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Abstract: Rapid identification of infrastructure disruptions 
during a disaster plays an important role in restoration and 
recovery operations. Due to the limitations of using physical 
sensing technologies, such as the requirement to cover a large 
area in a short period of time, studies have investigated the 
potential of social sensing for damage/disruption assessment 
following a disaster. However, previous studies focused on 
identifying whether a social media post is damage related or 
not. Hence, advanced methods are needed to infer actual 
infrastructure disruptions and their locations from such data. 
In this paper, we present a multi-label classification approach 
to identify the co-occurrence of multiple types of 
infrastructure disruptions considering the sentiment towards 
a disruption—whether a post is reporting an actual disruption 
(negative), or a disruption in general (neutral), or not affected 
by a disruption (positive). In addition, we propose a dynamic 
mapping framework for visualizing infrastructure disruptions. 
We use a geo-parsing method that extracts location from the 
texts of a social media post. We test the proposed approach 
using Twitter data collected during hurricanes Irma and 
Michael. The proposed multi-label classification approach 
performs better than a baseline method (using simple keyword 
search and sentiment analysis). We also find that disruption 
related tweets, based on specific keywords, do not necessarily 
indicate an actual disruption. Many tweets represent general 
conversations, concerns about a potential disruption, and 
positive emotion for not being affected by any disruption. In 
addition, a dynamic disruption map has potential in showing 
county and point/coordinate level disruptions. Identifying 
disruption types and their locations are vital for disaster 
recovery, response, and relief actions. By inferring the co-
occurrence of multiple disruptions, the proposed approach 

may help coordinate among infrastructure service providers 
and disaster management organizations. 
 

1 INTRODUCTION 
 

Cities and communities all over the world largely depend 
on critical infrastructure systems/services such as electrical 
power, water distribution, communication services, and 
transportation networks. The growing interconnectedness 
and interdependency among these systems have changed the 
organizational and operational factors and increased the 
vulnerability in the face of unwanted disruptions. These 
systems provide critical services to a large population, and 
thus when disrupted they affect our quality of life, local and 
regional economy, and the overall community well-being. 
The need to quickly identify disaster-induced infrastructure 
disruptions is growing because of the increasing number of 
natural disasters such as hurricane Michael, Irma, Harvey, 
and Florence and their enormous impacts to affected 
communities.  

For instance, hurricane Irma caused a substantial number 
of power outages in addition to transportation, 
communication, drinking water, and wastewater related 
disruptions. More than six million customers faced power 
outages during Irma. Storm related high winds and sustained 
storm surges cost approximately 3,300 megawatts of power 
generation (NERC, 2018). Around 27.4% of cell phone 
towers in Florida were damaged due to hurricane Irma as 
reported by the Federal Communications Commission (FCC) 
(FCC, 2017). Irma caused flooding to several areas 
throughout Florida, forcing health officials to issue unsafe 
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drinking water and boiling water notices (“The Effect of 
Hurricane Irma on Water Supply,” 2017; “Unsafe Drinking 
Water After Hurricane Irma,” 2019). Moreover, dozens of 
sewage systems were overflowed after the power went out, 
which further exacerbated the drinking water condition 
(“Unsafe Drinking Water After Hurricane Irma,” 2019).  

To ensure efficient operation and maintenance, it is 
important to gather real-time information about the 
performance and integrity of engineering systems. This is 
typically performed through a computational monitoring 
process that involves observation of a system, analysis of the 
obtained data, and prediction of future performance (Dyskin 
et al., 2018). During a disaster, due to disruptions, the 
performance of critical infrastructures degrades rapidly—
leading to cascading failures (Du, Cai, Sun, & Minsker, 2017; 
Kadri, Birregah, & Châtelet, 2014). In such extreme events, 
computational monitoring is required to assess the quickly 
changing condition of infrastructure systems and warn about 
an approaching failure or even a catastrophic event.  

For effective disaster response and recovery operations, 
coordinated actions are required from the responsible 
organizations. Disruptions to infrastructure systems such as 
electricity/power, cell phone, internet, water, waste water, 
and other systems significantly affect the recovery time of a 
community (Mitsova, Escaleras, Sapat, Esnard, & Lamadrid, 
2019). Due to the interdependence among infrastructure 
systems, multiple types of disruptions (e.g., power outages, 
internet/cell phones, water service) are likely to co-occur 
during a disaster. To ensure an expedited recovery of the 
systems, rapid identification of the co-occurrence of 
disruptions is necessary so that coordinated actions can be 
taken by multiple agencies. 

Although infrastructure performance data can be collected 
through physical sensing technologies such as drones, 
satellite, UAV etc. (Jongman, Wagemaker, Romero, & de 
Perez, 2015; NERC, 2018), they might not be feasible due to 
the rapidly evolving nature of a disaster spreading over a 
large area (Fan, Mostafavi, Gupta, & Zhang, 2018). Social 
media users have been used as sensors during disasters and 
several studies have found its potential for understanding 
situational awareness (Huang & Xiao, 2015; Kryvasheyeu Y, 
Chen H, Moro E, Van Hentenryck P, 2015). Previous studies 
investigated social media sensing for damage assessment 
(Kryvasheyeu et al., 2016), recovery (Z. Li, Wang, Emrich, 
& Guo, 2018), and inundation mapping (Jongman et al., 
2015). Studies have also proposed query based approaches to 
identify topics related to critical infrastructure disruptions 
(Fan & Mostafavi, 2019; Fan et al., 2018). However, these 
studies have not considered the co-occurrences of the types 
and extent of infrastructure disruptions.  

During an unfolding disaster, people from the affected 
regions share their opinions, views, concerns, and eye 
witnessed events in social media platforms. Such user-
generated content can provide valuable information to extract 
disruption-related information. However, during a disaster, 
emergency managers face challenges to monitor the massive 
volume of social media posts in real time (Oyeniyi, 2017). 
Thus, to get actionable information, it is important to identify 

whether a post indicates an actual disruption or simply 
expresses user views or opinions about a disruption. Recent 
studies have mainly focused on identifying whether a 
particular social media post is damage related or not (Yuan & 
Liu, 2018, 2019). However, since infrastructure systems are 
more interconnected, co-occurrences of disruptions in 
multiple infrastructures are more likely.  

In this study, we develop a multi-label classification 
approach to identify the co-occurrence and extent of multiple 
types of infrastructure disruptions. We also present a 
framework to create dynamic disruption maps and case 
studies showing the developed approach based on Twitter 
data collected during hurricanes Irma and Michael. This 
study has the following contributions: 

• We consider multiple types of infrastructure disruptions 
(e.g., power, transportation, water, wastewater, and other 
disruption) and their co-occurrences in a social media 
post, instead of considering a simple binary classification 
problem (i.e., whether a post is disruption related or not).      

• To identify if a disruption related post reflects an actual 
disruption, we associate sentiments with disruption 
status—whether a post is reporting an actual disruption 
(negative), or disruption in general (neutral), or not 
affected by a disruption (positive).  

• We propose a dynamic mapping framework for 
visualizing infrastructure disruptions by adopting a geo-
parsing method that extracts location from tweet texts.  

Instead of identifying disruption types and status in a single 
label, we identify disruption types and disruption status 
(through sentiment) separately. We adopt this approach since 
the neutral and positive sentiment about a disruption may also 
provide valuable information on the level of situational 
awareness about disruptions during a disaster. 

 
 

2 LITERATURE REVIEW 
 

According to the Department of Homeland Security, there 
are 16 critical infrastructure sectors (Homeland Security, 
2019). Among these sectors, energy, communication, 
transportation, water/wastewater systems are the most 
vulnerable ones to a natural disaster. It is important to 
identify, characterize, and model infrastructure disruptions 
for a faster restoration and recovery operation (Fang & 
Sansavini, 2019; Sriram, Ulak, Ozguven, & Arghandeh, 
2019). Studies have focused on the recovery plans and 
damages due to extreme weather events (Bryson, Millar, 
Joseph, & Mobolurin, 2002; Fang & Sansavini, 2019; 
Lambert & Patterson, 2002; Rosenzweig & Solecki, 2014; 
Sörensen, Webster, & Roggman, 2002). Several studies have 
proposed approaches to assess the reliability, resilience, 
vulnerability and failure process of power, transportation, and 
water supply networks individually (Barabási & Albert, 
1999; Buldyrev, Parshani, Paul, Stanley, & Havlin, 2010; 
Jenelius & Mattsson, 2012; Ouyang & Fang, 2017; Pietrucha-
Urbanik & Tchórzewska-Cieślak, 2018; Sumalee & 
Kurauchi, 2006; Ulak, Kocatepe, Sriram, Ozguven, & 
Arghandeh, 2018). However, these critical infrastructures are 
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inter-connected and inter-dependent (Alinizzi, Chen, Labi, & 
Kandil, 2018; Homeland Security, 2019; Martani, Jin, Soga, 
& Scholtes, 2016). Considering the increased connectedness 
and interdependencies among infrastructure systems, studies 
have proposed a holistic approach to assess the resilience to 
disruptions (Hasan & Foliente, 2015; Lu et al., 2018; Pant, 
Thacker, Hall, Alderson, & Barr, 2018; Rinaldi, Peerenboom, 
& Kelly, 2001; Sriram et al., 2019). However, most of these 
studies are based on synthetic data or post-event data. Thus, 
they are not suitable for real-time decision-making.  

Recently, real-time condition monitoring is becoming very 
popular in manufacturing, maintenance, and usage of many 
engineering systems (Dyskin et al., 2018) and civil 
engineering infrastructures (Chang, Flatau, & Liu, 2003). 
Computational models have been developed for estimating 
the properties of constructional materials (Rafiei, Khushefati, 
Demirboga, & Adeli, 2017), detecting damages to building 
structures (Rafiei & Adeli, 2017b, 2018a), predicting 
construction costs (Rafiei & Adeli, 2018b) etc. Another 
potential approach for monitoring infrastructures is by 
collecting real-time data using smartphones, leading to 
citizen-centered and scalable monitoring systems in a disaster 
context (Alavi & Buttlar, 2019).  

During an ongoing disaster and post-disaster period, it is 
important to collect disruption data to take necessary actions 
as fast as possible. Due to the intensity and spread of a 
disaster, physical sensing techniques such as satellite, UAV 
(Unmanned Aerial Vehicle) etc. (Jongman et al., 2015; 
NERC, 2018) are not suitable. For example, after hurricane 
Irma, unmanned aerial drones, amphibious vehicles, airboats 
are used to perform damage assessment on inaccessible 
transmission and distribution lines (NERC, 2018). A crowd-
sourcing app that allows damage reporting might not be 
useful because of fewer participants. On the other hand, the 
ubiquitous use of social media on GPS enabled smartphone 
device, allows us to collect large-scale user generated data 
containing live and in situ events during a disaster 
(Middleton, Middleton, & Modafferi, 2013). Studies have 
already used social media data for crisis mapping (Birregah 
et al., 2012; Gao, Barbier, & Goolsby, 2011; Middleton et al., 
2013). However, real-time crisis mapping requires location 
information, but only around 1% to 4% of social media (e.g., 
Twitter) data posts are geo-tagged (Cheng, Caverlee, & Lee, 
2010; C. Li & Sun, 2014; Middleton et al., 2013). Studies 
have proposed several location-extraction methods from 
content/textual data (Cheng et al., 2010; C. Li & Sun, 2014; 
Middleton et al., 2013). In addition, the power of social media 
to connect a large group of population has drawn significant 
attention towards using social media platforms for disaster 
management (Keim & Noji, 2010; Sadri, Hasan, & Ukkusuri, 
2019; Tang, Zhang, Xu, & Vo, 2015). Studies have analyzed 
social media data for understanding human mobility and 
resilience during a disaster (Roy, Cebrian, & Hasan, 2019; 
Wang & Taylor, 2014). Kryvasheyeu et al. proposed that 
social media users can be considered as early warning sensors 
in detecting and locating disasters (Kryvasheyeu Y, Chen H, 
Moro E, Van Hentenryck P, 2015). Studies have also 
explored social media data to understand evacuation behavior 

(Fry & Binner, 2015; Martín, Li, & Cutter, 2017) and damage 
assessment (Deng, Liu, Zhang, Deng, & Ma, 2016; Guan & 
Chen, 2014; Kryvasheyeu et al., 2016; Yuan & Liu, 2018).   

Damage assessment plays a vital role in resource allocation 
and coordination in disaster response and recovery efforts. 
Previous studies found that affected people provide damage 
related situational updates in social media (Deng et al., 2016; 
Guan & Chen, 2014; Kryvasheyeu et al., 2016; Yuan & Liu, 
2018). However, these studies do not consider the types of 
disruptions and are mainly suitable for post-disaster overall 
damage assessment. Most of these studies adopted simpler 
indicators of damage assessment such as frequency of 
disaster related tweets (based on keywords such as ‘sandy’, 
‘hurricane sandy’, ‘damage’). The limitation of using pre-
defined keywords is that a large number of such tweets/texts 
may not contain any damage related information. Some 
studies (Kotsiantis, Zaharakis, & Pintelas, 2007) adopted 
supervised machine learning based classification approaches 
to resolve this limitation. These studies (Cresci, Cimino, 
Dell’Orletta, & Tesconi, 2015; Yuan & Liu, 2019) adopted 
support vector machine, naïve Bayes, decision tree 
classification algorithms to analyze damage related social 
media posts. However, these studies considered damage 
identification as a binary (damage related or not) 
classification problem, which may include posts that are not 
reporting an actual damage/disruption. In addition, deep 
learning models were used for image and text data 
(Mouzannar, Rizk, & Awad, 2018; D. T. Nguyen, Ofli, 
Imran, & Mitra, 2017). Image data are limited, 
computationally expensive, and cannot report disruptions in 
functionality such as power outage, communication 
disruptions etc.  

The most relevant studies towards identifying an 
infrastructure disruption using social media posts are 
proposed by Fan et al. (Fan & Mostafavi, 2019; Fan et al., 
2018). The first study (Fan et al., 2018) has focused on 
summarizing the overall topics during a disaster given some 
predefined keywords, not suitable to identify disruptions 
from real-time data.  In the second study (Fan & Mostafavi, 
2019), the authors have developed a graph-based method to 
identify situational information related to infrastructure 
disruptions by detecting time slices based on a threshold 
number of tweets. They compute content similarity within the 
detected time slices to get credible information. Some 
limitations of this approach include: it depends on keyword 
based filtering, which can miss out important information if 
appropriate keywords are not chosen; it requires the whole 
dataset as an input, which is not suitable for a real-time 
prediction; it considers the content posted only on the burst 
timeframe that might miss out some actual disruption related 
posts. Moreover, this study does not consider that a single 
post may have information about multiple types of 
disruptions and cannot distinguish if a particular post is 
reporting an actual disruption or not. 

In summary, to the best of our knowledge, currently no 
study exists to identify the co-occurrence of multiple types of 
infrastructure disruptions using social media data. For this 
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task, a multi-label classification approach (Sorower, 2010) 
identifying multiple labels from a single input, can be useful.  

In this study, we use a multi-label text classification 
approach to identify multiple disruption types and their status 
using social media data. To develop our multi-label 
disruption classification approach, we use eight well-known 
models on text classification. We present two case studies to 
identify disruptions using Twitter data from hurricanes Irma 
and Michael. Finally, we visualize the spatio-temporal 
dynamics of infrastructure disruptions in a map of the 
affected regions.   
 

 
3 DATA PREPARATION 

 
In this study, we use Twitter data collected during 

hurricanes Irma and Michael for creating a dynamic 
disruption map of critical infrastructure disruptions. We use 
two different methods (Twitter streaming API and rest API) 
for data collection. A brief description of the data is provided 
in Table 1. 

 

Using the streaming API, we collected about 1.81 million 
tweets posted by 248,763 users between September 5, 2017 
and September 14, 2017 during hurricane Irma. We collected 
the tweets using a bounding box covering Florida, Georgia, 
and South Carolina. To collect data for more time span and 
to fill some missing values contained in the steaming API 
data, we used Twitter’s rest API to gather user-specific 
historical data. Twitter’s rest API allows collecting the most 
recent 3,200 tweets of a given user. We collected user-
specific data for 19,000 users, who were active for at least 
three days within the streaming data collection period. 
Similarly, we collected data for hurricane Michael using a 
bounding box covering Florida, Georgia, South Carolina, and 
North Carolina, containing 3.53 million tweets posted by 1.29 
million users covering from October 8, 2018 to October 18, 
2018. 

To create an annotated disruption dataset, we manually 
labeled 1,127 tweets from hurricane Irma and 338 tweets (for 
testing purpose only) from hurricane Michael. The tweets 
were labeled by 5 human annotators. To ensure that we 
retrieve the right labels of the disruption types and 
sentiments, we only considered the labels when all 5 
annotators agreed on it.  Each tweet can have one or more 

labels out of the ten possible labels including: not hurricane 
related, power/electricity disruption, communication 
disruption, road/transportation disruption, drinking water 
disruption, wastewater related disruption, other disruption, 
positive, negative, and neutral.  The first label indicates 
whether a tweet  is hurricane related or not. The next five 
labels indicate five types of infrastructure disruptions. The 
label, other disruption, indicates a disruption that does not 
fall into the five types of infrastructure disruptions considered 
here. The last three labels indicate the possible sentiment 
towards a disruption. We give below three examples of 
disruption related tweets: 

• This tweet -“Update I'm the only community in my area 
with power I feel really lucky right now but I hope 
everyone else is safe”- mentions about power/electricity 
disruption but in a positive way. We would label such a 
tweet as (power/electricity disruption, positive).  

• This tweet- “we are in Clermont on Lake Minnehaha. We 
have no cable or power & cell service is spotty. When 
will be the worst here”- mentions about both 
power/electricity and communication disruptions. We 
would label this tweet as (power/electricity disruption, 
communication disruption, negative).  

• This tweet -“im trying to eat and watch as much netflix 
as i can just incase my power go out”- mentions about 
power/electricity disruption but does not indicate an 
actual disruption. We would label it as (power/electricity 
disruption, neutral).  

 
Figure 1 shows the frequencies and co-occurrences of the 

labels in the annotated dataset. It shows that the annotated 
data contain many “not hurricane related” tweets. Among 
the tweets related to different types of disruptions, 
power/electricity related disruptions have the highest 
frequency. Among the sentiment related labels, negative 
sentiment has the highest frequency. On the other hand, 
power/electricity disruption and negative sentiment are the 
most frequently co-occurred labels in the annotated dataset. 

Table 1 Data Description 

Hurricane 
Name 

Regions 
(USA) 

No. of 
Tweets 

No. of 
Users 

Irma  
(Streaming 

API) FL, GA, 
SC 

1,810,000 248,763 

Irma  
(Rest API) 2,478,383 16,399 

Michael 
(Streaming 

API) 

FL, GA,  
SC, NC 3,534,524 1,289,204 

 

 

 
Figure 1 Distribution of Label Frequency and Label Co-

occurrence Frequency 
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4 METHODOLOGICAL APPROACH 

 
The methodological approach adopted in this study has 

three main parts. The first part takes tweet texts as input and 
identifies disruptions and the sentiment towards the 
disruption. The second part extracts the geo-location from the 
tweet’s metadata or text. The third part visualizes the 
disruptions geographically in a dynamic map of disruptions. 
Figure 2 shows the steps and information flow among those 
steps. Each part of the framework is described below: 
 
4.1 Disruption Identification 

The objective of this step is to identify infrastructure 
disruptions and sentiments from a given text input, where 
more than one disruption type might be present. We use a 
supervised multi-label classification approach. The input 
texts collected from Twitter posts contain many noises, which 
may degrade classification performance. Therefore, we 
process the data before feeding it into the model. The 
sequential steps are shown in Figure 2 (left side). 
Data Pre-processing 

In this step, we discard the unnecessary tweets and remove 
noise from a tweet. Since a retweet (starting with RT in the 
texts) does not provide any new information in the dynamics 
of disruption, we discard retweets from the data to avoid false 
spike in the disruption count. To clean the tweet texts, we 
remove the stop words (e.g., ‘a’, ‘an’ and ‘the’), short URLs, 
emoticons, user mentions (@Twitter user name), 
punctuations, and special characters (\@/#$ etc.). Finally, we 
tokenize (splitting texts into words) the texts and apply 
lemmatization (converting the words into noun, verb etc.) and 
stemming (converting words into root form) to the tokens. 
Data Processing 

In this step, we process the data for training models and 
predicting disruptions. In machine learning, training of a 
model refers to providing it with training data, which contains 
both inputs and correct answers, so that the algorithm can find 
the pattern to map the input features to the target/output 
features. We convert the preprocessed tokens as TF-IDF 
(Term Frequency-Inverse Document Frequency), which 
measures the importance of a word in a document of a corpus 
(collection of documents). The details on TF-IDF can be 
found in this study (Ramos & others, 2003). The TF-IDF of a 
term/word (𝑤) is calculated as follows: 

 𝑇𝐹⁃𝐼𝐷𝐹(𝑤) = 𝑇𝐹(𝑤) × 𝐼𝐷𝐹(𝑤) (1) 
 where,  

 

𝑇𝐹(𝑤) =

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑤 
𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 
𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

 

 

 

 
𝐼𝐷𝐹(𝑤) = 𝑙𝑜𝑔

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 
𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 
𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑤

 
 

We create the TF-IDF using both unigram and bigram of 
words. We remove the features that appear in less than 2 
documents. To remove the effect of total word counts in a 
document, we apply 𝑙2 normalization (sum of the squared 
value of TF-IDF =1 for a document). To prevent data leakage, 
we calculate the TF-IDF considering the tweets available in 
the training dataset. The output of the model may contain 
multiple disruptions; thus we convert the annotated labels 
into multi-label formats. We represent the multi-label output 
as a binary/one hot encoded matrix indicating the presence of 
disruption type and the sentiment label. In our study, we have 
10 possible labels, so, each converted label is represented as 
1 × 10 binary matrix where the value 1 represents the 
presence and the value 0 represents the absence of a particular 
label.  
Model Selection 

The objective of this step is to find the best model that 
maps an input tweet text to the binary matrix representing one 
or more types of infrastructure disruptions and sentiment. In 
our study, we choose a multi-label classification approach for 
identifying disruptions and sentiments. This approach 
generalizes the multiclass classification, where a single 
input/tweet can be assigned to multiple types of disruptions. 
Let 𝐿 = {𝜆𝑖} be the set of labels containing disruption types 
and sentiment, where, 𝑖 = 1 … … . |𝐿|. In our case, |𝐿| = 10. 
The objective of our disruption identification model, ℎ is that: 
given the input tweet, 𝑋 the model has to predict the 
disruption types and sentiments, 𝑌 ⊆ 𝐿. 

 ℎ: 𝑋 → 𝑌   (2) 
We apply three methods that allow using the multiclass 

classification models for a multi-label classification task. The 
first method transforms a multi-label classification into 
multiple binary classification problems. This method is also 
known as binary relevance (BR) (Sorower, 2010) that trains 
one binary classifier for each label independently. The 
equation for a binary classifier, ℎ𝜆𝑖

 for a label 𝜆𝑖 can be 
expressed as below: 

 ℎ𝜆𝑖
: 𝑋 → {¬𝜆𝑖 , 𝜆𝑖} (3) 

The BR method transforms the training data into |𝐿| 
datasets. The dataset 𝐷𝜆𝑖

 for label 𝜆𝑖  contains all the original 
dataset labeled as 𝜆𝑖 if the original example contains 𝜆𝑖, 
otherwise, as ¬𝜆𝑖. For an unseen sample, the combined 
model predicts all labels using the respective classifier. One 
of the disadvantages of the BR method is that it does not 
consider the correlation between labels. 

The second method transforms the multi-label 
classification problem into a multi-class classification 
problem. This method is known as label powerset (LP) that 
considers each subset of 𝐿 as a single label. Let, 𝑃(𝐿) be the 
powerset of 𝐿, which contains all possible subset of 𝐿. LP 
method considers each element of 𝑃(𝐿) as a single label. 
Now, in training LP learns one single label classifier ℎ, 
where: 

 ℎ: 𝑋 → 𝑃(𝐿) (4) 
The LP method has advantages over the BR method, 

because it takes the label correlations into account. However, 
it requires high computation time if the size of 𝑃(𝐿) is very 
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big and majority of the subsets have very few members. Also, 
the LP method tends to overfit (performs well on training data 
but performs poorly on test data), when the number of labeled 
samples of the generated subsets is low. 

As the third method, we apply an ensemble technique, 
known as Random k-Labelsets (RAKEL) adopted from the 
study (Tsoumakas & Vlahavas, 2007). This method 
constructs an ensemble of LP classifiers, where each LP 
classifier is trained on a small random subset of labels. 
Instead of using 𝑃(𝐿), it creates k-labelset 𝑌 ⊆ 𝐿, where 𝑘 =

|𝑌|. If the set of all distinct 𝑘-labelset is 𝐿𝑘, then |𝐿𝑘| = (|𝐿|
𝑘 ). 

Given a user specified integer value for 𝑘 and 𝑚, where, 1 ≤
𝑘 ≤ |𝐿| and 1 ≤ 𝑚 ≤ |𝐿𝑘|, the RAKEL algorithm iteratively 
constructs an ensemble of 𝑚 numbers of LP classifiers. 
However, for 𝑘 = 1 and 𝑚 = |𝑘|, RAKEL method becomes 

a binary classifier ensemble of BR method. On the other 
hand, for 𝑘 = |𝐿|, 𝑚 becomes 1, and consequently, RAKEL 
method becomes a single label classifier of the LP method. 
Given a meaningful parameter of 𝑘 (2 𝑡𝑜 |𝐿| − 1), at each 
iteration, 𝑖 = 1 … . . 𝑚, without replacement it randomly 
selects a k-labelset, 𝑌𝑖  from 𝐿𝑘 and learns an LP classifier, ℎ𝑖 . 
Where, 

 ℎ𝑖 : 𝑋 → 𝑃(𝑌𝑖) (5) 
 

For a given input, the label prediction is accomplished by 
a voting scheme from the ensemble combination. The 
RAKEL method solves the overfitting problem of the LP 
method but loses some correlations as it considers a random 
subset of the labels (LP method considers all possible 

 
Figure 2 Methodological framework: disruption identification module (left); geo-parsing module (right); 

and visualization module (middle) 
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subsets).  The full description of the RAKEL method can be 
found in this study (Tsoumakas & Vlahavas, 2007).  

In multi-label classification, a prediction cannot be 
assigned as a hard right or wrong value, because a prediction 
containing a subset of the actual classes should be considered 
better than a prediction that contains none of them. Thus, 
traditional performance metrics (e.g., precision, recall) are 
not suitable for evaluating our disruption identification 
model. We choose the best model based on three generally 
used performance metrics in multi-label classification: subset 
accuracy, micro F1 score, and hamming loss. Here, subset 
accuracy and hamming loss are example-based metrics and 
micro F1 measure is a label-based metric. For each test 
sample, an example-based metric computes the difference 
between true and predicted class labels and then calculate the 
average over all test samples. Whereas, a label-based metric 
first computes the performance for each class label, and then 
calculates the average over all class labels. Assuming 𝑦 as the 
set of true class labels, 𝑦̂ as the predicted set of labels, 𝐿 as 
the set of labels, 𝑦𝑙  as the subset of 𝑦 with label 𝑙,  𝑦̂𝑙  the 
subset of  𝑦̂ with label 𝑙, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 the number of samples, the 
equations of these metrics are given below: 

 

 

𝑆𝑢𝑏𝑠𝑒𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑦̂)

=
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ 1(𝑦̂𝑖 ≠ 𝑦𝑖)

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 
(6) 

 

 

𝑀𝑖𝑐𝑟𝑜 𝐹1 𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝑦, 𝑦̂)  

= 2 ×  

|𝑦 ∩ 𝑦̂|
|𝑦| ×

|𝑦 ∩ 𝑦̂|
|𝑦̂|

|𝑦 ∩ 𝑦̂|
|𝑦|

+
|𝑦 ∩ 𝑦̂|

|𝑦̂|

 (7) 

 

 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠(𝑦, 𝑦̂)

=
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × |𝐿|
∑ ∑ 1(𝑦̂𝑙 ≠ 𝑦𝑙)

𝐿

𝑙=0

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 
(8) 

 
We further check the predictive performance of the model 

computing a confusion matrix for each label (representing 
disruption types and sentiment). Table 2 shows the 
components of a confusion matrix. The rows represent the 
actual labels and the columns represent the predicted labels 
where positive means the existence of a particular label and 
negative means the absence of a particular label. For a 
particular sample, if the actual label is negative, a negative 
prediction by the model is assigned as true negative and a 
positive prediction is assigned as false positive. Similarly, if 
the actual label is positive, a positive prediction is assigned 
as true positive and a negative prediction is assigned as false 

negative. 

 
4.2 Disruption Location Extraction 

The objective of this step is to extract the location of the 
disruptions that are identified by the previous step. Geo-
tagged tweets provide location information either as a point 
type (exact latitude-longitude) or as a polygon type 
(bounding box). We use this location to indicate the location 
of a disruption either at a point resolution or a city/county 
resolution. However, geo-tagged tweets are only a few 
percentages (1% to 4%) of the total number of tweets. To 
address this limitation, we implement a location extraction 
method from tweet texts. This approach has several steps 
within it. Given a tweet text, the first step is to label each 
word (e.g., person’s name, location, organization etc.), which 
is known as Named Entity Recognition (NER). We 
implement our NER model using the Natural Language 
Toolkit (NLTK),  developed by (Bird, Klein, & Loper, 2009). 
The second step is to extract the location entity, words that 
are tagged as location, from the labeled words. In the third 
step, we match the extracted location with the county/city 
names of the affected regions. Finally, if the extracted 
locations are matched, we collect the coordinates using the 
geo-coding API provided by Google Maps. The process of 
location extraction is shown in Figure 2. 

 
4.3 Dynamic Disruption Mapping 

This part of the methodology enables the visualization of 
the locations of disruptions with disruption types in a 
dynamic way. We visualize the exact disruption location, 
only if the location has the exact co-ordinate (location type: 
point or latitude-longitude). We choose a time interval (𝑡) to 
count the number of disruptions within a geographical 
boundary (e.g., county) and then visualize the disruption 
intensity as a geographical heat map. We did not consider 
disruption severity in this study. But severity can be assumed 
to be correlated with the frequency of disruption related 
tweets from a given area; the higher the frequency of 
disruption related tweets the higher will be the severity level 
of disruptions. Hence, a dynamic disruption map can provide 
insights about the severity of infrastructure disruptions of an 

Table 2 Confusion matrix 

  Predicted Label 
  Negative (0) Positive (1) 
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(FN) 
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area based on the frequency of a specific or all disruption 
related posts generated from that area.  

 
 

5 RESULTS 
 

Using Twitter data from real-world hurricanes, we present 
our results to identify infrastructure disruptions and visualize 
those disruptions in a dynamic map. To identify disruptions 
types and sentiment from text data, we use Binary Relevance, 
Label Powerset, and ensemble based multi-label 
classification approaches. We compare the performance of 
these approaches using eight existing models namely: 
Multinomial Naïve Bayes (MNB), Logistic Regression (LR), 
K-Nearest Neighborhood (KNN), Support Vector Machine 
(SVC), Random Forest (RF), Decision Tree (DT), Multilayer 
Perceptron (MLP), and Deep Neural Network (DNN) 
methods. The details of these well-known methods can be 
found in these studies  (Binkhonain & Zhao, 2019; Khan, 
Baharudin, Lee, & Khan, 2010). We convert the annotated 
tweet text as TF-IDF and annotated label as binary matrix 
(multi-label format) by following the steps described in the 
data processing section. We use the TF-IDF as input and the 
binary matrix as output. For each model, we use 70% (788 
tweets) of the annotated samples as training and the rest 30% 
(339 tweets) as test samples. We further validate our best 
model over 338 tweets from hurricane Michael to test model 
performance on the data from an unseen hurricane (i.e., for 
hurricane data which were never used for training the model). 

We implement all the models in a personal computer using 
Python programming language and model parameters are 
selected using a grid search approach (Pedregosa et al., 2011). 
Moreover, we implement a baseline method that uses 
keyword matching and sentiment analysis to identify 
disruptions and sentiment characteristics, respectively. 
Currently no benchmark method exists that can identify the 
co-occurrence of multiple types of disruptions from social 
media posts. Since a keyword based approach has been used 
in similar studies (Fan & Mostafavi, 2019; Yuan & Liu, 
2018), we choose to use this as a baseline method. The 
keywords used are listed in Table 3.  

For sentiment identification, we use a pre-trained model 
adopted from this study (Hutto & Gilbert, 2014); this model 
has been trained on social media texts. We consider this 
combined (keyword matching and sentiment identification) 
approach as a baseline method to evaluate if the trained 
models perform better than this baseline method. Table 4 
presents the performance of each model on hurricane Irma 
test dataset with respect to the selected performance metrics: 
subset accuracy, micro F1 measure, and hamming loss. 

From the results, we can see that Logistic Regression 
classifier (LP method) has the best subset accuracy and micro 
F1 scores and Support Vector classifier (RAKEL method) has 
the best hamming loss score. The models (LR, KNN, SVC, 
MLP, and Deep DNN) perform better than the baseline 
method in all approaches (BR, LP, and Ensemble) (see Table 
4). Among the three multi-label approaches, LP has the best 
performance; RAKEL is second; and BR method is the last 

in terms of the considered performance metrics. The reasons 
for this result are the following: (i) BR method considers the 
labels as mutually exclusive or the correlation between the 
disruptions is ignored; (ii) LP method considers the 
correlations between the labels/disruptions by considering all 
label combination; and (iii) RAKEL method falls between the 
BR and LP methods with respect to label correlations as it 
considers a random small subset of labels.  

To select the best model, we further check the confusion 
matrix and choose Logistic Regression (LP method) 
classifier. Figure 3 shows the confusion matrix for the LR 
(LP) on the test samples from hurricane Irma. The selected 
best model (LR-LP) shows 74.93% increase (0.351 to 0.614) 
in subset accuracy, 30.73% increase (0.550 to 0.719) in micro 
F1 measure, and 44.65% decrease (0.159 to 0.088) in 
hamming loss compared to the baseline method. 

We also check the performance of our best model (LR-LP) 
for disruption and sentiment identification separately. We 
validate for hurricanes Irma and Michael, using 339 test data 
from hurricane Irma and 338 test data from hurricane 
Michael. Table 5 shows the performance on disruption 
identification. 

Table 3 Keywords for Identifying Disruption 
Related Tweets 

Disruption Types Keywords 

Power/Electricity 
Disruption 

power, electricity, outage, 
(power, outage), (without, 
power) 

Communication 
Disruption 

internet, wi-fi, cell, (no, 
internet), (no, network) 

Transportation 
Disruption 

road, roads, traffic, 
transportation, turnpike, i-4, 
i-95, jam, closed, (traffic, 
signal), (road, closed) 

Drinking Water 
Disruption 

drinkingwater, 
drinking_water, 
bottledwater, bottled_water, 
(drinking, water), (bottled, 
water) 

Wastewater 
Related Disruption 

wastewater, waste_water, 
drainage, drainagewater, 
(waste, water), (drainage, 
water) 
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Except hamming loss for hurricane Michael, our model 
performed better for both hurricanes with respect to accuracy, 

micro F1, and hamming loss. The baseline method performed 
better in hurricane Michael test set than the Irma test data set. 
On the other hand, LR-LP model performed better in Irma 
data than the Michael data since the model is trained on Irma 
dataset.  

Table 6 shows the performance of LR-LP model against 
the baseline sentiment model (adopted from (Hutto & Gilbert, 
2014)). The (LR-LP) model performed better than the 
baseline for both Irma and Michael datasets. The baseline 
method also performed better for Michael data than Irma data 
for sentiment classification. In summary, our developed 
model (LR-LP) performed better than the baseline for both 
hurricanes Irma (hurricane data used to train the model) and 
Michael (unseen hurricane data representing a future 
hurricane).  

To understand the features that help to correctly identify a 
disruption, we analyze the training samples that our model 
correctly predicted (i.e., true positive samples in Table 2). For 
each disruption type, we rank the words based on their 
average TF-IDF score. A higher score represents more 
importance of a word for a disruption type. Figure 4 shows 

 
Figure 3 Confusion Matrix (In each panel, the x axis 
represents the predicted label and the y axis represents the 
actual label in the test set of hurricane Irma. For a 
particular label, the value 1 means the presence of this 
label whereas 0 means the absence of the label. The value 
within a cell represents the number of times a predicted 
label matched or mismatched with the actual label) 

 

Table 4 Model Performance Values (Accuracy, Micro F1-measure, Hamming-loss) (A higher score of subset accuracy or micro 
F1 measure indicates better performance and a lower score of hamming loss indicates better performance) 
 

Model Name Binary Relevance (BR) Label Power set (LP) Ensemble (RAKEL) 
Baseline 
(keyword search + sentiment) 0.351, 0.55, 0.159 

Multinomial Naïve Bayes (MNB) 0.218, 0.519, 0.145 0.472, 0.615, 0.14 0.268, 0.527, 0.151 
Logistic Regression (LR) 0.463, 0.709, 0.090 0.614, 0.719, 0.092 0.525, 0.702, 0.094 
K-nearest Neighborhood (KNN) 0.490, 0.613, 0.130 0.525, 0.612, 0.125 0.510, 0.598, 0.126 
Support Vector Classifier (SVC) 0.472, 0.707, 0.089 0.608, 0.699, 0.096 0.519, 0.709, 0.088 
Random Forest (RF) 0.124, 0.471, 0.170 0.54, 0.635, 0.116 0.357, 0.588, 0.109 
Decision Tree  (DT) 0.292, 0.628, 0.129 0.522, 0.634, 0.119 0.366, 0.617, 0.124 
Multilayer Perceptron (MLP) 0.440, 0.662, 0.099 0.540, 0.615, 0.119 0.507, 0.635, 0.11 
Deep Neural Network (DNN) 0.466, 0.342, 0.138 0.569, 0.684, 0.103 - 

 

 
Table 5: Performance Comparison of disruption 
identification 

 Baseline Model (LR-LP) 
Hurricane Accuracy, Micro F1-measure, Hamming-loss 

Irma 0.351, 0.55, 0.159 0.614, 0.719, 0.092 

Michael  0.476, 0.656,  0.115 0.515, 0.658, 0.119 
 

Table 6: Performance comparison of sentiment model 

 Baseline Model (LR-LP) 

Hurricane Accuracy, Micro F1-measure, Hamming-
loss 

Irma 0.383, 0.368 0.311 0.673, 0.596, 0.165 

Michael 0.571, 0.501, 0.226 0.609, 0.656, 0.175 
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the TF-IDF scores of the top ten words of each disruption type 
(shown as horizontal bars) and the TF-IDF scores of the same 
words calculated over all disruption types in the training set 
(shown as color intensity). We can see that overall words 
such as ‘power’, ‘water’, ‘wifi’, ‘internet’, ‘traffic’, 
‘drainage’ etc. have higher TF-IDF scores (see the color 
intensity of the corresponding bars in Figure 4). It means that 
these words are highly important in the overall classification 
performance. On the other hand, ‘power’, ‘cell’, ‘stop’, 
‘water’, ‘drainage’, ‘close’ are the highest ranked words for 
power/electricity disruption, communication disruption, 
road/transportation disruption, drinking water disruption, 
waste water related disruption, and other disruption, 
respectively. Some words (e.g., ‘power’, ‘water’, ‘cell’) are 
present in multiple disruption types, indicating that these 
words would help identify the co-occurrence of multiple 
disruption types. For example, the presence of ‘cell’ and 
‘signal’ in the top 3 words of power/electricity and 
communication disruptions indicates the co-occurrence of 
these two types of disruptions.  Regarding sentiment features, 
the word ‘power’ is common in all the three sentiments. The 
differences among the words present in these three sentiment 

classes are:  (i) the negative (actual disruption) contains the 
words that are mostly present in the disruption types, (ii) the 
positive sentiment contains slang words such as ‘hell yeah’, 
‘yeah’, ‘ac loll’, (iii) neutral sentiment contains situation and 
forecast related words such as ‘update’, ‘best update’, 
‘situation’, ‘chance wont’, ‘good chance’ (see Figure 4). 
 

6 CASE STUDIES: HURRICANES IRMA AND 
MICHAEL 

 
In this section, we present two case studies of our proposed 

approach, one for hurricane Irma and another for hurricane 
Michael. Our best model (LR-LP) predicts the disruption 
types and status over the input data described in Table 1. As 
shown in Figure 2, for a geotagged tweet, we obtain the 
disruption location from the tweet geo-location information. 
Otherwise, we extract the location from the tweet texts using 
the geocoding module. We match the extracted location with 
the city/county of a state and then obtain the coordinate using 
Google Maps API. 

Finally, we plot the disruption types and status in a 
disruption map. To understand the hurricane context, we also 

 
Figure 4 Important features for different disruption types. The X axis shows the mean TF-IDF score 
(calculated over individual disruption type) and the Y axis shows the words/features. The color of the bar 

indicates the mean TF-IDF score (calculated over all disruption types). The calculated scores and important 
features are based on the training dataset.   
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present the hurricane track and wind speed data collected 
from the National Hurricane Center (NOAA, 2019). Two 
snapshots of the power/electricity disruption map from each 
hurricane are shown in Figure 5 (5a.1 and 5a.2  for hurricane 
Irma, 5b.1 and 5b.2 for hurricane Michael). We use a 3-hour 
time-interval for aggregating the tweets to create the county-
level disruption heat map. The inset plot shows the locations 
of power/electricity disruptions. We show the location of 
hurricane center (shown as a circle at the beginning of the 
hurricane track line), wind speed (through the color of the 
circle), and disruption related tweets (geographic heat map) 
which will be updated dynamically as we receive data from 
Twitter stream. Figure 5a.1 shows a snapshot of Irma at 

around 7 PM on Sept. 10, 2017. It shows that majority of the 
power/electricity related posts were generated from Miami-
Dade, Broward, Palm-Beach counties when Irma’s center 
was near Collier county with a wind speed of around 120 
mph. However, not all the posts are about the actual power 
outage incident (disruptions are represented by black circles 
in the inset plot of Figure 5a.1), and a substantial number of 
these posts are expressing concerns about power outage or 
expressing that they still have power. The second snapshot 
(Figure 5a.2) shows that when the center of Irma was near 
Tampa, most of the disruption related tweets were posted 
from Orlando, Tampa, and Miami-Dade counties. A dynamic 
disruption map of Michael shows similar results. On October 

  
a.1 a.2 

(a) Hurricane Irma 

  
b.1 b.2 

(b) Hurricane Michael 
Figure 5 Dynamic Disruption Map for Power/Electricity Disruption: (a) Hurricane Irma, (b) Hurricane Michael. 
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10, 2018 around 6 PM (Figure 5b.1), when Michael was 
about to make its landfall near Tallahassee, most of the 
power/electricity disruption related tweets were coming from 
Tallahassee area. Figure 5b.2 shows the second snapshot of 
Michael around midnight of October 12, 2018 when the 
center of Michael was over North Carolina. It shows that 
most of power/electricity related disruptions were coming 
from Wake, Johnston, Durham and Orange counties of North 
Carolina.  

Finally, we visualize the co-occurrence of multiple 
disruption types in an interactive map. Figure 6 shows a 

snapshot of the co-occurrence map for hurricane Irma (Figure 
6a) and Michael (Figure 6b). We plot this map using only the 
actual disruption samples (negative sentiment) aggregated 
over a 1-hour interval. This interactive map allows to explore 
the disruptions type separately as well as a combination of 
them. The co-occurrence heat map shows a relative intensity 
of the disruptions based on the co-occurrences of all the 
disruption types. For Irma, mostly co-occurred disruptions 
are power, communication, and transportation disruptions. 
On the other hand, for hurricane Michael (see Figure 6b) the 
most co-occurred disruptions are power and transportation 
disruptions.  

In summary, we find that during hurricanes Irma and 
Michael affected people posted infrastructure related tweets. 
Those posts may represent actual infrastructure disruptions. A 
multi-label classification approach (a logistic regression 
model adopted over a label powerset) has been developed to 
predict both the disruption types and disruption status from 
such data. After locating the disruptions using a geocoding 
approach, a map can visualize the disruptions spatially and 
temporally. The training time of the model is about 7 sec, and 
it takes about 1 sec to process, predict, and visualize the data 

collected over one hour. Thus, this approach can be easily 
applied in a real-time setting.  

 
7 LIMITATIONS AND FUTURE RESEARCH 

DIRECTIONS  
 

Our study has some limitations. For instance, the annotated 
dataset is small in comparison to the entire dataset. More 
annotated samples are likely to increase the accuracy of the 
model. Although the co-occurrence of multiple disruptions is 
considered, the approach cannot infer if a disruption is caused 

by another disruption. Incorporating causality as an input to 
the model may improve its performance. Another limitation 
of our approach is that we have checked the accuracy of the 
method based on human-annotated tweets, which may not 
represent the total number of disruptions observed in the 
ground. To check the extent to which the reported disruptions 
match actual ones, ground truth data on disruptions occurring 
in different infrastructure systems are required. These 
datasets, often collected by infrastructure service providers 
including private companies and public agencies, may 
contain sensitive information. Collecting ground truth data on 
infrastructure disruptions from a variety of sources covering 
multiple states will be a very challenging task. Further studies 
are needed to verify what percentage of actual disruptions is 
reported in social media and to what extent these disruptions 
can be identified using the method developed in this study. In 
addition, our data cover hurricanes only. Future studies can 
transfer and validate our approach across other disasters such 
as wildfire, earthquake, snowfall, and thunderstorms.  

In this study, we assume that a post with a negative 
sentiment is associated with an actual disruption, and a post 
with a neutral or positive sentiment is associated with no 
disruption. However, there could be a post with a positive 

  
(a) Hurricane Irma 

(Time  2017-09-11 05:00:00) 
(b) Hurricane Michael 
(Time 2018-10-12 06:00:00) 

Figure 6 Disruption Co-occurrence Map (a) Hurricane Irma (b) Hurricane Michael 
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sentiment, but associated with an actual disruption. These 
tweets are likely to be a small portion of the entire dataset. In 
our annotated dataset, we did not find such tweets. Future 
studies, based on natural language processing, can develop 
more advanced methods to capture the situations where even 
a positive tweet could be associated with a disruption. 

When the communication network is disrupted, affected 
people may not have access to social media platforms. In such 
situations, our model cannot detect disruptions. In the geo-
parsing method, we use exact matching process between the 
extracted location and county/city of the affected regions. 
Since our approach finds city/county names only, it cannot 
extract location if street or any finer level location is 
mentioned in the text. In future studies, text-based location 
matching can be developed with finer resolution (e.g., street 
name), which may help in locating disruptions with more 
specific location information.  

For training our models, we adopt a batch learning 
approach which requires retraining the model to incorporate 
new data from the data stream. Future studies can explore an 
incremental learning approach (T. T. Nguyen et al., 2019; 
Read, Bifet, Holmes, & Pfahringer, 2012) to dynamically 
train models on newly available data from the ongoing/future 
disasters (NOAA National Centers for Environmental 
Information (NCEI) U.S., 2018). Such an incremental 
learning approach is likely to increase the accuracy of the 
model as it utilizes data from an ongoing disaster.  

To achieve a better classification accuracy, more complex 
classification methods such as probabilistic neural networks 
(Ahmadlou & Adeli, 2010), dynamic neural networks (Rafiei 
& Adeli, 2017a), and hierarchy-based models (Cerri, 
Basgalupp, Barros, & de Carvalho, 2019; Wehrmann, Cerri, 
& Barros, 2018) can be considered. A probabilistic neural 
network is a fast, efficient, and flexible model to add/remove 
new training data and hence may be more suitable for real-
time disruption prediction for an unseen disaster. Since 
textual data have a large feature space, a dynamic neural 
network might be useful in finding an optimal number of 
features to achieve better performance. Moreover, hierarchy-
based models might be more suitable when there exists more 
hierarchy in the disruption types, especially considering 
disruptions from multiple disasters (hurricane, wildfire, 
snowstorm etc.). A hierarchy-based model can have classes 
for disaster type, disruption type, and disruption status. A 
hierarchical relationship can be created from disaster type to 
disruption type to disruption status (e.g., if a post is not 
disaster related it has no disruption type and disruption 
status).      

 
 
 
 

8 CONCLUSIONS 
 

This paper presents an approach to identify infrastructure 
disruptions and a dynamic disruption mapping framework 
using social media data. While previous research focused 
mainly on identifying hurricane or damage related social 

media posts, we consider five types (power/electricity, 
communication, drinking water, and wastewater) of 
infrastructure disruptions, their co-occurrence, and their 
status (whether a post is reporting an actual disruption, 
disruption in general, or not affected by a disruption). The 
result shows that our multi-label classification approach 
(logistic regression adopted in a label powerset approach) 
performs better than a baseline method (based on keyword 
search and sentiment analysis). Moreover, we present a 
method, to visualize disruptions in a dynamic map. 
Identifying disruption types and disruption locations is vital 
for disaster recovery, response and relief operations. The 
developed approach of identifying the co-occurrence of 
multiple disruptions may help coordinate among 
infrastructure service providers and disaster management 
organizations.  
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