41 and G = 2.52 mm. The parameters used
for the posterior surface under P = 16 mmHg are R,, = 6.36
mm, Ry, = 6.69 mm, ©,, = 0.51x, Oy, = 0y, = —0.52 and
G = 1.89 mm. We plot the physiological coordinates as black
stars, while the deformed and zero-pressure coordinates at



each iteration as red and blue stars (see Figure 6a). It is
observed that the global error is minimized quickly within
about ten iterations (see Figure 6b).
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* Deformed
* Zero-pressure T
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Fig. 6. The zero-pressure algorithm. a) The side view of the con-
verged stress-free configuration. b) The convergence plot.

4.3 Comparison

We consider six different collagen fibril distributions,
i.e., transversely isotropic (T.I.), perfect alignment (P.A.),
isotropic (I.), planar dispersion (P.D.), planar isotropic (P.I.),
and full-thickness variation (F.V.) in our simulation, which
are based on material parameters given in Table 1. The pa-
rameters are selected, such that the apical rise - pressure
curves of both F.V. and T.I. fall onto the experimental data
as close as possible (see Figure 9a). The other four cases are
simulated using their respective dispersion parameters while
keeping mechanical parameters unchanged.

We compare the contours of Von-Mises stress among all
cases under internal pressure of P = 100 mmHg (see Figure
7). For the cases of T.I., P.A., and P.D., the contours share
a similar pattern — a cross mark in the central region — indi-
cating that the collagen fibrils along N-T and I-S directions
are under tension. In the case of F.V., the Von-Mises stress

is much lower at the anterior surface. It is because collagen
fibrils near the posterior surface are almost perfectly aligned,
making them exhibit an earlier stretch-locking than the col-
lagen fibrils at the anterior surface. In the cases of I. and P.1.,
no significant stretching of the collagen fibrils is observed.

Echoing the main focus of the current study — model-
ing structural variation in collagen fibrils across the corneal
thickness — we plot in Figure 8§ the side view of the same
Von-Mises stress contour . The FE.V. case could predict a rea-
sonable stress profile across the thickness that is in line with
the observed collagen fibril distribution in SHG images. On
the other hand, the stress is found to be more concentrated at
the anterior surface in the cases of T.I., P.A., and P.D. There
is no apparent stress gradient across the thickness in the cases
of I. and P.I.

In Figure 9a, the simulated apical rise - pressure curves
are plotted as lines, while the experimental data obtained
from Anderson et al. [37] are plotted as circles. The cases of
T.I. and F.V. can capture the experimental results quite well.
The case of P.A. exhibits the earliest stretch-locking behav-
ior, while the case of I. shows no fiber engagement under the
same boundary conditions. Interestingly, for planar cases of
P.D. and PI., the collagen fibrils exhibit a relatively earlier
stretch-locking behavior caused by the narrower dispersion
space.
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Fig. 7. The distribution of Von-Mises stress (MPa) for six different
cases at an internal pressure of P = 100 mmHg.

4.4 Parametric study
Here we investigate the influence of decay rate constant
Y4 on the mechanical response of corneal stroma under in-



Table 1. Material parameters used in the simulation
T.L PA. L PD. PI. EV.
Go (MPa) 0.06 0.06 0.06 0.06 0.06 0.06
K (MPa) 5.5 5.5 5.5 5.5 5.5 5.5
k1 (kPa) 20 20 20 20 20 0.5
ko (-) 400 400 400 400 400 900
K [24] 0 1/3 N/A N/A N/A
Kip N/A N/A N/A Figure 5a 1/2 Figure 5a
Kop N/A N/A N/A 1/2 1/2 Figure 5b
Ya N/A N/A N/A N/A N/A 2.5
/ \ 100 ‘ — ‘
- , o Experiment ! o
Transversely isotropic _ TIL | /, ofli
80 N—P.A. [I |
—F.V. r y
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Fig. 8. The through-thickness distribution of Von-Mises stress jC:D 60+ — =5 7
(MPa) for six different cases at an internal pressure of P = 100 IS =25 /
mmHg. I B 1' /) o
I 40 N _’Yd - // (o)
p— /
/
flation. Figure 9b compares the apical rise - pressure curves 201t
under different values of y,. It is seen that the “stretch lock- .
ing” behavior occurs earlier as y; increases. It is because 0 ‘ ‘ ‘ ‘
a large fraction of collagen fibrils with the narrower out-of- 0 0.2 0.4 0.6 0.8 1
plane dispersion is engaged in the deformation. The case Apical Displacement (mm)
with y; = 2.5 has a good agreement with the experimental b)

results. More interestingly, as Figure 10 shows, the spots
of high-stress concentration move from the posterior to the
anterior side as Y, increases. This result could be useful in
terms of predicting the location of the highest stress across
the thickness with the known collagen fibril architecture.

4.5 Numerical expensiveness

In this section, we compare the proposed model against
a recent Al model [26], in which the collagen fibril free en-
ergy is obtained from the angular integration over the unit

Fig. 9. The apical rise - pressure curves. a) The comparison be-
tween experimental data and six different numerical cases of the
present work, b) the effects of the exponential decay parameter Yq
on the numerically obtained apical rise - pressure curves.

sphere Q,

1
v =i+ [ paowgae @)
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Fig. 10. The effect of different decay rate values constant Y, on the
distribution of Von-Mises stress (MPa) across corneal thickness at
P = 100 mmHg.

with dQ = sin®dPdO denotes the differential unit sphere,
a( denotes the referential collagen fibril orientation, ;' de-
notes the matrix free energy, and w denotes the collagen fib-
ril strain energy, which is a function of fiber stretch A;. The
integral in equation (26) is normalized by m = [, p(a9)d<Q.
We implement the Al model numerically in Abaqus/Standard
[36] by writing UMAT. The simulated apical rise - pressure
curve using the Al model, is shown in Figure 9a as the dotted
black line, which shows a good agreement with the experi-
mental data. The CPU elapsed time of simulations under the
different number of unconstrained degrees of freedom ngor is
recorded. It is found that the CPU elapsed time ratio between
the two models 751 /tGsT is proportional to the number of un-
constrained degrees of freedom ngor (see Figure 11). Since
the double angular integration in equation (26) is evaluated
by the Gaussian quadrature scheme, the number of Gauss
points has a significant impact on the numerical expensive-
ness, where the time ratio is nearly 100 at ngor = 140 by using
64 Gauss points. Overall, the proposed model has almost the
same feature as the Al one, but it is cheaper in terms of the
simulation cost.

5 Concluding remarks

This work develops a continuum mechanics model con-
sidering collagen fibril out-of-plane dispersion across the
corneal thickness. In particular, the function that links the
out-of-plane dispersion parameter to the corneal thickness
serves as one of the important contributions of the current
work. The proposed model is numerically implemented, and
its capabilities are demonstrated by performing numerical
simulations of inflation experiments using six different colla-
gen fibril orientations, i.e., transversely isotropic, isotropic,
perfect alignment, planar dispersion, planar isotropic, and
full-thickness variation.

The results show that the proposed model can replicate
the experimental pressure displacement curves very well. It
also predicts a reasonable stress profile across the corneal
thickness. A parametric study on the decay rate constant in-
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Fig. 11. CPU elapsed time ratio between Al and GST approach
tAI/tGST as a function of the total numbers of unconstrained de-
grees of freedoms nq¢. The effects of Gauss points have also been
investigated.

dicates that the stress profile across the thickness is sensitive
to the collagen fibril out-of-plane dispersion. From the per-
spective of computational expenses, compared to a recent Al
model [26], the performance of the proposed model stands
out because while it requires much less computational power,
it has almost the same functionality.

Looking towards the future, more work yet remains. For
example, the model could be strengthened by incorporating
more detailed collagen fibril structural information — the in-
teractions between collagen fibril layers. The model could
also be extended by adding dissipative mechanisms such as
viscoelasticity and considering the corneal gel-like behavior
— poroelasticity and fluid migration [45, 46].
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A Appendix: Verification of finite element implementa-

tion

To verify the numerical implementations, we compare
our simulated results with the analytically tractable solu-
tions. We prescribe a simple shear motion to a matrix cube
embedded with a family of collagen fibril with a mean di-
rection of ag = [ay,ay,0]” and an out-of-plane direction of
a, = [—ay,a,,0]" (see Figure 12a). To make sure they are

a2 +a? =1 has to be ful-
filled. According to Gurtin [47], the simple shear deforma-

unit vectors, the condition of



tion is given by

[1y0 1+¥ 70
[F]=|010[, B]=| y 10,
1001 0 01
] 27)
1 v O
[Cl=|y¥+10
0 0 1

with ¥ = tan® denotes the amount of shear. Referring to
equation (5), the generalized structure tensor is given by

A+ Ba)zc + Ca)z, Dayay, 0
[H} = Dayay A+ Ba)z, + Ca)zc 0 (28)
0 0 A

withC=1—-3A—Band D =2B+ 3A — 1. Next, the gener-
alized invariant in equation (13) is now given by

I; =2A+Ba>+ Ca§ +2Dayayy
(29)
+(A+Bay+Cal) (Y +1).

Since the simple shear deformation is a volume preserved
motion (i.e., J = 1), the Cauchy stress in equation (14) could
be written as

T =GoB +2[ki(I; — 1)exp (ka(I; — 1)?)] [FHF'] 30)
+P1,

where P is a constitutively indeterminate pressure that is in-
troduced to satisfy the incompressibility constraint. On the
numerical side, a single element (U3D8) in Abaqus/Standard
[36] is prescribed with the same deformation. We also take
K = 103G to secure a nearly incompressible condition in the
simulations.

Figure 12b compares the analytical solutions against the
numerical solutions for the shear stress given by

Tio = Goy+2[ki (I — V) exp (ko (I; — 1)*)] [a+By], (31

where two constants are o = (2B + 34 — 1)aya, and B =
A+ Ba% + (1 —3A — B)a2, respectively. The stress is nor-
malized by the matrix shear modulus Gy, and three differ-
ent combinations of dispersion parameters are considered.
The excellent agreement between the numerical and analyt-
ical solutions suggests that our numerical implementation is
fully verified.
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