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SHAPE OPTIMIZATION OF STOKESIAN PERISTALTIC PUMPS USING BOUNDARY
INTEGRAL METHODS

MARC BONNET*, RUOWEN LIUf, AND SHRAVAN VEERAPANENT!

Abstract. This article presents a new boundary integral approach for finding optimal shapes of peristaltic pumps that
transport a viscous fluid. Formulas for computing the shape derivatives of the standard cost functionals and constraints are
derived. They involve evaluating physical variables (traction, pressure, etc.) on the boundary only. By emplyoing these
formulas in conjuction with a boundary integral approach for solving forward and adjoint problems, we completely avoid the
issue of volume remeshing when updating the pump shape as the optimization proceeds. This leads to significant cost savings
and we demonstrate the performance on several numerical examples.

Key words. Shape sensitivity analysis, integral equations, fast algorithms

1. Introduction. Many physiological flows are realized owing to peristalsis, a transport mechanism
induced by periodic contraction waves in fluid-filled (or otherwise) tubes/vessels [12, 9, 3]. This mechanism
is used in engineering applications like microfluidics, organ-on-a-chip devices and MEMS devices for trans-
porting and mixing viscous fluids at small scale (e.g., see [27, 30, 25, 15, 32, 7]). Owing to its importance
in science and technological applications, numerous analytical and numerical studies were carried out in
the past decades to characterize the fluid dynamics of peristalsis in various physical scenarios; some recent
works include [26, 28, 14] for non-Newtonian flows and [5, 1, 13] for particle transport.

Several applications—optimal transport of drug particles in blood flow [19], understanding sperm motil-
ity in the reproductive tract [24], propulsion of soft micro-swimmers [8, 23]—require scalable numerical
methods that can handle arbitrary shape deformations. One of the challenges of existing mesh-based meth-
ods (e.g., finite element methods) is the high computational expense of re-meshing, needed to proceed
between optimization updates or in transient solution of the forward/adjoint problems. Boundary integral
equation (BIE) methods, on the other hand, avoid volume discretization altogether for linear partial dif-
ferential equations (PDEs) and are highly scalable even for moving geometry problems [22]. While BIE
methods have been used widely for shape optimization problems, including in linear elasticity, acoustics,
electrostatics, electromagnetics and heat flow (e.g., [17, 33, 2, 31, 10]), we are not aware of their application
to optimization of peristaltic pumps transporting simple (or complex) fluids.

The primary goal of this work is to derive shape sensitivity formulas that can be used in conjunction
with an indirect BIE method to enable fast numerical optimization routines. Our work is inspired by that
of Walker and Shelley [29] who considered the shape optimization of a peristaltic pump transporting a
Newtonian fluid at low to moderate Reynolds numbers (Re) and applied a finite element discretization.
Here, we restrict our attention to problems in the zero Re limit only. Following [29], we consider shapes
that minimize the input fluid power under constant volume and flow rate constraints. The forward problem
requires solving the Stokes equations in a tube with periodic flow conditions and prescribed slip on the walls
while the adjoint problem has a prescribed pressure drop condition across the tube. For both problems, we
employ the recently developed periodic BIE solver of Marple et al. [18]; the primary advantage compared
to classical BIE methods that rely on periodic Green’s functions is that the required slip or pressure-drop
conditions can be applied directly.

The paper is organized as follows. In Section 2, we define the shape optimization problem and the PDE
formulation of the forward problem in strong and weak forms. In Section 3, we derive the shape sensitivity
formulas for a specific objective function and the functionals required to impose the given constraints on
the pump shape. Using these formulas, we present a numerical optimization procedure in Section 4 based
on a periodic boundary integral equation formulation for the PDE solves. We present validation and shape
optimization results in Section 5 followed by conclusions in Section 6.

2. Problem formulation.

2.1. Formulation of the wall motion. Pumping is achieved by the channel wall shape moving
along the positive direction e; at a constant velocity ¢, as a traveling wave of wavelength L (the wave
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period therefore being T = L/¢). The quantities L,¢ (and hence T') are considered as fixed in the wall
shape optimization process. This apparent shape motion is achieved by a suitable material motion of the
wall, whose material is assumed to be flexible but inextensible. Like in [29], it is convenient to introduce
a wave frame that moves along with the traveling wave, i.e. with velocity ce; relative to the (fixed) lab
frame.

Fic. 2.1. Channel in wave frame, 2D configuration: geometry and notation

Let then Q denote, in the wave frame, the fluid region enclosed in one wavelength of the channel (see
Fig. 2.1), whose boundary is 90 = ' UT',. The wall I := I'* UT'~, which is fixed in this frame, has
disconnected components I'* which are not required to achieve symmetry with respect to the z; axis and
have respective lengths £*. The remaining contour I'p :=TgUI'f, consists of the periodic planar end-sections
I'y and I'y, respectively situated at 2; = 0 and 2; = L; the endpoints of 'y, are denoted by z* (Fig. 2.1).
Both channel walls are described as arcs s — x*(s) with the arclength coordinate s directed “leftwards” as
depicted in Fig. 2.1, whereas the unit normal n to 0f) is everywhere taken as outwards to €2. The position
vector x(s), unit tangent 7(s), unit normal n(s) and curvature x(s) obey the Frenet formulas

(2.1) Ts=T, T s = KN, ns=—KT on " and T'™.

The opposite orientations of (7,m) on I'" and '~ resulting from our choice of conventions imply opposite
sign conventions on the curvature, which is everywhere on I' taken as «:= 7 5-n for overall consistency.

In the wall frame, the wall material velocity must be tangent to I' (wall material points being constrained
to remain on the surface T'); moreover the wall material is assumed to be inextensible. In the wave frame,
the wall material velocities U satisfying both requirements must have, on each wall, the form

U(s) =Ur(s),

where U is a constant. Moreover, in the wave frame, all wall material points travel over an entire spatial
period during the time interval T'= L/c, which implies U = ¢//L. Finally, the viscous fluid must obey a
no-slip condition on the wall, so that the velocity of fluid particles adjacent to x(s) is U(s). Concluding,
the pumping motion of the wall constrains on each wall the fluid motion through

£
D(x) .= fcri(m)7 xcl*,

REMARK 1. The no-slip condition w= 1 proposed in [29], which corresponds with the present notations
to setting U =c, is inconsistent with the period T = L/c of the traveling wave, unless the channel is straight
(¢* = L). This discrepancy alters the boundary condition (2.2) and hence the shape optimization problem
(the value of the power loss functional for given wall shape being affected in wall shape-dependent fashion).

(2.2) u(x) =u
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2.2. PDE formulation of forward problem. The stationary Stokes flow in the wave frame [29]
solves the governing PDE formulation

(a) divelu,p]=0 in Q  (balance of momentum)
(b) olu,p] = —pI +2uD[u] in Q  (constitutive relation)
(2.3) (c) divu =0 in Q  (incompressibility)
(d) u = uP onI' (Dirichlet BC on wall)
(e) u periodic onT,
where u, p are the velocity and pressure, D[u] := (Vu+V7Tu)/2 is the strain rate tensor, and o[u, p| is the

stress tensor. Equations (2.3a,b,c) respectively express the local balance of momentum (absent any body
forces), the constitutive relation (u being the dynamic viscosity) and the incompressibility condition. The
prescribed wall velocity uP is given by (2.2). Problem (2.3) defines p up to an arbitrary additive constant.

2.3. Weak formulation of forward problem. In this study, flow computations rely on a boundary
integral equation formulation, see Section 4.3. It is however convenient, for later establishment of shape
derivative identities, to recast the forward problem (2.3) as a mixed weak formulation (e.g. [4], Chap. 6):

(a) a(u,v)fb('v,p)f<f,v>1ﬂ:0 YveV
(2.4) findueV, peP, feF, (b) b(u,q) =0 VgeP
(c) <uD7g>F—<u,g>F:0 Vge F

where <~, . >F stands for the L?(T") duality product, and the bilinear forms a and b are defined by

a(u,v) = /QQ,uD[u]:D[U] dv, b(v,q) = /quivv dv

The function spaces in problem (2.4) are as follows: V is the space of all periodic vector fields contained in
H'(;R?), P is the space of all L?(2) functions with zero mean (i.e. obeying the constraint (p,1)., = 0)
and F = H~'/2(I"; R?). The chosen definition of P caters for the fact that p would otherwise be defined only
up to arbitrary additive constants. The Dirichlet boundary condition (2.3d) is (weakly) enforced explicitly
through (2.4c), rather than being embedded in the velocity solution space V), as this will facilitate the
derivation of shape derivative identities. The unknown f, which acts as the Lagrange multiplier associated
with the Dirichlet boundary condition (2.3d), is in fact the force density (i.e stress vector) o[u,p]-n.

2.4. Formulation of optimization problem, objective functional. We address the problem of
finding the channel shape that makes peristaltic pumping most efficient, i.e., leads to minimum power loss
for given mass flow rate. The power loss cost functional [29] is defined by

(2.5) JpL(Q) == (fa, (uP +ce1) ).

It is a shape functional in that its value is completely determined by the domain Q (in a partly implicit way
through fq). The minimization of Jpr,(€2), as in [29], subject to two constraints, involvesd two other shape
functionals:

(a) The channel volume per wavelength has a prescribed value Vj:

(2.6) Cv(Q) =0 = Vo =0

(b) The mass flow rate per wavelength Q(2) has a prescribed value Qg. Expressing this constraint in the
wave frame gives:

(2.7) Cq()=Q()—Qo=0 with Q)= %/Q(ug +cep)-e; dV.

REMARK 2. The power loss functional Jpr,(Q) is insensitive to modification of p by an additive constant.
This is seen, for instance, by combining (2.4a) with v=u+ce; and (2.4b) with q=p, which yields

Jrr() = ( fo. (P +ce1) ) = a(ug, uq).
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3. Shape sensitivities. In this section, we review available shape derivative concepts that address
our needs. Rigorous expositions of shape sensitivity theory can be found in [6, Chaps. 8,9] or [11, Chap.
5].

3.1. Shape sensitivity analysis: an overview. Let 2, C R? denote a fixed domain chosen so that
Q € Qg always holds for the shape optimization problem of interest. Shape changes are described with
the help of transformation velocity fields, i.e. vector fields @ : Q.1 — R? such that 8 = 0 in a neighborhood
00a1- Then, shape perturbations of domains Q2 € 2,) can be mathematically described using a pseudo-time
7 and a geometrical transform of the form

(3.1) z€Qu— " =x+nb(x),
which defines a parametrized family of domains €2, (0) := (I410)(2) for any given “initial” domain Q2 € Qap.
The affine format (3.1) is sufficient for defining the first-order derivatives at n =0 used in this work.

Assumptions on shape transformations, admissible shapes. The set O of admissible shapes for
the fluid region Q in a channel period (in the wave frame) is defined as

(3.2) 0= {Q C Qan, Q is periodic and simply connected, |Q =V, Q(Q) = QO}.
Accordingly, let the space © of admissible transformation velocities be defined as
(33)  ©=1{6€ W"(Qa) such that (i) 6|, = 0]|r,, (ii) B-e; =0 on Ty, (iii) 6(2~) = 0},

ensuring that the shape perturbations (i) are periodic, (ii) prevent any deformation of the end sections Fff
along the axial direction, and (iii) prevent vertical rigid translations of the channel domain. The provision
0 € W™ (Qan) ensures that (a) there exists 7o > 0 such that Q,,(0) € Qap for any n € [0,1], and (b) the
weak formulation for the shape derivative of the forward solution is well defined if the latter belongs to the
standard solution space. Note that the volume and flow rate constraints (2.6), (2.7) are not embedded in
O; they will be accounted for via a Lagrangian.

Material derivatives. In what follows, all derivatives are implicitly taken at some given configuration
Q, i.e. at initial "time” 7 = 0. The “initial” material derivative a of some (scalar or tensor-valued) field
variable a(x,n) is defined as

a(x) = lim 1 [a(z",n) — a(x,0)] e,
n—01n

and the material derivative of gradients and divergences of tensor fields are given by

(a) (Va)* =Va—Va-Vé, (b) (diva)* =diva — Va:Ve
Likewise, the first-order “initial” derivative J’ of a shape functional .J : O — R is defined as
1
!/ . = _
<J (Q),9> = 71713% U(J(QW(G)) J(Q))

Material differentiation of integrals. Consider, for given transformation velocity field 8 € O, generic
domain and contour integrals

(3.4) (a) Iy(n) = /Q S FEAv ) I = /S o FOms.

where Q,(0) = (I+n6)(Q) is a variable domain and S, (0) := (I +n0)(S) a (possibly open) variable curve.
The derivatives of Iy(n) and Ig(n) are given by the material differentiation identities

65 (@) W1 = [l reo e as

dn ln=0 dn In=0
which are well-known material differentiation formulas of continuum kinematics. In (3.5b), divs stands for
the tangential divergence operator, which in the present 2D context is given, with x denoting the curvature
(see Sec. A.1) by

:/ [F+F(,0)dive] dV,  (b)
Q

divsd = (I—n@n) :VO = 0,0, — k0,
4
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where we have set € on I', using the notations and conventions introduced in (2.1), in the form

0=0,+0,n.

Shape functionals and structure theorem. The structure theorem for shape derivatives (see e.g. [6,
Chap. 8, Sec. 3.3]) then states that the derivative of any shape functional J is a linear functional in the
normal transformation velocity 6,, = n-6|sq. For PDE-constrained shape optimization problems involving
sufficiently smooth domains and data, the derivative <J’ (Q), 0> has the general form

(3.6) <J’(Q),9>:/ g0,ds

o0
where g is the shape gradient of J. The structure theorem intuitively means that (i) the shape of €, is
determined by that of 0€2,), and (ii) tangential components of € leave Q,, unchanged at leading order O(n).

Example: shape derivative of channel volume constraint.. Since || is given by (3.4a) with
F =1, this purely geometric constraint is readily differentiated using (3.5a) and Green’s theorem, to obtain

(3.7) (Cy(),0) = /lev0 dv = 9 ds-/9 ds,

where the last equality results from provision (ii) in (3.3).

3.2. Shape derivative of forward solution. The power loss and the mass flow rate constraint are
expressed in terms of functionals Jpy, and Cq that depend on € implicitly through the solution (u, f,p)
of the forward problem. Finding their shape derivatives will then involve the solution derivative (u, f,p)*.
Setting up the governing problem for (u, f,p)* is then a necessary prerequisite.

*

PROPOSITION 1. The governing weak formulation for the shape derivative (u,f,p) of the solution
(u, f,p) of problem (2.4) is

(a) a(ﬁ,v)—b(v,ﬁ)—<},v>r:—al(u,v,ﬂ)—l—bl(v,p,ﬂ)—<f,vdiv50>r YveV
(3-8) (b) b(w,q) = —b'(u,q,0) VgeP
(c) <ﬁD,g>F—<ﬁ,g>F <(u—uD)divgl9,g>F VgeF

with the trilinear forms a® and b* given by

(3.9a) a'(u,v,0) = /QZM{(D[u]:D[v])divH — Dlu]:(Vv-V0) — (Vu-V0) :D['v]} av

bl(u,q,B):/q[divudive—Vu:VH] av
Q

Proof. The proposition is obtained by applying the material differentiation identities (3.5) to the weak
formulation (2.4), assuming that the test functions are such that v =0, g=0 and ¢ =0, i.e. are convected
under the shape perturbation. The latter provision is made possible by the absence of boundary constraints
in the adopted definition of YV, F,P (Sec. 2.3). d

Moreover, the material derivative 4P of the Dirichlet data u®, involved in (3.8c), is given in the following
lemma, proved in Sec. A.1:

LEMMA 3.1. Let u® be the prescribed wall velocity (2.2). On either component of the wall T, we have

. ¢
(a) u” %T—i— (050, + Kbs)n, with (b) 62—/ KO, ds
0

REMARK 3. The provision @ € WH°°(Q,) in (3.3) serves to ensure well-definiteness of the trilinear
forms a',b' introduced in Proposition 1 for any (u,p) €Y x P.

REMARK 4. To maintain the zero-mean constraint on p as S is perturbed, the mean of p must be fived
through <;B, 1 >Q + <pdi1)0, 1>Q = 0 (this provision plays no actual role in the sequel).
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We now state an identity involving the trilinear forms a®, b' that will play a crucial role in the derivation
of convenient shape derivative formulas for the functionals involved in this work. The proof of this result is
given in Sec. A.2

LEMMA 3.2. Let (u,p) and (@,p) respectively satisfy divu = 0, div(o[u,p]) = 0 and diva = 0,
div(o[a,p]) =0 in Q, with ou,p|, o[a, p| given for both states by the constitutive relation (2.3b). Moreover,
assume that w, @ and p are periodic, and set f :=o[u,pln, f:=ol@, pln and Ap(xs) := p(L, 22) —p(0, 22)
(i.e. periodicity is not assumed for p). Then, the following identity holds:

(310) a‘l(uaﬁve) - bl(u7ﬁ7 0) - bl(ﬁ7p7 0)

= / {(a’[mp] :D[a))b, — f-Vu-0 — f-Vu-@} ds + AP (O2uq )03 ds.
r r'e
Proof. See Sec. A.2 |
3.3. Shape derivative of power loss functional. The derivative of the cost functional (2.5) is
given, using the material differentiation identity (3.5b), by

(3.11) <J1;L(Q),e>:/F[f-{P+(uD+e1)-(}+fdivS0)]ds

in terms of the derivatives 4P of the Dirichlet data and f of the stress vector. The former is given by
Lemma 3.1. The latter is part of the solution of the derivative problem (3.8), whose solution therefore
seems necessary for evaluating <JI’DL(Q),0> in a given shape perturbation 8. However, a more effective

approach allows to bypass the actual evaluation of f by combining the forward and derivative problems
with appropriate choices of test functions:

LEMMA 3.3. The following identity holds:
/(uD—i-el)-(} + fdi®) ds = —a'(u,u,0) +2b' (u,p, 0) + / f-uP ds
r r

Proof. Consider the forward problem (2.4) with (v, g,q) = (u, },f)) and the derivative problem (3.8)
with (v,g,q) = (u+ey, f,p). Making these substitutions and forming the combination (3.8a) — (3.8b) —
(3.8¢) — (2.4a) + (2.4b) + (2.4c¢), one obtains

/&D-fds—/(uD—l—el)J*“ds:—al(u,u,0)+2b1(u,p,9)+/f-(2u+el—uD)divs0ds
r r r

The Lemma, follows from using w =P on I' and rearranging the above equality. a

Then, using Lemma 3.3 in (3.11) and evaluating a'(w,u, 8) — 2b! (u, p, 8) by means of Lemma 3.2 with
(4, f,p) = (u+ey, f,p) (implying that Ap=0), the derivative of Jpy, is recast in the following form, which
no longer involves the solution of the derivative problem:

(3.12) (Jpp(Q),0) = /1“ {(Q,uD[u] :D[u]),, +2f-(uP — Vu-0) } ds

This expression is still somewhat inconvenient as it involves (through D[u]) the complete velocity gradient
on I'. This can be alleviated by using the decomposition

Vu=Vsu+ d,u®n

of the velocity gradient (where Vsu and d,u respectively denote the tangential gradient and the normal
derivative of u) and expressing d,u in terms of f by means of the constitutive relation (2.3b). In view of
the specific form (2.2) of the Dirichlet data, the latter step is here conveniently carried out explicitly (in
Sec. A.3), using curvilinear coordinates, and yields:
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LEMMA 3.4. Let (u, f,p) solve the forward problem (2.4). On the channel wall T', we have

(a) Vu:%cgnQ@T—i—(%—%)‘r@n, (b) 2D[u}=%(n®‘r+7’®n), (¢) f=—-pn+ fsT

where fs:= f-7 (hence the viscous part of f is tangential to T').

Finally, we evaluate the density of the integral in (3.12) using the formulas of Lemmas 3.1 and 3.4. On per-
forming traightforward algebra and rearranging terms, we obtain the following final result for <J1/3'L(Q)7 0>,
which is suitable for a direct implementation using the output of a boundary integral solver:

PROPOSITION 2. The shape derivative of the power loss cost functional Jpr in a shape perturbation
whose transformation velocity field 0 satisfies asumptions (3.3) is given (with fs:=f-T) by

(Tpp (9 Z / Cg—’ifs——j@]@ + T~ (000)p) | ds.

where € € {+, =} refers to the upper wall T or the lower wall T'~.
REMARK 5. The shape derivative <J}>L(Q), 0> as given by Proposition 2 is a linear functional on 0, |r
(since £ is one, see Lemma 3.1), as predicted by the structure theorem. Moreover, it is insensitive to the

pressure being possibly defined up to an additive constant: indeed, replacing p with p+ Ap adds

2clt 2c0~
-7 F+836nds— I o

0 <J§;L(Q), 0> as given by Proposition 2, and this quantity vanishes due to the assumed periodicity of 0,,.

050, ds

3.4. Shape derivative of mass flow rate functional. The derivative of the mass flow rate functional
Cq, defined by (2.7), is given (recalling (3.7) for the shape derivative of |Q|) by

(3.13) <C’{Q(Q),0>:<I’(Q),9>+%/F9nds, with 1(9) ;:%/ﬂug-el av.

To evaluate (I'(Q2),0), with u solving the forward problem (2.3), we recast I({2) as an integral over the
end section I'g by means of the divergence theorem, recalling that wg is divergence-free, tangential on I'
and periodic:

1 1
1(Q) = —/ [div (r1uq) — xldiqu] dV = —{ / z1(ug-e1)ds 7/ zl(ug~el)ds} :/ ug-eq ds.
L Q L TL To e
Consequently, using identity (3.5b) with provision (ii) of (3.3), we find:
(314) <I/(Q),0> :/ (ﬁ+udivs0)~el dS:/ (&1+U18292)d$2
FL 1—‘L

The forward solution derivative u in the above expression will now be eliminated with the help of an adjoint
problem. Let the adjoint state (@, f,p) be defined as the solution of the mixed weak formulation

(a) a(ﬁ,”)_b(v,ﬁ)_<f,v>r:—<1,'U'61>F0 V’UGV,
(3.15) (b) bit,q) = 0 e,
(c) —(t,9), =0 Vg e F.
The adjoint state (, f , D) thus results from applying a unit pressure difference Ap = 1 between the channel

end sections while prescribing a no-slip condition on the channel walls, i.e. Problem (2.14-2.18) of [18] with
homogeneous Dirichlet data on the walls (see Remark 6).
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Then, combining the adjoint problem (3.15) with (v, g,q) = (u, }',f)) and the derivative problem (3.8)
with (v,g,q) = (4, f,p) and recalling the no-slip condition @ = 0 on T yields the identity

/ 'Dzl dzy = al(uaﬁ/ve) - bl(ﬁ’?p7 0) - bl(uvﬁa 0) + / ’ZLDde
'y T

We next use this identity in (3.14) and substitute the resulting expression of (1'(2),8) into (3.13), to obtain

<C{Q(Q),0>:al(u,ﬁ,G)—bl(ﬁ,p,B)—bl(u,ﬁ,0)+/

(£0n+fﬁD>ds+/ u16292 dl‘g
r L T

L

We first apply Lemma 3.2 with Ap =1 to the above expression, to obtain

(3.16) (CH(92),6) :/

( — (2uDu]: D[a))8, + %en _ fVad— f(Vub—uP) ) ds+ | Oa(uibs) das,
T

I'r
whose form is similar to (3.12). The first integral in (3.16) can be reformulated with the help of Lemma 3.1,

Lemma 3.4 and its following counterpart for the adjoint solution (whose proof is given in Sec. A.3):

LEMMA 3.5. Let (4, f,p) solve the adjoint problem (3.15). On the channel wall T, we have

(a) Vﬂz%r@n, (b) QD[ﬁ]:%(n®T+T®n), (c) f:fﬁn+fs‘r

where fs = f—T (hence the viscous part off is tangential to T").

Carrying out these derivations, and evaluating the second integral of (3.16), establishes the following final,
implementation-ready, formula for <Cé(Q), 9>:

PROPOSITION 3. The shape derivative of the mass flow rate functional Cq in a domain shape pertur-
bation such that the transformation velocity field @ satisfies asumptions (3.3) is given by

(Co@.0)= 3 [ {(GF - pheat £ )0ut S0~ £@0205) s
e=—+,—
+ [2ur](27) — [B2ua](27)

where fy and (p, fs) are components of the solutions of the forward problem (2.4) and the adjoint prob-
lem (3.15), respectively, and € € {+, —} refers to the upper wall T+ or the lower wall T~ .

REMARK 6. Let the Stokes solution (w4, p), periodic up to a constant (unit) pressure drop, be defined by
—div(2uD[a]—pI) =0 in Q, diva=0, u=0 onT, p(-)—p(-—Lei)=1 onT}

(i.e. Problem (2.14-2.18) of [18] with homogeneous Dirichlet data on the walls). Taking the dot product
of the first equation by v € V, integrating by parts and using the periodicity of v and 2uD|u], we obtain
equation (3.15a), while equations (3.15b,c) express the incompressibility and no-slip conditions.

4. Numerical algorithm. We now formally define the shape optimization problem and describe a
numerical algorithm to solve it based on the shape sensitivity formulas derived in the previous section.

4.1. Optimization method. Our goal is to find the shape of the peristaltic pump in the wave frame
that minimizes the power loss functional subject to constant volume and flow rate constraints, that is,

(4.1) O = argmin Jpr,(Q) subject to Cq(Q2) =0,Cv(Q2) =0,
QeO

with O defined as in (3.2). While there are numerous approaches for solving constrained optimization
problems [20], we use an Augmented Lagrangian (AL) approach and avoid second-order derivatives of the
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Algorithm 4.1 Augmented Lagrangian method for problem (4.1)

1: Choose initial design shape parameters £°, which determines initial domain Qg
Set convergence tolerance ¢* = 1073
Set A% = (0,0)
Set o = 10, 09 = 10 or ¢9 = 100 (depending on €2)
Set (1 = (¢0)~01
2: form=1,2,... do
3: # Solve unconstrained minimization subproblem (4.2) for Q,,

4: From £m~! = ¢m=10 and an approximate (positive definite) Hessian matrix By, repeat the
following steps until €™~ 17 converges to the solution £&™:

5: 1) Obtain a perturbation direction p; by solving Bjp; = —VeLa (€™ 13, A1 oM™
6: 2) find an acceptable stepsize 7;
7 3) gnttl = gmmhd 4 p;
8: 4) Update the approximate Hessian matrix B;1(by BFGS formula)
9: The solution £™ uniquely determines £2,,.
10: # Check for convergence and/or update Lagrange multipliers and penalty parameters
11: if |Cv ()] < (" and |Cq(Qn)] < (3 then
12: if |Cv(Qn)| <¢* and |Cq(Qy,)] < ¢* then
13: Set &* :=¢&™, ie., Q*:=Q,, STOP
14: end if
15: )\71” = >\§n71 — Uznilcv(Qm)
16: A=\ o G ()
17: o™ =gm1
18: Cerl — (0.0)70‘9<-m
19: else
20: AT = ol
21: o™ =100m"1
99: ¢l = (g0)~0-1
23: end if
24: end for

cost functional, whose evaluation is somewhat challenging in the case of our shape optimization problem.
It proceeds by forming an augmented Lagrangian, defined by

La(2X0) = Jpi(©) = MCa(®) = MCv(®) + T CRQ) + ZCR (),

where 0 = (01,02) are penalty coefficients that are positive and A = (A1, A2) are Lagrange multipliers.
Setting the initial values ¢ and A° using heuristics, the augmented Lagrangian method introduces a sequence
(m=1,2,...) of unconstrained minimization problems:

(4.2) Q= arg min La (2, A" 0™),
Qeo

with explicit Lagrange multiplier estimates A" and increasing penalties ¢". We use the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [20], a quasi-Newton method, for solving (4.2). Equation (3.7), Propo-
sitions 2 and 3 are used in this context for all gradient evaluations.

The overall optimization procedure is summarized in Algorithm 4.1.

4.2. Finite-dimensional parametrization of shapes. In view of both the structure theorem,
see (3.6), and the fact that we rely for the present study on a boundary integral method, we only need
to model shape perturbations of the channel walls. Here we consider, for each wall I'*, parametrizations of

9

This manuscript is for review purposes only.



316
317
318
319

w
w

w
w
[\

336

ps

the form x* = x* (¢, &) with

N 2N

L
(4.3) I'sai(t):= ot S+ Ghe(t) teo,2q],
k= k=
N1 2N1
(4.4) P3ay(t)i=&o— ) &yt Y &po(t) teo,2m),
k=1 k=1

where ¢ () are the trigonometric polynomials {cos(t), cos(2t), ..., cos(Nt),sin(t),sin(2t),...,sin(Nt)}. The
set of admissible shapes as in (3.2) indicates 7 (0) = 0 and «i (27) = L, which are enforced in (4.3). The
constraint (iii) of (3.3) is fulfilled by a fixed value &,y = 5 (0) in (4.4), which will be pre-assigned and
excluded from the shape parameters.

Therefore, we take as design shape parameters the set & = {ffl, e ,fsz,fio,fil, e ,fziQN} of
dimension 8N +1. Since the parametrization (4.3), (4.4) is linear in £, transformation velocities 8 associated
to perturbed parameters £(n) =& +np, i.e., to the n-dependent parametrization have the form

6(x(t)) = % (@(t:€ +p) — 2(t:€)) 1 [0,2n).

4.3. Boundary integral solver. Solving the unconstrained optimization problem (4.2) requires eval-
uating the shape sensitivites (Propositions 2 and 3), which in turn require solving the forward and adjoint
problems to obtain the corresponding traction and pressure on the channel walls. In both problems, the
fluid velocity and pressure satisfy the Stokes equations:

—Vp+puAu=0 and V-u=0 in Q.

While the forward problem requires applying prescribed slip on the walls and periodic boundary conditions,
the adjoint problem requires a no-slip on the walls and unit pressure drop across the channel. The boundary
conditions can be summarized in a slightly modified form as follows.

(4.5) Forward problem: w=4"onT, wulr, —ulr, =0 and T|r, —T|r, = 0.

(4.6) Adjoint problem: w=0onT, wulp, —ulr,=0 and T|r, —T|r, = €.

Here, T is the traction vector, whose components are given by T;(u, p) = 0;;(u,p)n; and it represents the
hydrodynamic force experienced by any interface in the fluid with normal n. These systems of equations
correspond to (2.3) and (3.15) respectively by unique continuation of Cauchy data [18]. The standard
boundary integral approach for periodic flows is to use periodic Greens functions obtained by summing over
all the periodic copies of the sources [21]. The disadvantage of this approach is the slow convergence rate,
specially, for high-aspect ratio domains; moreover, the pressure-drop condition cannot be applied directly.
Instead, we use the periodization scheme developed recently in [18] that uses the free-space kernels only
and enforces the inlet and outlet flow conditions in (4.5, 4.6) algebraically at a set of collocation nodes.
The free-space Stokes single-layer kernel and the associated pressure kernel, given a source point y and
a target point x, are given by
(x—y)®(x- 1 x—y

Ix —yl?

1
an  Sboy) = o (~logk -yl

= Y)) and  Q(x,y) =

2m [x — y[?’

The approach of [18] represents the velocity field as a sum of free-space potentials defined on the unit cell
Q, its nearest periodic copies and at a small number, K, of auxiliary sources located exterior to €2 that act
as proxies for the infinite number of far-field periodic copies:

K
(48) u = SFearT + Z CmPm,
m=1
where
(4.9) (SRer ) (x) = Z /FS(X,y—I—nd)T(y) dsy and ¢ (x) =SX,ym)
[n|<1
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Here, d is the lattice vector i.e. d = Le; and the source locations {y,, }£_, are chosen to be equispaced on
a circle enclosing 2. The associated representation for pressure is given by

K
(4'10) p = ,PlgearT + Z Cm * Pm,
m=1
where

(PRear ) (x) 1= Z -/FQ(x,y +nd) - 7(y)dsy and @n,(x)=Q(X,¥m).

In|<1

The pair (u,p) as defined by this representation satisfy the Stokes equations since S and @, defined in (4.7),
are the Green’s functions. The unknown density function 7 and the coefficients {c,,} are then determined
by enforcing the boundary conditions. For the forward problem, applying the conditions in (4.5) produces
a system of equations in the following form [18]:

A B T uP
(@ ERIIME N
The first row applies the slip condition on I'" by taking the limiting value of u(x), defined in (4.8), as
x approaches I' from the interior. The second row applies the periodic boundary conditions on velocity
and traction as defined in (4.5). The operators A, B,C and D are correspondingly defined based on the

representation formulas (4.8) and (4.10). In the case of the adjoint problem, the operators remain the same
but the right hand side of (4.11) is modified according to the boundary conditions (4.6).

REMARK 7. Note that the representation (4.8) implies that A is a first-kind boundary integral operator
and in general is not advisable for large-scale problems due to ill-conditioning of resulting discrete linear
systems. However, for the problems we consider here, the dimension of linear system is usually small ~100-
200 and we always solve it using direct solvers. For large-scale problems requiring iterative solution (e.g., in
peristaltic pumps transporting rigid or deformable particles), well-conditioned systems can be produced from
second-kind operators, which can readily be constructed using double-layer potentials as was done in [18].

Finally, we use M quadrature nodes each on I'™ and I'™ to evaluate smooth integrals using the standard
periodic trapezoidal rule and weakly singular integrals, such as (4.9) evaluated on T', using a spectrally-
accurate Nystrom method (with periodic Kress corrections for the log singularity, see Sec. 12.3 of [16]).
Thereby, a discrete linear system equivalent to (4.11) is obtained, which is solved using a direct solver for
the unknowns 7 and {c,,}. The traction vector for a given pipe shape, required for evaluating the shape
derivatives (Props. 2 and 3), can then be obtained by a similar representation as (4.8) but with the kernel
replaced by the traction kernel, given by,

TS, Qxy) = LXKy (x—y) 0

T x-yf? x -yl

5. Results. In this section, we present validation results for our numerical PDE solver and test the
performance of our shape optimization algorithm. First, we demonstrate the performance of our forward
problem (2.3) solver on an arbitrary pump shape as shown in Figure 5.1(a). To illustrate the convergence of
the numerical scheme, we consider two scalar quatities: the objective function Jpy and the mass flow rate
Q, both of which depend on the traction vector obtained by solving the forward problem. In 5.1(b), we show
the accuracy of the solver in computing these quantities as well as the CPU time it takes to solve as the
number of quadrature points on each of the walls, M, is increased. Since we are using a spectrally-accurate
quadrature rule, notice that the error decays rapidly and a small number of points are sufficient to achieve
six-digit accuracy, which is more than enough for our application. The number of proxy points and the
number of collocation points on the side walls are chosen following the analysis of [18]—both typically are
small again owing to the spectral convergence of the method w.r.t these parameters. Consequently, each
forward solve takes less than a second to obtain the solution to six-digit accuracy as can be observed from
Figure 5.1(b).

11

This manuscript is for review purposes only.



411
412
113

414

415

=

Error
Time (second)

0 T 2 50 100 150 200 250 300 350 400
M

(a) (b)

Fic. 5.1. (a) An arbitrarily shaped channel and the streamlines of flow induced by a prescribed slip on the walls, as
defined in (2.3), obtained using our boundary integral solver. (b) Plot of convergence and CPU times as a function of the
spatial resolution M wused in the forward problem solver. The reference solution (denoted by superscript *) is obtained using
M = 1024. Notice that we get single-precision accuracy (le—6) even with a small number of points (~100) and corresponding
cost of forward solve is less than a second.

Next we consider two different initial pump shapes and perform the shape optimization by imposing
the same constraints on the flow rate Q* and the volume V*. The initial and the intermediary shapes
produced by our numerical optimization procedure are shown in Figure 5.2. Based on our earlier analysis of
the forward solver, we set M = 64 and the number of modes N (e.g., in (4.3) and (4.4)) is set to 5, thereby,
the number of the shape design parameters is 41. We use the Augmented Lagrangian approach described
in Algorithm 4.1 with the values of the penalty parameters as listed. Each AL iteration requires solving an
unconstrained optimization problem, which entails taking several BFGS iterations (steps 5-9 of Algo 4.1).
Both the number of AL iterations and the number of BFGS iterations are shown for each shape update
in Figure 5.2. In total, it costs 143 solves of the forward and adjoint problems (4.5)—(4.6) for the case in
Fig. 5.2(a) and 197 for the case in Fig. 5.2(b).

We show the evolution of the objective function and the constraints with the iteration index, corre-
sponding to these two test cases, in Fig. 5.3. Due to the fact that we are using an AL approach, the
constraints are enforced progressively by increasing the penalty coefficients o and as a result, the objective
function approaches a local minimum in a non-monotonic fashion. In the second test case (Fig. 5.2b), for
instance, Jpy, increases significantly since the initial shape doesn’t satisfy the constraints. On the other
hand, in the first test case, the initial values for the @ and V', obtained by a forward solve, match the
target values Q* and V*, thereby Jpy, is reduced as the optimization proceeds, to nearly half of its initial
value. While not guaranteed in general (due to the possibility of getting stuck in a local minimum), the
final shapes in both cases coincide, which is another validation of our analytic shape sensitivity calculations.

The equilibrium shapes and their interior fluid flow shown in Figure 5.2 reaffirm the classical observation
[12] of trappingi.e., an enclosed bolus of fluid particles near the center line indicated by the closed streamlines
in the waveframe. As is also well-known, trapping occurs beyond a certain pumping range only; in Fig. 5.4,
we show the optimal shapes obtained by our algorithm at different flow rates but containing the same
volume of fluid. Here, we fixed the bottom wall to be flat. Notice that the bolus appears to form for shapes
beyond @ = 0.9. Moreover, as expected, the optimal value of power loss is higher for higher flow rates with
the extreme case of a flat pipe transporting zero net flow with no power loss.

6. Conclusions. We derived new analytic formulas for evaluating the shape derivatives of the power
loss and the mass flow rate functionals that arise in the shape optimization of Stokesian peristaltic pumps.
While we restricted our attention to two-dimensional shapes, extension of these formulas to rotationally-
symmetric shapes is rather straightforward. We applied the recently developed periodic boundary integral
solver of [18] to solve the forward/adjoint PDE problems efficiently.

12

This manuscript is for review purposes only.



(a) (b)

Q" = 1.15, V* = 14.07 Q" =1.15,V* = 14.07

»
%ﬁ

# AL iterations = 0 # AL iterations = 0
# BFGS (current AL) iterations = 0 # BFGS (current AL) iterations = 0
# cumulative iterations = 0 # cumulative iterations = 0
Jpr = 27.00, Q = 1.15, V = 14.07 Jpr = 0.30, @ = 0.03, V = 14.07
0 T 27 0 T 27
Q" =1.15V* = 14.07 Q" =1.15V* = 14.07

3

8%

# AL iterations = 1 # AL iterations = 2
# BFGS (current AL) iterations = 10 # BFGS (current AL) iterations = 9
# cumulative iterations = 10 # cumulative iterations = 10
Jpr = 14.10, Q = 0.98, V = 14.16 Jpr = 12.84, Q = 1.00, V = 14.08
0 T 27 0 T 27
Q" = 1.15, V* = 14.07 Q* = 1.15, V* = 14.07

# AL iterations = 1 # AL iterations = 3

# BFGS (current AL) iterations = 30 # BFGS (current AL) iterations = 8
# cumulative iterations = 30 # cumulative iterations = 30
Jpp = 11.97, Q = 0.99, V = 14.17 Jpp = 1439, Q = 1.11, V = 14.06
0 m 2 0 m 27
Q" =1.15,V* = 14.07 Q" =1.15,V* = 14.07

N S «>

&

Final # AL iterations = 4 Final # AL iterations = 5

# BFGS (current AL) iterations = 5 # BFGS (current AL) iterations = 2

Final # cummulative iterations = 68 Final # cummulative iterations = 76

Jpr = 14.68, Q = 1.15, V = 14.07 Jpr =14.69, Q = 1.15, V = 14.07
0 T 27 0 T 21

Fic. 5.2. Optimizing power loss with mass flow rate and volume constraints, starting with two different initial shapes,
(a) a random top wall with a flat bottom wall, and (b) a symmetric slight bump shape. In both cases, the constraints on Q*
and V* are the same. We observe that both arrive at the same equilibrium shape.
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Fic. 5.3. Ewolution of the power loss, mass flow rate, and volume as a function of the optimization iteration index
corresponding to the two test cases shown in Fig. 5.2. Since we are using an Augmented Lagrangian approach, as expected, we
can observe that the constraints—of prescribed mass flow rate and volume indicated by dashed lines—are satisfied progressively
as the penalty parameters are increased.

32+

0.9 1.2 1.5

Fic. 5.4. Optimal shapes and minimized power losses for varying mass flow rates. The bottom wall is fixed as flat. The
constraint of volume is identical for all shapes.

One of the main directions of our future investigation is to consider optimal shapes for transporting
passive (e.g., colloids, bubbles or vesicles) and/or active (e.g., spermatozoa, bacteria) particles in Stokes
flow. This is of current interest in both science and technological applications. Clearly, they are more com-
putationally intensive since transient PDEs need to be solved as opposed to the quasi-static ones considered
here. However, particulate flow solvers based on BIEs are proven to be efficient and scalable to simulating
millions of deformable particles [22]; our work lays the foundation for applying these methods to shape
optimization of peristaltic pumps transporting such complex fluids.

7. Acknowledgements. RL and SV acknowledge support from NSF under grants DMS-1719834 and
DMS-1454010. The work of SV was also supported by the Flatiron Institute (USA), a division of Simons
Foundation, and by the Fondation Mathématique Jacques Hadamard (France).

Appendix A. Proofs.
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A.1. Proof of Lemma 3.1. We use the Frenet formulas (2.1) and associated conventions. To evaluate

uP, we let T depend on the fictitious time 7, setting

L) 5@, (s) = a(s) +18(s)  (0<s<0),

(where T stands for 't or ', and likewise for £) and seek the relevant derivatives w.r.t. n evaluated at
1 = 0. Note that for n # 0, s is no longer the arclength coordinate along I';, and Osx,, is no longer of unit
norm; moreover, the length of I';, depends on 7. The wall velocity U = (¢{/L)T for varying n is then given
by

b gz, (0<s<0),

(A1) Uy(s) = 7ot

having set g, = |0s@,| (note that go = 1). Our task is to evaluate d/dnU,(s) at n = 0. We begin by
observing that the derivative of g is (since d,x, = 7 and g = 1 for n = 0)

Ong = (05 Opsy) /g = T-0,0 = 0505 — K0,

and the length ¢, of I';, and its derivative 2 are given (noting that s spans the fixed interval [0, ¢] for all
curves I'y) by

¢ . ¢ ¢
(i) £, = / gn ds, (ii) ¢ = / (0505 — KO,) ds = —/ kO, ds.
0 0 0

The last equality in (ii), which results from the assumed periodicity of 6, proves item (b) of the lemma.
Using these identities in (A.1), the sought derivative 4P of the wall velocity is found as

C0— 00,0, — Wn))T + eao—fﬁ

cl
o~ I L7t T Ol F rbs)m

P = 0,U,(s),

thus establishing item (a) of the lemma. The proof of Lemma 3.1 is complete.
A.2. Proof of Lemma 3.2. The proof proceeds by verification, and rests on evaluating div A, with
the vector function A defined by
A = (olu,p|]: D[u])0 — olu,p|-Va-0 — olu,p|-Vu-0

First, it is easy to check, e.g. using component notation relative to a Cartesian frame, that
(A.2a) div [ (o[u,p]: D[4])0] = (Vo[u,p]-0): D[] + olu,p]: (VD[a]-6) + (o[u,p]: D[4])div 6
(A.2D) div [ofu,p]-Va-0] = (dive[u,p))-(Va-0) + olu, p]: (Va-V0) + ou, p]: (VD[4]-0)
Next, invoking the constitutive relation (2.2b) for both states, one has

ofu,p]:(VD[a]-0) = —pV (diva)-0 + 2uD(u]: (VD[d]-0)

(Volu,p]-0): Du] = —(Vp-0)divu + 2u(VDJ[a]-0): Du)].
i.e. (using incompressibility)
(A.3) olu,p]:(VDla]-0) = (Vo[a, p-6): Dlu].

Finally, using (A.3) in (A.2a) and the balance equation in (A.2b), together with the corresponding identities
obtained by switching (u,p) and (@, p), one obtains
div A = div [(o[u,p]: D[4])6 — ou,p]- Va0 — ola,p]- Vu-0 |
=div [ (o[u,p]: D[a])6 + (o[, p]: D[u]) — olu,p]- Va-0 — ola,p]- Vu-0 |
= 2[o[u,p]: D[4] + ola,p]: D[u]|div@ — ofu,p]: (Va-VO) — o, p]: (Vu-V8)
= 2u(D[u]: D[a])div0 — 2uDu]: (Va-VO) — 2uD[a]: (Vu-Ve) + (pVia + pVu): VO
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(with the second equality stemming from o[u,p|: D[4] = 2uD]u]: D[4] = 2uD]4): D[u] = o[a, p]: D[u]).
Using definitions (3.9a,b) of a! and b', we therefore observe that

ol (w, @, 0) — b (u, , 0) — b (i, p, 6) / div A AV,
Q

The last step consists of applying the first Green identity (divergence theorem) to the above integral. The
Lemma follows, with the contribution of the end section I'j, therein stemming from condition (ii) in (3.3)
and the periodicity conditions at the end sections. The latter hold by assumption for both w and @, and
the interior regularity of solutions in the whole channel then implies the same periodicity for Vu and Vu;
moreover, periodicity is also assumed for p (but not necessarily for p) as well as for 6.

A.3. Proof of Lemmas 3.4 and 3.5. Let points x in a tubular neighborhood V of I' be given in
terms of curvilinear coordinates (s, z), so that

x =x(s) + zn(s),

and let v(x) = vs(s,2)T(s) + v (s, 2)n(s) denote a generic vector field in V. Then, at any point & = x(s)
of I", we have

Vv = (0505 — vy ) TRT + (st + KU )N T + O vsT N + pun@m,

diveo = 0svs — KUy, + Opvy,.

Assuming incompressibility, the condition divv =0 can be used for eliminating 0, v,, and we obtain

Vv = (8svs—nvn)(r®7—n®n) + (8svn+/ivs)n®’r+8nvsr®n,

Recalling now that the forward and adjoint solutions respectively satisfy u = (¢//L)T and 4 =0 on T, and
that 2D[v] = Vv + VT, we have

Vu:%n®r+8nusr®n 2D[u) = (%Ce+6nus)(n®7+7'®n)
=0

(A4) L onT.

Vi =0,u;T®n 2DJu) nﬁs(n®T+T®n)

The corresponding stress vectors f = —pn + 2uD[u]-n and f=—pn+ 2uD[a]-n on T are found as

. . Y, .
f=-mtfr, f=—pntfr with fo=p( 540 ), f= o,

which in particular prove items (c) of Lemmas 3.4 and 3.5. Finally, using the above in (A.4) establishes the
remaining items (a), (b) of both lemmas.
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