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Online Residential Demand Response via
Contextual Multi-Armed Bandits

Xin Chen

Abstract—Residential loads have great potential to
enhance the efficiency and reliability of electricity systems
via demand response (DR) programs. One major challenge
in residential DR is how to learn and handle unknown and
uncertain customer behaviors. In this letter, we consider
the residential DR problem where the load service entity
(LSE) aims to select an optimal subset of customers to
optimize some DR performance, such as maximizing the
expected load reduction with a financial budget or minimiz-
ing the expected squared deviation from a target reduction
level. To learn the uncertain customer behaviors influenced
by various time-varying environmental factors, we formu-
late the residential DR as a contextual multi-armed bandit
(MAB) problem, and develop an online learning and selec-
tion (OLS) algorithm based on Thompson sampling to solve
it. This algorithm takes the contextual information into con-
sideration and is applicable to complicated DR settings.
Numerical simulations are performed to demonstrate the
learning effectiveness of the proposed algorithm.

Index Terms—Residential demand response, online
learning, multi-armed bandits, uncertainty.

[. INTRODUCTION

ITH deepening penetration of renewable generation
Wand growing peak load demands, electricity systems
are inclined to confront a deficiency of reserve capacity for
power supply-demand balance. Instead of deploying additional
generators, demand response (DR) [1] is an economical and
environmentally friendly alternative solution that calls for the
change of flexible load demands to fit the needs of power
supply. Since residential load takes up a significant share of
the total electricity usage (e.g., about 38% in the U.S. [2]), it
has huge potential to be exploited to facilitate power system
operation. In residential DR programs [3], [4], the load ser-
vice entities (LSEs) signal an upcoming DR event and recruit
customers to participate with financial incentives, e.g., cash,
coupon, raffle, rebate, etc. During the DR event, customers
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reduce their electricity consumption to earn the payment but
are allowed to opt out. Since each recruitment comes with a
cost, it is crucial for the LSEs to target right customers for
DR participation.

However, in practice, the customer DR behaviors are highly
uncertain and unknown despite the offered incentives [4], [5].
According to the investigations in [6], [7], the customer accep-
tances of DR load control are influenced by individual pref-
erence and environmental factors. The individual preference
relates to customers’ intrinsic socio-demographic characteris-
tics, e.g., income, age, education, household size, attitude to
energy saving, etc. The environmental factors refer to real-time
externalities such as indoor temperature, offered incentives,
electricity price, fatigue effect, weather conditions, etc. While
LSEs barely have the access to customers’ individual prefer-
ences or the knowledge how environmental factors affect their
opt-out behaviors. Without considering the actual willingness,
a blind customer selection scheme may lead to a high opt-out
rate and inefficient load adjustment.

To address this issue, a natural idea is to learn unknown
customer behaviors through interaction and observation. In
particular, the multi-armed bandit (MAB) framework [8] can
be employed to model the residential DR problem. MAB
deals with uncertain decision-making problems where an agent
selects actions (called “arms”) sequentially and upon each
selection observes a reward, while the agent is uncertain
about how his selected actions affect the rewards. Through
the observation of action-reward pairs, the agent can learn
about the reward system and improve the selection strategies.
Moreover, if the reward system is affected by some contexts,
e.g., environmental factors and agent profiles, it is referred as
contextual MAB [8]. Due to its simple and general structure,
contextual MAB has been successfully applied in many fields,
such as recommendation systems [9], clinical trials [10], Web
advertisements [11], electric vehicle charging control [12],
and etc.

Contextual MAB is capable to account for the influence of
time-varying environmental factors on customer DR behav-
iors, which is missing or captured poorly in most existing
work. This is in principle an effective approach to miti-
gate the unavoidable impacts incurred by the changes in the
environment. For the existing literature, [13], [14] use rein-
forcement learning to learn the customer dissatisfaction on
job delay, and automatically schedule the usage of household
appliances under time-varying electricity price. In [15], [16],
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dynamical pricing schemes are designed based on the (con-
textual) MAB methods with the consideration of uncertain
user power consumption to the price change. Based on ideas
from crowdsourcing, [17] proposes an incentive-compatible
MAB mechanism to design monetary offers to customers with
unknown response characteristics to reduce power consump-
tion. In [18]-[21], MAB and its variations, e.g., adversarial
MAB and restless MAB, are applied to learn customer
behaviors and unknown load parameters, while the upper-
confidence-bound (UCB) algorithm, policy index, and other
heuristic algorithms are used to select right customers for
DR participation. In many of these research efforts [13]-[21],
simplified DR problem formulations are generally used, and
the influence of time-varying environmental factors is mostly
neglected.

Contribution: In this letter, to deal with the uncertain cus-
tomer behaviors and the environmental influence, we adopt
the contextual MAB to model the residential DR as an online
learning and decision-making problem. Specifically, this letter
studies the DR problem where the LSE aims to select right
customers to optimize some DR performance such as max-
imizing the expected load reduction with a financial budget
or minimizing the expected squared deviation from a tar-
get reduction level. Based on the Thompson sampling (TS)
framework [22], we develop an online learning and (customer)
selection (OLS) algorithm to tackle this problem, where the
logistic regression [23] is used to predict customer opt-out
behaviors and the variational approximation approach [24] is
employed for efficient Bayesian inference. With the decompo-
sition into a Bayesian learning task and an offline optimization
task, the proposed algorithm is applicable to practical DR
applications with complicated settings. Moreover, theoretical
performance guarantees on the proposed OLS algorithm are
provided, which show that a sublinear Bayesian regret can
be achieved. Lastly, the numerical simulations further demon-
strate that harnessing the contextual information, including
individual diversity and time-varying environmental factors, in
the learning process improves the predictions on customer DR
behaviors and leads to efficient customer selection schemes.

Il. PROBLEM FORMULATION
A. Residential DR Model

Consider the residential DR program with a system aggre-
gator (SA) and N customers over a time horizon [T] :=
{1,..., T}, where each time ¢ € [T] corresponds to one DR
event. As illustrated in Figure 1, there are two phases in a
typical DR event [25]. Phase 0 denotes the preparation period,
when the SA calls upon customers for load adjustment with
incentives and selects a subset of participating customers under
a certain budget. In phase 1, the selected customers adjust their
electric usage while they can choose to opt out if feel unsatis-
fied. In the end, the SA pays the selected customers according
to their contributions to the load adjustment. In the follows,
we consider the case with a supply deficit and a need for load
reduction, while the case with a supply surplus can be handled
in the same way.

l Phase 0
|

Phase 1 I

Launch a DR Customers SA selects  Customers reduce SA pays customers
event with decide whether ~customers for  load and decide and collect
incentives participate  load reduction  whether opt out information

Fig. 1. Two phases of a residential DR event.

For customer i € [N] := {l,...,N}, let d;; be the load
reduction at #-th DR event, and r;; be the credit paid to cus-
tomer i for such load reduction. Denote z;; € {1, 0} as the
binary variable indicating whether customer i stays in (equal 1)
or opts out (equal 0) during #-th DR event if selected. Assume
that z; ; is a random variable following Bernoulli distribution
with z; ; ~ Bern(p;;), which is independent across times and
customers. !

This letter studies the customer selection strategies at
phase O from the perspective of the SA. At t-th DR event,
based on the reported (d;, ri)icn], the SA aims to select
a subset of customers to achieve certain DR goals under the
given budget b;. Accordingly, the optimal customer selection
(OCS) problem can be formulated as

(1a)
(1b)

Ob;. Sr,rg%] gt((zi,t)iE[N]a (di 1)ien St)
st he(@iievs (riievys ) < br, S € T,

where g; is the objective function describing the DR goal that
the SA aims to optimize, and A, represents the cost function
that is constrained by budget b;. S; is the decision variable
denoting the set of selected customers. I1; is the feasible set
of &; that describes other physical constraints. For example,
the network and power flow constraints can be captured by
I1;, which is elaborated in [29, Appendix A]. In practice, the
set of available customers for each DR event may be different
at phase 0 (some customers may not decide to participate).
There are multiple ways for problem (1) to handle this issue,
e.g., by setting r; ; as a very large value or using I1; to model
the time-varying available set of customers.

The OCS problem (1) is a general model. Depending on
practical DR settings, functions g; and A; can take different
forms. Two concrete examples are provided as follows.

Example 1: Model (2) maximizes the total expected load
reduction, and constraint (2b) ensures that the total payment
to customers does not exceed the given budget.

Obj. max [E( E dizip) = E di it (2a)
+CIN] : :
ieS; €S,
S.t. E Vit < bl" (2b)

iES;

Example 2: Model (3) [18] aims to track a load reduction
target D; by minimizing the expected squared deviation in
objective (3a). (3b) is a cardinality constraint on S;, which
limits the number of selected customers by b;. This can also

IThe assumption of independence across times for each customer may be
restrictive in practice, due to the fatigue effects and other potential depen-
dencies. We cope with this limitation using the contextual model in next
sub-section, which can capture the effects of time-varying factors.
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be interpreted as the case with unit payment r; , = 1.

Obj. min E( d;zi— D)) 3

] S?g[lgll (Z 0,130t 1) (3a)
ieS;

s.t. |St|=21§bt. (3b)
iGSf

Since z;; ~ Bern(p;;) is assumed to be independent across
customers, the objective in (3a) is equivalent to

min (Z diipic — D>+ Y d}pis(1 = pi).

- ieS;

Remark: In our problem formulation, the offered credits r;
and the budget b, are given parameters. In practice, they can
also be jointly designed with the learning process to achieve
higher DR efficiency. This relates to the incentive mechanism
design for DR programs [25], which is beyond the scope of
this letter.

In the follows, Example 1 with the OCS model (2) is used
for the illustration of algorithm design, while the proposed
framework is clearly applicable to other application cases.

B. Contextual MAB Modelling

If the probability profiles p, := (pi r)ic(n] of customers are
known, the OCS model (1) is purely an optimization problem.
However, the SA barely has access to p; in practice, which
actually depict the customer opt-out behavior. Moreover, the
probability profiles p, are time-varying and influenced by var-
ious environmental factors. To address this uncertainty issue,
the contextual MAB framework is leveraged to model the resi-
dential DR program as an online learning and decision-making
problem. Specifically, each customer i € [N] is treated as an
independent arm. At each time ¢t € [T], the SA selects a set
of customers &;, then observes the outcomes (z;;)es, that are
generated from the distributions Bern(p; ), and receives the
DR outcome Zie S di;zi; as the reward in the MAB frame-
work. Since the customer opt-out outcome z;; is binary, the
widely-used logistic regression method (4) is employed to
model the unknown p; ;:

exp(o; + x;ﬁ,')

1 + exp(o; +x;’rtﬂl~)
where x; ; € R™ is the feature vector that captures the environ-
mental factors for customer i at t-th DR event. Each entry of
x; ; corresponds to a quantified factor, such as indoor/outdoor
temperature (for air conditioner loads), weather condition (e.g.,
sunny or rainy), the offered credit r;,, real-time electricity
price, the fatigue effect of being repeatedly selected, etc.
B; € R™ is the weight vector describing how customer i reacts
to those factors, and «; denotes his individual preference.
Denote %; ; := (1, x;;) as the context vector and 8; := (o;, 8,),
then the linear term in (4) becomes fc;Oi, and the unknown
parameter of each customer 7 is summarized by 6;.

As a result, the sequential customer selection in residential
DR is modelled as a contextual MAB problem. The SA aims to
learn the unknown (0;);c[n] and improves the customer selec-
tion strategies. To this end, we propose the online learning
and selection (OLS) algorithm to solve this contextual MAB
problem efficiently in the next section.

Pip = Vie[N],te[T] 4

Algorithm 1 Thompson Sampling Algorithm [22]

1: Input: Prior distribution 7P on 6.
2: fort=1to T do
3: Sample 6~ P.
4: ap < argmaxge 4, ]Epé [R(uz)|ar = al.
Apply a; and observe u;. PO Paulan
. : . o Ut|at
S: Posterior update: P <« 7 P(é)Pg(utla,)dé'
6: end for

[1l. ALGORITHM DESIGN

In this section, we first introduce the Thompson Sampling
(TS) algorithm, the offline optimization method, and the
Bayesian inference method. Then we assemble these methods
to develop the OLS algorithm for residential DR.

A. Thompson Sampling Algorithm

Consider a classical T-times MAB problem where an agent
selects an arm (action) a; from the set A; at each time f.
After pulling the arm a;, the agent observes an outcome u,
which is randomly generated from a conditional probability
distribution Py (-|a;), and then obtains a reward R, = R(u;)
with known deterministic function R(-). The agent intends to
maximize the total expected reward but is initially uncertain
about the value of 6. TS algorithm [22] is a Bayesian learning
framework that solves such MAB problems while effectively
balancing exploration and exploitation.

As illustrated in Algorithm 1, TS algorithm represents the
initial belief on 6 using a prior distribution P. At each time ¢,
TS draws a random sample 6 from P (Step 3), then takes the
optimal action based on the sample 6 (Step 4). After outcome
u; is observed, the Bayesian rule is applied to update the belief
and obtain the posterior distribution of 6 (Step 5). There are
three key observations about the TS algorithm:

1) As outcomes accumulate, the predefined prior distribution
will be washed out and the posterior converges to the true
distribution or true value of 6.

2) The TS algorithm encourages exploration by the random
sampling (Step 3). As posterior distribution gradually
concentrates, less exploration and more exploitation will
be performed, which strikes an effective balance.

3) The key advantage of TS algorithm is that the complex
online problem is decomposed into a Bayesian learn-
ing task (Step 5) and a deterministic optimization task
(Step 4) [26], and the optimization remains the original
model formulation, which enables efficient solution.

Motivated by the last observation, in the follows, we describe
the offline optimization method for Step 4 and the Bayesian
update for Step 5 in Algorithm 1, respectively.

B. Offline Optimization Method

At each DR event, given the customer probability profiles
p,, the OCS model (2) can be equivalently reformulated as the
binary optimization problem (5):

Z diiPiYi

max (5a)

" yiiel0,1)
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N
s.t. Zn,;yi,z < b (5b)
i=1

where binary variable y;; € {0, 1} is introduced to indicate
whether the SA selects customer i or not at #-th DR event.

The binary optimization model (5) can be solved effi-
ciently using many available optimization solvers such as IBM
CPLEX and Gurobi, which are employed as the offline solu-
tion tools. Let y; = (y;ft),-e[N] be the optimal solution of
model (5). For concise expression, the optimizer tools are
denoted as an offline oracle O : p, — y;.

C. Bayesian Inference for Logistic Model

For a simpler exposition, we abuse notations a little bit and
discard subscripts i and ¢ in this part as the Bayesian update
rule is the same across customers and times. Under the TS
framework, a prior distribution P(@) on the unknown param-
eter @ is constructed. After the outcome (%, z) is observed, the
posterior distribution is calculated by the Bayesian law:

PO)P(z|6,x)

P@x,z) = = —— (6)
J; PO)P(zl6, %) db
and the logistic likelihood function P(z|@, x) is given by
P, %) = ¢((2z— 1E'6) ™

where ¢ (x) := 1/(1 4+ ™) and (7) is equivalent to (4).

Due to the analytically inconvenient form of the likeli-
hood function, Bayesian inference for the logistic regression
model is recognized as an intrinsically hard problem [27],
thus the exact posterior P(6x, z) (6) is intractable to compute.
To address this issue, the concept of conjugate prior [28] is
leveraged to obtain a closed-form expression for the posterior
update. Specifically, let the prior be a Gaussian distribution
with P(@) ~ N (w, X). Then the variational Bayesian infer-
ence approach [24] is employed to approximate the logistic
likelihood function (7) with a Gaussian-like distribution. The
fundamental tool at the heart of this approach is a lower bound
approximation of (7):

s—§&
2
=P(l0.2.8)

P(zw,f)zqs(s)exp[ +€(S)(s2—éz)} (8)

where s := 2z — l)chG, L) == (1/2 — ¢(&))/2¢, and & is
the variational parameter.

The variational distribution P(z|@, x, £) in (8) has a conve-
nient property that it depends on @ only quadratically in the
exponent. As the prior is a Gaussian distribution, we use the
Gaussian-like variational distribution P(z|0, x, §) to approxi-
mate the logistic likelihood function P(z|6, X) in the Bayesian
inference (6). As a result, the posterior is also a Gaussian dis-
tribution P(@|x,z) ~ N (i, ﬁ) with the closed-form update
rule (9). See [24] for the detailed derivation.

£ o o) Rk

N ol L.
i :z[z 1M+(Z—§)xi|

(9a)
(9b)

Algorithm 2 Online Learning and Selection Algorithm
1: Input: (u;, X;) of each customer i € [N].
2: fort=1to T do
3: Receive {d; 1, ri 1, X; ;} from each customer i € [N]. The SA sets the
budget parameter b;.
for customer i = 1 to N (in parallel) do
Sample 6; ; ~ N'(p;, T;).
P U[1+exp(—5]di0]-
end for
Solve the OCS problem (5) with oracle y, <— O(p,). Select those
customers for DR event ¢ with y; ; = 1, and observe the responses z; ;.

AN A

9: for customer i € [N] with y;; =1 do

10: Initialize & by & < \/&] Zii, + G/ ).

11: Iterate three times between the posterior update
A—] _ A A
DI T UG
i < Ei[zflﬂi + (i — %)ffi,z}

and the &; update

& & Tk + @A)

12: Set X; « X, i < [
13: end for
14: end for

Since the posterior covariance matrix b3 depends on the
variational parameter &, its value needs to be specified such
that the lower bound approximation in (8) is optimized. The
optimal & is achieved by maximizing the expected com-
plete log-likelihood function E[log P(0)P(z|0, x, )], where
the expectation is taken over P (0%, z, £°9), and this leads to
a closed form solution:

£=x"2i+ @& Q)2

Alternating between the posterior update (9) and the &
update (10) monotonically improves the posterior approxima-
tion. The convergence of this procedure is very fast, which
generally only needs two or three iterations [24].

(10)

D. Online Learning and Selection Algorithm

For each customer i € [N], we construct a Gaussian prior
N (u;, ;) on the unknown 6; based on historical information.
Using the TS framework, the online learning and selec-
tion (OLS) algorithm for residential DR is developed as
Algorithm 2. From Step 4 to Step 7, it generates a random
sample of #;, and then calculates the probability p;; with
the context X;, for each customer. With the obtained prob-
ability profiles p;, the SA determines the optimal selection of
customers by solving the OCS model (5), when available opti-
mizers can be used for solution. After observing the behavior
outcome z; ; of each selected customer, Step 9 - Step 13 update
the posterior on #; using the variational Bayesian inference
approach. In Step 11, the alternation between the posterior
update and the &; update is performed three times to obtain
accurate posterior approximation [24].

The OLS algorithm inherits the merits of TS and decom-
poses the online DR problem into Bayesian learning and
offline optimization. Since the optimization problem remains

Authorized licensed use limited to: Harvard Library. Downloaded on November 19,2020 at 04:53:51 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: ONLINE RESIDENTIAL DEMAND RESPONSE VIA CONTEXTUAL MULTI-ARMED BANDITS 437

the original form without being corrupted by the learning
task, the OLS algorithm can be applied to practical DR prob-
lems with complicated objectives and constraints. Besides, the
closed-form formula for posterior update enables convenient
Bayesian inference on the unknown parameters.

IV. PERFORMANCE ANALYSIS

In this section, we provide the performance analysis for
the proposed OLS algorithm and prove that it achieves a
O(J/Tlog T) Bayesian regret bound for the OCS problem (2)
when exact Bayesian inference is used.

A. Main Result

Define m = m + 1 as the dimension of 6;. Let ® =
0Ny € RN collect all the unknown customer parameters.
Denote the reward received at time ¢ as R, = Zie S di 12
and define the reward function f,@) as

diy

(0]
(S) =ER G),S):E _—
S 4 ' 1 +exp (—32—10,-)

iGSf

(1)

To measure the performance of the online algorithm, we
define the T-period regret as

T
Regret(T, ©) = Y E[f2(S) - f2(S)1©]  (12)

=1

where S € argmaxg,c 4, 12(S)) is the optimal solution of
model (2) with known @, and A; denotes the feasible region
described by constraint (2b), while S; denoted the customer
selection decision made by the online algorithm. The expec-
tation in (12) is taken over the randomness of S;. Generally, a
sublinear regret over the time length 7T is desired, which indi-
cates that the online algorithm can eventually learn the optimal
solution, since Regret(T, ®)/T — 0 as T — oo.

Since © is treated as a random variable in TS algorithm,
we further define the T-period Bayesian regret as

BayRegret(T) = Eg~p(o)[Regret(T, ©)] (13)
which is the expectation of Regret(7, ®) taken over the prior
distribution P(®) of ©O. It can be shown that asymptotic
bounds on Bayesian regret are essentially asymptotic bounds
on regret with the same order. See [26] for more explanations
on Bayesian regret.

We further make the following two assumptions.
Assumption 1 of exact Bayesian inference is generally
made for theoretic analysis of Bayesian regret. Note that
in practice, performing exact Bayesian inference is usually
intractable without conjugate prior, which is our case, thus
approximation approaches or Gibbs sampler are employed
to obtain posterior samples [22]. Regret analysis for MAB
learning with inexact Bayesian inference remains an open
question.

Assumption 1: Exact Bayesian inference is performed in
the OLS algorithm, i.e., the exact posterior distribution of ®
is obtained and used for sampling at each time ¢ € [T].

Assumption 2: O is bounded with ||®|| < L. Further,
without loss of generality, the context vectors are normalized
such that ||X;|lcc < 1 for all i € [N] and 7 € [T].

We show that the proposed OLS algorithm can achieve a
sublinear Bayesian regret with the order of O(+/TlogT) for
problem (2), which is stated formally as Theorem 1.

Theorem 1: Under Assumption 1 and 2, the Bayesian regret
bound of the OLS algorithm for the OCS problem (2) is

BayRegret(T) < O(DﬁiN%e'th_l/gl - Tlog T)

where d = sup; ,d;;, d = inf;;d;; > 0, and D is defined
in (14).

The theoretic results in [26, Sec. 7] are applied to prove
Theorem 1 in the next subsection.

B. Proof Sketch of Theorem 1

We first show that our problem formulation satisfies the two
assumptions imposed in [26, Sec. 7]. For [26, Assumption 1],
the reward function (11) is bounded by

0<f®<sup ) diy=D, Vtel[l]l (14)

r€lT) e[y
In terms of [26, Assumption 2], we have the following lemma,
whose proof is provided in [29, Appendix B] .
Lemma 1: For all t € [T], R, — fte(S,) conditioned on
(©,S,) is 5D-sub-Gaussian.
Under Assumption 2, define the reward function class as

Fo= {ﬁ®|®ew}, t € [T] (15)
where W = {@ € RV"|||@||oo < L}. The reward function
class F; is time dependent due to the time-variant d; ; and X; ;.
By applying the result in [26, Proposition 10], we have the
following Bayesian regret bound.

Lemma 2: Under Assumption 1 and 2, the Bayesian regret
of the OLS algorithm for problem (2) is bounded by

BayRegret(T) < sup {1 + [dimE(]-',, T+ 1][)
te[T]

+ 8Dy/dimg(F, T-))(1 + o(1) + dim(F)) T log T } (16)

In (16), dimg(F;) is the Kolmogorov dimension defined
by [26, Definition 1] and dimg(F;, T~!) denotes the 1/7-
eluder dimension defined by [26, Definition 3] of function
class ;. Intuitively, the Kolmogorov dimension is related to
the measure of complexity to learn a function class, while the
eluder dimension captures how effectively the unknown values
can be inferred from the observed samples.

We can further bound dimg(F;, T~!) and dimg (F;) in (16)
and achieve the final results in Theorem 1. Due to the page
limit, the detailed proofs are omitted here and provided in the
online version [29, Appendeix B] of this letter.

V. NUMERICAL SIMULATIONS

In this section, numerical simulations are performed on
the OCS problem (2) to test the OLS algorithm. Consider
the residential DR with N = 1000 customers. The reduced
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Fig. 2. Regret comparison between the OLS algorithm and the TS-

based online learning algorithm without contexts.

load d;; and the offered credit r;; are randomly and inde-
pendently generated from the uniform distribution Unif [0, 1]
for each customer, which are fixed for different time steps.
At each time ¢, the SA randomly samples a budget b; from
Unif [200, 300]. Set the number of contextual features as
m = 9, and let all customers share a same feature vector
x, € R’ at time t, whose elements are randomly gener-
ated from Unif [0, 4]. Assume that there exists an underlying
ground truth 8% € R!0 associated with each customer, which
is generated from Unif[ — 0.5, 0.5]. In the OLS algorithm, we
assign a Gaussian prior N (67 + 0.3u;, 0.09I) for each cus-
tomer, where each element of u; is randomly generated from
Unif[—1, 1] and I denotes the identity matrix.

To demonstrate the learning performance and exhibit the
necessity of contextual information, we compare the OLS
algorithm with a TS-based learning algorithm without con-
text. Specifically, this “no-context” TS algorithm is derived
from the Bernoulli bandit case with Beta prior distribution. See
[22, Algorithm 2] for details. The simulation results are shown
as Figure 2. The OLS algorithm achieves a sublinear cumu-
lative regret and its regret at each time gradually decreases
to zero. In contrast, due to neglecting contextual factors, the
“no-context” TS algorithm does not learn user behaviors well
and maintains high regret at each time.

V1. CONCLUSION

In this letter, the contextual MAB method is employed to
model the customer selection problem in residential DR, con-
sidering the uncertain customer behaviors and the influence of
contextual factors. Based on TS framework, the OLS algorithm
is developed to learn customer behaviors and select appropriate
customers for load reduction with the balance between explo-
ration and exploitation. The simulation results demonstrate the
necessity to consider the contextual factors and the learning
effectiveness of the proposed algorithm. For future work, there
are two attempt directions: 1) develop the optimal real-time
control schemes for load devices during Phase 1 of the DR
event, considering physical system dynamics; 2) study how
to design the incentive mechanisms that optimize the credits
and budget to achieve higher DR efficiency, together with the
learning process.
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