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ALGORITHMIC HOMEOMORPHISM OF 3-MANIFOLDS

AS A COROLLARY OF GEOMETRIZATION

GREG KUPERBERG

We prove two results, one semi-historical and the other new. The semi-

historical result, which goes back to Thurston and Riley, is that the ge-

ometrization theorem implies that there is an algorithm for the homeomor-

phism problem for closed, oriented, triangulated 3-manifolds. We give a

self-contained proof, with several variations at each stage, that uses only the

statement of the geometrization theorem, basic hyperbolic geometry, and

old results from combinatorial topology and computer science. For this

result, we do not rely on normal surface theory, methods from geometric

group theory, nor methods used to prove geometrization.

The new result is that the homeomorphism problem is elementary recur-

sive, i.e., that the computational complexity is bounded by a bounded tower

of exponentials. This result relies on normal surface theory, Mostow rigidity,

and bounds on the computational complexity of solving algebraic equations.

1. Introduction

In this paper, we will prove the following two theorems.

Theorem 1.1 (After Thurston [49]). Suppose that M1 and M2 are two finite, sim-

plicial complexes that represent closed, oriented 3-manifolds. Then, as a corollary

of the geometrization theorem, it is recursive to determine if there is an orientation-

preserving homeomorphism M1
∼= M2.

Theorem 1.2. The oriented homeomorphism problem for closed, oriented 3-mani-

folds is elementary recursive.

Theorem 1.1 implies that the geometrization theorem is a classification of closed,

oriented 3-manifolds by the standard of computer science, where the term recursive

used here means the same thing as decidable or computable. Geometrization

intuitively presents itself as a classification of closed 3-manifolds, or at least a big

step towards one. However, the question of what counts as a “classification" in
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mathematics is generally not rigorous, even though it is typically a debate over

rigorous results. The computability interpretation is thus important because it

is rigorous, even though it is not by any means the only important standard of

classification. (For instance, the set of twin primes is recursive, but they remain

unclassified in the sense that it is not even proven that there are infinitely many.)

Note that Thurston himself [49, Sec. 3] seriously addressed the relation between

geometrization and computability.

We argue that Theorem 1.1 should largely be credited to Riley and Thurston

from the 1970s, even though they did not publish a complete proof. (See Section 1.1

for more details.) To support this interpretation, we will prove Theorem 1.1 directly

using hyperbolic geometry, and using other background results on computability and

triangulations of manifolds that seem standard and germane. The most important

results of the latter type are the Tarski-Seidenberg theorem, Theorem 2.8, that real

algebraic equations can be solved recursively; the Kantorovich-Neuberger theorem

on the convergence of Newton’s method, Theorem 5.8; and the stellar and bistellar

move theorems of Alexander, Newman, and Pachner, Theorems 3.2 and 3.3. Despite

this restriction on methods, we give more than one argument for each of several

stages of the proof. (For instance, although the papers of Neuberger and Pachner

came after geometrization was formulated, the earlier results of Kantorovich in the

former case and Alexander-Newman in the latter case suffice in context.)

In the intervening years, Jaco-Tollefson, Manning, Scott-Short, and others have

published proofs of major parts of Theorem 1.1 [18; 29; 43; 4]. These approaches

have various new ideas and implications, which is in keeping with Thurston’s

philosophy concerning the nature of progress in mathematics [50]. Even so, the

status of Theorem 1.1 has remained unsettled. At one extreme, it has been interpreted

as a folklore theorem and therefore standard knowledge, even if the proof is not

elementary. At the other extreme, it has been interpreted as still an open problem.

In the middle, one could argue that the published partial results piece together

to make an entire proof. The problem with the middle position is that the total

structure of an arbitrary closed, oriented 3-manifold is somewhat complicated; see

Theorems 5.1, 5.2, and 5.3. So, one purpose of our proof of Theorem 1.1 is to give

a complete proof in one paper, as requested by Aschenbrenner-Friedl-Wilton [4].

The intervening results also typically use either normal surface theory [24; 13]

or geometric group theory [11; 46; 8]. While these methods certainly work, they

arguably overshoot Theorem 1.1. Both theories are highly non-trivial in their own

right, and they continued to be developed after the geometrization conjecture was

stated. In particular the key results of Jaco-Tollefson [18] and Sela [46] came

later. Sela’s theorem applies to Gromov-hyperbolic groups, which are vastly more

general than the Kleinian groups that arise in Theorem 1.1. Meanwhile Haken and

Jaco-Tollefson prove sharper results than strictly necessary for their components
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of Theorem 1.1; namely, they establish algorithms with quantitative bounds on

execution time. This brings us to Theorem 1.2.

In Theorem 1.2, an algorithm is elementary recursive if its execution time is

bounded by a bounded tower of exponentials; for instance, time O(22n

). (See

Section 2.2.) In contrast with Theorem 1.1, the proof of Theorem 1.2 does use

normal surface theory, as well as Mostow rigidity, and improved bounds on the

computational complexity of solving algebraic equations [10]. The connected-sum

and JSJ decomposition stages of Theorem 1.2 were partly known. For instance,

using similar methods, Mijatović [32; 31] established an elementary recursive bound

on the number of Pachner moves needed to standardize either S3 or a Seifert-fibered

space with boundary.

The hyperbolic case of Theorem 1.2 is new. By contrast, Mijatović also es-

tablished a primitive recursive bound on the number of Pachner moves needed to

equate two hyperbolic, fiber-free, Haken 3-manifolds. However, primitive recursive

is significantly weaker than elementary recursive; the Haken condition is also a

significant restriction. Theorem 1.2 also has the advantage of combining a mixed

set of methods to handle the full generality of closed, oriented 3-manifolds.

Remark. We leave the non-orientable versions of Theorems 1.1 and 1.2 for future

work. This case includes new details such as 3-manifolds with essential, two-sided

projective planes and Klein bottles. A more thorough result would also handle

compact 3-manifolds with boundary.

1.1. History and discussion. As already mentioned, the geometrization conjecture

has often been interpreted as a classification of closed 3-manifolds, and computabil-

ity is one candidate standard of what it means to classify mathematical objects. In

Thurston’s famous survey of his results in the AMS Bulletin [49, Sec. 3], he says:

Riley’s work makes it clear that there is a rigorous, but not generally

practical, algorithm for computing hyperbolic structures.

Thurston then sketches an algorithm which is similar to Manning’s construction

[29] in some ways and to our arguments in other ways. This passage, and some

other aspects of the Bulletin article, support the conclusion that Thurston anticipated

not only the statement of Theorem 1.1, but also its proof. The author also discussed

Theorem 1.1 in personal communication with Thurston in the late 1990s.

At first glance, an algorithm that can only find a hyperbolic structure on a 3-

manifold is both less general and weaker than Theorem 1.1. It is less general because

a 3-manifold may also have non-hyperbolic components; it is weaker because the

homeomorphism problem for two hyperbolic manifolds M1 and M2 takes more

work than just finding their hyperbolic structures. However, in the theorem that

it is recursive to geometrize a 3-manifold (Theorem 5.4), the hyperbolic pieces
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(Lemma 5.7) are the hardest part. The geometric structure of the other pieces

and the data to glue the pieces together are complicated to describe carefully,

but the proof that this data is computable only requires moves on triangulations

(Corollary 3.4), the principle that nested infinite loops can be combined into a single

infinite loop (Proposition 2.5), and some facts about Seifert fibrations (Lemma 5.11

and Theorem 5.12).

In the second stage, the homeomorphism problem for hyperbolic 3-manifolds

(Theorem 6.1) reduces to calculating isometries by Mostow rigidity, and a typical

algorithm for this is similar to one for computing a hyperbolic structure. The

homeomorphism problem for Seifert-fibered components and glued combinations

of components (Section 6) requires little more than the ideas of Waldhausen [51] in

his classification of graph manifolds.

Later in the Bulletin article [49, Sec. 6], Thurston gives a list of open problems

and projects, including:

21. Develop a computer program to calculate hyperbolic structures on

3-manifolds.

Jeff Weeks’ SnapPea [53] (now SnapPy [6]), which was originally written in the

1980s, met this challenge. It is fast and reliable in practice, it can also compute the

isometries between two hyperbolic 3-manifolds, and it has been supremely useful

for a lot of research in 3-manifold topology. SnapPea also supports the belief that

the homeomorphism problem follows from geometrization, given its spectacular

record in practice. However, its specific algorithms are not rigorous. SnapPea

uses ideal triangulations of cusped 3-manifolds, together with Dehn fillings to

make spun triangulations of closed 3-manifolds; it is only conjectured that such a

structure always exists. SnapPea also uses non-rigorous methods to find suitable

triangulations. In particular it uses limited-precision floating point arithmetic; it has

no rigorous model of necessary precision as a function of geometric complexity.

(Note that current versions of SnapPy can rigorously certify an answer, when its

SnapPea engine finds one.) In contrast to the SnapPea data structure, and other

reasons that ideal and spun triangulations are important, we will use triangulations

with semi-ideal and finite tetrahedra to prove Theorem 1.1 (see Section 5.2.5).

To start the rigorous discussion of computable classification and the homeomor-

phism problem, we can say that closed 3-manifolds are classified if we can:

1. specify every closed 3-manifold by a finite data structure;

2. algorithmically generate a standard list of closed 3-manifolds without repetition;

and

3. given any 3-manifold M , algorithmically identify the standard manifold M ′

such that M ∼= M ′.



ALGORITHMIC HOMEOMORPHISM OF 3-MANIFOLDS AND GEOMETRIZATION 193

For closed 3-manifolds, condition 1 is addressed by the fact that every 3-manifold

has a unique smooth structure and a unique PL structure. As a result, we can

describe a closed 3-manifold as a finite simplicial complex. Unlike in higher

dimensions, it is easy to check whether a simplicial complex is a 3-manifold

(Section 3). Conditions 2 and 3 are equivalent to an algorithm to determine whether

two closed 3-manifolds M1 and M2 are homeomorphic by the following simple

argument. In one direction, if both conditions 2 and 3 are satisfied, then Condition

3 immediately implies a homeomorphism algorithm. In the other direction, given

a homeomorphism algorithm, we can lexicographically order all descriptions of

all closed 3-manifolds according to condition 1, and then list only those examples

that are not homeomorphic to any earlier example. This satisfies condition 2. Then

given a description of a closed 3-manifold M , we can search the list in order to

find the standard M ′ ∼= M to satisfy condition 3. (Haken calls this argument the

“cheapological trick" [52, Sec. 4]. Arguably it is not a cheap trick after all, since it

is similar to the nomenclature in tables of knots and 3-manifolds.)

As mentioned, Manning [29] and Scott and Short [43] give partial results toward

Theorem 1.1, but they use more recent tools. In particular, Manning uses Sela’s

algorithm [46] for the isomorphism problem for word-hyperbolic groups, while

Scott and Short use the theory of biautomatic groups [8].

Both Short-Scott and Aschenbrenner-Friedl-Wilton [4, Sec. 2.1] mention a par-

ticular subtlety in approaches to Theorem 1.1 that are based on analyzing the

fundamental group π1(M) or the fundamental groups of its components. Namely,

π1(M) is insensitive to the orientation of M . Worse, if

M ∼= W1 # W2 # . . . # Wn

is a decomposition of M into prime summands, then the orientation of each summand

Wk can be chosen separately without changing π1(M). Or the summands can be lens

spaces; two lens spaces can have the same fundamental group without even being

unoriented homeomorphic. We surmount this subtlety by modelling all 3-manifolds

and their components with triangulations that are decorated with orientations; see

Section 5.2.
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2. Computability

We recommend Arora-Barak [3] and the Complexity Zoo [54] for modern introduc-

tions to models of computation and complexity classes.

2.1. Recursive and recursively enumerable problems. Let A be an alphabet (a

finite set with at least two elements) and let A∗ be the set of all finite words over

that alphabet. A decision problem is a function

d : A∗ → {yes, no}.

A function problem is likewise a function f : A∗ → A∗, which can be multivalued.

The input space A∗ is equivalent to many other types of input by some suitable

encoding: Finite sequences of strings, finite simplicial complexes, etc.

A decision problem or a function problem can be a promise problem, meaning

that it is defined only on some subset of inputs P ⊆ A∗ which is called a promise.

Whether two closed n-manifolds are PL homeomorphic is an example of a promise

decision problem: The input consists of two simplicial complexes that are promised

to be manifolds; then the yes/no decision is whether they are homeomorphic. (But

see Proposition 3.1.)

A decision algorithm is a mathematical computer program, which can be mod-

elled by a Turing machine (or some equivalent model of computation), that takes

some input x ∈ A∗ and can do one of three things: (1) Terminate with the an-

swer “yes", (2) terminate with the answer “no", or (3) continue in an infinite loop.

Similarly, a function algorithm can terminate and report an output y ∈ A∗, or it

can continue in an infinite loop. Given a multivalued function f , then a function

algorithm is only required to calculate one of the values of f (x) on input x .

A complexity class or computability class is some set of decision or function

problems, typically defined by the existence of algorithms of some kind. For

example, a decision problem d or a function problem f is recursive (or computable

or decidable) if it is computed by an algorithm that always terminates. By definition,

the complexity class R is the set of recursive decision problems. By abuse of notation,

R can also denote the set of recursive, promise decision problems; or the set of

recursive function problems, with or without a promise. The following proposition

is elementary.

Proposition 2.1. If d is a recursive promise problem, and if the promise itself is

recursive, then d is a recursive non-promise problem if we let d(x) = no when the

promise is not satisfied.

The complexity class RE is the set of recursively enumerable decision problems.

These are problems with an algorithm that terminates with “yes" when the answer

is yes; but if the answer is “no", the algorithm might not terminate. The complexity
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class coRE is defined in the same way as RE, but with yes and no switched. We

review the following standard propositions and theorems.

Proposition 2.2. A non-promise decision problem d is in RE if and only if there is

an algorithm that lists all solutions x1, x2, . . . to d(x) = yes without repetition.

Proposition 2.2 justifies the name “recursively enumerable" for the class RE.

(Note that if the algorithm lists the solutions in non-decreasing order of length,

|x1| ≤ |x2| ≤ . . . , then d ∈ R.) The proof is left as an exercise. Also, in the spirit of

Proposition 2.2, a decision problem d can be identified with the set of solutions to

d(x) = yes; in this way we can call a set recursive, recursively enumerable, etc.

Proposition 2.3. R = RE∩ coRE.

The proof of Proposition 2.3 is elementary but important: Given separate RE

algorithms for both the “yes" and “no" answers, we can simply run them in parallel;

one of them will finish. The proposition and its proof reveal the important point

that a recursive algorithm might come with no bound whatsoever on its execution

time.

Theorem 2.4 (Turing). The halting problem is in RE but not in R. In particular,

RE 6= R.

Informally, the halting problem is the question of whether a given algorithm with

a given input terminates. Let h be the halting decision problem, where the input

x in the value h(x) is an encoding of an algorithm and its input (or, traditionally,

an encoding of a Turing machine). It is easy to show that h is RE-complete in the

following sense: Given a problem d ∈ RE, there is a recursive function f such that

d(x) = h( f (x)) for any input x . Any other problem in RE with this same property

is also called RE-complete.

The following proposition is important for recursively enumerable infinite sear-

ches. The interpretation of the proposition, which is conveyed by the proof, is that

nested infinite loops can be reorganized into a single infinite loop.

Proposition 2.5. Let G be a graph structure on A∗. If the edge set of G is recur-

sively enumerable, then so is the set of pairs (x, y), where x and y are vertices in

the same connected component of G.

Proof. By Proposition 2.2, we can model a recursively enumerable set by an

algorithm that lists its elements. The proposition states that the elements can be

listed without repetition; but this is optional, since we can store all of the elements

already listed and omit duplicates.

We use a recursive bijection f between the natural numbers N and N∗, the set

of finite sequences of elements of N. We can express any element of N∗ uniquely

in an alphabet that consists of the ten digits and the comma symbol. We can then
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list of all of these strings first by length, and then in lexicographic order for each

fixed length. We can then let f (n) be the nth listed string.

We can now convert the value f (n) to a finite path (x0, . . . , xk) in the graph G,

in such a way that every finite path is realized. If

f (n) = (n0, . . . , nk),

then we let x0 be the n0th string in A∗. For each j > 0, we let x j be the n j th

neighbor of x j−1. In order to find the n j th neighbor of x j−1, we list the elements of

the edge set of G until the edge (x j−1, x j ) arises as the j th edge from x j−1. There

is the technicality that x j−1 might not have an n j th neighbor if it only has finitely

many neighbors. To avoid this problem, we intersperse trivial edges of the form

(x, x) infinitely many times, for every string x ∈ A∗, along with the non-trivial

edges of G.

Since the algorithm finds every finite path in G, it finds every pair of vertices x

and y in the same connected component. Thus, the set of such pairs is recursively

enumerable. �

2.2. Elementary recursive problems. As mentioned after Proposition 2.3, a recur-

sive algorithm need not have any explicit upper bound on its execution time, beyond

the tautological bound that running it is a way to calculate how long it runs. This

motivates smaller complexity classes that are defined by explicit bounds. The most

common notation for a bound on the execution time of an algorithm is asymptotic

notation as a function of the input length n = |x | to a decision problem d(x). For

example, we could ask for a polynomial-time algorithm, by definition one that runs

in time O(nk) for some fixed k.

We have two reasons to consider a fairly generous bound in this paper. First, the

recursive class R is unfathomably generous, so any explicit bound can be considered

a major improvement. Second, the computational complexity of a problem or

algorithm depends somewhat on the specific computational model, but certain

relatively generous complexity bounds are substantially model-independent.

We consider a traditional Turing machine first. By (informal) definition, a

Turing machine is a finite-state “head" with an infinite linear memory tape, and

deterministic dynamical behavior. We say that an algorithm is elementary recursive

if it runs in time

O



22. .
.2

n

︸ ︷︷ ︸

k





for some constant k. We call the corresponding complexity class ER. By abuse of

terminology, we use ER to refer to both decision problems and function problems,
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and to numerical bounds. (Note that if f (n) can be computed in ER, then a running

time bound of O( f (n)) is itself a subclass of ER.)

Without reviewing rigorous definitions, we list some of the many variations in

the computational model that do not affect the class ER in the following proposition.

The proposition is not really needed in this paper except to motivate ER as an

important complexity class. The only tacit dependence is that a random access

machine is somewhat closer to both intuitive descriptions of algorithms and actual

computers than a Turing machine with a linear tape is.

Proposition 2.6. Each of the following four computational models is the same as

standard ER.

1. A Turing machine with an n-dimensional tape, or a random access tape ad-

dressable by a separate address tape, with an elementary recursive bound on

computation time.

2. A Turing machine restricted to an elementary recursive bound on computa-

tional space and unrestricted computation time.

3. A randomized Turing machine whose answers are probably correct, with an

elementary recursive bound on computation time.

4. A quantum Turing machine that can compute in quantum superposition, with

an elementary recursive bound on computation time.

Proof. Instead of a self-contained proof, we justify each case of the proposition

with specific references to Arora-Barak [3].

1. This follows from Exercises 1.7 and 1.9 in Arora-Barak.

2. This follows from Theorem 4.2 in Arora-Barak.

3. This reduces to case 4 by the proof of Corollary 10.11 in Arora-Barak.

4. This reduces to case 2 by the proof of Theorem 10.23 in Arora-Barak. �

Remark. An elementary recursive bound is also a major improvement over another

bound that is popular in logic and computer science: primitive recursive. An

algorithm is primitive recursive if it runs in time O(n[k]b) for some fixed k and b,

where the kth operation a[k]b is defined inductively as follows:

a[1]b = a + b a[2]b = ab a[3]b = ab

a[k + 1]b = a[k](a[k](· · · (a[k]a) · · · ))
︸ ︷︷ ︸

b

.

For example, the operation a[4]b, which is called tetration, is defined as a tower

of exponentials of height b. The primitive recursive complexity class is denoted

PR. We can organize PR into a complexity hierarchy by defining Ek to be the set of
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functions computable in time O(n[k+1]b) for some fixed b. Then E2 =P, E3 =ER,

E4 consists of complexity bounds which are bounded towers of tetrations, etc.

2.3. Computable numbers. A computable real number r ∈ R is a real number with

a computable sequence of bounding rational intervals. In other words, there is an

algorithm that generates rational numbers an, bn ∈ Q such that x ∈ [an, bn] and

bn − an → 0. Many standard algorithms from numerical analysis, including field

operations, integration of continuous functions, Newton’s method, etc., have the

property that if the input consists of computable numbers, then so does the output.

One main limitation of computable real numbers is that inequality tests such as

a > b or a 6= b are only recursively enumerable, not recursive. In other words, if

a 6= b, then there is an algorithm to eventually confirm this fact and say which one

is greater; but there is no terminating algorithm that always confirms that a = b.

We can avoid this shortcoming of the field of computable numbers by passing

to a smaller subfield where equality is also recursive. In particular, we will use

Q̂ = R ∩ Q̄, the real algebraic closure of the rational numbers Q, which has this

property.

Theorem 2.7. There is an encoding of the elements of Q̂ such that field operations,

order relations, and conversion to computable real numbers are all recursive.

One encoding of a real algebraic number x that can be used to prove Theorem 2.7

is to describe it by a minimal polynomial together with an isolating interval x ∈[a, b]
with rational endpoints to distinguish x from its Galois conjugates. Note that

the isolating interval may be made arbitrarily small since algebraic numbers are

computable, for instance by Newton’s method. Note also that a computable encoding

of elements of Q̂ yields a computable encoding of elements of Q̄ ⊆ C the field of

all algebraic numbers.

Remark. The field of real algebraic numbers together with reliable equality testing

is implemented in Sage [41].

Theorem 2.8 (Tarski-Seidenberg [47; 44]). It is recursive to determine whether

there is a solution to a finite list of polynomial equalities and inequalities with

coefficients in Q̂ in finitely many variables; or to find a solution.

Actually, Tarski and Seidenberg proved the stronger result that it is recursive

to decide any assertion over R expressed with polynomial relations and first-order

quantifiers.

Remark. Given Theorem 2.7, it is elementary that solvability of polynomial equa-

tions in Q̂ is in RE. However, the proof of Theorem 2.8 shows that the problem is

in R directly without using Proposition 2.3.
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3. Triangulations of manifolds and moves

In this section, we will analyze the form of the input to Theorem 1.1. We first

assume some convenient syntax to describe any finite simplicial complex by a data

string, so that it is easy to check whether the input is a valid simplicial complex 2.

We would like to know whether 2 describes a closed, orientable PL manifold. We

take the convention that closed manifolds are connected; it is also easy to check

whether any finite simplicial complex 2 is connected.

We will review that there is a routine algorithm to confirm whether a simplicial

complex represents a closed, orientable 3-manifold. Thus Proposition 2.1 applies:

we can view the homeomorphism problem as a non-promise problem. Actually, we

will extend this to dimension 4 in Proposition 3.1, which is a much harder case

than dimension 3 that we need.

We then discuss moves between triangulations of a manifold, mainly to estab-

lish Corollary 3.4. In light of Proposition 2.3, Corollary 3.4 is an easy half of

Theorem 1.1, one that holds in any dimension n.

Proposition 3.1. If 2 is a finite simplicial complex of dimension n ≤ 4, then it is

recursive to determine whether it is a closed PL n-manifold, and whether or not it

is orientable.

Proof. The proof is partly by induction on dimension n. The result is trivial if

n = 0, where we need only check that 2 is a single point. Otherwise, we must

check that the link 3 of every vertex of 2 is both a closed (n − 1)-manifold and

a PL n-sphere. The former condition is the inductive step. The latter condition

requires an algorithm to recognize an (n − 1)-sphere. If 3 is a closed 1-manifold,

then it is immediately a 1-sphere, i.e., a circle. If 3 is a closed 2-manifold, then we

can compute its Euler characteristic. If 3 is a closed 3-manifold, then Theorem 1.1

implies that it is recursive to determine if 3 is a 3-sphere, although this result was

obtained without geometrization by Rubinstein and Thompson (Theorem 8.7) [40;

48].

We can check that 2 is orientable (and orient it) algorithmically by computing

its simplicial homology. �

The stellar and bistellar subdivision theorems establish that every two triangula-

tions of a compact n-manifold, in particular a compact 3-manifold, are connected

by a finite sequence of explicit moves. See Lickorish [28] for a modern treatment

and a historical review.

Theorem 3.2 (Alexander-Newman). If two finite simplicial complexes 21 and 22

are PL equivalent, then they are connected by a sequence of stellar subdivision

moves and their inverses.
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Briefly, a stellar move in a simplicial complex 2 consists of replacing the star

st(1) of some simplex 1 in 2 with a cone over the subcomplex of simplices in

st(1) that do not contain 1. Equivalently, the apex v of this cone is placed in the

interior of 1, and all simplices that contain 1 are subdivided to support the new

vertex v.

Theorem 3.3 (Pachner). If 21 and 22 are two triangulations of a compact, PL

manifold M , then they are connected by bistellar moves.

Figure 1. A bistellar move as the composition of a stellar move

and an inverse stellar move.

A bistellar move of a triangulation of an n-manifold M consists of a stellation

followed by the inverse of a different stellation at the same vertex. Equivalently, two

triangulations of M differ by a bistellar move when there is a minimal “cobordism"

between them consisting of a single (n+1)-simplex. (It is not strictly a cobordism in

the sense of a connecting (n + 1)-manifold.) In particular, a shellable triangulation

of M × I yields a sequence of bistellar moves.

Lickorish points out that Newman conjectured and partially proved Theorem 3.3

in an earlier paper, before he and Alexander separately proved Theorem 3.2. Bistellar

moves are also called Pachner moves, although arguably they should be called

Newman-Pachner moves.

Theorem 3.3 also holds for ideal or semi-ideal triangulations of a compact

3-manifold with torus boundary components. (In other words, it holds for a 3-

dimensional pseudomanifold with singular points with torus links, which are the

ideal vertices.)

Theorems 3.2 and 3.3 each have the following corollary.

Corollary 3.4. The PL homeomorphism problem for compact PL n-manifolds is in

RE.

Remark. There is a proof of Corollary 3.4 that works directly from the definition

of PL equivalence without using Theorem 3.2 or 3.3, nor even Proposition 2.5. For

each n, choose a linear embedding of an n-simplex 1n ⊆ Rn with rational vertices

(i.e., vertices in Qn). Then a geometric refinement of 1n is a simplicial complex

2 with a homeomorphism onto 1n which is affine-linear on each simplex of 2.

Likewise a refinement of a simplicial complex 21 is another simplicial complex 22

with a homeomorphism f : 22 → 21, such that f yields a geometric refinement of
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each simplex of 21. By definition, two complexes 21 and 22 are PL equivalent if

they share a refinement 23. We can perturb any geometric refinement so that the

new vertices are all at rational positions in their respective simplices. its vertices are

all rational. The set of rational mutual refinements of two finite complexes 21 and

22 is recursive by direct verification. (In other words, given a simplicial complex

23, and given rational target positions for its vertices in both 21 and 22, we can

algorithmically check whether this data yields a mutual refinement.) Therefore

the question of whether there exists a mutual refinement is directly recursively

enumerable.

Proposition 3.5. If 21 is a finite simplicial complex with n1 simplices (of arbitrary

dimension) and n2 ≥ n1, then it is recursive to produce a complete list of geometric

subdivisions 22 of 21 with n2 simplices.

Proof. There are only finitely many simplicial complexes 22 with n2 simplices, and

they can be generated recursively. For each candidate for 22, there are only finitely

many combinatorial choices for a function from the simplices of 22 to the simplices

of 21. For each such choice, we can first check that the simplices of 22 that land

in a k-simplex 1 ∈ 21 support a simplicial cycle that represents the fundamental

class in H k(1, ∂1). We solve for each such cycle for all 1 (where each must be

unique if 22 indeed subdivides 21). Then the constraint that each simplex of 22

must be positively oriented in 21 yields we obtain algebraic inequalities for the

positions of all vertices. We can then apply Theorem 2.8 to see if there is a solution

for those positions. �

We conclude this section with the following theorem which combines results of

P.S. Novikov, Boone, Adian, Rabin, Markov, and S.P. Novikov [39]. We will not

need this result; rather it stands in contrast to Theorem 1.1.

Theorem 3.6 (NBARMN). The isomorphism problem for finitely presented groups,

the PL homeomorphism problem for 4-manifolds, and the recognition of Sn among

PL n-manifolds for each n ≥ 5 are all RE-complete.

It is not known whether either topological or PL recognition of S4 is recursive.

Remark. The homeomorphism problem for PL n-manifolds in Theorem 3.6, or even

recognition of Sn , needs to be handled with some care, for several reasons. First,

because recognizing whether the input is a PL n-manifold is (by Theorem 3.6!) an

uncomputable promise when n ≥ 6. Second, because there are closed manifolds

that are homeomorphic but not PL homeomorphic [23]. Third, because there are

simplicial complexes that are not PL n-manifolds at all, but that are homeomorphic

to Sn , for each n ≥ 5 [7]. The proof of Theorem 3.6 dispenses with all of these

concerns as follows. Given an input x to the halting problem h(x) and an integer

n ≥ 4, there is an algorithm that constructs an n-manifold M(x) such that:
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1. M(x) is manifestly a closed PL manifold.

2. M(x) is PL homeomorphic to Sn when n ≥ 5, or to a connected sum of copies

of S2 × S2 when n = 4, if and only if M(x) is simply connected.

3. M(x) is simply connected if and only if h(x) = yes.

Remark. By contrast with Theorem 3.6, the PL homeomorphism problem for simply

connected n-manifolds with n ≥ 5 is recursive [36].

4. Some notation

We summarize some notation for specific topological spaces, beyond the most

standard notation that Sn is an n-sphere, Dn is an n-disk, Pn is real projective

n-space, and I = D1 is an interval.

We let X ⋉ Y denote a fiber bundle with base X and fiber Y . Although the

notation X×̃Y is reasonably standard for a twisted bundle, we prefer to write X ⋉Y ,

for two reasons. First, because the notation specifies which side is the fiber; we can

write X ⋉ Y ∼= Y ⋊ X . Second, because a fiber bundle is analogous to a semidirect

product in group theory.

We review Seifert’s description of oriented Seifert-fibered spaces [45]. If F is

a compact surface which may or may not be orientable, then there is a unique,

canonically oriented I -bundle F ⋉ I . If F is orientable, then this I -bundle is simply

F × I ; in this case we assume an orientation for the base F and the fiber I . We

consider the double F ⋉ S1 of F ⋉ I , which again when F is orientable is just

F × S1.

If p1, p2, . . . , pn are points of F , then we can apply a Dehn surgery with slope

bk/ak to a solid torus neighborhood of the fiber over pk in F ⋉ S1, where ak is a

positive integer and bk is a relatively prime integer of either sign. The resulting

oriented 3-manifold N is thus constructed from its Seifert data, namely the multiset

{F, (a1, b1), (a2, b2), . . . , (an, bn)}.

In general we interpret F as an orbifold. If ak ≥ 2, then we interpret pk ∈ F as an

orbifold point of order ak , and the circle over it is an exceptional fiber. By Seifert’s

classification, the integers ak with ak ≥ 2 together with the residues bk ∈ Z/ak are

all topological invariants of the fibration of N . If F and therefore N has boundary,

then this is a complete set of invariants. If N is closed, then the Euler number

e(N ) =
∑

k

bk

ak
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is the only additional necessary invariant. Thus there is a canonicalized version of

the Seifert data in the form

{F, b, (a2, b2), (a3, b3), . . . , (an, bn)},

where b represents (1, b) and otherwise ak ≥ 2 and 1 ≤ bk < ak . If F is non-compact,

then b is irrelevant and we omit it in the canonical form.

With the notation of fiber bundles and Seifert-fibered spaces, we name these

specific manifolds:

1. We use S1 × S1 to denote the standard 2-torus, and T to denote an arbitrary

2-torus, i.e., T ∼= S1 × S1.

2. K 2 = S1 ⋉ S1 is the 2-dimensional Klein bottle.

3. L(m, n) is the lens space defined by the Seifert data {S2, 0, (n, m)}.
4. R(m, n) denotes the prism space defined by the Seifert data {P2, 0, (m, n)}.

5. Geometrization is recursive

The goal of this section is to prove Theorem 5.4, which says that the geometric

decomposition of a 3-manifold M is computable.

5.1. Statement of geometrization. We begin with three results that, together, are

one formulation of the geometrization theorem for closed, oriented 3-manifolds.

Theorem 5.1 (Kneser-Milnor [24; 34]). Every closed, oriented 3-manifold (other

than S3) is a connected sum of prime, closed, oriented 3-manifolds (none of which

are S3). The summands are unique up to oriented homeomorphism.

We will adopt the convenience that a 3-sphere S3 counts as a prime 3-manifold,

notwithstanding that Theorem 5.1 would be easier to state if S3 were instead

interpreted as the “unit" in the terminology of unique factorization.

Theorem 5.2 (Jaco-Shalen-Johansson [19; 20]). A closed, oriented, prime 3-

manifold has a minimal collection of incompressible tori, unique up to isotopy

and possibly empty, with the property that the complementary regions are either

Seifert-fibered or atoroidal.

Recall that a 3-manifold N which may have boundary is atoroidal if every essen-

tial torus in N is parallel to some boundary component of N . The decomposition

in Theorem 5.2 is called the JSJ decomposition. We can call the tori JSJ tori, and

the complementary regions JSJ components. We will use M to denote a general

closed, oriented 3-manifold; then W to denote a prime summand of M ; then N to

denote a JSJ component of W .
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Theorem 5.3 (Thurston-Hamilton-Perelman). Suppose that N is an oriented, prime,

atoroidal 3-manifold which is either closed or has torus boundary components. Then

N is either Seifert-fibered, or it is closed and has a unique hyperbolic structure, or

its interior N ∗ has a unique, complete hyperbolic structure with torus cusps.

As everyone knows, Theorem 5.3 was conjectured and partly proven by Thurston

[49], then fully proven by Perelman using the Ricci flow program of Hamilton

[35]. (Note that Theorem 5.3 implicitly includes the Poincaré conjecture in the

Seifert-fibered case.)

Remark. Mixing the JSJ decomposition with hyperbolization is a less pure approach

than Thurston’s decomposition into geometric components, but we find it convenient

for Theorem 1.1. We could recognize spherical and Euclidean components with the

same methods as hyperbolic components (Lemma 5.7), while several of the other

Thurston geometries induce canonical Seifert fibrations. In fact, every Seifert-fibered

3-manifold or component is geometric. Conversely, every geometric 3-manifold or

component is hyperbolic unless it is Seifert-fibered or a Sol manifold. Thus, the

JSJ decomposition of a prime 3-manifold W differs from the minimal geometric

decomposition only when W is Sol; in this case W is a torus bundle over a circle

and has a JSJ torus which is one of the fibers.

5.2. Statement of computational geometrization.

Theorem 5.4. If M is a triangulated 3-manifold, then it is recursive to compute a

decorated triangulation which is adapted to its geometric decomposition.

Before proving Theorem 5.4, we need to state it more precisely. When 2 is a

decorated, adapted triangulation of M it means that:

1. M has a distinguished (but possibly empty) collection of disjoint, separating

2-spheres, each triangulated with 4 triangles in 2, that separates it into prime

summands {W }. Each W is closed; it inherits its triangulation from 2 and its

holes are plugged with fresh tetrahedra.

2. The triangulation of each W supports a distinguished (but possibly empty)

collection of disjoint thickened tori T × I and restricts to a shelled triangulation

of each one. These thickened tori separate W into JSJ components {N }.
3. The tetrahedra at all stages are consistently oriented, to express an orientation

of each summand W and each JSJ component N that is consistent with the

orientation of M .

4. If N is Seifert-fibered with base F , then we make a triangulation which is

adapted to Seifert’s description of N by Dehn surgery on F × S1 when F

is orientable, or Dehn surgery on a twisted bundle F ⋉ S1 when F is non-

orientable. This includes the case where N = W = M is a 3-sphere.
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5. If N is hyperbolic, then it is marked as the barycentric subdivision of a regular,

adapted cellulation 3. 3 comes from a geometric triangulation 3∗ of the

interior N ∗, in which each tetrahedron has at most one ideal vertex. If 1 ∈ 3∗

has an ideal vertex, then it is truncated to a triangular prism in 3; if not, then it

is kept in 3. Each tetrahedron in 3∗ is also decorated with its dihedral angles.

We proceed to explain each stage of the definition.

5.2.1. The prime decomposition. Note that we take a triangulation to be a simplicial

complex structure rather than a generalized triangulation. In geometric topology, for

instance in the SnapPea census, a generalized triangulation is sometimes defined

to be a CW-complex whose cells are simplices and whose attaching maps take

simplices to simplices. In particular, a simplex in a generalized triangulation need

not have distinct vertices and two simplices may have the same vertices. We

can form a connected sum of two triangulated 3-manifolds by removing a single

tetrahedron from each one and gluing the sphere boundaries.

5.2.2. Shelled triangulations. If X is a closed n-manifold with two triangulations

20 and 21, then a shelled triangulation of X × I is a simplicial complex 20,1 whose

(n + 1)-simplices are numbered. Taken in order, the (n + 1)-simplices connect the

triangulation 20 of X × {0} to the triangulation 21 of X × {1} via a sequence of

bistellar moves. Note that this combinatorial restriction on 20,1 implies 20,1 is

PL homeomorphic to X × I . In other words, if we build 20,1 from a sequence of

bistellar moves, and if X ×{0} and X ×{1} are disjoint in the result, then 20,1 is a

triangulation of X × I .

5.2.3. Orientations. To be precise, we can decorate each tetrahedron by ordering

its vertices, where two orderings are equivalent if they differ by an even permutation.

5.2.4. Seifert-fibered components. We begin with preliminaries on cellulations and

barycentric subdivisions that we will also need in Section 5.2.5.

A cellulation of a topological space X is a CW complex 3 with a homeomorphism

to X . The complex 3 is regular if 3 is locally finite; and if the attaching map of

each k-cell is an embedding in the (k − 1)-skeleton, so that each closed k-cell of 3

is embedded in X .

We will use the following standard proposition to model regular CW complexes

using triangulations.

Proposition 5.5 ([26, Sec. 10.3.5]). Every regular CW complex 3 has a barycentric

subdivision 2 which is a simplicial complex, and the spaces of 2 and 3 are

homeomorphic.

See Figure 2 for an example.

If N is a Seifert-fibered component, then as described in Section 4, it has a

base orbifold F with one circle for each boundary torus of N . The fibration has
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Figure 2. A barycentric subdivision of part of a cellulation of a surface.

canonical Seifert data

{F, b, (a1, b1), (a2, b2), . . . , (an, bn)},

with b omitted when F or N has boundary. The data indicates surgery with slope

bk/ak at the fiber over some pk ∈ F and (if it exists) surgery with slope b at p0 ∈ F .

We choose a triangulation 2F of F such that each pk (including p0, if it exists)

lies in the interior of a triangle, and such that all of these triangles are disjoint.

We can lift 2F to a cellulation 3F such that the solid torus 1 × S1 over each

triangle 1 in 2F is tiled by two vertical triangular prisms. We take the barycentric

subdivision of 3F to obtain a triangulation of F × I or F ⋉ I . If a triangle 1 ∈ 3

contains some pk , we remove the solid torus 1 × S1 (which is now triangulated

with 72 tetrahedra) and glue it back using Dehn surgery. The gluing involves a

homeomorphism of the boundary ∂(1× S1), which we implement with a shelled

triangulation of a thickened torus, as in Section 5.2.2. The result is a triangulation

of N , which we decorate with information about how it was constructed, so that

the canonical Seifert data is part of the decoration.

5.2.5. Hyperbolic components. If the component N is hyperbolic, then we choose

a geometric triangulation 2∗ of N ∗, meaning one whose tetrahedra lift to geometric

tetrahedra in the universal cover H3. Recall from the beginning of Section 5.2 that

the geometry of each such tetrahedron is specified by giving its dihedral angles.

More precisely, if N̂ is the compactification of N given by collapsing each torus

boundary component to a point, we assume a continuous map

f : 2∗ → N̂

such that the image f (1) of each combinatorial tetrahedron 1 lifts to a geometric

tetrahedron in the standard compactification H3 of hyperbolic space. If none of

the vertices of f (1) are at infinity, then f (1) is finite; if they are all at infinity,

then f (1) is ideal; and if some are at infinity, then f (1) is semi-ideal. We will

assume that all of the simplices of our 2∗ are either finite or semi-ideal with one

ideal vertex. If N = N ∗ is closed, then all tetrahedra in 2∗ must be finite; if N has
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boundary components and thus N ∗ has cusps, then some of the tetrahedra must be

semi-ideal.

Before proceeding further, we contrast this with some other models that have

also been studied as geometric triangulations. In some treatments f is not a

homeomorphism but only a homotopy equivalence. In the case we can still ask for

the restriction of f to each tetrahedron 1 to be affine-linear in the Klein model

of H3. However, f (1) may be degenerate, meaning that it has zero volume, or

it may be flipped over, meaning that it has negative signed volume relative to the

orientation of 2∗ and the standard orientation of H3. In another variation, which is

often used when N is closed, the inverse map g : N̂ → 2∗ is defined, and a finite

set of closed geodesic curves in N̂ collapse to ideal points; but the inverse image of

any open tetrahedron in 2∗ is still a geometric tetrahedron in N̂ . Such a structure

is a spun triangulation, because a geodesic circle C ⊆ N is approached by cusps

of ideal tetrahedra that wind helically around it. In particular SnapPea uses spun

triangulations.

Ideal geometric triangulations are especially desirable in computational hyper-

bolic geometry because they are rigid and algebraically the simplest. However, it

is only a conjecture that every suitable hyperbolic manifold has an ideal, possibly

spun geometric triangulation. Such a structure does always exist with degenerate or

flipped-over tetrahedra, but these are less desirable. We will use finite and semi-

ideal tetrahedra in order to avoid this impasse. The following proposition is then

standard:

Proposition 5.6. If N ∗ is a complete hyperbolic manifold which is either cusped or

closed, then it has a geometric triangulation with finite and semi-ideal tetrahedra

(none of which are spun, degenerate, or flipped over). Also, every semi-ideal

tetrahedron has only one ideal vertex.

Proof. We can choose a point p ∈ N ∗ and consider the Voronoi tiling of its orbit in

H3. Each Voronoi cell is a fundamental domain and yields a cellulation 31 of N̂ .

31 is not in general regular, but it has a barycentric subdivision 32 which is regular.

Moreover, each simplex of 32 has at most one vertex of V and thus at most one

ideal vertex. We can let 2 = 33 be a second barycentric subdivision, which is then

a simplicial complex and still has the property that each tetrahedron has at most

one ideal vertex. �

Given a semi-ideal triangulation of N ∗, we can truncate the cusps so that each

semi-ideal tetrahedron becomes a triangular prism, as in Figure 3. A barycentric

subdivision of this cellulation is then the desired adapted triangulation.

5.3. Proof of Theorem 5.4.
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Figure 3. A tetrahedron truncated at one vertex.

Lemma 5.7. It is recursive to find a geometric triangulation of a hyperbolic 3-

manifold N which is either closed or has torus boundary components, using either

of two descriptions of each dihedral angle 0 < α < π of each tetrahedron:

1. Each imaginary exponential exp(iα) is specified as an element of Q̄.

2. Each angle α is given as a computable real number.

Hence, it is in RE to determine if N is hyperbolic.

Although the second case of Lemma 5.7 immediately follows from the first one,

we will give a separate proof of each case. Moreover, even the weaker second case

of Lemma 5.7 is sufficient to prove Theorem 1.1.

Remark. Manning [29, Thm. 5.2] also proves Lemma 5.7, but as a corollary of

a harder result. His results show (without geometrization) that it is recursive to

decide whether N is hyperbolic, when there is an algorithm for the word problem

for π1(N ). He also uses a single polyhedral fundamental domain to describe the

geometry of N . Although this differs from a hyperbolic triangulation, which is

what we use, the two models are somewhat interchangeable for our purposes.

Proof of case 1 of Lemma 5.7. Suppose that 2∗ is a geometric triangulation of N ∗.

We can model each tetrahedron 1 ∈ 2∗ (non-uniquely) by choosing four vertices

in the Poincaré upper half-space model, including one on the boundary if 1 is

semi-ideal. (Note that the ideal vertices of 2∗ are marked in advance.) There is

an algebraic formula for each finite edge length ℓ and each dihedral angle α of 1,

if these are represented by their exponential values exp(ℓ) and exp(iα). The main

matching condition for 2∗ to be geometric is that if two tetrahedra share a finite

edge, then the edge lengths agree; and the total dihedral angle around each edge

equals 2π . The first condition is immediately an algebraic condition, although note

that if an edge is semi-ideal, then it has infinite length and its length equation is

vacuous.
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The second condition is almost an algebraic condition since the product of the

exponentiated angles must be 1; this shows that the total angle is a multiple of 2π ,

although not which one. However, this can be remedied with additional algebraic

inequalities, recalling that we are allowed real algebraic equations for the real and

imaginary parts cos(α) and sin(α) of each complex variable exp(iα). Suppose

that every edge of 2∗ has at most n incident tetrahedra. Then we can make a

finite covering of the unit circle S1 ⊆ C by rational rectangles, such that the radial

projection of each rectangle onto the circle has length less than 2π/n. We can then

loop over choices for which rectangle contains each exponentiated angle exp(iα).

If each exponentiated angle is confined to such a rectangle, we can know whether

the sum of the angles around an edge is specifically 2π and not some other multiple

of 2π .

After forming algebraic equations for all of the geometric data, the equations

have a solution in terms of real algebraic numbers when they have a solution at

all. For any fixed triangulation 2, we can thus use Theorem 2.7 (not Theorem 2.8;

see the remark after the proof) to search for a solution and eventually find it, if it

exists. We must also search over triangulations using Theorem 3.2 or Theorem 3.3.

Since the result is a nested infinite search (over triangulations and then candidate

geometric structures), we can apply Proposition 2.5. �

Remark. Although an infinite search for a solution to algebraic gluing equations is

preposterous in practice, it is good enough for an algorithm in RE. Alternatively,

for each triangulation, we can apply the more difficult Theorem 2.8 to determine in

R if there is a solution.

Remark. If we allowed geometric triangulations with fully ideal edges, then it

would not be enough for the sum of the angles around such an edge e to be 2π .

Since e goes to itself under hyperbolic translation as well as rotation, gluing together

the tetrahedra that contain e could create a non-trivial translational holonomy. The

two conditions together, that the total angle is 2π and the translational holonomy

vanishes, are known as a Neumann-Zagier gluing relation [38].

Remark. Instead of calculating lengths and angles using positions of vertices in hy-

perbolic geometry, we can also relate them directly using formulas from hyperbolic

and spherical trigonometry.

The separate proof of the second case of Lemma 5.7 works directly with com-

putable numbers, in effect using numerical analysis to calculate better and better

approximate solutions. In this approach, we need a criterion to know that an

approximate solution is close to an exact one. Given a smooth multivariate equation

f (x)= 0, the Newton-Kantorovich theorem [21] establishes a sufficient criterion for

Newton’s method to converge from an approximate solution x0 to an exact solution
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x∞. Neuberger [37] points out that an ODE analogue of Newton’s method, which is

called the continuous Newton’s method, simplifies the Newton-Kantorovich result.

Theorem 5.8 (Newton-Kantorovich-Neuberger [37, Thm. 2]). Let Bǫ(x0) ⊂ Rn be

the open ball of radius ǫ > 0 around x0 ∈ Rn , and let

f : Bǫ(x0) → R
n

be a C2-smooth function with non-singular matrix derivative D f . Suppose that

(1) ||(D f (x))−1 f (x0)|| < ǫ

for all x ∈ Bǫ(x0), where || · || is the Euclidean norm on Rn . Then there is a unique

x∞ ∈ Bǫ(x0) such that f (x∞) = 0. Also, given a solution x∞ such that D f (x∞) is

non-singular, equation (1) eventually holds as x0 → x∞, moreover with ǫ → 0.

Although we will not reprove Theorem 5.8, we can discuss where the theorem

and its proof come from. Newton’s method to find a root of a univariate function

f : (a, b) → R begins at an approximate root x0 ∈ (a, b) and applies the iteration

xn+1 = xn − f (xn)

f ′(xn)
,

which in favorable cases converges to a solution x∞ of the equation f (x) = 0. If f

is multivariate as in Theorem 5.8, then this has the well-known matrix generalization

xn+1 = xn − (D f (xn))
−1 f (x).

Finally in the continuous version, we let x(0) = x0 and define the ODE

x ′(t) = −(D f (x(t)))−1 f (x).

Then in favorable cases the limit

x∞ = lim
t→∞

x(t)

is again a solution to f (x) = 0.

Remark. Although Neuberger’s paper on the continuous Newton’s method is more

recent than Thurston’s work, Kantorovich’s earlier, more complicated formula also

suffices for Lemma 5.7 and Theorem 1.1.

If the equation f (x) = 0 has a non-singular Jacobian D f in a neighborhood of a

solution, as in Theorem 5.8, then the system of equations is also called transverse

or first-order rigid. We will need a generalization of this concept. Given a smooth

function

U ⊆ R
n f : U → R

m,
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where n and m need not be equal, if D f has constant rank k, then the image

f (U ) is a manifold and f is a submersion onto its image. In this case the equation

f (x)= 0 is first-order rigid except for the directions parallel to the manifold f −1(0).

By the implicit function theorem, we can discard some set of n − k coordinates

in the domain and project to some set of k coordinates in the target to achieve

unconditional first-order rigidity that satisfies the hypotheses of Theorem 5.8.

To establish first-order rigidity in our case, we will need a corollary of the

Calabi-Weil rigidity theorem.

Theorem 5.9 (Calabi-Weil [22, Sec. 8.10]). If N is a closed, hyperbolic 3-manifold,

then the induced representation of its fundamental group,

ρ : π1(N ) → Isom(H3),

is first-order rigid except for conjugacy. (I.e., it is infinitesimally rigid at the level of

the first derivative.) The same is true if N is cusped, among representations that are

parabolic at the torus cusps.

Corollary 5.10 (Stated by Izmestiev [15, Sec. 1.3]). If 2 is a geometric triangu-

lation of a closed or cusped hyperbolic 3-manifold N ∗, then it is first-order rigid

except for motion of the non-ideal vertices.

Since we could not find a proof of Corollary 5.10 in the literature, we provide

one in Section 5.4.

Proof of case 2 of Lemma 5.7. We fix the model of each tetrahedron in the upper

half space model so that it has exactly six degrees of freedom, or five if one of the

vertices is ideal. After ordering the vertices v1, v2, v3, v4, we can put vertex v1 at

(0, 0, 1); we can put vertex v2 directly below it (or at (0, 0, 0), allowing it to be the

ideal vertex); and we can put v3 at a position of the form (a, 0, b). We approximate

the positions of the vertices approximately with rational numbers. We can then

approximate the lengths and angles of each tetrahedron in the same form, as well as

the first and second derivatives of the lengths and angles as a function of the main

variables, the separate positions of the vertices in the ideal models of the tetrahedra.

Suppose that there are n non-ideal vertices. By the implicit function theorem,

any exact solution to the gluing equations for the tetrahedra can be perturbed so

that some 3n of the coordinates are exactly rational. Also by the implicit function

theorem, some 3n of the angle conditions are implied by the other angle conditions

and can be omitted. Finally, the fixed coordinates and omitted angle conditions

can be chosen so that the remaining system of constraints, which we can write

abstractly as f (x) = 0, has a non-singular Jacobian D f .

Moreover, the mapping f is real analytic with an explicit formula. Thus, given

an approximate solution x0 which is within ǫ of a true solution and ǫ is small
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enough, we can majorize ||(D f (x))−1|| on the ball Bǫ(x0) using Taylor series, to

confirm equation (1). �

Just as Lemma 5.7 addresses the hyperbolic case of Theorem 5.4, the following

lemma addresses the Seifert-fibered case.

Lemma 5.11. It is recursive to find an adapted triangulation of a Seifert-fibered

manifold N which is either closed or has torus boundary components. Hence, it is

in RE to determine if it is Seifert-fibered.

Proof. We can search through triangulations until we find one that is a barycentric

subdivision of a cellulation by triangular prisms. It is then easy to check whether

the prisms fit together following the rules in Section 5.2. �

Finally, a torus T that has matching Seifert-fibered structure on both sides is not

needed and is not a JSJ torus. It is easy to see this case in the proof of Theorem 5.2.

The more subtle possibility is that one or both sides might have more than one

Seifert fibration. Fortunately this is rare for Seifert-fibered manifolds with boundary.

It is addressed by the following result.

Theorem 5.12 (Waldhausen [16, Thm. VI.17 & Lem. VI.19]). Let N be an oriented

3-manifold with non-empty boundary ∂ N and which has at least one Seifert fibration.

Then the fibration is uniquely determined up to isotopy by its restriction to ∂ N , and

is outright unique except the following cases:

1. If N is a solid torus D2 × S1, then every fibration of ∂ N extends to a fibration

of N over a disk D2 with at most one exceptional fiber.

2. If N is a thickened torus S1 × S1 × I , then every fibration is a trivial circle

bundle over an annulus. There is such a fibration for every rational slope in a

single torus S1 × S1.

3. If N is a twisted I -bundle K 2 ⋉ I over a Klein bottle K 2, then it has two

non-isotopic fibrations. One fibration is over a Möbius strip with Seifert data

{S1 ⋉ I }, and one is over a disk D2 with Seifert data {D2, (2, 1), (2, 1)}.

Proof of Theorem 5.4. We search over triangulations 2 of M using stellar or bistellar

moves, and decorations of them, to find an adapted triangulation as described in

Section 5.2. A decoration that shows that the triangulation is adapted consists of

distinguished spheres and thickened tori, and a reverse barycentric subdivision

in each JSJ component N to make triangular prisms in the Seifert-fibered case

and a combination of once-truncated and ordinary tetrahedra in the hyperbolic

case. Within this search, we search for geometric data to describe the hyperbolic

structure of each N which is not Seifert-fibered. Since these are nested, infinite

searches, we combine them using the RE search algorithm of Proposition 2.5. By
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the geometrization theorem, we will eventually find a 2 that fits the description of

Section 5.2.

In the search, we need to veto a decorated triangulation whose 2-spheres do not

represent a connected sum decomposition, or such that the tori in a summand do

not represent a JSJ decomposition. We do this with the following checks:

1. All 2-spheres in the decoration of M are separating.

2. All tori in each summand W are essential.

3. Either M is a 3-sphere or no summand W is a 3-sphere.

4. Each summand W is prime.

5. No two tori in one summand W are parallel.

6. No torus T in a summand W has Seifert-fibered components on both sides

that restrict to the same fibration of T .

7. No torus T in W has Seifert-fibered components on both sides that induce the

same fibration of T , after refibering components.

Arguing each case separately, case 1 is straightforward.

In case 2, if a summand W is a torus sum of hyperbolic and Seifert-fibered

components, and if some torus is inessential, then some torus bounds a Seifert-

fibered solid torus with base D2 and at most one exceptional fiber.

In case 3, we can recognize when M or a summand W is a 3-sphere by confirming

that it is Seifert fibered with base S2 and at most two exceptional fibers, and trivial

homology. (This is assuming case 2, there are no inessential tori.)

In case 4, if a summand W is either closed hyperbolic or a torus sum of hyperbolic

and Seifert-fibered components with essential tori, then it has trivial π2 and is

therefore prime. On the other hand, if W is closed Seifert-fibered, then it is prime

unless it is P3 # P3 with Seifert data {P2, 0} [16, Lem. VI.7].

In case 5, we check that no Seifert-fibered component N of a summand W is a

thickened torus (with base an annulus and no singular fibers), unless W is a torus

bundle over a circle.

Case 6 is straightforward.

By Theorem 5.12 and the comments after it, in case 7 we only have to consider

two types of Seifert-fibered components, which can be recognized explicitly from

any of their fibrations:

7a. N ∼= S1 × S1 × I , or

7b. N ∼= K 2 ⋉ I .

Case 7a is only possible if N is glued to itself to make W a torus bundle over a

circle, S1 ⋉ (S1 × S1), because we have already eliminated parallel tori. The torus
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is needed if and only if W is a Sol manifold. We can verify this case by confirming

that the holonomy matrix in SL(2, Z) has distinct, real eigenvalues.

In case 7b, N ∼= K 2 ⋉ I only has one torus boundary component T , so its

refibration does not affect any other torus. In this case the fibration of N may have

Seifert data {S1 ⋉ I } or {D2, (2, 1), (2, 1)}. The resulting binary choice may occur

on one or both sides of T , and we veto 2 if the Seifert fibrations extend across T

for any of these choices. �

5.4. Proof of Corollary 5.10. The idea of the proof is that we can convert a first-

order deformation of a triangulation of N ∗ to a deformation of a representation of

ρ, in much the same way that we can convert a triangulation to ρ in the first place.

Proof. In general, if Ŵ is a discrete group (such as the fundamental group of

a topological space) and G is a Lie group, then we can describe a first-order

deformation of a homomorphism ρ : Ŵ → G as a homomorphism

(ρ, ρ ′) : Ŵ → G ⋉ g.

Here g is the Lie algebra of G viewed as a group under addition, while G ⋉ g is

the semidirect product in which the non-normal subgroup G acts on the normal

subgroup g by conjugation. Also, (ρ, ρ ′) should reduce to ρ under the quotient

map

π : G ⋉ g → G.

Note that G ⋉ g is also the total space of the tangent bundle T G. In other words,

the extension ρ ′ is a choice of a tangent vector ρ ′(g) ∈ Tρ(g)G for every g ∈ Ŵ,

such that the pairs (ρ(g), ρ ′(g)) together make a group homomorphism.

Suppose that Ŵ = Ŵ1(X) is the fundamental group of a based CW complex

X . Then we can model ρ (non-uniquely) as a non-commutative cellular cocycle

α ∈ C1(X; G). Given ρ, we can likewise model the extension ρ ′ (also non-uniquely)

as a commutative cocycle α′ ∈C1(X; g), where here g is a coefficient system twisted

by α.

Now let X = N , where N has a cellulation 2 that comes from a closed or cusped

hyperbolic structure on N ∗ and a geometric triangulation 2∗. If N is cusped and

2∗ is a semi-ideal triangulation, then we make 2 by truncating the ideal vertices

of 2∗. We then want to make a cocycle α from γ . To do this, we first choose a

specific isometry Ñ ∗ ∼= H3. Then we choose an orthonormal tangent frame at each

vertex of 2. Given an edge e ∈ 2, we let α(e) be the element of G = Isom+(H3)

that takes the tail ṽ of a lift ẽ to the head w̃, and takes the lifted frame of ṽ to the

lifted frame of w̃. If N ∗ is cusped, then we require that each truncation edge in N

is assigned a parabolic element that fixes the corresponding ideal vertex in N ∗.

In this setting, Theorem 5.9 says that H 1(N ; g) = 0 in the closed case and

H 1(N , ∂ N ; g, p) = 0 in the cusped case, where g is the parabolic Lie subalgebra
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of g. The theorem is typically proved using de Rham cohomology rather than

cellular cohomology, but these models of cohomology are isomorphic as usual.

More explicitly, every 1-cocycle α′ = δβ, where β is an g-valued 0-cochain on the

vertices of 2.

Finally, suppose that γ ′ is a first-order deformation of the hyperbolic structure γ

of 2∗ that satisfies the first derivative of the gluing equations. Then we can lift γ ′

to a cocycle α′ (non-uniquely) in the same way that γ lifts to α. Then Theorem 5.9

provides β, and β descends to a first-order motion of the vertices of 2∗ that induces

the deformation γ ′. �

6. Homeomorphism is recursive

In this section we will prove Theorem 1.1, postponing only the proof of Theorem 6.1

below until Section 7.

6.1. Connected sums. If M1 and M2 are two closed, oriented 3-manifolds given

by triangulations, then by Theorem 5.4, we know the direct sum decompositions

of each one into prime 3-manifolds. These summands can be freely permuted

and can only be matched in finitely many ways. If we search over the ways to

match them, we then reduce the oriented homeomorphism problem M1

?∼= M2 to the

oriented homeomorphism problem W1

?∼= W2 for prime summands W1 and W2. To

review, each summand Wk inherits an orientation from its parent Mk ; in the reverse

direction, there is no ambiguity in forming an oriented connected sum.

6.2. One JSJ component. We switch to the other end of geometric decompositions

to analyze a single pair of JSJ components N1 ⊆ W1 ⊆ M1 and N2 ⊆ W2 ⊆ M2. We

are interested not only in the isomorphism problem, but also in the effect of the

mapping class group of a component N on the boundary ∂ N .

Theorem 6.1. Suppose that N is an oriented, hyperbolic JSJ summand such that

N ∗ is either closed or cusped. Then the mapping class group of N is its isometry

group. It is a finite group and its computation is recursive. If N1 and N2 are two

such manifolds, then they are homeomorphic if and only if they are isometric, and

recognizing this condition is recursive.

Again, we will prove Theorem 6.1 in Section 7. Note that if N is hyperbolic and

has torus boundary components, then each such component inherits a Euclidean

structure from the hyperbolic structure on N ∗.

Suppose instead that N is Seifert-fibered (and, as usual, oriented). Then in the

direct sense the automorphism problem only matters for Theorem 1.1 when the JSJ

graph is non-trivial and thus N has boundary. However, we will learn the relevant

automorphism properties from an associated closed Seifert-fibered space.
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Lemma 6.2. Let N be a closed, oriented 3-manifold which is decorated with a

Seifert fibration with Seifert data

{F, b, (a1, b1), (a2, b2), . . . , (an, bn)}.

Then:

1. The exceptional fibers of N are freely permutable by automorphisms of the

Seifert fibration, provided that the permutation preserves the orbifold number

ak ≥ 2 and the residue bk ∈ Z/ak of each exceptional fiber.

2. Any finite set of regular fibers is freely permutable.

3. If the base F is orientable, then N has an orientation-preserving homeomor-

phism that inverts all fibers together, but they cannot be inverted separately.

4. If the base F is non-orientable, then given two disjoint finite sets A, B ⊆ F ,

N has a homeomorphism that inverts the fibers over A in place and fixes the

fibers over B.

Proof. Cases 1, 2, and 4 can all be established by isotopies of F that move points

that correspond to the distinguished fibers. In case 4, using the hypothesis that F is

non-orientable, we can move a point p ∈ A around an orientation-reversing loop in

F that stays away from B and from the rest of A.

Meanwhile in case 3, the fibration itself is orientable, which means that an

orientation of any one fiber induces a canonical orientation of all fibers. On the

other hand, Seifert’s construction of the fibration via vertical Dehn surgery on F×S1

is invariant with respect to inverting the S1 factor and simultaneously applying an

orientation-reversing homeomorphism to F . �

We also need the counterpart to Theorem 5.12 for closed Seifert-fibered spaces.

Theorem 6.3 (Waldhausen [16, Thm. VI.17]). If N is a closed, oriented Seifert-

fibered 3-manifold, then its Seifert fibration is unique up to homeomorphism except

in the following cases:

1. A Seifert-fibered space with base S2 and at most two exceptional fibers is either

a lens space L(m, n), S2 × S1, or S3

2. A Seifert-fibered space with base P2 and at most one exceptional fiber is either

a lens space L(4, n), a prism space R(m, n), or P3 # P3.

3. The space with Seifert data

{S2, b, (2, 1), (2, 1), (a1, b1)}

is a prism space R(m, n).
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4. The twisted bundle K 2 ⋉ S1 which is the double of K 2 ⋉ I has the double of

its two fibrations, namely the Seifert data {K 2, 0} and the Seifert data

{S2, 0, (2, 1), (2, 1), (2, 1), (2, 1)}.

Theorem 6.3 comes with simple formulas for which lens space or prism space is

obtained, which we omit. In particular, the answer is recursive and (as we will later

want) elementary recursive.

6.3. The JSJ graph. If W is a prime 3-manifold, then its JSJ decomposition is

modelled by a labelled graph Ŵ, whose vertices represent JSJ components and whose

edges represent connecting tori. Each vertex is labelled by the homeomorphism

type of its component, which is either Seifert-fibered or hyperbolic. In addition,

each edge is decorated with gluing data and peripheral data which will be described

precisely in the proof of Theorem 1.1 below.

Remark. This graph structure inspired the term graph manifold for a prime 3-

manifold whose JSJ components are all Seifert-fibered [51]. This terminology is

standard but ironic, since geometrization shows that the same graph concept is

important for all prime 3-manifolds.

The labelled graph Ŵ is an invariant of W , which at first glance may seem like

a complete invariant, provided that the homeomorphism problem for each JSJ

component is recursive. However, it is not that simple, because we have to know

the allowed permutations of the torus boundary components of a JSJ component N ,

and the allowed homeomorphisms of each torus boundary component. Finally, we

need to deal with the special case that N is either K 2 ⋉ I or S1 × S1 × I and thus

has more than one Seifert fibration.

Proof of Theorem 1.1. (Proof using case 1 of Lemma 5.7.) As explained in

Section 6.1, it suffices to solve the homeomorphism problem W1

?∼= W2 for prime

3-manifolds W1 and W2. The proof is divided into three steps. In steps 1 and 2, we

let W be a prime 3-manifold and let Ŵ be its JSJ graph. It is recursive to calculate

Ŵ and the isomorphism types of its vertices.

Step 1: We address the cases in which a JSJ component of W has more than one

Seifert fibration. If any component is a K 2 ⋉ I , then its two fibrations (described

in Theorem 5.12) are inequivalent; we choose one of them and use it for every

occurrence of K 2 ⋉ I in W . If a JSJ component N is a thickened torus, then as in

the proof of Theorem 5.4, W is a Sol manifold and a torus bundle over a circle,

S1 ⋉ (S1 × S1). In this case the homeomorphism type of W is given by a pair of

conjugacy classes in SL(2, Z), one for each orientation of the base circle. Recall that
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the conjugacy classes in SL(2, Z) can be classified with the aid of the isomorphism

PSL(2, Z) ∼= C2 ∗ C3.

If g ∈ SL(2, Z) has non-zero trace (which it does if W is Sol), then its conjugacy

class is given by the sign of its trace and its reduced cyclic word in C2 ∗ C3.

Step 2: We suppose that W is not a Sol torus bundle over a circle. If T is a

JSJ torus in W and one side of T is a hyperbolic component N , then T inherits a

Euclidean structure which we can normalize to have area 1. This Euclidean structure

can be described by a quadratic form Q on the first homology H1(T ) = H1(T ; Z),

where Q(c) is the square of the minimum length of c ∈ H1(T ). Moreover, the

coefficients of Q are real algebraic numbers computable from the geometry of

N . On the other hand, if N is Seifert-fibered, then the induced fibration of T

selects a line in H1(T ), by which we mean a rank-one subgroup L ⊆ H1(T ) with a

torsion-free quotient H1(T )/L .

Since T has two sides, it is then decorated by a pair of quadratic forms on H1(T ),

or a quadratic form and a line, or a pair of lines. In the third case when both sides

of T are Seifert-fibered, the fibrations must be mismatched at T , so the two lines

L1, L2 ⊆ H1(T ) must be distinct. Hence they constitute a rational line basis in the

sense that

H1(T ; Q) = (L1 ⊗ Q) ⊕ (L2 ⊗ Q).

We also obtain a rational line basis in the second case, when one side is Seifert-

fibered and produces a line L1 = L , and the other side is hyperbolic and produces a

quadratic form Q. In this case, there exist a finite set of pairs of homology classes

±c ∈ H1(T ) \ L1 that minimize Q(c). If there is only one such pair, we let L2 be

the line generated by ±c. If there is more then one, we let L2 be the line generated

by the first such pair in the clockwise direction from L1.

Note that each possible decoration of T induced by the geometry on both of

its sides has a finite stabilizer in the oriented mapping class group SL(H1(T )) ∼=
SL(2, Z) of T . If we order the two sides of T , then the stabilizer usually has two

elements; in rare cases it is a cyclic group of order 4 or 6.

If N is a Seifert-fibered component of W , then each of its torus boundary

components is decorated by a rational line basis. We can thus make a closed Seifert-

fibered space N̂ by collapsing a circle fibration of each component T ⊆ ∂ N that

represents the opposite line in H1(T ), the one that does not come from N itself.

Each torus component of ∂ N becomes a distinguished fiber in N̂ which may be

either regular or exceptional.

Step 3: Suppose that W1 and W2 are two prime, closed, oriented 3-manifolds. If

they do not have any JSJ tori, then each one is either closed hyperbolic or Seifert-

fibered, and we can use Theorems 6.1 and 6.3 to tell if they are the same. Meanwhile
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if W1 and W2 are both Sol torus bundles, then we can use the algorithm in step 1 to

determine if they are homeomorphic.

Otherwise we can assume that W1 and W2 each have at least on JSJ torus, and

that each JSJ torus has a canonical decoration as described in step 2. To determine

if W1 and W2 are homeomorphic, we search over isomorphisms f : Ŵ1 → Ŵ2

between their JSJ graphs. For every pair of T1 ⊆ W1 and T2 ⊆ W2 that are matched

by f , we search over mapping classes that preserve the canonical decorations of

T1 and T2. In the innermost part of the search, we want to calculate whether the

homeomorphisms of the JSJ tori extends to each matched pair of JSJ components

N1 ⊆ W1 and N2 ⊆ W2. If N1 and N2 are hyperbolic, then we can use Theorem 6.1

to determine if the homeomorphism ∂ N1
∼= ∂ N2 extends. If they are both Seifert-

fibered, then we can use Lemma 6.2 to determine whether the corresponding closed

Seifert-fibered manifolds N̂1 and N̂2 have a homeomorphism that extends the given

homeomorphism ∂ N1
∼= ∂ N2. Note that we can employ Lemma 6.2 because any

relevant homeomorphism N1
∼= N2 preserves the fibration at the boundary, and is

thus isotopic to a fibration-preserving homeomorphism by Theorem 5.12. �

Proof of Theorem 1.1. (Proof using case 2 of Lemma 5.7.) If the geometric data of

each hyperbolic JSJ component N of a summand W is described with computable

real numbers rather than real algebraic numbers, then the induced Euclidean structure

on a JSJ torus T ⊆ ∂ N is only given by a convergent sequence of approximations.

Thus, it is not possible to definitively calculate the isometries of T or the shortest

cycles, as expressed with the quadratic form Q(c). However, all non-isometries

and all non-zero classes in H1(T ) that are not shortest are eventually revealed. This

yields an algorithm in coRE for the homeomorphism problem M1

?∼= M2, which is

enough to show that the problem is recursive per the discussion at the beginning of

Section 7. �

7. Proofs of Theorem 6.1

In this section we will give several proofs of Theorem 6.1. Recall that Corollary 3.4

says that the existence of a PL homeomorphism N1
∼= N2 is in RE; it is also easy to

check whether it preserves orientation. So, by Proposition 2.3, it suffices to show

that homeomorphism is in coRE, although only one of the proofs will make use of

this directly. By a similar argument, finding elements in the mapping class group

of a single N is in RE; the remaining task is an algorithm to show that the list is

complete.

Recall that if N has boundary, then its interior N ∗ is cusped and has a semi-ideal

triangulation 2∗. In this case, 2 is a cellulation in which semi-ideal tetrahedra

are once truncated. We want to geometrize the truncation that produces 2. We



220 GREG KUPERBERG

consider a horospheric truncation which is almost but not quite unique, with the

following three properties:

1. The horosphere sections lie entirely within the semi-ideal tetrahedra of 2∗,

and therefore do not intersect each other.

2. For some common integer n, every horospheric torus has area 2−n .

3. We do not use the smallest value of n that satisfies conditions 1 and 2.

For convenience, we let N ∗ = N and 2∗ = 2 if N is closed.

Some of the proofs make use of the following lemma.

Lemma 7.1. It is recursive to obtain a lower bound in the injectivity radius of N

and 2.

First proof. Suppose first that N is closed. For each vertex v ∈ 2, let Uv be the

open star of 2 containing p. Then the collection {Uv} is a finite open cover of N .

It follows just from topology that there is some radius ǫ such that every ball of

radius ǫ is contained in some Uv . For an explicit calculation, let 2′ be a barycentric

subdivision of 2, and for each v ∈ 2, let Xv be the closed star of v ∈ 2′; then

the sets Xv are a closed cover. We can calculate or bound the distance from Xv to

N \ Uw for some w ∈ 2 with Xv ⊆ Uw. The minimum of all of these distances is

thus a lower bound ǫ for the injectivity radius. �

Second proof. In general we use the notation B(p, r) for a hyperbolic ball of radius

r centered at p.

Let r be the exact injectivity radius of N , and let p be a point on a closed geodesic

of N of length 2r . Then p ∈ 1 for some cell 1 ∈ 2, and we can let ℓ be an upper

bound of the diameter of 1. Then in the universal cover

Ñ ⊆ Ñ ∗ ∼= H
3,

we obtain that at least 1/2r lifts of 1 intersect B(p, 1), and thus at least this many

copies of 1 are contained in B(p, ℓ+ 1). Thus

1

2r
≤ Vol(B(p, ℓ+ 1))

Vol(1)
,

hence

(2) r >
Vol(1)

2Vol(B(p, ℓ+ 1))
.

We can calculate an upper bound of this form, if necessary using a lower bound for

the numerator and an upper bound for the denominator, for every cell in 2, since

we do not know the position of the shortest geodesic loop in advance. �



ALGORITHMIC HOMEOMORPHISM OF 3-MANIFOLDS AND GEOMETRIZATION 221

Third proof. This proof is a variation of the second proof using the entire diameter

and volume of N . Jørgensen and Thurston proved that the set of possible volumes

of N ∗ is well-ordered. In particular, there is one of least volume, so there is some

constant c > 0 such that

Vol(N ∗) > c.

Our construction of the geometry of N spares more than half of the volume of N ∗,

so

Vol(N ) >
Vol(N ∗)

2
>

c

2
= c′.

We can obtain an upper bound ℓ on the diameter of all of N by adding bounds on

the diameters of the cells in 2. Then, we let D be a convex fundamental domain

for N ; it has the same volume and diameter at most 2ℓ. Thus we obtain an estimate

similar to (2), but more robust:

r >
Vol(D)

2Vol(B(p, ℓ+ 1))
>

c′

2Vol(B(p, ℓ+ 1))
. �

Remark. Without an explicit bound on least-volume closed or cusped hyperbolic

manifold, the third proof has the unusual feature of non-constructively proving

that an algorithm exists, i.e., without fully stating the algorithm. Meyerhoff [30]

established the first lower bound

Vol(N ) ≥ 2

54

in the closed case. In the same paper, he and Jørgensen established

Vol(N ∗) ≥
√

3

4
=⇒ Vol(N ) ≥

√
3

8

in the cusped case. The exact minimum values are now known [9].

First proof of Theorem 6.1. This proof is similar to one given by Scott and Short

[43]. We assume geometric triangulations 2∗
1 and 2∗

2 of N ∗
1 and N ∗

2 .

If N ∗
1 and N ∗

2 are homeomorphic and therefore isometric, then we can intersect

the tetrahedra of 2∗
1 and 2∗

2 to make a tiling of N1
∼= N2 by various convex cells with

8 or fewer sides; we can then take a barycentric subdivision to make tetrahedra. We

thus obtain a mutual refinement 23 of 21 and 22. If we can bound the complexity

of 23, then we can find it with a finite search or show that it does not exist, rather

than using stellar or bistellar moves in both the up and down directions.

Let 11 ∈ 2∗
1 and 12 ∈ 2∗

2 be two tetrahedra in the separate triangulations. In the

universal cover Ñ ∗
1 , any two lifts of 11 and 12 only intersect in a single cell with

at most 8 sides. In N ∗
1 itself they can intersect many times; however, only as often

as different lifts of 11 intersect one fixed lift of 12. If 11 and/or 12 are semi-ideal,
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then their lifts intersect if and only if their truncations do. There is a recursive

volume bound on the number of possible intersections by the same argument as the

second proof of Lemma 7.1.

Having bounded the necessary complexity of a mutual refinement 23, we can

now search over separate refinements 23 of 21 and 24 of 22 using Proposition 3.5,

and look for an orientating-preserving simplicial isomorphism 23
∼= 24. The same

method can be used to calculate the mapping class group of a single N . �

Second proof. Suppose that X1 and X2 are two compact metric spaces, and suppose

that for each ǫ > 0 we have a way to make finite ǫ-nets S1 and S2 for X1 and X2,

and calculate or approximate all distances within S1 and within S2. If X1 and X2

are isometric, then there is a function f : S1 → S2 that changes distances by at most

2ǫ. On the other hand, if there is such a function for every ǫ, then X1 and X2 must

be isometric.

In our case, we let Xk = Nk , where we make sure to use the same truncation area

2−n to geometrize N1 and N2 given the geometries of N ∗
1 and N ∗

2 . We calculate a

common lower bound δ on the injectivity radius.

We can choose some convenient coordinates inside each cell 1 ∈ 2k . We then

have the ability to calculate geodesic segments in Nk that are made of geodesic

segments in the separate tetrahedra. If 1 is truncated, then the geodesic segment

might hug the truncation boundary for part of its length, but it still has a finite

description. Without more work, we don’t know which of these geodesics are

shortest geodesics. However, if a geodesic is shorter than δ, then it is shortest.

Taking δ ≫ ǫ → 0, we can make ǫ-nets of both N1 and N2 and look for approximate

isometries between these ǫ-nets; it suffices to check distances below the fixed value

δ.

More explicitly, we can use the covering by open stars Sv in the first proof

of Lemma 7.1. There is a δ such that if d(x, y) < δ, then x and y and even the

connecting short geodesic are all in some open star.

This algorithm does not by itself ever prove that N1 and N2 are isometric, only

that they aren’t. Thus it shows that the homeomorphism problem is in coRE. This

is good enough by Proposition 2.3 and Corollary 3.4.

The algorithm also does not by itself determine whether the isometry is orientation-

preserving. However, this is very little extra work. Given ǫ ≪ δ and given ǫ-nets

S1 ⊆ N1 and S2 ⊆ N2, we can let p1, p2, p3, p4 be 4 points in S1 that lie in a ball of

radius δ/2 and that make an approximately regular tetrahedron 1. If f : S1 → S2

is an approximate isometry, then we can check whether f flips over 1. If no

orientation-preserving isometry exists, then when ǫ is small enough, either f will

cease to exist or 1 will be flipped over.

We can use similar methods to find the mapping class group of a single N ,

since by Mostow rigidity it is also the isometry group of N . We assume that N
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has boundary, which is technically short of the full generality of Theorem 6.1,

but enough to prove Theorem 1.1. Just as with the method to check whether an

approximate f preserves orientation, we can when ǫ is small enough compute the

effect of f on H1(∂ N ), which determines which isometry is close to f (if any). �

Third proof. In this proof, we restrict attention to case 1 of Lemma 5.7 and thus work

over the ring Q̂ of real algebraic numbers. We assume real algebraic coordinates

for H3 and for its isometry group Isom+(H3); for example we can take H3 to be

the set of positive, unit timelike vectors in 3 + 1-dimensional Minkowski geometry,

and we can take Isom+(H3) = SO+(3, 1). We again assume that N1 and N2 are

made from N ∗
1 and N ∗

2 using a common truncation area 2−n .

We assume geometric triangulations 2∗
1 and 2∗

2 of N ∗
1 and N ∗

2 with real algebraic

descriptions. Using these triangulations, we can find finite, open coverings of N1

and N2 by metric balls B(p, ǫ), where each point p has a real algebraic position

and the common radius is (a) also real algebraic, and (b) less than half of the

injectivity radius of N1 and N2. Then we can give each ball the same algebraic

coordinates as H3, and we can also calculate the relative position of every pair of

balls as some element in Isom+(H3). In other words, we obtain atlases of charts for

N1 and N2 using the Isom+(H3) pseudogroup. In fact, everything is constructed in

the subgroup and sub-pseudogroup with real algebraic matrix entries.

If there is an isometry between N1 and N2, then their atlases combine into a

larger atlas. There are only finitely many possible patterns of intersection between

the balls of N1 and the balls of N2. For each such pattern, we obtain a finite

system of algebraic equalities and inequalities, which says first that the intersection

pattern is what is promised, and second that the gluing maps between the atlases

are consistent. Theorem 2.8 then says that it is recursive to determine whether this

system of equations has a solution. Since we work in the group Isom+(H3), we are

looking only for orientation-preserving isometries. �

8. Homeomorphism is in ER

We will use the basic fact that a finite composition of ER functions is in ER. In

other words, if an algorithm has a bounded number of stages that expand its data

by an exponential amount or otherwise by an ER amount, then it is still in ER.

8.1. The outer proof. In this section we will prove Theorem 1.2. The proof is

a combination of the proof of Theorem 1.1 together with several computational

improvements. We summarize these computational improvements in this section

by stating some supporting theorems which we will prove ourselves (or prove by

citation) with two main supporting tools. The first tool is normal surface theory,

which we can use to find essential spheres and tori and Seifert fibrations. Note that

Jaco, Letscher, and Rubinstein [17] sketched ideas that are similar to our proof.
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The second tool is an ER version of Theorem 2.8 [10], which we use to bound

the complexity of a geometric triangulation of a hyperbolic manifold, and the

complexity of recognizing small Seifert-fibered spaces.

Theorem 8.1. It is in ER to find and triangulate the prime summands {W } of a

closed, oriented 3-manifold M , to find and triangulate the JSJ components {N }
within each prime summand W , to find their JSJ graph Ŵ, and to recognize which

components N are Seifert-fibered and find their fibrations.

We will prove most of Theorem 8.1 in Section 8.2 using normal surface theory.

Small Seifert-fibered spaces are a particularly difficult special case of Theorem 8.1

that we list as a separate theorem. Recall that a Seifert-fibered space is small if it is

non-Haken (and therefore closed).

Theorem 8.2. Recognizing small Seifert-fibered spaces is in ER.

We will prove Theorem 8.2 in Section 8.5 using a combination of normal surface

theory and algebraic methods. Note that Li [27] shows that recognizing small Seifert-

fibered spaces with infinite π1 is recursive, and his algorithm should be elementary

recursive. However, we will use a different approach for this part of the theorem.

Li also addresses the finite π1 case in two different ways. Without assuming

geometrization (which was still open at the time), he cites work of Rubinstein and

Rannard-Rubinstein on small Seifert-fibered spaces. He also outlines a simplified

argument for the finite π1 case that depends on geometrization; we give a detailed

argument which is in a similar spirit.

Theorem 8.3. If a compact, oriented 3-manifold N has a closed or cusped hyper-

bolic structure, then it is in ER to find a geometric triangulation and specify its

geometric data with algebraic numbers. The homeomorphism and automorphism

problems are also both in ER.

We will prove Theorem 8.3 in Section 8.4 using both Mostow rigidity and

methods from algebraic geometry.

Proof of Theorem 1.2. We consider each stage of the proof of Theorem 1.1 in

turn. The proof begins with a geometric recognition of a single closed, oriented

3-manifold M in Theorem 5.4. This is not elementary recursive as described, but

we can replace it with Theorem 8.1 to find the direct sum and JSJ decomposition.

Each JSJ component N which is not Seifert fibered must be hyperbolic, so we

can apply Theorem 8.3, which is an ER version of Lemma 5.7, to calculate the

hyperbolic structure of each such N . This calculation also yields a description of

the Euclidean structure of each torus component of ∂ N .

Finally given two closed, oriented 3-manifolds M1, M2, we first decompose them

into summands. For each bijection among the summands, we want to calculate
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W1

?∼= W2 for each pair of matching summands. This is a calculation with JSJ graphs

which is done in Section 6.3 to complete the proof of Theorem 1.1. This calculation

is already elementary recursive, given the data computed for each JSJ component

of each Wi , and given the fibration or Euclidean structure of each JSJ torus of each

Wi . �

8.2. Normal surfaces. Let M be a compact 3-manifold with triangulation 2. Re-

call that a normal surface S ⊆ M intersects each tetrahedron 1 ∈ 2 in 7 types of

elementary disks, namely 4 types of triangles and 3 types of quadrilaterals. The

surface S = Sv is given by a vector v ∈ Z
7t
≥0 that lists the number of each type of

elementary disk. If v is such a vector, then Sv is embedded (and uniquely defined)

provided that it only uses at most one type of quadrilateral in each tetrahedron.

After specifying which type of quadrilateral is allowed in each tetrahedron, the

normal surface equations then have a polytopal cone

C ⊆ Z
5t
≥0 ⊆ Z

7t
≥0

of solutions. We define a fundamental surface Sv to be one whose vector v ∈ C

is not the sum of two other solutions in C . If Sv is non-orientable, then S2v is its

orientable double cover and we call it fundamental as well.

Lemma 8.4 (Haken). The number of elementary disks in a fundamental surface in

M is bounded above by an exponential in t . (Thus it is elementary recursive.)

We can represent a normal surface S by listing all triangles and quadrilaterals

in order in each tetrahedron 1 ∈ 2. It is then easy to separate S into connected

components and calculate the topology of each component. This is exponentially

inefficient compared to algorithms such as Agol-Hass-Thurston [2], but it has no

effect on whether the resulting algorithm is in ER.

We define a complete set of essential 2-spheres in a 3-manifold M to be a

collection C such that cutting M along each 2-sphere in M and capping off the

resulting boundary components produces irreducible 3-manifolds. Likewise a

complete set of essential disks is a collection C of properly embedded disks which

are not boundary parallel, such that the compression of every disk in C renders M

boundary-incompressible.

Theorem 8.5 (Jaco-Tollefson). Let M be a compact, oriented, triangulated 3-

manifold. Then:

1. M has a collection of disjoint, fundamental surfaces which form a complete

set of essential 2-spheres [18, Thm. 5.2].

2. If M has no essential 2-spheres, then it has a collection of disjoint, fundamental

surfaces which form a complete set of essential disks [18, Thm. 6.2].
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3. If M has no essential 2-spheres or disks, and it has an essential torus, then it

has one which is fundamental [18, Cor. 6.8].

4. If M has no essential 2-spheres or disks, and it has an essential annulus, then

it has one which is fundamental [18, Cor. 6.8].

Jaco and Tollefson also show that each type of surface described in Theorem 8.5

is a vertex surface, which is a special case of a fundamental surface. Case 1 of

Theorem 8.5 is stated for closed manifolds, but the proof is the same for manifolds

with boundary. Finally, given Lemma 8.4, the surfaces produced by Theorem 8.5

all have an elementary recursive bound on their size.

We will use the following variation of Theorem 8.5, where we now define a com-

plete set of essential tori in each summand W similarly, so that each complementary

region in W is atoroidal. (A complete set of essential tori must include all of the

JSJ tori of each W , but will be a strict superset when some of the Seifert-fibered

JSJ have additional essential tori.)

Theorem 8.6 (Hass-K. [14]). If M is a closed, oriented 3-manifold with a triangu-

lation 2, then it has a collection of disjoint normal surfaces which form a complete

set of essential spheres and tori, such that the total number of elementary disks is

bounded above by an exponential in t .

Briefly, Theorem 8.6 uses a generalization of the normal surface equations

which we call the disjoint normal surface equations. (They are similar to the

crushed triangulation technique defined by Casson [17].) They are equations for a

normal surface S which is disjoint from a fixed normal surface R ⊆ M . To prove

Theorem 8.6, we find each surface S or T sequentially as a fundamental surface,

relative to the union of previous surfaces.

Theorem 8.7 (Rubinstein [40], Thompson [48]). Recognizing the 3-sphere S3 is in

ER.

The proof of Theorem 8.7 uses a variant known as almost normal surfaces that

are allowed one exceptional intersection with a tetrahedron that is either an octagon,

or a triangle and a quadrilateral with a connecting annulus. The original papers only

claim a recursive algorithm, but the algorithm is based on normal surface theory.

In fact, the proof also uses disjoint normal surface equations. Schleimer [42] also

refines the Rubinstein-Thompson algorithm to show that 3-sphere recognition is in

the complexity class NP, which is a much better bound than just ER.

Proof of Theorem 8.1. As a first step, we check whether M ∼= S3 using Theorem 8.7.

If not, we search over collections C of normal surfaces in M with a suitable

elementary recursive complexity bound in order to find a set of surfaces that meets

the conclusion of case 1 of Theorem 8.5. To test whether a given collection C is one
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that we want, we first calculate whether each surface in it is a 2-sphere. Then we

can cut along all of the spheres (and retriangulate) and cap them to make a multiset

of summands of M . For each non-separating sphere, we create a separate S2 × S1

summand. What remains is a putative prime factorization {W }, but we must check

whether the summands are irreducible and not S3. We can use Theorem 8.7 to check

that no summand W is S3. If not, then we can again use case 1 of Theorem 8.5

to look for an essential 2-sphere in each W , and again use Theorem 8.7 to check

whether it is essential.

For each summand W , we similarly search for a collection C that meets the

conclusion of Theorem 8.6. We can check that each surface in C is a torus. We

can then cut W along C to make a putative decomposition of W into atoroidal

components {Q}. Geometrization gives us the following possibilities for each

component Q:

1. Q has an essential disk, which necessarily cuts it into a ball. In this case,

Q ∼= S1 × D2 is a solid torus.

2. Q has no essential disk, but it has a separating essential annulus that cuts it

into two solid tori. In this case Q fibers over a disk with two exceptional fibers.

3. Q does not have a separating essential annulus, but it does have a non-separating

essential annulus that cuts it into a solid torus. In this case Q fibers over an

annulus or a Möbius strip with at most one exceptional fiber.

4. Q has a separating annulus that cuts it into two thickened tori. In this case

Q ∼= S1 × F , where F is a pair of pants.

5. Q has an essential torus, specifically an incompressible torus which is not

boundary-parallel.

6. Q = W is closed and has no essential torus. In this case Q is either hyperbolic

or small Seifert-fibered.

7. Q has boundary, and it has no essential disk, annulus, or torus. In this case, Q

is hyperbolic.

To see that this is an exhaustive list, first recall from geometrization that each Q is

either hyperbolic or Seifert-fibered. (This is because a complete set of essential tori

includes all of the JSJ tori, and the other essential tori are all vertical with respect

to some fibration.) If Q is Seifert-fibered with boundary and is atoroidal, then

with one exception its orbifold base is planar, and the total number of boundary

circles plus exceptional fibers is at most three. The only exception is that Q ∼=
K 2 ⋉ I has a Möbius strip base; but it also has its other fibration with Seifert data

{D2, (2, 1), (2, 1)}.
We claim that we can recognize each possibility for Q by a bounded number of

applications of Theorem 8.5; the recognition algorithm is therefore in ER. Indeed,
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each case reduces to earlier cases when a putative essential surface is found. The

most subtle case is case 5, where we can check whether a candidate torus in Q

is essential by checking that it is not compressible (case 1) and does not bound a

thickened torus (case 3). Note that if Q is a solid torus (case 1) or a thickened torus

that is not glued to itself (case 3), or if Q has an essential torus (case 5), then the

collection C in W should be rejected.

In case 6, we use Theorem 8.2 to determine if W is small Seifert-fibered, and if

so, its homeomorphism type.

If Q is a thickened torus which is glued to itself, then W is a torus bundle over

a circle, and we can find its monodromy matrix A ∈ SL(2, Z) with a homology

calculation. We can solve the conjugacy problem in SL(2, Z) using the usual trick

that PSL(2, Z)∼= C3∗C2, and thus determine the homeomorphism type of W . (Note

that W may be either Sol, Nil, or Euclidean.)

Otherwise we can piece together the JSJ decomposition {N } of W from the

(often non-unique) atoroidal decomposition {Q}. In each remaining case Q has

either 0 Seifert fibrations (if it is hyperbolic), or 2 fibrations (if it is K 2 ⋉ I ), or 1

fibration (in all other Seifert-fibered cases). Using the recognition of Q, we can

calculate its Seifert data and express the fibration of each boundary torus T ⊆ ∂ Q

by the corresponding line L ⊆ H1(T ). We can then piece together adjacent fibered

components to make JSJ components, when the fibrations match. The Seifert

data produced in this manner is not necessarily canonical, but canonicalizing it is

straightforward. �

8.3. Algebraic algorithms. We list several complexity bounds concerning alge-

braic numbers and solutions to algebraic equations.

Theorem 8.8 (Collins, Monk, Vorobiev-Grigoriev, Wüthrich [10, Thm. 4]). Sup-

pose that a set S ⊆ Rn is defined by a finite set of polynomial equalities and

inequalities over Q. Then it is in ER to calculate a representative finite set F ⊆ Q̂n ,

with one point p ∈ F in each connected component of S.

Theorem 8.8 is of course an ER version of Theorem 2.8. In the statement of the

theorem, each element α ∈ Q̂ is described by its minimal polynomial a(x) ∈ Z[x]
and an isolating interval α ∈ [b, c] that contains exactly one root of a(x).

Lemma 8.9. If α ∈ Q̂ is a non-zero complex root of a polynomial a(x) ∈ Z[x], then

there is an ER upper bound on |α| and |α−1|.
Proof. Let n = deg a and write

a(x) = anxn + an−1xn−1 + · · · + a1x + a0.

We can assume without loss of generality that a0 6= 0. If |α| >
∑

k ak , then us

that |anα
n| is larger than the total norm of all of the other terms, so by the triangle
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inequality, a(α) 6= 0. This establishes
∑

k ak as an upper bound on |α|. For the

lower bound, we can observe that β = α−1 is a root of the polynomial

b(x) = a0xn + a1xn−1 + · · · + an−1x + an = xna(x−1).

We can thus repeat the argument. �

If x1, . . . , xn are algebraic numbers, then we say that an algebraic number z is an

integral primitive element if each xk = fk(z) for some integer polynomial fk ∈ Z[x].
It is a result of Galois that every finite set of algebraic numbers has a primitive

element; we are interested in a computationally bounded version.

Theorem 8.10 (Koiran [25, Thm. 4]). If x1, . . . , xn are algebraic numbers, then

they have an integer primitive element z which can be computed in ER, and such

that polynomials fk with fk(z) = xk can also be computed in ER.

Koiran states the result in the form xk = fk(z)/ak , where the denominator ak is

an elementary recursive integer. However, it is not difficult to modify z to eliminate

these denominators. (Proof: Let f ∈ Z[x] be the minimal polynomial of z and let

z1 = z

f (0)
∏

k ak

.

Then both 1/ak and fk(z) are expressible as integer polynomials in z1. Therefore,

so is their product.)

Lemma 8.11. If h ∈ Z[x] is an integer polynomial, then there is a prime p that can

be computed in ER such that h(x) has a root in Z/p.

Proof. If d = deg h, then h attains the values ±1 at most 2d times. Therefore there

is an integer a with |a| ≤ d such that h(a) is not ±1, and we can let p be a prime

divisor of h(a). �

Using the results so far in this section, we obtain an elementary recursive version

of Mal’cev’s theorem, which says that finitely generated residually linear groups

are residually finite. Our computational version requires a finitely presented group

rather than just a finitely generated group.

Theorem 8.12. Let Ŵ be a finitely presented group, let g ∈ Ŵ \ {1} be a non-trivial

element given by a word w in the generators of Ŵ, and suppose that there is a

representation

ρ : Ŵ → GL(n, C)

that distinguishes g from the identity. Then Ŵ admits a finite representation

ρp : Ŵ → GL(n, Z/p)
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that distinguishes g from the identity, where p is a prime number. Moreover, we

can find such a p and ρp in ER given the presentation of Ŵ, the word w, and the

integer n.

Proof. A function from the generators of Ŵ to n ×n matrices forms a representation

ρ : Ŵ → GL(n, C)

if and only if the matrix entries satisfy equations that come from the relators of the

presentation of Ŵ. We also want ρ(g) 6= I . To this end, we assume another matrix

of variables Y and impose the condition

tr(Y (ρ(g) − I )) = 1.

By hypothesis ρ and Y exist, and Theorem 8.8 then produces an algebraic, elemen-

tary recursive solution. By Theorem 8.10, the matrix entries are generated by an

integer primitive element z, and by Lemma 8.11, we can replace z by a residue

α ∈ Z/p for some prime p computable in ER. We thus get a modular representation

ρp : Ŵ → GL(n, Z/p)

and a matrix Yp over Z/p again with the same properties. Since Yp exists, ρp(g)

cannot be the identity. �

Remark. Assuming the Generalized Riemann Hypothesis, Koiran’s work implies

Theorem 8.12 with a much better bound, namely that log(p) can be bounded by a

polynomial in the length of the presentation of Ŵ and the length of the word w.

8.4. The hyperbolic case. To prove Theorem 8.3, we will need a quick mutual

corollary of Theorem 8.8 and the proof of Proposition 3.5.

Corollary 8.13. If 21 is a finite simplicial complex with n1 simplices (of arbitrary

dimension) and n2 ≥ n1, then it is in ER to produce a complete list of geometric

subdivisions 22 of 21 with n2 simplices.

Proof of Theorem 8.3. Let 2 be the input triangulation of N as a compact manifold,

and let 2∗ be the result of adding a cone to each component of ∂ N to make a semi-

ideal combinatorial triangulation of N ∗. The manifold N ∗ also has a hyperbolic

structure which we interpret as a separate manifold. We rename the hyperbolic

version X and assume a homeomorphism

f : N ∗ → X.

We fix the vertices of N ∗ in the map f , and straighten all of the tetrahedra, to

make a map g that represents 2∗ as a self-intersecting geometric triangulation of

X . Since g is homotopic to f (or properly homotopic if N ∗ is not compact), it

has (proper) degree 1. Since g need not be a homeomorphism, it may flatten or
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equivalences and that X and N ∗ are homeomorphic. (Note that there can be a degree

1 map in one direction between two hyperbolic 3-manifolds that is not a homotopy

equivalence [5], even though this cannot happen in the case of hyperbolic surfaces.)

We can search for h by the same method of simplicial subdivision that we used to

find g. This establishes an algorithm to calculate the hyperbolic structure of N ∗.

We claim that a modified version of this algorithm is in ER. We first consider

ER candidates for the map g. To do this, we make a non-commutative cocycle

α ∈ C1(N ; G) as in the proof of Corollary 5.10, where

G = Isom+(H3) ∼= SO+(3, 1),

and with the extra restriction that α is parabolic on each component of ∂ N . These

cocycle equations are algebraic, so Theorem 8.8 guarantees a representative set of

solutions. By Mostow or Calabi-Weil rigidity, one of components of the solution

space yields a discrete homomorphism

ρ : π1(N ) → Isom+(H3)

that describes the hyperbolic geometry of X . If we assign some point p ∈ H3 to

one of the vertices of 2, then in the closed case, its orbit under α is in ER and can

be extended on each simplex of 2 to the map g. In the cusped case, there are also

ideal vertices whose position on the sphere at infinity can be calculated from α as

well.

If N has boundary, then we also want a truncated version of 2∗ which is larger

than the original 2, and slightly different from the horospheric truncation description

in Section 7. If that 1 ∈ 2∗ is semi-ideal, then let p be its ideal vertex, let F be the

hyperplane containing the face of 1 opposite to p, and let F ′ be the hypersphere at

distance log(2) from F which is on the same side as p. Then we truncate 1 with

F ′ to make 1′; or if 1 ∈ 2∗ is a non-ideal tetrahedron, we let 1′ = 1. We let

X ′ ⊆ X be the union of all 1′. (In the closed case, we obtain X ′ = X .) X ′ can have

a complicated shape because the truncations are usually mismatched, but we can

calculate the positions of its vertices, and it is easy to confirm that it has at least

half of the volume of X .

Our algorithm does not know which cocycle α gives us a desired g and we do not

compute this directly. Instead, we can calculate an ER bound for its data complexity,

using the complexity bounds in the statement of Theorem 8.8.

In particular, the existence of the map g gives us ER bounds on the parameters

used in the third proof of Lemma 7.1. Using Lemma 8.9, the existence of g yields

an ER upper bound on the diameter ℓ of X ′ and then a lower bound on its injectivity

radius r .

We can now follow the first proof of Theorem 6.1. If 11, 12 ∈ 2∗ are two

tetrahedra, then the intersection complexity of g(11) and g(12) is no worse than



ALGORITHMIC HOMEOMORPHISM OF 3-MANIFOLDS AND GEOMETRIZATION 233

that of g(1′
1) and g(1′

2), and is bounded by an ER function of ℓ and r . This yields

an ER bound on the complexity of the refinements 8 and 9. Recall that 9 is a

refinement of 2∗, which is a slightly modified version of the input description of

N . Having bounded the complexity of 9, we can search for it using Corollary 8.13

and solve for 8 and its geometry. We can also discard g if it does not have degree

1.

Thus far, the algorithm finds an ER collection of candidate maps g : X∗ → N of

degree 1, where N varies as well as g. At least one of these maps is a homotopy

equivalence. Instead of finding an inverse h, We can repeat the algorithm to look

for degree one maps among the target manifolds {N }. This induces a transitive

relation among these manifolds. If N is chosen at the top of this relation, then the

associated map g : X∗ → N must be a homotopy equivalence.

To solve the homeomorphism problem, we find geometric triangulations 81 and

82 of the manifolds N ∗
1 and N ∗

2 . We can again follow the first proof of Theorem 6.1,

except now with an ER bound on the complexity of 81 and 82, and we can again

use Corollary 8.13. The same argument applies for the calculation of the isometry

group of a single N ∗. �

8.5. The small Seifert-fibered case. In this section we will prove Theorem 8.2.

Let N be a closed, oriented 3-manifold which has been recognized as irreducible

and atoroidal by the relevant algorithm in the proof of Theorem 8.1. We want to

distinguish between the case that N is small Seifert-fibered and the case that N is

hyperbolic; and in the former case, find its homeomorphism type. By Theorem 8.7,

we also may as well assume that N 6∼= S3. We divide the proof into two cases,

according to whether π1(N ) is finite or infinite. (Recall that N is spherical if and

only if π1(N ) is finite.)

Proposition 8.14. It is in ER to determine if π1(N ) is finite and compute its oriented

homeomorphism type.

Proof. We work from the fact [16, Sec. VI.11 & VI.16] that if π1(N ) is finite, then

N has a Seifert fibration whose base F is S2 with at most two orbifolds points, or

three orbifolds points of order a1, a2, and a3 with

1

a1

+ 1

a2

+ 1

a3

> 1.

Such a fibration of N lifts to the Hopf fibration of its universal cover S3, and with

the extra property that the action of π1(N ) preserves an orientation of the Hopf

fibers. Thus π1(N ) can be realized as a finite subgroup of the unitary group U(2)

that acts freely on the unit sphere S3 ⊆ C2. Moreover, the 2-sphere S2 which is the

set of Hopf fibers is the orbifold universal cover of the base F . Thus the orbifold

fundamental group π1(F) is the image of π1(N ) in PU(2) ∼= SO(3).
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If N has at most two exceptional fibers, then its the union of two solid tori and

thus a lens space with a cyclic fundamental group. On the other hand, if N has

three exceptional fibers, then π1(F) is a dihedral or Platonic subgroup of SO(3).

In either of these latter two cases, the kernel of the projection π1(N ) → π1(F) is

the center Z(π1(N )). This classification also tells us that if we pass to a cyclic

subgroup of π1(F) and its inverse image in π1(N ), we get an intermediate cover

Ñ of N with π1(Ñ ) abelian, so Ñ must be a lens space. Every dihedral or Platonic

group has a cyclic subgroup of index at most 12.

We first calculate whether N is a lens space. We calculate H1(N ) by applying the

Smith normal form algorithm to its chain complex. If H1(N ) is infinite, then N is not

small Seifert-fibered. Otherwise the cardinality of H1(N ) is elementary recursive.

We can calculate whether N is a lens space by checking whether H1(N ) ∼= Z/m

is cyclic and calculating whether its abelian universal cover Ñ is isomorphic to

S3. To determine the parameter n in the homeomorphism type of N ∼= L(m, n),

we can calculate the Reidemeister torsion of the twisted homology of N over the

ring Z[ζ ], where ζ is an mth root of unity. This is a determinant calculation which

is a priori elementary recursive. Note that this torsion determines the oriented

homeomorphism type of N .

If N is spherical but not a lens space, then again it has a finite covering space Ñ

of order at most 12 which is a lens space. We thus obtain an elementary recursive

bound on the cardinality of π1(N ). Using a presentation of π1(N ) obtained from the

triangulation of N , we can search exhaustively among surjective homomorphisms

φ : π1(N ) → Ŵ, where Ŵ is a finite candidate for π1(N ). For each such surjective

homomorphism, we can build the corresponding covering space Ñ and calculate

whether Ñ ∼= S3. If this happens, then we know that N ∼= S3/Ŵ as unoriented

3-manifolds.

Finally in the spherical case, we want to pass from the unoriented to the oriented

homeomorphism type of N when N is spherical but not lens. (Note that every such

N is chiral.) As a first warm-up, recall that we can distinguish the lens space L(4, 1)

from its reverse L(4, −1) = L(4, 3) by computing its Reidemeister torsion. As a

second warm-up, we consider the simplest prism space R(1, 2) whose fundamental

group Ŵ = π1(R(1, 2)) is the quaternionic 8-element group. We can build R(1, 2)

as a coset space inside SU(2):

Ŵ ⊆ SU(2) R(1, 2) ∼= SU(2)/Ŵ.

The group Ŵ has four cyclic subgroups of order 4 which are not conjugate in Ŵ itself,

but which are conjugate in SU(2). Matching this calculation to the Seifert data,

R(1, 2) has three double covers which are all-oriented homeomorphic to L(4, 1).

We can thus calculate the orientation of N by calculating whether any double cover

is L(4, 1) or L(4, 3).
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If N is spherical but not lens, then again π1(N )/Z(π1(N )) is either dihedral,

which is the prism case; or the isometry group of a Platonic solid: tetrahedral,

octahedral, or icosahedral. In the case that N ∼= R(m, n) and m is odd, as well as

in the Platonic cases, π1(N ) has a unique subgroup isomorphic to the quaternionic

group. Thus we can form the corresponding covering space Ñ ∼= R(1, 2) and

calculate its orientation as in the second warmup. Mean while if N ∼= R(m, n) and

m is even, then the center Z(π1(N )) ∼= Z/(2m) has a unique subgroup of order 4.

Thus π1(N ) has a canonically chosen cyclic subgroup of order 4, and we can again

form Ñ and calculate whether it is L(4, 1) or L(4, 3). �

To prove Proposition 8.15, we will use a different combinatorial model of Seifert-

fibered spaces than the one in Section 5.2.4. If N is Seifert-fibered with base F ,

then we can consider a triangulation 2 of F with the orbifold points placed at the

vertices. For each triangle 1 ∈ 2, we make a solid torus 1× S1 which we interpret

as a chart for a circle bundle with structure group S1. Then we can construct N

with an atlas of charts of this type. (It is an atlas with closed charts rather than open

charts, but this is valid in context.) When two triangles 11 and 12 intersect in an

edge, we glue the charts together with a transition map

f12 : 11 ∩ 12 → S1 ∼= R/Z.

We can assume that each transition map f12 is affine-linear if lifted to R, so that

the endpoint values of f12 lie in Q/Z, and its slope is also in Q. Moreover, it is

not hard to convert the Seifert data for N into these transition functions, for any

triangulation of F . Finally, note that if p ∈ F is an orbifold point of order a and

1 ∈ 2 is any triangle that has p as a vertex, then the gluing maps between charts

glue the circle over p in such a way that it shortens by a factor of a and becomes a

singular fiber of N .

Proposition 8.15. It is in ER to determine if N is small Seifert-fibered with infinite

π1(N ), and if so, compute its oriented homeomorphism type.

Proof. If π1(N ) is infinite and N is small Seifert-fibered, then the base F of N is a

2-sphere with orbifold points of order a1 ≥ a2 ≥ a3 with

1

a1

+ 1

a2

+ 1

a3

≤ 1.

In the equality case F is Euclidean and N is either Euclidean or Nil; otherwise F

is hyperbolic and the geometry of N is either H2 × R or ˜Isom(H2). The orbifold

fundamental group π1(F) is a von Dyck group D(a1, a2, a3) which is the orientation-

preserving subgroup of index two in the corresponding triangle group 1(a1, a2, a3)

in either Isom(E2) or Isom(H2), and π1(N ) is a central extension of D(a1, a2, a3)

by Z.
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We first consider the case in which F is Euclidean, which implies that (a1, a2, a3)

is either (3, 3, 3), (4, 4, 2), or (6, 3, 2). In this case there is a homomorphism

φ : π1(N ) → G,

where the target group is respectively the dihedral group D3, D4, or D6, such that

the corresponding regular cover Ñ is a circle bundle over a torus. Given a putative

choice for G and φ, we can construct the regular cover Ñ and apply the large

Seifert-fibered case of Theorem 8.1 to recognize it. (Lest this look circular, only

the small Seifert-fibered case of Theorem 8.1 needs the current Proposition 8.15.)

If Ñ is indeed a circle bundle over a torus, then we know that N must be small

Seifert-fibered with a Euclidean base, and the remaining question is to confirm that

G and φ were correctly chosen and thus compute the specific Seifert data of N .

Either Ñ is S1×S1×S1 (so that N itself is Euclidean), or it is a circle bundle over

S1 × S1 with a non-trivial Euler number and thus has Nil geometry. We thus obtain

an explicit form of π1(Ñ ) which is either Z3 or a central extension of Z2 by Z. At

the same time, since the recognition of the structure of Ñ is based on normal surface

theory, it thus yields a retriangulation of Ñ in ER from the triangulation induced by

the input triangulation of N to one that reveals the Seifert structure. Therefore we

obtain an explicit (and elementary recursive) description of π1(N ) as an extension

of the finite group G by π1(Ñ ). We can thus match π1(N ) to the corresponding

model Seifert-fibered space to determine the unoriented homeomorphism type of N .

Finally we have to calculate the oriented homeomorphism type. In the Euclidean

case, the recognition of Ñ gives us an orientation of π1(Ñ ) ∼= Z3. Similarly in

the Nil case, when π1(Ñ ) is an extension of Z2 by Z, the orientation of Ñ still

gives an orientation of both the center Z and the quotient Z2, up to switching both

orientations. This lets us compare the given orientation of N to an orientation of

the model to thus determine the oriented type of N .

The argument when the base F is hyperbolic is similar to the Euclidean case

but more complicated. In this case, π1(N ) has a non-trivial homomorphism to

Isom(H2), which in turn embeds in SL(2, C), so Theorem 8.12 tells us that π1(N )

has a non-trivial finite quotient G which we can find in ER even if we do not know

the linear representation that explains that it exists.

We construct the finite cover Ñ of N corresponding to the quotient map φ :
π1(N ) → G, and we apply part of Theorem 8.1 to determine if Ñ is large Seifert-

fibered, and if so calculate its fibration and its base F̃ . As before, we can first learn

from this whether N is indeed small Seifert-fibered. Second, as before this part of

Theorem 8.1 gives us an ER retriangulation from the initial triangulation of Ñ as a

covering space of N , to a triangulation that reflects its Seifert fibration. In particular,

we obtain a triangulation 2 of F̃ together with an atlas of charts to describe Ñ .

Third, we can choose an orientation of F̃ and an orientation of the circle fibers so
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that the two orientations together are consistent with the orientation of Ñ inherited

from N . Fourth, using the orbifold point orders of F̃ and the cardinality of G, we

obtain an ER upper bound on a1, a2, and a3.

For each candidate for (a1, a2, a3), the given representation of D(a1, a2, a3) in

Isom(H2) is rigid. It is still rigid even as a representation of π1(N ), because any

nearby representation must still annihilate the kernel Z(π1(N )). Passing to the

covering space F̃ , we obtain a preferred hyperbolic structure on F̃ and we can

realize 2 as a geometric triangulation. (In two dimensions, every triangulation of a

hyperbolic surface is geometric.) Now Theorem 8.8, combined with the fact that

the retriangulation of Ñ is in ER, gives us an ER upper bound on the lengths of the

edges of 2. At the same time, we get a second triangulation 8 of F̃ by tiling it

by lifts of the triangular fundamental domain of the triangle group 1(a1, a2, a3).

The triangulation 8 is both geometric and π1(N )-invariant. It is sometimes only a

generalized triangulation in the sense that its 1-skeleton could have double edges or

self-loops, but this doesn’t matter for our arguments. Using the same arguments

as in the proof of Theorem 8.3 in Section 8.4, 8 and 2 have a mutual refinement

that can be found in ER. Thus we can search over retriangulations of F̃ in ER until

we find one that is π1(N )-invariant. We can then use this to compute the Seifert

structure on N , moreover preserving the orientation information inherited from the

fibration of Ñ . �

9. Open problems

Theorem 1.2, together with the fact that ER is a fairly generous complexity class,

suggests the following conjectures.

Conjecture 9.1. If M is a closed, Riemannian 3-manifold, then Ricci flow with

surgery on M can be accurately simulated in ER.

In other words, we conjecture that Perelman’s proof of geometrization can be

placed in ER.

Conjecture 9.2. Every closed, hyperbolic manifold N has a finite-sheeted Haken

covering which is computable in ER.

In other words, we conjecture that the statement of the virtual Haken conjecture,

now the theorem of Agol et al [1], can be placed in ER. Maybe the known proof

can be as well.

Conjecture 9.3. Any two triangulations of a closed 3-manifold M have a mutual

refinement computable in ER.

Conjecture 9.3 does not follow from our proof of Theorem 1.2, because the

algorithm in Theorem 8.3 only establishes a simplicial homotopy equivalence and

then relies on Mostow rigidity. However, the rest of the proof of Theorem 1.2 uses a
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bounded number of normal surface dissections, which does establish an ER mutual

refinement according to the arguments of Mijatović [31; 32]. Also, Conjecture 9.2

and the Haken case of Conjecture 9.3 would together imply the hyperbolic case of

Conjecture 9.3, which would then imply the full conjecture. Mijatović [33] also

established that any two triangulations of a fiber-free Haken 3-manifold have a

primitive recursive mutual refinement.

Cases 3 and 4 of Proposition 2.6 are expected to be false for typical bounds on

complexity that are better than ER. Thus, in discussing further improvements to

Theorem 1.2, we should consider qualitative complexity classes, such as the famous

NP, rather than just bounds on execution time. For one thing, ER is the union of an

alternating, nested sequence of time and space complexity classes, as follows:

P ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE ⊆ EEXP ⊆ · · · .

Here P is the set of decision problems that can be solved in deterministic polynomial

time; PSPACE is solvability in polynomial space with unrestricted (but deterministic)

computation time; EXP is deterministic time exp(poly(n)); etc. The author does

not know where a careful version of our proof of Theorem 1.2 would land in this

hierarchy.
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