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Abstract. The Standard Model (SM) possesses an instability at high scales that would be
catastrophic during or just after inflation, and yet no new physics has been seen to alter
this. Furthermore, modern developments in quantum gravity suggest that the SM degrees
of freedom are not unique; that a typical low energy e↵ective theory should include a large
assortment of hidden sector degrees of freedom. It is therefore puzzling that cosmological
constraints from BBN and CMB reveal that the early universe was almost entirely dominated
by the SM, when the inflaton � could have decayed into many sectors. In this work we propose
the following explanation for all of this: we allow the lowest dimension operators with natural
coe�cients between the inflaton and both the Higgs and hidden sectors. Such hidden sectors
are assumed to be entirely natural; this means all unprotected masses are pushed up to high
scales and project out of the spectrum, while only massless (or protected) degrees of freedom
remain, and so the inflaton can only reheat these sectors through higher dimension (and
suppressed) operators. On the other hand, the SM possesses a special feature: it includes
a light Higgs H, presumably for life to exist, and hence it allows a super-renormalizable
coupling to the inflaton �H†

H, which allows rapid decay into the SM. We show that this
naturally (i) removes the instability in the Higgs potential both during and after inflation
due to a tree-level e↵ect that increases the value of the Higgs self-coupling from the IR to
the UV when one passes the inflaton mass, (ii) explains why the SM is dominant in the
early universe, and in particular we compute the relative temperature and abundances of
the sectors, (iii) allows dark matter to form in hidden sector/s through subsequent strong
dynamics (or axions, etc), (iv) allows for high reheating and possibly baryogenesis, and (v)
accounts for why there so far has been no direct detection of dark matter or new physics
beyond the SM.
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1 Introduction

The Standard Model (SM) of particle physics and gravity has so far passed all experimental
tests in the laboratory and solar system. Its structure has internal theoretical consistency
with the laws of quantum mechanics and relativity, far beyond any theory previously estab-
lished, such as the Fermi theory or the theory of elementary massive W-bosons. With the
inclusion of the Higgs particle and the graviton, it provides for the first time a unitary theory
up to the Planck scale, and it is an open question at what scale it first breaks down.

On the other hand, from the top down point of view, there is currently no understanding
why the SM has the particular set of degrees of freedom that it does. In fact our leading
theory of quantum gravity, string theory, suggests there should be many hidden sectors ; new
degrees of freedom beyond the SM involving new gauge groups and various new types of
particles (e.g., see [1, 2]). Furthermore, astronomical tests reveal to us new physics beyond
the SM, including dark matter, the need for a baryon asymmetry, and the need for early
universe inflation.

The existence of dark matter appears at first sight to be in accord with such top down
expectations; namely one can imagine that the dark matter arises out of one or more of these
hidden sectors. This is an idea that we will discuss more later in this paper. However, this
idea of many hidden sectors seems to be in great tension with the following observational fact:
both big bang nucleosynthesis (BBN) and cosmic microwave background radiation (CMB)
measurements tell us that the early universe was in fact almost entirely dominated by the
SM light degrees of freedom (photons, neutrinos, etc). The current bound is that any new
particles constituted < 4% (at 95% confidence) the total energy of the early universe. If
there are in fact many hidden sectors, including those that provide dark matter, etc, this
seems quite puzzling.

In terms of the SM’s own internal consistency, there is in fact a sub-Planckian scale at
which it may be breaking down, giving us the first need for new physics. As is well known, if
we take the SM and run its coupling up to high scales using the known renormalization group
(RG) equations, then there is a potential problem with the Higgs H’s self-coupling � (the
coe�cient of the quartic term �L = �� (H†

H)2). At two-loops the running of � = �(E) is
given as the solid lines in figure 1. The coupling goes negative for energies E & 1010�11GeV,
depending on the top mass. This means that the corresponding e↵ective Higgs potential
Ve↵(h) ⇡ �(h)h4/4 turns over and goes negative at high scales too [3–6].
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It is known that this turn over in the potential renders the lifetime of our electroweak
vacuum only meta-stable, with a lifetime that is much longer than the current age of the
universe. However, this can have disastrous consequences during the early universe, especially
during or just after cosmic inflation, since the Higgs field can exhibit fluctuations that take it
to the unfavorable side of the potential [7–9]. During inflation, there are de Sitter fluctuations
in the Higgs ⇠ Hinf/(2⇡), which places a bound on the inflationary Hubble scale of Hinf .
109GeV, as we determined precisely in the context of eternal inflation recently [10–12]. Even
if this condition is satisfied during inflation, there are still potential problems in the post-
inflationary era; if there are non-negligible couplings between the inflaton and the Higgs, such
as �L = ��H

†
H � c�

2
H

†
H, this can lead to large parametric resonance that can again

cause the Higgs field to fluctuate to the unfavorable side [13–18]. The trilinear term ⇠ �H
†
H

seems especially dangerous because it will cause the Higgs field to become tachyonic as �
oscillates, leading to explosive fluctuations in H.

The traditional solution to the above is to assume the Hubble scale of inflation is small
and the coupling of the Higgs to the inflaton is small to avoid the post-inflationary disas-
ter [19–25]. However, low scale inflation arguably requires more fine-tuning of the inflationary
potential, especially since the bound Hinf . 109GeV has to be satisfied all the way back to
very early times. Moreover, the need to have a small coupling between the inflaton and the
Higgs only exacerbates the problem we mentioned earlier: it makes it di�cult to e�ciently
reheat the visible SM sector, relative to many possible hidden sectors, and therefore we are
left with the central puzzle as to why the early universe was dominated by the SM.

In this paper, we point out that there is a very reasonable framework that resolves all
of these issues. We allow for naturally large couplings between the inflaton and the Higgs,
including the trilinear coupling ⇠ �H

†
H, and point out that for large couplings, there is

a tree-level correction to the Higgs potential that can remove the instability altogether for
reasonable values of the inflaton mass, and for any scale of inflation. The regime in which
this may or may not work is computed in detail in this work.

Furthermore, we explore the consequences of having hidden sectors with entirely natural
parameters. The basic principle of naturalness suggests that if any unprotected (by a sym-
metry) masses are allowed for hidden sector particles, their masses should be taken to very
high scales. In particular, this can be heavier than the inflaton, and therefore can project out
of the physical spectrum relevant to the post-inflationary era. On the other hand, massless
(or very light particles, such as axions with an approximate shift symmetry or Dirac fermions
with an approximate chiral symmetry) can remain. This is all compatible with the idea of
technical naturalness.

Given this imposition of naturalness, one must then consider the status of the Higgs
mass in the SM, which has a relatively light Higgs. One may wonder why it is light. In
this case, however, we must bear in mind that the visible sector is fundamentally di↵erent
than the hidden sectors. In particular, we are evidently built out of the SM particles, whose
(fermionic) masses are proportional to the Higgs vacuum expectation value (VEV) v. Using
this fact, it has been shown in ref. [26] that this demands the Higgs VEV v is not too large
in order for life to exist. (This argument applies for moderate to large changes in v and the
first generation masses mu,d,e. However, if v is increased by many orders of magnitude, then
new phenomena can emerge [27]). Associated with this, and recalling that the Higgs mass is
mH =

p
2� v, one needs the Higgs mass to not be too large too (since large values of � are

not allowed by unitarity). On the other hand, we are not built out of dark sectors, so this
allows the dark sector masses to be entirely natural. Hence, given the need and existence of
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the SM Higgs, we have a super-renormalizable coupling to the inflaton ⇠ �H
†
H, while all

natural hidden sectors would primarily only couple to the inflaton through higher dimension
operators ⇠ �Giµ⌫G

µ⌫

i
, etc. As we show, this naturally produces much colder hidden sectors,

explaining why the SM is dominant in the early universe. Furthermore, dark matter can
readily form from hidden sectors at later times due to strong coupling e↵ects, as outlined by
some of us in ref. [28]. We show that pure Yang-Mills hidden sectors can be in good agreement
with galactic constraints due to its low temperature. (Alternatively, dark matter could arise
from axions, etc.) We also comment on how this framework can potentially accommodate
baryogenesis immediately after inflation and accounts for why we have yet to see any new
physics beyond the SM.

2 Inflaton couplings

For a real scalar inflaton �, we write down all possible Lorentz invariant interactions. In
the SM the Higgs is special in that it possesses a dimension 2 operator H†

H, related to the
Higgs mass term. For the hidden sector, we assume that all couplings are natural, hence
all bare masses are assumed to be taken towards some high unification scale. This implies
they e↵ectively project out of the spectrum and are produced by the inflaton in negligible
quantities. This leaves dimension 4 kinetic terms for massless (or nearly massless due to
some symmetry) particles as the most relevant. The leading interactions with the SM and
the hidden sector are therefore dimension 3 and dimension 5 operators, respectively

�L = ��H
†
H �

X

i

�

4Mi

Tr[Giµ⌫G
µ⌫

i
] + . . . (2.1)

where Gi represents some hidden sector gauge bosons. We also anticipate dimension 5 cou-
plings to hidden sector fermions ⇠ �  ̄ /@  , but this does not lead to rapid decay of infla-
ton, due to helicity suppression, and so it is not as important. For vector-like fermions, a
small Dirac mass may be possible by appealing to an approximate chiral symmetry; how-
ever, the dimension 4 Yukawa coupling ⇠ y �  ̄  will then be small too, in accord with
technical naturalness. One can check that this self-consistently makes the decay rate into
light vector fermions very small. Note that we can also include the dimension 5 operator
�Tr[Giµ⌫G̃

µ⌫

i
]/Fi, where G̃ is the dual field strength, whose perturbative decay is similar to

the operator included. An additional feature is that for Fi significantly lower than the Planck
mass, then tachyonic resonance into Gi can be possible [29]. However, the resonance into the
Higgs turns out to be much stronger. Also, by assuming an approximate CP symmetry, this
term is in fact suppressed.

Hence, by assuming that the dark sectors are natural, we will exploit in this work the
idea that the inflaton can only couple to the dark sectors with higher dimension operators,
but can couple to the Higgs with a low dimension operator. This does of course assume a
distinction between the sectors, but this is certainly not tautological: the point is that the SM
may have an un-naturally light Higgs for life to exist, but the dark sectors need not have any
un-naturally light scalars since we are evidently not built out of dark degrees of freedom and
this has profound consequences. Put di↵erently, the observation of needing a light Higgs VEV
is ordinarily thought to be only relevant to prevent fast decays of nuclei [26], but does not
obviously have any bearing on the contents of the reheated sectors of the universe; however,
we show that it does. In fact this point of view leads to non-trivial consequences, including
the relative temperatures of the sectors, that we will compute in detail in this work.
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The coe�cient  will be constrained shortly by the requirements of unitarity and cosmic
stability, while the scale Mi represents some high mass scale, perhaps on the order of the
Planck mass MPl (⌘ 1/

p
8⇡G). More generally, we can lift these coe�cients to be function of

�, as �! f(�), �/Mi ! fi(�), which may be important during inflation when the inflaton
has very large field values, perhaps of order MPl (note that we need fi(�) > �1 to avoid the
dark gauge bosons becoming ghostlike, which provides extra motivation for a high value of
Mi). However in the post-inflationary era, as � red-shifts, these leading terms will be of most
importance. The inflaton and Higgs sector of the potential is

V =
m

2

�

2
�
2 + �(H†

H � v
2
/2) + �(H†

H � v
2
/2)2 + . . . (2.2)

so we are expanding around hH
†
Hi = v

2
/2 and h�i = 0. Furthermore, in the regime that

we will work, there are no other new minima introduced (for  � m
p
� this would be

problematic, but the idea is that we will not work in such a regime). So it is a well behaved
vacuum.

3 Avoiding instability

To avoid the instability problem we can correct the e↵ective Higgs potential by exploiting
the direct coupling between the Higgs and the inflaton. One possibility would be to use the
quartic coupling �L = �c�

2
H

†
H, which leads to a loop correction to the running of � of

the order �� ⇠ c
2
/(4⇡)2, requiring c & O(1) to cure the problem. However, this is highly

problematic because this also leads to a correction to the inflaton self-coupling ⇠ �� �
4 of

similar size. Since any reasonable model of inflation has extremely small self-interactions to
give rise to small density fluctuations, this would require significant fine-tuning. (We will
discuss later that this same problem does not a✏ict our proposed solution).

In this work, we instead make use of the above trilinear interaction, which is much more
promising. At tree-level the inflaton can mediate an exchange between a pair of Higgses.
The t-channel diagram is given in figure 3(a). By summing over all 3 channels, we have a
contribution to the hh ! hh scattering amplitude of

�A = 
2

"
1

s�m
2

�

+
1

t�m
2

�

+
1

u�m
2

�

#
. (3.1)

We evaluate this at s = t = u = �E
2, and it provides a negative contribution to � as we flow

from the UV into the IR (attractive interaction). It is well known from the basic principles
of e↵ective field theory, that this leads to a tree-level shift in the e↵ective � of the following
(for a review, see ref. [30])

�IR = �UV � 
2
/(2m2

�
) (tree-level) (3.2)

In order to study the Higgs e↵ective potential in detail, it is important to include loop
corrections. As a first approximation, one can incorporate this tree-level e↵ect into the
running of the self-coupling � by adding the following contribution to the beta-function

�� =
d�

d lnE
= �

SM
�

+

2
E

2

(m2

�
+ E2)2

, (3.3)
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mtop = 172.9 GeV
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Figure 1. Running of the Higgs self-coupling � versus energy (in units of GeV). The red curve is for
mtop = 172.5GeV, the green curve is formtop = 172.9GeV, and the blue curve is formtop = 173.3GeV.
The solid curves are for the SM with no coupling to the inflaton, which runs negative, exhibiting an
instability at high scales. The dashed curves are for the SM with a nonzero trilinear coupling to
the inflaton �L = ��H

†
H, with m� = 1011 GeV and  = 0.6m�, which no longer runs negative,

removing the instability.

where �SM
�

is the beta-function of � in the pure SM. Note that if one ignores the loops here
(i.e., �SM

�
), then one readily recovers eq. (3.2) as required.

Now the key idea is that by fixing � to its observed value at low energies �IR ⇡ 0.13,
the above coupling to the inflaton provides a positive correction to the e↵ective � as we flow
to high energies E & m�. Furthermore, note that this ensures that indeed no new additional
minima are introduced, as we mentioned after eq. (2.2). We used the SM beta functions at
2-loops, solving for the evolution of Higgs self-coupling, the top quark Yukawa coupling, and
the 3 gauge couplings. For su�ciently large values of  and for su�ciently small values of m�,
this can prevent the self-coupling and the e↵ective potential going negative. An example of
the e↵ect on running is given by the dashed curves in figure 1. A similar idea with other kinds
of (non-inflationary) scalars was presented in the important work of ref. [31] (connections to
axions was described in ref. [32] and related ideas appears in ref. [33])). One can readily
confirm that in this regime the global minimum is at hH†

Hi = v
2
/2 and h�i = 0 and there

are no other minima.
If the trilinear coupling  is too large then the Higgs self-coupling increases to such large

values that the theory violates unitarity at high scales. To determine the unitarity bound,
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Figure 2. Allowed region for the parameters in the model: the vertical axis is the trilinear coupling
 (in units of m�) and the horizontal axis is the inflaton mass m� (in units of GeV). The red
region is for mtop = 172.5GeV, the green region is for mtop = 172.9GeV, and the blue region is for
mtop = 173.3GeV (these are the central and 1 standard deviation uncertainties of the top mass [35]).
In the lower-right region the trilinear coupling  is so small that the Higgs potential still exhibits
an instability. In the upper-left region the trilinear coupling  is so large that the theory violates
unitarity below the Planck scale MPl.

the scattering amplitude A can be decomposed in partial waves al as [34]

A = 16⇡
X

l

(2l + 1) al Pl(cos ✓). (3.4)

For the l = 0 partial wave, we have the unitarity bound Re[a0]  1/2. For hh ! hh scalar
scattering, we use the renormalized �(E) at some energy scale E, giving A = 6�(E). Hence
we have the unitarity bound

�(E) 
4⇡

3
(unitarity) (3.5)

Since the self-coupling can grow with energy due to the trilinear coupling , this puts an
upper bound on . For concreteness, we can demand that our theory remain unitary up to
the Planck scale MPl = 2.4⇥ 1018GeV. In the upper-left region of figure 2 this condition is
violated.

On the other hand, if the trilinear coupling  is too small, then the Higgs self-coupling
still runs negative. This means the instability in the Higgs potential persists, which can
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have disastrous e↵ects during or after inflation. In the lower-right region of figure 2 this
problem occurs.

In the colored regions of figure 2 neither of the above problems occur. The allowed
region is sensitive to the value of the top mass mtop. To make this figure we have fixed
all other parameters to the central best-fit values: Higgs mass is mh = 125.1GeV, strong
coupling is ↵s(mZ) = 0.1181, electromagnetic coupling is ↵(mZ) = 1/127.9, and weak angle
is sin2 ✓w = 0.23122. For the top mass we have explored the favored region based on direct
measurements [35], namely

mtop = 172.9± 0.4GeV. (3.6)

(the contribution from all lighter SM fermions is negligible), here the error bar is 1 standard
deviation, though the uncertainty in the top mass is under debate [36]. We note that for
the central value of the allowed top mass 172.9GeV, the inflaton mass can be as large as
m� ⇠ 1012GeV if we push  towards its upper value allowed by unitarity  ⇠ 1m�. If
the top mass is taken towards its lower value allowed by current data, then the inflaton
mass can be even higher, including ⇠ 1013GeV. The latter is near its preferred value in
some of the simplest inflation models, such as chaotic inflation; in this model the potential is
simply V = m

2

�
�
2
/2 with m� ⇡ 1.4⇥ 1013GeV. If we decrease the top mass from its central

value by 1 standard deviation, as plotted as the red region in figure 2, we can have m� as
large as 5 ⇥ 1012GeV. While if we decrease the top mass by 2 standard devations, we can
accommodate the chaotic inflaton mass of 1.4⇥ 1013GeV.

The reason inflation typically prefers these inflaton masses in the simplest models is that
the ratio m/MPl roughly sets the amplitude of primordial fluctuations, which is measured
to be

p
P ⇠ 10�5. Although m� can be smaller than this in other models. We do not claim

to explain why
p
P ⇠ 10�5, but we take this as a fact of nature, and may be explored in

other work.
We note that since  . m�, the renormalization of the inflaton’s mass �m

2

�
⇠ 

2
/(4⇡)2

is small, and so no additional fine-tuning is introduced in the inflaton sector. Furthermore,
there are no quartic terms ⇠ ���

4 generated in this model, as can be directly checked by
computing the Coleman-Weinberg e↵ective potential [37]. In fact can easily complete the
trilinear potential to have quartic terms ⇠ ���̃

4
, ��h�̃

2
H

†
H, as follows

V = ��(�̃
2
� �

2

0)
2 + ��h(�̃

2
� �

2

0)(H
†
H � v

2
/2) + �(H†

H � v
2
/2)2 (3.7)

At low energies, we can expand around the inflaton’s VEV as �̃ = �0 + �, to obtain the
inflaton mass as m� ⇠

p
�� �0 and the trilinear coupling as  ⇠ ��h �0. For simple models

of inflation, one usually has �0 ⇠ MPl ⇠ 1018GeV, so if m� ⇠ 1012GeV (see figure 2),
we need �� ⇠ 10�12 (which is well known for simple inflation models). If we also take
 . m� (again see figure 2), we need ��h ⇠ 10�6. Since we already know that � ⇠ 0.1
for the Higgs, this trio of quartic couplings (⇠ 1012, ⇠ 10�6

, ⇠ 0.1) is stable under loop
corrections. In particular, the cross term ��h generates a 1-loop correction to both �� and �
of ⇠ �

2

�h
/(4⇡)2 ⇠ 10�14, which is negligible compared to � and even smaller than ��. Indeed

these all have self-consistently tiny corrections. (This is all in stark contrast to the simplistic
solution mentioned at the start of this section, where there is no trilinear coupling, but only
a quartic �L = �c�

2
H

†
H coupling, and using this at loop level to fix the instability. This

demands c & O(1) to cure the instability, leading to a much, much larger correction to ��.)
Returning again to the trilinear theory, there are of course loop corrections to the

2�! 2� scattering amplitude, but it can be readily checked that these e↵ects are extremely

– 7 –
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(a) (b)

(c) (d)

Figure 3. Some relevant processes in the paper. The dashed lines represent the Higgs, solid lines
represent the inflaton, and wiggly lines represent hidden sector particles, such as hidden gauge bosons.
(a) gives a tree-level correction to Higgs self-coupling �, (b) & (c) allow Higgs and inflaton to thermalize
during reheating, and (d) allows inflaton to decay into hidden sector particles.

small during inflation; the reason is that when we expand around the inflaton’s large VEV
(which is usually Planckian), the Higgs acquires a large e↵ective mass me↵ ⇠ �0, which
significantly suppresses loop corrections. This ensures that we are studying a well behaved
e↵ective field theory, both during inflation, and at low energies after inflation.

4 Dark radiation relic abundance

In the beginning of the post-inflationary era of “preheating”, the Higgs field may undergo
parametric resonance as the inflaton oscillates coherently about its minimum [38]. Since we
are including the ⇠ �H

†
H interaction, this may be quite explosive. (In the literature,

this resonance is often avoided by demanding that the (maximum) Floquet exponent µF ⇡

�amp/(2m�) . Hubble, which implies  . m
2

�
/(MPl). But this suppresses the decay into

SM.) However, since there is no true instability remaining in our potential, a resonance is
harmless; it quickly leads to fragmentation of the inflaton condensate, and then the system
approaches more standard incoherent behavior.

– 8 –
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At this time, perturbative processes will become important, including the decay of the
inflaton into Higgs particles and hidden sector gauge bosons �i, etc, with rates (see figure 3
(c) & (d))

�(�! hh) =
gh

32⇡


2

m�

, (4.1)

�i(�! �i �i) =
gi

128⇡

m
3

�

M
2
i

, (4.2)

where gh is the number of components of the Higgs, which in the SM is gh = 4, and gi

is the number of dark boson helicities, e.g., for SU(Ni), we have gi = 2(N2

i
� 1). Since

we assume  ⇠ m� (recall figure 2) and since Mi is assumed to be near some high scale,
such as MPl, we can be sure that the decay into the Higgs is fastest. The Higgs will then
interact with itself and the rest of the SM and thermalize. This thermalization will be rapid
and occur at the time treh ⇠ 1/Hreh ⇠ 1/�(� ! hh). Using the Friedmann equation in a
radiation dominated era H

2
reh = g⇤⇡

2
T
4
reh/(90M

2
Pl), gives the standard estimate for the reheat

temperature Treh ⇡ 0.5
p
�MPl. For  ⇠ m�, we obtain

Treh ⇠ 0.1
p
m�MPl. (4.3)

For the central top mass, we need m� . 1012GeV, giving Treh . 1014GeV. This allows
for such high reheat temperatures that new particles may be produced with renormalizable
couplings to the SM. In particular, this may allow for baryogenesis in the visible sector
to occur. A possible example may be to make use of the dimension 5 Weinberg operator
⇠ m⌫(L · H)2/v2 to facilitate spontaneous baryogenesis. We note that this operator is
suppressed by the scale ⇤ = v

2
/m⌫ ⇠ 1014GeV, which is higher than the scale at which the

Higgs potential would turn over (in the absence of our trilinear coupling). So the coupling
to the inflaton is still needed and is not significantly altered by this new term. Since we find
a reheat temperature of Treh ⇠ 1014GeV, this seems to fit in nicely with the scale of the
Weinberg operator, so it would be e↵ective for at least a little while, before freezing out.

In order to determine the abundance of the hidden sectors, we need to determine the
inflaton abundance and in turn the dark radiation abundances. The Boltzmann equation for
the inflaton’s occupancy number f�(p) is

ḟ�(p) + 3Hf� = �̃(p)(feq(p)� f�(p)) + . . . , (4.4)

where �̃(p) is the decay rate for a particle of momentum p. It is related to the ordinary decay
rate � by �̃(p) = ��(p, T )/�(p), where �(p) = m�/E�(p) is the Lorentz factor from time
dilation and �(p, T ) � 1 is a factor that accounts for Bose enhancement. We are including
both the forward and backward processes of 1 inflaton into 2 Higgses (since coupling to
dark radiation is suppressed), as depicted in figure 3 (c), while the “+. . . ” indicates other
processes, such as 2 inflatons into 2 Higgses, as depicted in figure 3 (b), etc. It is easy to check
that these rates are much larger than Hubble, ensuring thermal equilibrium of the inflaton
with the SM for all temperatures. This implies that for T ⌧ m� its abundance becomes
Boltzmann suppressed n� / e

�m�/T .
On the other hand, the dark sectors are expected to never be in thermal equilibrium

with the SM or the inflaton. For Mi near the Planck scale, it is clear that the production
rate (from decays or annihilations) of dark radiation is always much smaller than Hubble.
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The decay rate was given earlier in eq. (4.2). Since it is given by 2 inverse powers of Mi,
while Hubble is only given by 1 inverse power on MPl, it readily follows that it is smaller
in the regime of interest T & m� (before the inflaton abundance plummets exponentially).
Production from annihilations �ann = neqh�vi can be estimated (for T & m�) as �ann(hh !

�i �i)/H ⇠ 
2
MPl/(TM2

i
) and �ann(�� ! �i �i)/H ⇠ T

3
MPl/M

4

i
. The former is maximal

at T ⇠ m� and is moderately sub-dominant to the decay process � ! �i �i (since  . m�),
while the latter is maximal at high temperatures. If we push Mi to be somewhat close to
MPl and T ⇠ Treh, then this ratio is parametrically ⇠ (m�/MPl)3/2, which is extremely small.

Although it is out of equilibrium, the hidden sector will be produced by inflaton decay.
We would now like to determine the final energy density of dark radiation. Since the inflaton
is in thermal equilibrium with the SM, and its number density is changing over time, we can
determine the final energy density of dark radiation produced from decays as

⇢i(t) =
m� �i

a4(t)

Z
t

0

dt
0
n�(t

0) a4(t0), (4.5)

where n� is the number density of inflatons (we can ignore any Bose enhancement factors here,
because the injection energy ⇠ m� turns out to be much higher than the dark temperature).
We switch the time variable to temperature, using dt

0 = dT
0(dt0/dT 0) = �dT

0
/(T 0

H
0) (using

a / 1/T ). We use the Bose-Einstein distribution n� ⇠
R
d
3
k/(eEk/T � 1) and the Friedmann

equation to obtain the following result for the ratio of energy densities of dark species to the
SM thermal bath at late times

⇢i

⇢SM

=
5
p
5⇡2

7
p
2 g3/2⇤

�iMPl

m
2

�

. (4.6)

Using the SM value for the number of relativistic degrees of freedom g⇤ = 106.75 and the
decay rate in eq. (4.2), we obtain the relative amount of total dark radiation as

⇢d

⇢SM

⇡ 2.5⇥ 10�5
X

i

gi
m�MPl

M
2
i

. (4.7)

We see that if Mi is pushed to some high scale (such as Planck scale, or even a little lower),
we have ⇢d ⌧ ⇢SM, even if the number of degrees of freedom in the hidden sectors is huge.
For illustration, if we take Mi = 1017GeV, m� = 1012GeV, then we can still have O(105)
dark degrees of freedom and still maintain ⇢d/⇢SM < 0.001 at very early times.

Also, if we let gi⇤ be the number of e↵ective degrees of freedom in i
th dark sector

(gi⇤ = gi + 7ni/8, where gi is number of light bosons and ni is number of light fermions),
then we determine the ratio of temperatures of the i

th dark sector to visible sector to be

⇠i ⌘
Ti

T
⇡ 0.006

✓
gim�

gi⇤ 1012GeV

◆1/4✓
MPl

Mi

◆1/2

. (4.8)

5 Constraint from BBN and CMB

To compare this to constraints from BBN and CMB, we need to track the evolution down
to temperatures T ⇠ 1MeV and below. If there is strong dynamics, some (or most) of the
dark degrees of freedom can confine and convert their entropy into the remaining massless

– 10 –



J
C
A
P
1
2
(
2
0
2
0
)
0
2
5

degrees of freedom. We call the number of degrees of freedom g̃i⇤ at BBN after any pos-
sible confinement, and for the (dominant) visible sector we use notation g⇤(= 106.75) and
g̃⇤(= 10.75).

As is well known, at the time of BBN, the SM prediction for the e↵ective number of
neutrino species is Ne↵ ⇡ 3.046 (slightly larger than 3 due to a small coupling during e

+
e
�

annihilation). Hidden sectors contribute the additional amount [28]

�Ne↵ =
4

7

X

i

⇠
4

i g̃i⇤

✓
gi⇤ g̃⇤
g̃i⇤ g⇤

◆4/3

, (5.1)

The current bound on the number of additional massless species is [42] �Ne↵ < 0.30 (95%
confidence), which translates into the bound on the additional energy density of�⇢/⇢SM < 4%
(95% confidence), as mentioned in the introduction. By using the result in eq. (4.8), we have
⇠i ⇠ 10�2, and so the BBN bound is readily satisfied even for a very large number of particles
in hidden sectors.

6 Discussion

1. Dark Matter. Although the temperatures and hence energy densities of the dark sectors
are small at early times, this framework still readily allows for the formation of dark
matter. If one or more dark sectors include chiral fermions and undergo confinement,
then massive degrees of freedom can emerge, such as dark baryons etc, as outlined by
some of us in ref. [28]. This can lead to dark matter as a thermal relic, with abundance

⌦d ⇡

X

i

⇠i
0.26

(18TeV)2h�ivi
. (6.1)

So although it is suppressed by a factor of the ratio of temperatures ⇠i ⇠ 10�2, or so,
this can still readily produce the observed dark matter abundance ⌦d ⇡ 0.26, by either
(a) exhibiting strong dynamics at the scale ⇤i ⇠ 101�2TeV/

p
⇠i, or (b) compensating

by exploiting many sectors.

For pure Yang-Mills hidden sectors, glueballs can form with relic abundance ⌦i ⇠

⇠
3

i
(⇤i/(10 eV)) for SU(Ni) with Ni ⇠ 3 [39]. If one had ⇠i ⇠ 1, then this would be

highly problematic, since one would need ⇤i . 3 eV to avoid over closure, but this
leads to huge scattering cross sections �sc / 1/⇤2 in galaxies, which is clearly ruled
out. However, if we take our result from eq. (4.8) with ⇠i ⇡ 0.006, we can have
⇤i ⇠ 50MeV, which is marginally compatible with bullet cluster constraints [40, 41],
suggesting interesting deviations from CDM.

Other possibilities for dark matter include axions through the misalignment mechanism.
Depending on parameters, hidden sector axions could over close the universe, so we
must forbid such parameters in this scenario.

2. Isocurvature. We note that in this framework, since both the visible and dark sectors
all arise from the decay of the same inflaton �, the model predicts that the primordial
fluctuations are adiabatic. This is in accord with all current observations [42]. If the
dark matter arises from axions, then non-trivial bounds may apply.
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3. Lightness of Higgs. In this framework the lightness of the Higgs is accepted; we do not
require a direct dynamical resolution to the hierarchy problem. Instead it is assumed
that the smallness of the electroweak scale (and hence the Higgs mass) is due to en-
vironmental selection e↵ects; namely, if the electroweak scale were significantly larger,
then all nuclei would decay [26], and observers would not be present. This explanation
for the lightness of the electroweak scale has been criticized (e.g., [43]) by noting that
an alternative for the smallness of the electroweak scale could have been provided by
technicolor. This appears to be just as conducive to observers and would occur much
more readily in some landscape scenario, since technicolor does not appear to su↵er
from any fine-tuning.

However, our framework provides a new perspective on this issue; the Higgs provides a
unique opportunity for the inflaton to decay into the SM by the dimension 3 operator
⇠ �H

†
H, thus predominantly populating the visible sector (also see ref. [44]). On the

other hand, this opportunity would be lost in a Higgs-less model like technicolor. Hence
it is plausible that in any universe with technicolor, while the electroweak scale may
be naturally small, there would be a relatively huge abundance of dark radiation. This
leads to its own environmental problems by wiping out small scale structure [45], but
this problem is avoided in a universe with a light Higgs.

4. Inflaton mass and top mass. We can compare our findings for the preferred inflaton
mass figure 2, to expectations from inflationary predictions. The squared-amplitude of
fluctuations from inflation is known to be P ⇡ H

2
inf/(8⇡

2
M

2
Pl✏), with measured value

P ⇡ 2⇥10�9. In the simplest models of chaotic inflation, V = m
2

�
�
2
/2, this requires an

inflaton mass ofm� ⇡ 1.4⇥1013GeV, which is slightly high compared to what is allowed
in figure 2 (although it is allowed if we lower the top mass by 2 standard deviations).
However, such models predict a large tensor-to-scalar ratio, so lower values of Hinf are
required by constraints on primordial B-modes. In simple models this is (though not
always) correlated with lower values of the inflaton mass. This is then nicely compatible
with the required values from figure 2 in order to stabilize the Higgs potential.

We note that if the top mass were considerably higher, then very low inflaton masses
would be required to avoid the instability, which seems unsatisfying. While if the top
mass were considerably lower, then we would not want a trilinear coupling  that were
so large, because it would exacerbate the unitarity problems. Hence in some sense, the
observed value of top mass is optimal in this scenario.

5. Lack of new physics at low energies. In summary, we have found an extremely minimal
scenario that appears to accommodate all of the central features of our universe; vacuum
and Higgs stability, the domination of the SM in the early universe, inflation, dark
matter, and possibly baryogenesis too by allowing for high reheating. It does so by
positing only that our sector is atypical, presumably for life to exist, giving us a light
Higgs, while all the other hidden sectors are entirely natural. This prevents large direct
couplings of the inflaton to light particles in hidden sectors and it suggests that new
physics may only enter at very high scales associated with inflation. So this framework
accounts for why there has so far not been any direct detection of dark matter or new
physics beyond the SM in colliders or precision tests.
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