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Non-Abelian Dirac node braiding and near-degeneracy of correlated phases at odd integer filling
in magic-angle twisted bilayer graphene
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We use the density matrix renormalization group (DMRG) to study the correlated electron states favored by
the Coulomb interaction projected onto the narrow bands of twisted bilayer graphene within a spinless one-valley
model. The Hilbert space of the narrow bands is constructed from a pair of hybrid Wannier states with opposite
Chern numbers, maximally localized in one direction and Bloch extended in another direction. Depending on the
parameters in the Bistritzer-Macdonald model, the DMRG in this basis determines the ground state at one particle
per unit cell to be either the quantum anomalous Hall (QAH) state or a state with zero Hall conductivity which
is nearly a product state. Based on this form, we then apply the variational method to study their competition,
thus identifying three states: the QAH, a gapless C2T -symmetric nematic, and a gapped C2T -symmetric stripe.
In the chiral limit, the energies of the twoC2T -symmetric states are found to be significantly above the energy of
the QAH. However, all three states are nearly degenerate at the realistic parameters of the Bistritzer-Macdonald
model. The single-particle spectrum of the nematic contains either a quadratic node or two close Dirac nodes
near �. Motivated by the Landau level degeneracy found in this state, we propose it to be the state observed
at the charge neutrality point once spin and valley degeneracies are restored. The optimal period for the C2T
stripe state is found to be two unit cells. In addition, using the fact that the topological charge of the nodes in
the C2T -nematic phase is no longer described simply by their winding numbers once the translation symmetry
is broken, but rather by certain elements of a non-Abelian group that was recently pointed out, we identify the
mechanism of the gap opening within the C2T stripe state. Although the nodes at the Fermi energy are locally
stable, they can be annihilated after braiding with other nodes connecting them to adjacent (folded) bands.
Therefore, if the translation symmetry is broken, the gap at one particle per unit cell can open even if the system
preserves the C2T and valley U(1) symmetries, and the gap to remote bands remains open.
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I. INTRODUCTION

Since the discovery of correlated insulating phases and su-
perconductivity (SC) in magic-angle twisted bilayer graphene
(TBG) [1–15] and other moiré systems [16–21], tremendous
theoretical [22] effort has been devoted toward understanding
the properties and the mechanisms of these correlated electron
phenomena [23–54]. Significant progress has been achieved in
understanding the topological band properties of this material
and other moiré systems [26,55–60]. Furthermore, several
approaches [37,49,50,54,61] have revealed the similarity be-
tween the quantum Hall ferromagnetism and the insulating
states observed at the even integer fillings. However, two
entirely different insulating phases have been observed at the
filling of ν = 3 [3,5,10]. While the (quantum) anomalous
Hall (QAH) state has been readily identified when one of the
layers of the TBG is aligned with the hexagonal boron nitride
(hBN) substrate [4,5], the observed gapped insulating state
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at ν = 3 without the hBN alignment, and without anomalous
Hall conductance, is much less understood.

The experiments, as well as the band calculations with
lattice corrugation [25], have shown that the TBG near the
magic angle contains four spin-degenerate narrow bands sep-
arated from other remote bands by a finite band gap. The
four copies of Dirac nodes at K and K ′ per each of the two
spin projections of the TBG are protected by C2T , twofold
rotation about the axis perpendicular to the graphene plane
followed by time reversal, and the conservation of the number
of fermions within each valley, i.e., Uv (1) [26,55]. We wish
to stress that this means that C2T and Uv (1) symmetries are
necessary for stable nodes to exist, but they are not sufficient.
As we discuss below, the spectrum may be gapped despite
the presence of the C2T and Uv (1) symmetries, and despite
maintaining the gap to remote bands, when the moiré lattice
translation symmetry is broken.

A more familiar example of Dirac nodes protected by
symmetries is the monolayer graphene, with two massless
Dirac fermions per spin projection and without spin-orbit
coupling. In this case, the nodes are said to be protected by the
time-reversal (T ) and inversion (I) symmetries. Nevertheless,
strong breaking of the rotational symmetry can in principle
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result in an insulating state [62], despite preserving T and I
throughout the process of gap opening. This happens when the
Dirac nodes with opposite chirality move across the Brillouin
zone, meet, and annihilate.

Unlike in the monolayer graphene example, however, the
two Dirac nodes in magic-angle twisted bilayer graphene have
the same chirality and thus cannot be annihilated by simply
meeting together. Strong breaking of rotational symmetry
alone will therefore not produce an insulator. Thus, in the
simplest scenario with polarized spin and valley, it seems that
the gap at the Dirac nodes can be opened only by breaking
the C2T symmetry. The mentioned QAH, observed at the
filling of ν = 3 with hBN alignment, is an example of such
C2T -symmetry breaking. However, as mentioned, without the
hBN alignment experiments demonstrated that the system at
ν = 3 is in a gapped state without anomalous Hall effect
[3,10].

One of the goals of this paper is to explore the mechanism
of gap opening in a C2T - and valley U(1)-symmetric system
and how the energy of the resulting state competes with QAH
at odd integer filling. Such a state would be insulating and
not display the anomalous Hall effect, and thus be consistent
with the experiments at ν = 3 without hBN alignment; the
connection to the spinless one-valley model is to simply spin
and valley polarize one hole per moiré unit cell. We find that in
the chiral limit [56], the density matrix renormalization group
(DMRG) identifies the QAH as the ground state. In the more
realistic case, however, DMRG always produces a non-QAH
state, even when the initial state for the algorithm is set to be
the QAH state. This result is also confirmed by minimizing
the energy of the trial wave function inspired by studying
the correlations in the non-QAH state obtained in DMRG.
Our variational analysis discovers three competing states:
the QAH and two C2T -symmetric states with dramatically
different fermion excitation spectra. Furthermore, applying
the insights of recent work by Wu, Soluyanov, and Bzdušek
[63], we can identify the mechanism of the transition between
these two C2T -symmetric states via assignment of the non-
Abelian topological charges to Dirac nodes once moiré lattice
translation symmetry is broken. This naturally explains why
the gap can be opened while preserving C2T and valley U(1)
symmetries (see also Ref. [57]). Interestingly, these C2T -
symmetric states, with polarized spin and valley degrees of
freedom, are variationally nearly degenerate with the QAH
state even though they are not connected to the QAH by U(4)
symmetry [37,49] [or U(4) × U(4) symmetry in the chiral
limit [49]]. As a consequence, the manifold of the low-energy
states in the realistic TBG appears to be larger than QAH-
related states. We should also mention in passing that our
earlier approach based on maximally localized Wannier states
in all directions, relation to which we discuss in the section
below, did identify a period-2 stripe state as an insulating
candidate for the odd integer filling [37].

Although not gapped, the single-particle excitation spec-
trum of the C2T -symmetric nematic state obtained variation-
ally is also interesting in that it displays either a quadratic node
or two close Dirac nodes [44] near the � point, i.e., the center
of the moiré mini-Brillouin zone, when the electron-electron
interactions dominate the kinetic energy of the narrow-
band states. This is in sharp contrast to the single-particle

spectrum obtained when the kinetic energy of the narrow
bands dominates, in which case the two Dirac cones sit at
the corners of the moiré mini-Brillouin zone. In the latter
case, the sequence of the Landau levels, restoring the spin and
valley degeneracy, would be ν = ±4,±12,±20, . . ., incon-
sistent with the experimentally [1,3] observed sequence near
the magic angle (∼1.1◦) ν = ±4,±8,±12,±16 . . . . In the
former case, however, the quadratic node at the moiré Bril-
louin zone center would indeed produce the experimentally
observed sequence because the Landau levels are doubly de-
generate at zero energy, and nondegenerate at all other energy
levels [64] (not including the spin and valley degeneracy).
Two close Dirac nodes would also produce the experimentally
observed sequence [44,65], except for a very small magnetic
field below which the sequence would revert to the ν =
±4,±12,±20, . . . . In practice, no Landau quantization is
seen at very small magnetic field, so two close nodes are also
consistent with the data at the charge neutrality point (CNP).
Interestingly, because this explanation relies on the electron-
electron Coulomb interaction dominating the kinetic energy
of the narrow bands, it would suggest that a useful probe of
their relative strength at different twist angles is the Landau
level sequence. Indeed, at the higher twist angle (∼1.8◦)
the observed sequence reverts [66] to ν = ±4,±12,±20, . . .,
suggesting that at this higher angle the kinetic energy domi-
nates.

Note that our goal is not to identify strictly a single state
that has the lowest energy for our Hamiltonian. Rather, it is
to identify a group of competing low-energy states if they
lie close in energy [67]. This is because small terms in the
Hamiltonian beyond currently accepted theoretical models,
and beyond control of the experimentalists, can tip the balance
and select different ground state from this near-degenerate
group. There are experimental indications that this is indeed
happening, in particular because nominally same fabrica-
tion protocols result in different phase diagrams, for exam-
ple, among the Columbia/UCSB and the Barcelona groups
[3,10]. Our strategy is therefore to identify the leading can-
didates for the ground state based on comparing the compet-
ing states’ robust phenomenological properties with existing
experiments.

We reach the above conclusions by starting with the (en-
ergy eigen-) Bloch states for the narrow band obtained from
the Bistritzer-Macdonald (BM) model [22]. This continuum
model has two parameters, w0 and w1, related to interlayer
AA and AB couplings, respectively. Due to the lattice relax-
ation, w0 is generally smaller than w1, and w0/w1 ∼ 0.83 as
obtained by STM [8]. Assuming both the spin and valley are
polarized (i.e., spinless one-valley model), we consider how
the ground state at one-particle per unit cell could depend on
this ratio. For each different value of the ratio, we solve the
BM model to obtain the Bloch states, construct the hybrid
WSs, and project the Coulomb interactions onto the hybrid
WSs. By neglecting the impact of the remote bands, the basis
of the hybrid WSs allows us to run DMRG with projected
interactions only. In addition, we propose a trial wave function
for the ground state based on the outcome of DMRG. Starting
from this trial state, we minimize the energy to study the
ground states and fermion excitations with both interactions
and kinetic terms.
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The rest of the paper is organized as follows: In the next
section we describe the continuum model within which we
compute the hybrid Wannier states, discuss their relation to
the exponentially localized states in all directions [24,25], and
express the kinetic energy and the electron-electron Coulomb
interaction in the hybrid Wannier basis. In Sec. III we describe
the results of our DMRG calculation. In Sec. IV, we analyze
the trial state inspired by the results from DMRG and compute
its single-fermion excitation spectrum. In Sec. V we analyze
improved trial states which further lower the energy. We also
study their excitation spectrum and its evolution from gapless
C2T nematic to gapped C2T stripe using the topological
methods discussed above. Finally, Sec. VI is reserved for
discussion. Various technical details of our calculations are
presented in the Appendices.

II. CONTINUUM LIMIT HAMILTONIAN AND THE
NARROW-BAND HYBRID WANNIER STATES

The starting point of our analysis is the continuum Hamil-
tonian [22,25,26]

HBM = h̄v f

∑
l=t,b

∑
p

ψ
†
l,pσ l,θ · pψl,p

+
∑
p

3∑
j=1

(
ψ

†
b,p+q j

Tjψt,p + H.c.
)
, (1)

where ψl,p is the fermion operator that annihilates the state
with the momentum of p on layer l . It contains two compo-
nents corresponding the two sublattices on each layer:

σt/b,θ = e−i θ
4 σz (σx, σy)ei

θ
4 σz ,

with θ being the twist angle. Suppose Kt and Kb are the
two Dirac points on two decoupled layers. The second term
in Eq. (1) is the interlayer coupling with q1 = Kb − Kt =
kθ (0,−1) and kθ = |Kt − Kb| = 2|Kt | sin θ/2, and q2,3 =
kθ (±

√
3

2 , 1
2 ). In addition,

Tj = w0σ0 + w1

(
cos

2π ( j − 1)

3
σ1 + sin

2π ( j − 1)

3
σ2

)
.

The Bloch state is labeled by its crystal momentum k =
pl + Kl , where pl is the momentum at the layer l . Although
each Bloch state contains multiple pl ’s in the BM model,
these momenta with the same layer index l differ from each
other only by reciprocal lattice vectors, and thus k is uniquely
defined if it is restricted in the Brillouin zone (BZ).

As discussed in Refs. [25,68,69], the parameter w0 is a
measure of the tunneling within the AA regions while w1

within AB/BA regions. In our calculation, w1 is fixed to
be 0.586v f kθ and w0 is allowed to vary [56]. The relative
area of AA to AB/BA is ∼0.83 as measured in STM [8].
The spectrum of this Hamiltonian is shown in Fig. 1(c) for
a range of parameters w0/w1 starting from the chiral limit
where w0 = 0 and the narrow band is exactly flat [56].

We assume that the Coulomb interaction ∼25 meV acts
mainly in the subspace of the narrow bands where its effects
may be nonperturbative [11,37]. We also assume that its
mixing of the remote bands can be treated perturbatively due
to the presence of the gap between the narrow band and the

FIG. 1. (a) The schematic plot for the moiré unit cell, with the
lattice vectors of L1 and L2. At the “magic” angle, their length
is about 13 nm. The colored circles refer to the AA, AB, and
BA regions. Due to the lattice relaxation effects, the AB and BA
regions become larger than AA region. (b) The schematic plot of
the moiré BZ. g1 and g2 are two reciprocal lattice vectors, and the
region enclosed by dashed line is the first BZ. The band dispersions
along the arrowed path with different w0/w1 are illustrated in (c).
Experimentally relevant value [8] is w0/w1 ∼ 0.83. The energies are
normalized by v f kθ , where kθ = 2|K| sin θ/2, |K| = 4π/(3a), a =
0.246 nm, and θ is the twist angle.

remote bands; its value is at least ∼30–40 meV as extracted
from the transport activation gaps [1,3]. Therefore, in order
to study the effects of the electron-electron interactions, we
[24] previously constructed a complete and orthonormal basis
for the narrow band which is exponentially localized in all di-
rections [25]. To do this, we used a microscopic tight-binding
model at a commensurate twist angle and D3 symmetry [24].
We found that the Coulomb interaction projected onto such
basis leads to a homogeneous SU(4) ferromagnetic state at
ν = ±2. We also proposed a ferromagnetic period 2 stripe
state at ν = 3 as a good candidate for the insulating state
observed at this filling without the hBN alignment.

The narrow bands obtained within the continuum Hamil-
tonian (1) carry nontrivial (fragile) topology [55,58]. This is
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FIG. 2. The hybrid WSs in real space with w0/w1 = 0.85 and the Chern index of −1. “Top and Bot” refer to the top and bottom layers,
respectively. “A and B” refer to the sublattices A and B, respectively. (a) With k = 0, the state contains two neighboring peaks in AA regions
along the localized direction L1 [see Fig. 1(a)]. (b) With k = 0.5, the state contains only one peak in the localized direction L1. In both cases,
the state mainly occupies sublattice B, showing that the Chern index is related to the sublattice polarization.

due to discarding the (expectedly small) mixing between the
valleys, thus making the particle number within each valley
separately conserved. HBM is indeed invariant under Uv (1),
and due to the invariance of HBM under the C2T -symmetry
transformation, the nontrivial topology of the narrow bands is
intimately linked to the combined symmetry protecting two
Dirac cones with the same winding number [55]. However,
unlike in the case of a Chern insulator, the nontrivial topol-
ogy here does not obstruct the construction of exponentially
localized Wannier states (WS) in both directions [70], but
it does obstruct such states from transforming in a simple
way under both Uv (1) and C2T . For example, if the WSs
transform simply under Uv (1) by acquiring an overall phase,
then they cannot simply acquire a phase under C2T . Because
the transformations which relate the Bloch states of HBM

and such WSs are perfectly unitary, no information is lost,
and the C2T transformed WS can still be expressed exactly
as a linear superposition of the exponentially localized WSs
in both directions. The role of the nontrivial topology is to
prevent this linear superposition to be confined to a single
site. Instead, the C2T transformed WS is reconstructed from
a linear superposition of WSs whose centers lie within the
region surrounding the transformed WS. The size of such
region is determined by the exponential decay length of the
WS, and the convergence toward full symmetry is achieved
exponentially fast with increasing such region [71]. In this
respect, it is perhaps helpful to reiterate that if the problem
is solved on a microscopic tight-binding lattice with ∼104

carbon sites within the unit cell [24] instead of in the con-
tinuum approximation, in, say, the D3 configuration, then

Uv (1) and C2T are emerging, but they are not exact; the
exponentially localized WSs in both directions obtained in
Ref. [24] thus transform simply under all exact symmetries
of the starting model. This approach based on exponentially
localized WSs allowed us to obtain an explicit understanding
of the form of the real-space interaction and, importantly,
to identify the generalized spin-valley ferromagnetism as the
dominant ordering tendency in the strong coupling limit. We
also linked this tendency to the nontrivial topological band
properties [37].

In order to gain a clearer understanding of the effects of
the Coulomb interaction on the Uv (1) and C2T symmetries
of the low-energy states, in this paper we chose to work in
a Wannier basis which is localized only in one direction.
In the other direction, our hybrid WSs behave as extended
Bloch waves (see Fig. 2). Additional advantages of this basis
are that the topology of the narrow bands of HBM is more
transparent [58], and that states with broken translational
symmetry in the localized direction can be readily described.
Moreover, in the basis of the hybrid Wannier orbitals the
QAH state is completely unentangled. Because at w0/w1 = 0
the QAH state can be analytically shown to be the exact
ground state of projected interactions [45,49], and because
it is gapped in this model, it is stable at small but finite
w0/w1. We can therefore study within DMRG whether it
“melts away” as w0/w1 increases beyond a critical value by
initializing the DMRG with QAH. Since, as we will see, it
does, we know with certainty that there is a quantum phase
transition into a state different from QAH even for finite
bond dimension which limits every numerical calculation,
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because low bond dimension would favor QAH. The dis-
advantage is the complicated form the Coulomb interaction
takes in the hybrid Wannier basis, making its effect less
transparent.

A. Hybrid WSs for the narrow bands

We follow the approach outlined in Ref. [72] to construct
the hybrid WS, which are maximally localized along the L1

direction and extended Bloch waves along the L2 direction
[see Fig. 1(a)].

Such hybrid WSs are the eigenstates of the projected
position operator satisfying periodic boundary conditions [73]

Ô = P̂e−i 1
N 1g1·rP̂, (2)

where P̂ is the projection operator onto the narrow bands. g1

is the primitive vector of the reciprocal lattice, and N1 is the
number of unit cells along the direction of L1 in the entire
lattice with periodic boundary conditions. We thus have

Ô|w±(n, kg2)〉 = e−2π i 1
N 1(n+〈x±〉k/|L1|)|w±(n, kg2)〉. (3)

The hybrid WSs |wα (n, kg2)〉 are labeled by their momentum
k along g2 which is conserved by Ô and the index n of the unit
cell along L1 (see Appendix for details of the derivation [74]);
α = ±1 labels their winding number. The amplitudes of the
hybrid WSs in the real space are shown in Fig. 2. Unlike the
familiar lowest Landau level wave functions in the Landau
gauge, the shapes of our hybrid WSs for the narrow bands
depend on the momentum index k. When k is close to k = 0
or 1, the hybrid WSs contain two peaks centered around AA in
the localized direction of L1 so that 〈x〉± ≈ 0.5|L1|, whereas
the hybrid WSs with k close to 0.5 contain only one peak in
AA along the direction of L1.

The 〈x±〉k physically represents the average of the position
operator within each 1D unit cell whose dependence on the
conserved momentum k is shown in Fig. 3. Such shapes were
previously obtained in Ref. [58]. The two curves display the
winding numbers of ±1 as the momentum k increases from
0 to g2, i.e., the average position of one set of states slides
to the right and the other set of states to the left under the
increase of the wave number k, similar to Landau gauge
Landau level states in opposite magnetic field [43,60]. This
makes the nontrivial topology of the system explicit: within
each valley, the two narrow bands of HBM can be decomposed
into one Chern +1 band and one Chern −1 band.

Although the two narrow bands with different values of
w0/w1 are topologically the same, the shapes of 〈x±〉k clearly
differ for different w0/w1. As seen in Fig. 3, the slope of 〈x〉
near k = 0.5 decreases with increasing w0/w1. In the chiral
limit where w0/w1 = 0, the slope is almost the same as for
Landau states, while near the more realistic value w0/w1 =
0.8, the slope at k = 0.25 nearly vanishes and the curve is
very flat and thus insulatinglike throughout most of the BZ.
It is only close to the BZ boundary that the winding numbers
are established. As shown below, the nature of the many-body
ground state in the strong coupling limit is sensitive to the
shape of the 〈x±〉k curves, not just their topology.

FIG. 3. The phase of the eigenvalue of the Wilson loop operator
of the two valley-polarized narrow bands with different values of
w0/w1. Note that 〈x〉 has an odd winding number of ±1 as the mo-
mentum k changes from 0 to 1, illustrating the nontrivial topological
properties of the bands. Blue and red curves are 〈x〉/|L1| with Chern
index of +1 and −1, respectively.

We carefully choose the phases of the hybrid WSs so
that the states |w±(n, kg2)〉 are continuous functions of the
momentum k and also satisfy the following properties:

|w±(n, (k + 1)g2)〉 = |w±(n ± 1, kg2)〉, (4)

C2T |w±(n, kg2〉 = |w∓(−n, kg2)〉, (5)

C′′
2 |w±(n, kg2〉 = e−2π ink|w∓(n, (1 − k)g2)〉, (6)

T̂L1 |w±(n, kg2)〉 = |w±(n + 1, kg2)〉, (7)

T̂L2 |w±(n, kg2)〉e−2π ik|w±(n, kg2)〉, (8)

where C′′
2 is the twofold rotation around the in-plane x axis

as shown in Fig. 1(a) and T̂L1,2 are translation operators by
L1,2. Note that the phase on the right side of Eq. (6) cannot
be removed because C′′

2 does not commute with T̂L1 and, as
a consequence, the extra phase becomes necessary as long as
the unit-cell index n is nonzero.

B. Kinetic energy and the Chern Bloch states

The kinetic energy can be written in the hybrid Wannier
basis as

Hkin =
∑
nn′k

∑
αα′=±

tαα′ (n − n′, k)d†
α,n,kdα′,n′,k, (9)

where the one-dimensional (1D) hopping matrix elements are

tαα′ (n − n′, k) = 〈wα (n, kg2)|HBM|wα′ (n′, kg2)〉, (10)

and where d†
α,n,k creates the hybrid WS with the Chern index

α, the unit cell n, and the momentum kg2. The kinetic energy
operator is diagonal in k, but not in n. Due to C2T symmetry
whose action on our basis follows (5), and the fact that HBM is
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Hermitian, it is straightforward to show that

t++(δn, k) = t∗−−(−δn, k) = t−−(δn, k). (11)

There are no additional constraints on the hopping constants
t+− imposed byC2T . Also, because ofC′′

2 symmetry, we have

t+−(δn, k) = e2π ikδnt−+(δn, 1 − k). (12)

The expression (11) guarantees that the 2 × 2 matrix
tαα′ (n − n′, k) does not contain the Pauli matrix σ3 = (1 0

0 −1).
This in turn allows us to study the winding number of the two
Dirac points in Hkin by defining Bloch states via the Fourier
transform of the hybrid WSs:

|φ±(q, k)〉 = 1√
N1

∑
n

e2π iqn|w±(n, kg2)〉, (13)

and expressing the kinetic energy operator in this Bloch basis.
It is important to emphasize that the states (13) are not kinetic
energy eigenstates, but they do satisfy Bloch condition as can
be seen by acting with the translation operators:

T̂L1 |φ±(q, k)〉 = 1√
N1

∑
n

e2π iqn|w±(n + 1, kg2)〉

= e−2π iq|φ±(q, k)〉 (14)

and

T̂L2 |φ±(q, k)〉 = e−2π ik|φ±(q, k)〉. (15)

As is seen from Eq. (13), the states φ±(q, k) are smooth and
periodic functions of q with the period 1. Moreover, because
the hybrid WSs were constructed to be continuous functions
of k and satisfy (4), we also have

|φ±(q, k + 1)〉 = e∓2π iq|φ±(q, k)〉. (16)

This means that |φ±(q, k)〉 are Bloch states and carry Chern
numbers ±1.

Defining the annihilation operators for the Chern Bloch
states as

bα,q,k = 1√
N1

∑
n

e−i2πqndα,n,k, (17)

we can now express the kinetic energy as

Hkin =
∑

αα′=±

∑
q,k

tαα′ (q, k)b†
α,q,kbα′,q,k (18)

=
∑
k,q

(
b+,q,k

b−,q,k

)†
⎛
⎝ 3∑

μ=0

nμ(q, k)σμ

⎞
⎠(

b+,q,k

b−,q,k

)
, (19)

where tαα′ (q, k) = ∑
δn tαα′ (δn, k)e2π iqδn. As pointed out

above n3 = 0. From (12) we also find

n1(q, k) = n1(q + k, 1 − k),

n2(q, k) = −n2(q + k, 1 − k). (20)

Figure 4 shows the sign of n1 (red) and n2 (blue) as a
function of the momentum q and k in the BZ. We see that
the two Dirac points have the same chirality [26,55] in that
going from, say, ++ to +−, we encircle either one of the
Dirac nodes clockwise. Naively, this seems to violate the
fermion-doubling theorem based on which we expect opposite

FIG. 4. Chiralities of two Dirac points. The bold red and blue
curves show where n1 and n2, defined in Eq. (19), vanish, respec-
tively, and the colored “±” shows the sign of corresponding n1 or n2

in the region separated by the bold curves. The two Dirac points K
and K ′ are at the intersections of the two colored curves and have the
same chiralities, as can be determined by how n1 and n2 change their
signs going around the points.

chirality of the Dirac nodes [57,75]. However, this theorem
assumes not only that the Hamiltonian Hkin(k) in Eq. (19) is
smooth, but also that it is periodic in the momentum space.
Periodicity in q is guaranteed by (13), but not in k as shown
by Eq. (16). Indeed, n2 would suffer a sign change at a step
discontinuity if we were to identify k = 0 with k = 1, as can
be seen in Fig. 4. The same chirality of two Dirac points
characterizes the nontrivial topology of the narrow bands.
It prevents construction of exponentially localized WSs in
both directions if we also insist that each originates within
a single valley (i.e., no valley mixing) and with a simple
transformation under C2T because in such case the kinetic
energy would be smooth, periodic in the BZ, and the σ3

matrix would be absent [26,55]. However, as discussed above,
such states can be constructed if we relax the mentioned
requirements.

Symmetry and fermion spectrum

Before proceeding to the detailed calculations, we first
summarize the impact of various symmetry breaking on the
fermion spectrum and thus provide a qualitative understand-
ing of our results. The kinetic Hamiltonian Hkin in Eq. (19)
produces two C2T -symmetry-protected Dirac nodes with the
same chirality at the corner of the BZ [26,55]. Without break-
ing theC2T or the translation symmetry, the system is metallic
even in the strong coupling regime. Because the x-direction
electrical current density jx and the perpendicular electric
field Ey have opposite parities under C2T transformation, the
Hall conductivity, defined by the formula jx = σxyEy, always
vanishes in a C2T -symmetric system. Breaking C2T symme-
try can open a gap in our single flavor model at half-filling,
corresponding to ν = 3 if the fermions with different spins or
different valleys are assumed to be filled. This gapped phase
could be either QAH if the masses [n3 in Eq. (18)] at two
nodes are the same, or a topologically trivial phase if these
two masses are opposite, consistent with the flipped Haldane
model picture of Refs. [26,55]. As shown later in the text,
our numerical calculation can only find the QAH phase when
C2T symmetry is spontaneously broken, suggesting that the
phase with opposite masses is not energetically favored by
the interactions. Furthermore, a C2T -symmetric stripe phase
is also found to be energetically favored by the interactions
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and gapped; as mentioned, it must have vanishing Hall con-
ductivity.

C. Coulomb interaction energy in the hybrid Wannier basis

We start from the gate-screened Coloumb interaction, with
two metallic gates placed distance ξ above and below the
TBG,

V̂ = 1

2

∑
r1r2

∑
μν

(∑
l

Vintra (r1 − r2) : ρ̂lμ(r1)ρ̂lν (r2) :

+
∑
l �=l ′

Vinter (r1 − r2) : ρ̂lμ(r1)ρ̂l ′ν (r2) :

⎞
⎠, (21)

where Vintra (r) [Vinter (r)] is the gate-screened Coulomb poten-
tial for two point charges separated by in-plane distance r, and
located in the same (different) graphene layers. The graphene
layers in the TBG are assumed to be separated by a small
distance d⊥ of the order of a couple of carbon lattice spacings
[22]. l is the layer index, and μ is the index combining spin
and sublattice degrees freedom (as mentioned, we ultimately
study a spinless model, so this is just for generality). ρ̂(r)
is the charge density at r and : ρ̂ρ̂ : is the normal ordered
operator ρ̂ρ̂. The Fourier transform of such gate-screened
Coulomb interactions is [74]

Vintra (q) ≈ Vinter (q) ≈ e2

4πε

2π

q
tanh

qξ

2
(22)

for qd⊥  1. At large momentum qd⊥ � 1, the charge density
of our single-valley model ρ(q) becomes negligibly small and,
thus, the Coulomb interaction with large momentum transfer
can be safely neglected. [In the two-valley case, it also peaks
at the momentum difference between the valleys and there the
decrease of Vintra/inter (q) with increasing q makes such terms
smaller (see, e.g., Ref. [49]).] Equation (22) is used in all the
following analyses and numerical calculations with ξ set to
10 nm.

To obtain the projected Coulomb interaction, we first
project the bare fermion creation and annhilation operator to
the constructed hybrid WSs:

c†
μ(r) −→

∑
β=±

∑
k,n

w∗
β,n,k (μ, r)d†

β,n,k

=
∑
β=±

∑
k,n

w∗
β,0,k (μ, r − nL1)d†

β,n,k, (23)

where d†
β,n,k creates the hybrid WS |wβ (n, kg2)〉 with the

wave function of 〈r|wβ (n, kg2)〉 = wβ,n,k (r). Note that we
now absorb the layer index μ and the sublattice index apparent
in HBM [Eq. (1)] into the four-component “spinor” wβ,n,k (r).
The projected interaction becomes

V̂int =
∑
ββ ′
γ γ ′

∑
n1n2
n3n4

∑
k2k′

2
p2 p′

2

J
γ γ ′,n3n4,p2 p′

2
ββ ′,n1n2,k2k′

2
d†

βn1k2
d†

γ n2 p2
dγ ′n3p′

2
dβ ′n4k′

2

×
∑
i∈Z

δk2+p2,p′
2+k′

2+i. (24)

The term in the last line ensures the momentum conservation
along g2. It is worth emphasizing that the obtained interaction
in Eq. (24) has been numerically found to be sizable even if
the difference of unit-cell indices |ni − nj | � 2 for all pairs of
(i, j). Different from the wave function of the lowest Landau
level (LLL), the constructed hybrid Wannier state, shown in
Fig. 2, contains two peaks along L1, leading to significant
overlap between two hybrid Wannier states with consecutive
unit-cell indices. Correspondingly, the projected Coulomb
interactions decay exponentially only when |ni − n j | � 2,
leading to a rather complicated interaction form.

III. DMRG

We consider a system with the size of N1L1 × N2L2 and
choose the open boundary condition along L1 and antiperi-
odic boundary condition along L2. Therefore, the momentum
indices of the hybrid WSs |w±(n, kg2)〉 take the values

k = i + 1
2

N2
with i = 0, 1, . . . ,N2 − 1

and n = −N1
2 ,−N1

2 , . . . , N1
2 . Since we study the quasi-1D

system with DMRG, the hybrid WSs are arranged in a one-
dimensional chain with each site indexed as i + nN2. Also,
each site contains two hybrid WSs, labeled by β = ±1. In the
DMRG calculation, N2 = 6, and N1 = 30, the bond dimension
set to be 2000 and the truncation error no more than 10−4.
Calculations were performed using the ITENSOR Library [76]
to study the ground states at the half-filling of the spinless one-
valley model, i.e., at the average occupation of one particle per
unit cell. The Hamiltonian studied in DMRG includes only
the electron-electron interactions with the kinetic terms Hkin

neglected. Because of the complicated form of the projected
interaction, ITENSOR produces a rather large matrix product
operator (MPO), 3–4 Gb at bond dimension 2000. During
each sweep, ITENSOR saves the MPO and the matrix product
state, and therefore places an upper limit on the bond dimen-
sion we can reach with our resources.

The obtained ground state is expected to depend only on
the two parameters w0 and w1 in the BM model (1). When
w0 = 0, i.e., the interlayer intrasublattice hopping vanishes,
the system is in the chiral limit [56] with two Chern bands
located on different sublattices. Consequently, the ground
state has been shown to be the QAH state [45,49]. As w0/w1

increases, the two Chern bands start to spatially overlap,
leading to the scattering among them and frustrating the
QAH. Nevertheless, because QAH is a gapped phase, it is
stable with respect to a small increase of w0/w1 from the
chiral limit. Whether or not it collapses and a different state
is favored as w0/w1 reaches ∼0.83 is the purpose of our
DMRG calculation. We should note, however, that the in-
creased propensity toward a many-body insulating state with
increasing w0/w1 could also be intuited from the shapes of
the phases of Wilson loop eigenvalues. In Fig. 3 we see that
they progressively flatten, suggesting that a good correlation
hole can be built when the two hybrid WSs are coherently
(and equally) distributed among the Chern +1 and Chern −1
branches. Such a state then need not break C2T and possibly
insulate.
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TABLE I. The probability P of having zero, one, or two particles
on several typical sites labeled by (n, k) when w0/w1 = 0.85. The
small probability of having zero or two particles shows the negligible
charge fluctuations away from the one-particle occupancy.

(n, k) (0, 1
12 ) (0, 1

4 ) (0, 5
12 ) (0, 7

12 ) (0, 3
4 ) (0, 11

12 )

P(N̂n,k = 0) 0.038 0.017 0.018 0.018 0.018 0.036
P(N̂n,k = 1) 0.922 0.966 0.965 0.964 0.965 0.924
P(N̂n,k = 2) 0.040 0.017 0.017 0.018 0.017 0.040

This intuitive picture turns out to be consistent with our
DMRG calculation. With N2 up to 6, DMRG finds QAH as the
ground state when w0/w1 � 0.7, i.e., the many-body ground
state turns out to be a product state of the hybrid WSs |wβ,n,k〉
with the same Chern index β:

|�〉GS =
∏
n,k

d†
+,n,k|∅〉 or

∏
n,k

d†
−,n,k|∅〉. (25)

With w0/w1 = 0.8 and w0/w1 = 0.85, DMRG always pro-
duces a non-QAH state with translation symmetry breaking
even if the initial state is set to be the QAH state. In this
parameter regime, however, the DMRG calculation does not
result in a fully converged ground state, in that the details
of the final state are sensitive to the choice of the bond
dimension; this is despite the entanglement entropy through
the middle bond never going above 0.82. However, several
interesting properties are found to be common among all the
obtained states which we now discuss.

Vanishing 〈n3〉. To illustrate the difference between the
QAH states and the state obtained when w0/w1 � 0.8, we
define the order parameter 〈n3〉:

〈n3〉 = 1

N

∑
n,k

〈d†
+,n,kd+,n,k − d†

−,n,kd−,n,k〉GS, (26)

where N = N1 × N2 is the total number of particles in the sys-
tem. We found that 〈n3〉 changes dramatically when w0/w1 is
between 0.7 and 0.8. When w0/w1 � 0.7, 〈n3〉 ≈ ±1, consis-
tent with the QAH states described in Eq. (25). With w0/w1 �
0.8, 〈n3〉 quickly drops to 0, suggesting that DMRG gives a
topologically trivial state with vanishing Hall conductivity.

Product state. On each site labeled by the two indices n
and k, we also find that the fermion occupation number in
the ground state is almost 1 when 0 � w0/w1 � 0.85. This is
obviously true for the QAH state described in Eq. (25). Table I
lists the probability of having zero, one, and two particles
on several typical sites (n, k) when w0/w1 = 0.85, where the
particle number operator N̂n,k on site (n, k) is d†

+,n,kd+,n,k +
d†

−,n,kd−,n,k . The probability of having zero, one, and two
particles on the site (n, k) is calculated with the following
formula:

P(N̂n,k = 0) = 1
2 〈(1 − N̂n,k )(2 − N̂n,k )〉GS, (27)

P(N̂n,k = 1) = 〈N̂n,k (2 − N̂n,k )〉GS, (28)

P(N̂n,k = 2) = 1
2 〈N̂n,k (N̂n,k − 1)〉GS. (29)

As shown in Table I, the probability of having zero or
two particles on each site are negligible, suggesting that the

DMRG produced state can be well approximated by the prod-
uct of one-particle state on each site. To further justify this
statement, we calculated the equal-time fermion correlation
between different sites, i.e., 〈d†

α,n,kdβ,n′,k′ 〉GS. This correlation
is shown in Fig. 5 when w0/w1 = 0.85. In Figs. 5(a) and
5(c), we fix (n, k) = (0, 5

12 ), and list the absolute value of
the fermion correlation with various (n′, k′). When (n, k) is
fixed to be (0, 11

12 ), the correlation is also listed in Figs. 6(b)
and 6(d). Although this correlation increases with k close to
0 or 1, the off-site correlation is generally found to be tiny.
In addition, we found that that the correlation exponentially
decays as a function of |n − n′|, suggesting that this is a
gapped phase.

Overall, the dominant one-particle occupancy and tiny off-
site correlation of the DMRG produced state suggest that the
DMRG produced wave function can be well approximated by
the following formula:

|�GS〉 ≈
∏
n,k

(un,kd
†
+,n,k + vn,kd

†
−,n,k )|∅〉 (30)

with |un,k|2 + |vn,k|2 = 1 for all the sites labeled by (n, k).
Phase of 〈d†

+,n,kd−,n,k〉. We also found that the phase of

〈d†
+,n,kd−,n,k〉 in the non-QAH phase can be described by a

function

arg(〈d†
+,n,kd−,n,k〉) ≈ arg

(
v(n, k)

u(n, k)

)
≈ f (n)

π

2
,

where f (n) = ±1. Obviously, the phase of 〈d†
+,n,kd−,n,k〉 de-

pends on the choice of the phase of the constructed hybrid
WSs, and thus is not U(1) gauge invariant. Once the U(1)
phase of the hybrid WSs is fixed [74], f (n) is found to depend
only on n but does not show any regular pattern in DMRG
produced final state. In the next section, we will see that the
magnitude of this phase, π

2 , is reproduced by minimizing the
〈H〉 with the trial state in Eq. (30).

As stated previously, the DMRG produced state does
not converge and is very sensitive to the bond dimension.
Additionally, we found that the C2T local order parameter
〈d†

+,n,kd+,n,k − d†
−,−n,kd−,−n,k〉 strongly depends on n and does

not show any spatially periodic pattern. This may come from
the strong competition between various low-energy states,
such as QAH and other C2T -symmetric states. As suggested
by the drop of 〈n3〉 in Fig. 6 and analysis in the following sec-
tions, the system undergoes a first-order phase transition from
QAH to a non-QAH state when w0/w1 reaches approximately
0.8. Since the global order parameter 〈n3〉 vanishes in the non-
QAH state, we suspect thatC2T symmetry may be still locally
conserved in this state, leading to zero Hall conductivity.
When w0/w1 becomes slightly larger than 0.8, the system is
in the non-QAH regime but close to the phase transition point.
As a consequence, these states are still almost degenerate,
leading to strong competition among them. Furthermore, the
QAH state, as discovered in DMRG, is favored at the open
ends of the system. Therefore, the small advantage of the non-
QAH states in the bulk and the superiority of the QAH state at
the boundary may drive the system into the intermediate phase
without regular spatial patterns in the DMRG produced state.
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FIG. 5. The fermion correlation between different sites with w0/w1 = 0.85 in the state obtained by DMRG. We used 6 k points and 31 n
points with the bond dimension of 2000 and the truncation error of 10−4.

IV. ANALYSIS OF THE TRIAL STATE IN EQ. (30)

A. Ground state

Because the trial ground state [Eq. (30)] suggested by
DMRG is a product state at each site (n, k), it is straightfor-
ward to analyze its energy variationally by implementing the
Wick’s theorem. This allows us to increase N2, the number
of k points, which is limited to N2 � 6 in DMRG with our

FIG. 6. The order parameter 〈n3〉 given by Eq. (26) of the ground
state as obtained by DMRG. |〈n3〉| = 1 when the ground state
is QAH for w0/w1 � 0.7. However, 〈n3〉 ≈ 0 when w0/w1 � 0.8,
suggesting the vanishing Hall conductivity in the system.

computing resources. The ground state at half-filling of the
spinless one-valley problem is thus obtained by minimizing

EN = 〈�GS|λĤkin + V̂int|�GS〉, (31)

with the constraint |u(n, k)|2 + |v(n, k)|2 = 1 for every n and
k, and allowing λ to increase continuously from 0. Further-
more, we seek a solution periodic in the unit-cell index n, i.e.,

u(n, k) = u(n + np, k), v(n, k) = v(n + np, k),

where np is the period. The C2T -symmetric state satisfies the
constraint that

u(n, k) = v∗(−n, k)eiθ (n,k),

v(n, k) = u∗(−n, k)eiθ (n,k) (32)

and the C′′
2 -symmetric state should satisfy

u(n, k) = v(n, 1 − k)eiθ
′(n,k),

v(n, k) = u(n, 1 − k)eiθ
′(n,k). (33)

We then optimize the energy allowing both C2T and C′′
2

symmetries to be broken and allowing the period np to be as
large as 8. Numerically, we found three types of the solutions
with the symmetry listed in Table II.
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TABLE II. The symmetry of three obtained solutions with the
trial states given by Eq. (30), where λ, defined in Eq. (31), is
the scaling factor of the kinetic terms. Whether the one-fermion
spectrum of the states is gapless or gapped is specified later in the
text and figures; we only focus on the symmetry breaking here.

Solution Translation C2T C′′
2

C2T broken Conserved Broken Broken
C2T Conserved Conserved Broken if λ � 0.8
nematic Conserved if λ � 0.8
C2T Broken Conserved Broken
Stripe (np = 2) (TL1C

′′
2 conserved)

For N2 = 6, theC2T -broken state is found to be the ground
state for w0/w1 � 0.8 and is identified as the QAH state,
while the C2T -symmetric state with broken translation sym-
metry is found to be the ground state for w0/w1 ≈ 0.85, cor-
responding to the C2T -symmetric period-2 stripe. Although
this stripe state breaks C′′

2 symmetry, the combination of
translation along L1 andC′′

2 , i.e., TL1C
′′
2 is still conserved. This

result is consistent with the one obtained using DMRG for the
same value of N2, in that the 〈n3〉 vanishes at roughly the same
values of w0/w1. Moreover, up to a π , the k dependence of
the arg (v(n, k)/u(n, k)) obtained by the variational method
is the same as the one by DMRG. The k and n dependence
of this phase will be more thoroughly discussed in the next
subsection.

We can also obtain another variational state by imposing
the translational symmetry (np = 1) and C2T invariance. We
refer to this state as C2T nematic. The best variational en-
ergies of these states are compared in Fig. 7 as we change
λ, plotting the result per particle as a function of the ki-
netic energy in the half-filled noninteracting semimetallic
state, 〈EK〉SM ≡ λ〈Ĥkin〉SM, in units of U0 = e2N/(4πεLm).
The interaction constant U0 ≈ 17 meV, where Lm is the
moiré superlattice constant and ε is the dielectric constant
of hBN. Because the simple noninteracting semimetal state
diagonalizes the kinetic energy, and therefore optimizes it, we

include in the plot the expectation value of λĤkin + V̂int in
this state. Although, the noninteracting semimetal is clearly
not competitive in the range of the parameters of interest to
us, its expected energy does provide us with a measure of
near-degeneracy among the competing states.

For N2 = 16 and w0/w1 = 0.85, Fig. 7 thus compares
the energies of three different variational states: C2T -
broken state, C2T -symmetric period-2 stripe phase, and C2T -
symmetric nematic state. As seen, all these three states are
nearly degenerate. As a measure of how close the energies of
the three states are, we divide the energy difference between
the competitive states by the energy difference between the
ground state and the noninteracting semimetal. Without the
kinetic terms in the Hamiltonian, we find that the normalized
energy difference between QAH and C2T -nematic state is
only 0.015U0/(0.8U0) ≈ 0.02, and the normalized energy
difference between QAH and C2T stripe state is 0.05/0.80 ≈
0.06, in favor of QAH. As seen in Fig. 7, the energies of
the competitive states are even closer when the kinetic energy
terms are included.

We find that the ground state is always translationally
invariant. Additionally, the C2T symmetry is broken when
the kinetic energy 〈EK/N〉SM < 0.4U0, and fully gapped when
〈EK/N〉SM < 0.31U0, suggesting that the state we found is
QAH for small kinetic energy and turns into an anomalous
Hall metal when 0.31 < |〈EK 〉SM|/NU0 < 0.4. It eventually
evolves into a normal metal with vanishing Hall conductiv-
ity when |〈EK 〉SM|/NU0 > 0.4. Nevertheless, the energies of
the two C2T -symmetric states in Table II are very close to
the energy of the QAH state in all the parameter regimes
we have calculated. As we will discuss later, the energy of
the C2T -symmetric states can be further lowered by improv-
ing the form of the variational states. This near-degeneracy
necessitates the inclusion of all three different states as the
candidates for the ground state at odd integer filling.

Because the anomalous Hall state seems to have been ruled
out in experiments on magic-angle TBG at ν = 3 without the
alignment with hBN, and because as we will see below C2T
period-2 stripe state can be fully gapped, we consider it as

FIG. 7. The energy of various correlated states with the trial function in Eq. (30). The energies are normalized byU0 = e2/(4πεLm ), where
Lm = |L1|. Left: the energies of four different states: C2T -broken state, C2T -symmetric nematic state, C2T -symmetric period-2 stripe state,
and the semimetal; the semimetal is defined as the (noninteracting) state obtained by diagonalizing the kinetic energy only. The results are
plotted vs 〈EK 〉SM ≡ λ〈Ĥkin〉SM as λ increases from 0 and 〈. . .〉SM is the expectation value in the semimetal state. Right: the energies of three
nearly degenerate states, and the transition between them are marked with colored stars. As seen here, at w0/w1 = 0.85, these three states are
nearly degenerate. In contrast, at w0/w1 = 0.3, the near-degeneracy is lifted in favor of QAH whose energy is 0.17U0 ≈ 3 meV below the two
C2T -symmetric states (see the corresponding Fig. 20 in the Appendix [74]).
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a candidate for the Chern-0 insulating state experimentally
observed at ν = 3. The QAH state, on the other hand, can be
favored by breakingC2 symmetry, and thus is the state discov-
ered at the same filling but aligning the system with the hBN
substrate. In addition, the C2T -nematic state, being gapless,
simultaneously breaksC3 rotation symmetry and possesses the
interesting pattern of the Landau level degeneracy. Therefore,
after including the spin and valley degrees of freedom, we
propose the C2T -nematic state as a candidate for the gapless
state at the charge neutrality point (CNP).

B. C′′
2 symmetry

The QAH states can be approximated as

|�QAH〉 ≈
∏
n,k

d†
+,n,k|∅〉 or

∏
n,k

d†
−,n,k|∅〉. (34)

Since the hybrid states transform as Eq. (6) under C′′
2 , this

state obviously breaksC′′
2 symmetry (in addition to, of course,

C2T ).
If the C2T -symmetric state is translationally invariant or

has the period of 2 unit cells, the u(n, k) and v(n, k) in the
trial wave function (30) can be written as

u(n, k) = 1√
2
eiφ(n,k), v(n, k) = 1√

2
e−iφ(n,k). (35)

If the state is further C′′
2 symmetric,

eiφ(n,k) = ±e−iφ(n,1−k)

�⇒ φ(n, k) + φ(n, 1 − k) = 0 or π. (36)

Figure 8 illustrates the k dependence of the phase φ(n, k)
in the two C2T -symmetric states. In the C2T -nematic state,
due to the translation symmetry, φ(n, k) is independent of n.
With the interactions only λ, defined in Eq. (31), vanishes, and
as Fig. 8(a) shows, the state can be approximated as

|�N 〉 ≈
∏
n,k

1√
2

(
ei

π
4 d†

+,n,k + e−i π
4 d†

−,n,k

)|∅〉. (37)

Obviously, this state breaks theC′′
2 symmetry. With increasing

λ, the phase φ(k) becomes smaller, and eventually vanishes
when λ � 0.8, and thus the C′′

2 symmetry is recovered. In
particular, for the BM model including both the interaction
and kinetic terms without any scaling, λ = 1, and thus the
state can be approximated as

|�N 〉 ≈
∏
n,k

1√
2

(d†
+,n,k + d†

−,n,k )|∅〉. (38)

Our calculation shows that the C2T stripe state is always
invariant under TL1C

′′
2 transformation. This leads to the rela-

tion

φ(n, k) = −φ(n + 1, 1 − k) (39)

relating the phase φ(n, k) with even n and the phase with odd
n. When λ vanishes, Fig. 8(b) shows that the wave function of
the stripe state can be approximated as∣∣�s

N

〉 ≈
∏
m,k

1√
2

(
ei

π
4 d†

+,2m,k + e−i π
4 d†

−,2m,k

)

× 1√
2

(
e−i π

4 d†
+,2m+1,k + ei

π
4 d†

−,2m+1,k

)|∅〉. (40)

FIG. 8. (a) φ(n, k), defined in Eq. (35), in the C2T -nematic state
with the trial function in Eq. (30) and N2 = 16. λ is the scaling factor
of the kinetic energy, defined in Eq. (31). (b) φ(n, k) in theC2T stripe
state when n is even. If n is odd, φ(n, k) can be obtained from the
relation in Eq. (39).

Obviously, φ(n, k) �= −φ(n, 1 − k) and thus theC′′
2 symmetry

is broken in this state.
Similar to the nematic phase, the magnitude of φ(n, k)

decreases with increasing λ. When λ � 24, the stripe state sat-
isfies the relation φ(n, k) = −φ(n, 1 − k) and thus becomes
C′′

2 symmetric.

C. Excitation spectrum

If the trial state [Eq. (30)] does not break the translation
symmetry, it can be written as

|�N 〉 =
∏
q,k

(u(k)b†
+,q,k + v(k)b†

−,q,k )|∅〉, (41)

where b±,q,k is defined in Eq. (17) as the Fourier transform of
the fermion operator d±,n,k .

To construct the one-particle and hole excited states, we
delocalize a linear combination of d†

+,n,k and d†
−,n,k :

|�N+1(q, k)〉 = (v∗(k)b†
+,q,k − u∗(k)b†

−,q,k )|�N 〉, (42)

|�N−1(q, k)〉 = (u∗(k)b+,q,k + v∗(k)b−,q,k )|�N 〉. (43)

The variational energies of these excited states are

EN±1(q, k) = 〈�N±1(q, k)|H |�N±1(q, k)〉, (44)

and the gap is given by

� = min[EN+1(q, k) − EN ]

− max[EN − EN−1(q′, k′)]. (45)
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FIG. 9. The direct gap �d (q, k) of three states with the trial
state in Eq. (30) with w0/w1 = 0.85. The kinetic energy is set to
be 〈EK 〉SM = 0. The energies are normalized by U0 = e2/(4πεLm ).

Figure 9 illustrates the direct gap �d , defined as

�d (q, k) = [EN+1(q, k) − EN ] − [EN − EN−1(q, k)]

in the BZ when w0/w1 = 0.85 and the kinetic terms are set
to be 0. Interestingly, we found the C2T -symmetric nematic
phase is gapless with nodes around �. The robustness of
the nodes has been discussed in Ref. [43] and additional
properties will be presented in the next section. The gap can
be opened by breaking C2T symmetry. A typical example
of this case is the QAH state having a gap of order U0 as
shown in Fig. 9(a). In the next subsection, we will show that a
gapped C2T -symmetric state can be obtained by breaking the
translation symmetry.

As mentioned before, we obtained three different types of
solutions. While the former two are translationally invariant,
the last one is C2T symmetric but breaks the translation
symmetry with the period of 2. Consequently, the coefficients
u’s and v’s in the trial state satisfy

u(2n, k) = u(0, k), v(2n, k) = v(0, k), (46)

u(2n + 1, k) = u(1, k), v(2n + 1, k) = v(1, k). (47)

The corresponding stripe state can be described by the follow-
ing wave function:

∣∣�s
N

〉 =
∏
n,k

1∏
m=0

(u(m, k)d†
+,2n+m,k + v(m, k)d†

−,2n+m,k )|∅〉.

(48)

Similar to the translationally invariant state, we can also
describe this stripe state in the basis of Chern Bloch states. For
notational convenience, we introduce another set of fermion
operators:

f±,q,k,0 = 1√
2

(
b±,q,k + b±,q+ 1

2 ,k

)
, (49)

f±,q,k,1 = 1√
2

(
b±,q,k − b±,q+ 1

2 ,k

)
, (50)

with 0 � q < 1
2 . Up to an overall phase, the stripe state in

Eq. (48) can be written as

∣∣�s
N

〉 =
∏

k ∈ [0, 1)
q ∈ [0, 1/2)

1∏
m=0

(u(m, k) f †
+,q,k,m + v(m, k) f †

−,q,k,m )|∅〉.

(51)

Similar to the case of the translationally invariant ground
state, the one-particle and hole excited states are built with
delocalized linear combination of fermion operators d†

±,n,k :∣∣�s
N+1,m(q, k)

〉 = (v∗(m, k) f †
+,q,k,m − u∗(m, k) f †

−,q,k,m )
∣∣�s

N

〉
,

(52)∣∣�s
N−1,m(q, k)

〉 = (u∗(m, k) f+,q,k,m + v∗(m, k) f−,q,k,m )
∣∣�s

N

〉
.

(53)

To obtain the fermion spectrum, we construct the two 2 × 2
matrices for the electron and hole excited states, respectively:
(
Hs
N±1(q, k)

)
m1m2

= 〈
�s

N±1,m1
(q, k)

∣∣H ∣∣�s
N±1,m2

(q, k)
〉
. (54)

The energy and the wave function of the electron and hole
excited states are obtained by diagonalizing these matrices
Hs
N±1(q, k). At each momentum, we obtain two eigenvalues

Es
N±1,1(q, k) and Es

N±1,2(q, k). The gap of the period-2 stripe
ground state is given by

� = (
min

(
Es
N+1,1(q, k),Es

N+1,2(q, k)
) − Es

N

)
− (

Es
N − min

(
Es
N−1,1(q′, k′),Es

N−1,2(q′, k′)
))

. (55)

Figure 10 shows the magnitude of the gap in the C2T -
symmetric stripe state. This gap is found to be �U0 at van-
ishing kinetic energy, but decreases with increasing kinetic
energy. It vanishes before evolving into the C2T -nematic
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FIG. 10. The single-fermion excitation gap of three nearly de-
generate states. The energies are normalized by U0 = e2/(4πεLm ).

phase. The opening and closing of this gap will be discussed
in much more detail in the next section, where we expose the
non-Abelian topological [63] aspects of this process.

Figure 9(c) plots the direct gap �d , defined as

�d (q, k) = (min (EN+1,1(q, k),EN+1,2(q, k)) − EN )

− (EN − min (EN−1,1(q, k),EN−1,2(q, k))), (56)

making it is obvious that �d (q, k) = �d (q + 1
2 , k) due to the

breaking of the translation symmetry with the period of 2.

V. GENERALIZED TRIAL STATES

A. Translationally invariant state

The trial function in Eq. (41) is not the most general form
for the translationally invariant state, as the coefficients u’s
and v’s are independent of the momentum component q. This
comes from the complete absence of the correlations between
hybrid WSs on different sites in our trial state [Eq. (30)].
To improve the trial state, we consider the following wave
function:

|�N 〉 =
∏
q,k

(u(q, k)b†
+,q,k + v(q, k)b†

−,q,k )|∅〉, (57)

where u and v depend on both q and k and satisfy |u(q, k)|2 +
|v(q, k)|2 = 1. If this state is C2T symmetric, u’s and v’s
should have the same magnitude, i.e., |u(q, k)| = |v(q, k)| =
1/

√
2.

Similar to the approach in the previous section, the ground
state is obtained by minimizing

EN (u, v) = 〈�N |H |�N 〉
with respect to u’s and v’s at various momenta. The momen-
tum mesh in the BZ is chosen to be

q = i + 1/2

N1
and k = j + 1/2

N2

with i = 0, 1, . . . ,N1 − 1 and j = 0, 1, . . . ,N2 − 1. N1 and
N2 are taken to be 16. Our calculations still find two different
solutions: C2T broken and C2T nematic. Compared with the
trial state in Eq. (30), both solutions have lower energies.
Interestingly, the C2T -nematic state now has a lower energy
than the C2T -broken state, although the difference between
these two solutions is again tiny. The C2T -broken solution is
obtained by searching a local minimum near the product state
with u(q, k) = 1 and v(q, k) = 0.

FIG. 11. The direct gap �d (q, k) of the QAH state. This state is
given by Eq. (57).

The fermion spectrum is also calculated in the same way
as shown by Eqs. (42)–(45). Figure 11 shows the direct gap of
theC2T -broken state inside the BZ. With small kinetic energy,
this state is fully gapped over the whole BZ. The global C2T -
breaking order parameter, defined as

〈n3〉 = 1

N

∑
q,k

〈�N |b†
+,q,kb+,q,k − b†

−,q,kb−,q,k|�N 〉, (58)

is found to be almost 1 in this state. Therefore, it is identified
as the QAH state. Interestingly, the gap minimum is always
located at the � point. This is dramatically different from the
noninteracting state, in which the gap is largest at � and closes
at K and K ′.

In contrast, the C2T -nematic state is always gapless and,
thus, can never be the experimentally observed insulating
phase at ν = 3. The plot of the direct gap in the BZ in Fig. 12
has shown a node (or nodes) either at, or very close to, �

point if the kinetic terms are set to be 0. Additionally, the
direct gap quickly increases to ∼U0 once the momentum is
away from �. To understand the properties of nodes in the
C2T -nematic phase and the gap opening in the C2T -broken
phase, we consider the self-consistent equations obtained as

δ〈�N |H |�N 〉
δu∗(q, k)

= E (q, k)u(q, k), (59)

δ〈�N |H |�N 〉
δv∗(q, k)

= E (q, k)v(q, k). (60)

This is equivalent to the minimization of 〈�N |H |�N 〉. The
E (q, k) is the Lagrange multiplier, needed because of the
constraints |u(q, k)|2 + |v(q, k)|2 = 1 for each (q, k). This
equation can be written in the matrix form

Heff (q, k)

(
u(q, k)
v(q, k)

)
= E (q, k)

(
u(q, k)
v(q, k)

)
, (61)

where Heff (q, k) is a Hermitian 2 × 2 matrix and is a func-
tional of u’s and v’s. E (q, k) is an eigenvalue of this matrix,
and, by Koopman’s theorem, the direct gap �d (q, k) is cal-
culated as the difference between the two eigenvalues of the
matrix Heff (q, k).

035161-13



JIAN KANG AND OSKAR VAFEK PHYSICAL REVIEW B 102, 035161 (2020)

FIG. 12. The direct gap �d (q, k) for C2T -nematic state with
w0/w1 = 0.85 at (a) 〈EK 〉SM = 0 and (b) 〈EK 〉SM = −0.06U0.

The Hermitian matrix Heff is obtained as

(Heff (q, k))ββ ′ = 〈φβ (q, k)|F |φβ ′ (q, k)〉, (62)

where |φβ (q, k)〉 is the Bloch state defined in Eq. (13), and
F is a Hermitian operator independent of the momentum
[74]. Note that the Bloch state |φ±(q, k)〉 has the winding
number of ±1 going around the BZ. Since the operator F
has no winding number, the matrix element (Heff (q, k))+− has
the winding number of −2 around the BZ [43]. As a conse-
quence, it contains, at least, either a quadratic node or two
Dirac nodes inside the BZ [43]. For a C2T -symmetric state,
(Heff (q, k))++ = (Heff (q, k))−−, and thus a node appears as
long as the off-diagonal matrix element (Heff (q, k))+− =
(Heff (q, k))∗−+ vanishes. This state, therefore, must be a gap-
less state. On the other hand, the QAH state breaks the C2T
symmetry, and the two diagonal elements (Heff (q, k))++ and
(Heff (q, k))−− become unequal, leading to the opening of a
gap.

It is interesting to investigate phenomenological conse-
quences of the nodes in this state. The arguments above
suggest the fermion spectrum contains either a quadratic
band-touching point or two close Dirac nodes with linear
dispersion. As shown in Fig. 13(a), our numerical calculation

FIG. 13. The direct gap �d (q, k) of the C2T -nematic state with
w0/w1 = 0.3 at (a) 〈EK 〉SM = 0 and (b) 〈EK 〉SM = −0.06U0. Note
the splitting of the node near �.

suggests the existence of a quadratic node when the weight of
kinetic terms 〈EK 〉SM vanishes. In this case, the Landau levels
are doubly degenerate at zero energy and nondegenerate at all
other energy levels [64]. It is worth noting that such Landau
level degeneracy, plus the degeneracy brought by valley and
spin degrees of freedom, produces the filling patterns of Lan-
dau fan observed in the experiments ν = ±4,±8,±12, . . .

[1,3]. We should also point out that the possibility of two very
close Dirac nodes in this system cannot be ruled out due to
the insufficient resolution of the momentum mesh. But, this
does not affect such Landau level filling pattern as long as the
two Dirac nodes are close enough and the magnetic field is not
too small. Moreover, Fig. 13(a) illustrates that the density of
states monotonically increases as a function of energy as the
filling changes away from the neutrality point, a feature also
qualitatively consistent with experiments [2].

Aside from the Landau fan pattern, Fig. 13(a) also shows
that the fermion spectrum in this state breaks C3 symmetry
and therefore we refer to it as the C2T -nematic phase. To un-
derstand why C3 symmetry is broken, we expand the effective
Hamiltonian around �. It is more convenient to express the
momenta as the complex numbers and introduce z = kx − iky.
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FIG. 14. The energies of three nearly degenerate states at
w0/w1 = 0.85 with the more general trial wave function given by
Eq. (57), except for the stripe state which is given by the wave
function [Eq. (D1)] in Appendix D [74].

Up to the quadratic terms, the effective Hamiltonian can be
approximated as

Heff (k) =
(

0 λ(z − z0)(z − z1)
λ∗(z − z0)∗(z − z1)∗ 0

)
,

(63)
where λ is a complex constant. It is obvious that the Hamilto-
nian contains two nodes at z0 and z1 with the same chirality.
UnderC3 rotation, the two Bloch states at � transform trivially
[24–26], but the momentum z = kx − iky obtains a phase of
e−i2π/3. Therefore, Heff (k) must break the C3 rotation, and the
resulting gapless phase is nematic.

Another interesting feature is the location and robustness of
the node close to �. Figure 13 illustrates the direct gap of the
C2T -nematic state when w0/w1 = 0.3, a system close to the
chiral limit. Although ∼3 meV per particle above the QAH
state (see Fig. 20 in the Appendix [74]), this C2T -nematic
state contains a quadratic node at or very close to � when
the weight of the kinetic term vanishes, but evolves into two
well-separated Dirac nodes with a small weight of kinetic
term. At the larger ratio, w0/w1 = 0.85, and the same weight
of kinetic terms 〈EK〉SM = 0.06U0, no splitting of nodes or the
movement of nodes can be identified in Fig. 13(b). It seems
that the nodes are trapped in a deep potential well at � with
large w0/w1. This may be related with the steep slope of the
Wilson loop eigenvalue at k close to 0 with w0/w1 � 0.8 or,
more explicitly, the high peak of the Berry curvature of ±1
Chern Bloch states at �.

B. C2T -symmetric period-2 stripe state

In this section, we investigate the properties of the C2T -
symmetric period-2 stripe phase. Here, we only consider a
subset of the such states |�s〉 that can be written in the form
of a product state, so that the Wick’s theorem applies. The
most general form of such states can be written in a relatively
simple expression with four free parameters specifying two
points on an abstract unit sphere at each momentum [74].
By minimizing Es = 〈�s|Ĥ |�s〉, we found a local minimum
of Es with the state |�s〉 breaking the translation symmetry.
As shown in Fig. 14, this state has the energy Es slightly
higher than the C2T -nematic phase, and still lower than the
QAH state. But, the energy differences between this stripe
state and other states are found to be very small, no more
than 0.005U0 ≈ 0.1 meV. Given the uncertainty in the starting

FIG. 15. The direct gap �d (q, k) of theC2T stripe phase at EK =
0. It is clear that this state does not contain any nodes.

Hamiltonian which almost certainly exceeds this value and the
fact that we neglect the valley and spin degrees of freedom,
and given the phenomenology of the magic-angle twisted
bilayer graphene, this state is therefore still a strong candidate
for the insulating state experimentally observed at ν = 3. With
some degree of valley mixing it may also be possible to further
lower the energy of such a state.

Figure 15 shows the momentum-dependent direct gap,
defined in Eq. (56) but calculated with general trial wave
function (D1). It is obvious that the gap is periodic �d (q, k) =
�d (q + 1

2 , k). To have a deeper understanding of the fermion
spectrum in this phase, we consider the self-consistent equa-
tions, which can be written as

Hs
eff (q, k)

⎛
⎜⎜⎝

u(q, k)
u
(
q + 1

2 , k
)

v(q, k)
v
(
q + 1

2 , k
)
⎞
⎟⎟⎠ = E (q, k)

⎛
⎜⎜⎝

u(q, k)
u
(
q + 1

2 , k
)

v(q, k)
v
(
q + 1

2 , k
)
⎞
⎟⎟⎠, (64)

with Hs
eff being a 4 × 4 Hermitian matrix. For notational

convenience, we can define a four-component state

|η(q, k)〉 = (|φ+(q, k)〉 ,
∣∣φ+

(
q + 1

2 , k
)〉

,

|φ−(q, k)〉 ,
∣∣φ−

(
q + 1

2 , k
)〉)

. (65)

The matrix element of the effective Hamiltonian of the stripe
state can then be written as

(
Hs

eff (q, k)
)
i j

= 〈ηi(q, k)|F s|η j (q, k)〉, (66)

where F s is an operator independent of the momentum [74].
In addition, C2T symmetry leads to the form

Hs
eff (q, k)

=

⎛
⎜⎜⎜⎝

ε(q, k) δ(q, k) �1(q, k) �2(q, k)

δ∗(q, k) ε
(
q + 1

2 , k
)

�2(q, k) �′
1(q, k)

�∗
1(q, k) �∗

2(q, k) ε(q, k) δ∗(q, k)

�∗
2(q, k) (�′

1(q, k))∗ δ(q, k) ε
(
q + 1

2 , k
)

⎞
⎟⎟⎟⎠,

(67)

where �′
1(q, k) = �1(q + 1

2 , k). The ground state is obtained
by solving the eigenvalue problem of the Hermitian matrix
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Hs
eff . Being a 4 × 4 matrix, it contains four eigenvalues,

with E1(q, k) � E2(q, k) � E3(q, k) � E4(q, k). The direct
gap �d (q, k) can be calculated as E3(q, k) − E2(q, k).

With the gauge chosen in Eq. (16), we find the matrix
elements satisfy the following conditions [74]:

�2
(
q + 1

2 , k
) = �2(q, k),

�1
(
q + 1

2 , k
) = �′

1(q, k),

�′
1

(
q + 1

2 , k
) = �1(q, k),

�1(q, k + 1) = ei4πq�1(q, k),

�′
1(q, k + 1) = ei4πq�′

1(q, k),

�2(q, k + 1) = −ei4πq�2(q, k),

ε(q + 1, k) = ε(q, k).

(68)

Based on the boundary conditions above, it is easy to see
that the matrix element �2(q, k) has the winding number of
1 around the stripe BZ (0 � q < 1

2 and 0 � k < 1).

1. Gapped spectrum

To understand the gapped fermion spectrum of this stripe
phase, we first consider a special case in which �1 = δ = 0.
Then,

Hs
eff (q, k)

=

⎛
⎜⎜⎜⎝

ε(q, k) 0 0 �2(q, k)

0 ε
(
q + 1

2 , k
)

�2(q, k) 0
0 �∗

2(q, k) ε(q, k) 0

�∗
2(q, k) 0 0 ε

(
q + 1

2 , k
)

⎞
⎟⎟⎟⎠.

(69)

It is obvious that this effective Hamiltonian matrix can be de-
composed into two 2 × 2 matrices with the same set of eigen-
values and, therefore, contains two doubly degenerate bands.
For notational convenience, we define ε′(q, k) = 1

2 [ε(q, k) −
ε(q + 1

2 , k)]. The four energies E1(q, k), . . . ,E4(q, k) are

E±
1,2 = ε(q, k) + ε

(
q + 1

2 , k
)

2
±

√
|�2(q, k)|2 + (ε′(q, k))2,

(70)
where the subscript 1 (2) is the index of the degenerate bands.
Therefore, the direct gap can be calculated as �d (q, k) =
2
√

|�2(q, k)|2 + (ε′(q, k))2. Since �2(q, k) has the winding
number of 1 around the stripe BZ, it must contain a zero point
at a momentum (q0, k0). Because, in general, ε(q0, k0) �=
ε(q0 + 1

2 , k0), this state is fully gapped. The addition of small
δ(q, k) and �1(q, k) will not close this gap.

It is also interesting to study how the double degeneracy
between the two low- (high-) energy bands is lifted by δ(q, k)
and �1(q, k). For this purpose, we first write the eigenstates
of the Hamiltonian in Eq. (69):

|ψ+
1 〉 =

(
cos

θ

2
, 0 , 0, sin

θ

2
e−iφ2

)T

,

|ψ−
1 〉 =

(
− sin

θ

2
eiφ2 , 0 , 0, cos

θ

2

)T

,

|ψ+
2 〉 =

(
0, sin

θ

2
eiφ2 , cos

θ

2
, 0

)T

,

|ψ−
2 〉 =

(
0, cos

θ

2
,− sin

θ

2
e−iφ2 , 0

)T

(71)

with eiφ2 = �2/|�2| and cos θ = ε′/
√

|�2|2 + ε′2. Applying
the first-order perturbation theory with degenerate states, we
obtain

H+
i j = 〈ψ+

i |H1|ψ+
j 〉, (72)

H−
i j = 〈ψ−

i |H1|ψ−
j 〉, (73)

H1 =

⎛
⎜⎜⎝

0 δ �1 0
δ∗ 0 0 �′

1

�∗
1 0 0 δ∗

0 �′∗
1 δ 0

⎞
⎟⎟⎠. (74)

For simplicity, consider the effects of �1 and �′
1 only. We

obtain

H+
12 = �1 cos2 θ

2
+ �′∗

1

(
�2

|�2|
)2

sin2 θ

2
, (75)

H−
12 = �′∗

1 cos2 θ

2
+ �1

(
�∗

2

|�2|
)2

sin2 θ

2
(76)

and H+
11 = H+

22 and H−
11 = H−

22 because of the C2T symmetry.
Applying the boundary conditions listed in Eq. (68), we obtain

θ
(
q + 1

2 , k
) = π − θ (q, k), (77)

H+
12

(
q + 1

2 , k
) = (H+

12(q, k))∗e2iφ2(q,k), (78)

H+
12(q, k + 1) = e4π iqH+

12(q, k). (79)

Although the boundary conditions cannot determine the exact
winding number of H+

12 around the stripe BZ, they restrict the
parity of winding number to be even [74]. As a consequence,
the two bands above the CNP can have winding numbers of
0,±2,±4, . . . . This conclusion is still valid with the inclusion
of δ terms [74].

Finally, we should point out that the set of the eigenstates in
Eq. (71) is ill defined if, at a particular momentum (q′, k′) in
the stripe BZ, �2(q′, k′) = 0 and ε′(q′, k′) < 0 (because we
would sit at the south pole which, in this “gauge,” contains
the famous Dirac string singularity). As mentioned above, �2

has the winding number of 1 in the stripe BZ, and thus must
vanish at a momentum (q0, k0) in the stripe BZ. If this is
the only momentum at which it vanishes, and ε′(q0, k0) < 0,
we can choose another stripe BZ ( 1

2 � q < 1 and 0 < k <

1), and notice that �2(q0 + 1
2 , k0) = 0 and ε′(q0 + 1

2 , k0) =
−ε′(q0, k0) > 0 (which is where the north pole is located
without any singularity). As a consequence, the states in
Eq. (71) are well defined in this stripe BZ. Therefore, we can
follow the above analysis and obtain the same conclusion.
If �2(q, k) accidentally vanishes at multiple momenta, the
conclusions are still valid [74].

Our C2T stripe state obtained variationally is found to be
close to this limiting case, in that �2(q, k) dominates over
other matrix elements in most of the BZ. Furthermore, when
�2 vanishes at the momentum (q0, k0), the direct gap �d
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comes from ε′(q0, k0), and δ and �1 are negligible close to
(q0, k0).

2. Non-Abelian topological charge of Dirac nodes

It is helpful to study another limiting case in which
δ(q, k) = 0 and ε′(q, k) = 0. The effective Hamiltonian
Hs

eff (q, k) matrix can then be written as

Hs
eff (q, k) =

(
0 �(q, k)

�∗(q, k) 0

)
, with

�(q, k) =
(

�1(q, k) �2(q, k)
�2(q, k) �′

1(q, k)

)
. (80)

Since this Hamiltonian anticommutes with (I2×2 0
0 −I2×2

), the
spectrum is particle-hole symmetric, and thus the energy must
be 0 at the half-filling (CNP). With the boundary conditions
given in Eq. (68), we can readily show that det (�(q, k))
has the winding number of 2 around the stripe BZ, implying
that det (�(q, k)) vanishes at two momenta. Therefore, the
spectrum must contain two nodes at zero energy. Consider
the two zero modes |φ1(q, k)〉 and |φ2(q, k)〉 of a single node.
The U(1) gauge of these two modes can be chosen such that
they are invariant under C2T symmetry, i.e., C2T |φ1〉 = |φ1〉
and C2T |φ2〉 = |φ2〉. Due to C2T symmetry, the effective
Hamiltonian Hs

eff with the matrix element of(
Hs

eff

)
i j = 〈φi|Ĥ s

eff |φ j〉
contains only σ1 and σ3 terms. This is still true even with the
addition of ε(q, k) and δ(q, k) because the Hamiltonian should
still be C2T symmetric. Therefore, introducing a small ε and
δ terms can only shift the position of nodes without opening
a gap. Furthermore, the nonzero winding number of det(�)
seems to suggest that the chirality of two zero-energy nodes is
the same, naively implying that they cannot be annihilated by
meeting together. This contradicts the result of the previous
subsection, in which the gapped phase is clearly robust.

Before resolving this apparent contradiction, it is helpful
to investigate any possible crossings between the upper two
bands. We can focus on the upper two bands because when-
ever there is a Dirac point between the two upper bands at
the momentum (q′, k′) with the energy of E0, the lower two
bands also cross at the same momentum with the energy of
−E0 due to the particle-hole symmetry. As a consequence,
the matrix �†� = E2

0 I2×2 at (q′, k′). Therefore, we obtain two
constraints for matrix elements at (q′, k′):

|�1| = |�′
1| and �∗

1�2 + �∗
2�

′
1 = 0. (81)

Consider the term f (q, k) = �∗
1�2 + �∗

2�
′
1. Applying the

boundary conditions listed in Eq. (68), we obtain

f
(
q + 1

2 , k
) = f ∗(q, k), f (q, k + 1) = − f (q, k). (82)

Similar to the previous subsection, this boundary condition
does not determine the exact winding number, but restricts the
parity of the winding number to be odd. Therefore, f (q, k)
contains an odd number of zero points. In addition, notice that
f (q, k) = 0 when �2 vanishes at the odd number of momenta
because it has the winding number of 1 inside the stripe BZ.
As a consequence, the number of momentum points at which
f (q, k) = 0 and �2(q, k) �= 0 must be even, as is the number

FIG. 16. Schematic plot showing how the two orange nodes
around the charge neutrality point (CNP) of a spinless one-valley
model with the same topological charge can meet and annihilate
each other in the presence of the red (blue) nodes formed by the
two lower (upper) bands, respectively. The two nodes still carry the
same topological charge if they move along the dashed path and
cannot annihilate, but they have the opposite charge and can meet,
annihilate, and open a gap if they move along the solid path. (a) The
red and blue nodes coincide because of the particle-hole symmetry.
In this case, the two orange nodes always carry the same topological
charge no matter how they move, and so cannot annihilate. (b) By
breaking the particle-hole symmetry, the two orange nodes can move
along the solid path and carry the opposite topological charge when
they meet together. As a consequence, they can annihilate each other
and open a gap.

of possible crossings between the upper (lower) two bands
because then the first equation in Eq. (81) is automatically
satisfied.

To resolve the contradiction involving nodes with equal
chirality connecting the two middle bands [E2(q, k) and
E3(q, k)] and the possibility of a gap between the two middle
bands, we follow Ref. [63] who described the topological
properties of nodes in a multiple band system with PT
symmetry in 3D as well as C2T symmetry in 2D. It is well
known that the topological charge associated with a node
in a two-band system with C2T symmetry can be described
by an integer winding number, or an element in Z group.
However, as Ref. [63] insightfully points out, this description
must be modified in a system with more bands. For example,
in a three-band system with C2T symmetry, the topological
charge of nodes should not be thought of as an integer but as
a quaternion. With N bands, it is an element in P̄N , Salingaros
vee group of real Clifford algebra C�0,N−1 Ref. [77]. For
our C2T -symmetric period-2 stripe, N = 4. The nodes thus
anticommute with each other if they are from the consecutive
bands, and commute otherwise. The two nodes annihilate with
each other if they meet and carry opposite charges, but even
if their charges start out opposite, after braiding one of them
with an anticommuting node, the charge can change sign and
the resulting pair can consequently annihilate.

Figure 16 illustrates how the two nodes with the same
topological charge can meet and annihilate with each other
in such a four-band system. For notational convenience, the
bands are (still) labeled by positive integers counted from the
lowest energy to the highest one. The two orange points are
the nodes formed by bands 2 and 3. We also assume that
the system contains the two Dirac nodes connecting bands
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1 and 2, labeled by red color in Fig. 16. If the system is
particle-hole symmetric, it also contains the two Dirac points
at the same momentum but connecting bands 3 and 4, labeled
by blue color. In this case, there is no path along which
the orange node can change its topological charge since any
closed loop contains an even number of nodes formed by
neighboring bands (consistent with the winding number 2 of
the determinant found above). If the particle-hole symmetry
is broken, the red and blue nodes move relative to each other.
As shown in Fig. 16(b), there exists a loop enclosing an
odd number of nodes from neighboring bands. Therefore, the
topological charge of the nodes connecting the two middle
bands becomes opposite if they meet along the solid path. As
a consequence, the system will be in the gapped phase without
breaking C2T symmetry.

In order to convincingly show how the gapped state can be
obtained from the gapless state containing two Dirac points
with the same topological charge, we construct a four-band
toy model which should accurately capture the region of the
momentum space near the zero(s) of various terms, but not the
periodicity in the full BZ. The matrix elements of the effective
Hamiltonian (67) are thus set to

�1 = λeiβ (z − z0)(z − z1), (83)

�2 = (1 − λ)z, (84)

�′
1 = λeiβ, (85)

ε(q, k) = −ε
(
q + 1

2 , k
) = ε, (86)

δ(q, k) = 0, (87)

where z = px + ipy is a complex variable, and β, λ, z0, z1,
and ε0 are the parameters of this model. It is obvious that the
matrix element �2 in this model has the winding number of 1,
and the determinant of the � matrix, det(�) = �1�

′
1 − �2

2,
has the winding number of 2. It is worth emphasizing that
�∗

1�2 + �∗
2�

′
1 has the odd winding number of 1, consistent

with the analysis above. This toy model does not satisfy the
boundary conditions listed in Eq. (68) and should not be
extended to the whole stripe BZ. But, as mentioned, it should
accurately describe the effective Hamiltonian in a region of
the stripe BZ enclosing the zero points of the matrix elements.

In the calculations, we arbitrarily set β = π/4, λ =
0.3, z0 = 2 + i, and z1 = 2 + 0.5i, and vary ε to study the
annihilation of the two nodes at the CNP. The convention for
labeling the nodes and bands in Fig. 17 is the same as the
one in Fig. 16. At ε = 0, when the system is particle-hole
symmetric, the nodes (red points) connecting the bands 1 and
2 coincide with the nodes (blue points) connecting the bands
3 and 4. As a consequence, the two nodes (orange points)
connecting the bands 2 and 3 with the same topological charge
cannot annihilate each other. As shown in Fig. 17, increasing ε

leads to the particle-hole symmetry breaking. Thus, the nodes
connecting the bands 1 and 2 start to move relative to the
nodes connecting the bands 3 and 4, and therefore allowing
the two orange nodes to annihilate if they meet along the
dashed path. The toy model shows that the two orange nodes
annihilate each other when ε ≈ 1.5.

It is also interesting to study the final destiny of the nodes
formed by bands 1 and 2, as well as bands 3 and 4, after the
gap around the CNP opens. Reference [63] provides a general

FIG. 17. The annihilation of two (orange) nodes in the toy model
given by Eqs. (67) and (83)–(87). The convention to label the nodes
and bands is the same as the one in Fig. 16. �2,3 gives the direct
gap between bands 2 and 3, and thus vanishes at the orange points.
Starting with particle-hole symmetry when the two orange nodes
have the same topological charge, their charges become opposite if
they move along the solid curve and meet together. If they move
along the dashed curves, their topological charges are still the same.
The two nodes can annihilate each other only when they have
opposite charges.

rule to identify the change of the topological charge when
the nodes move in the momentum space as our parameter
ε varies. From a fixed vantage point, such change happens
when a node world line passes under an anticommuting world
line. This orientation reversal is illustrated in Fig. 18, with the
arrow representing the topological charge of the nodes. If the
two same-color arrows have the same orientation at fixed ε,
then the topological charges of these two nodes are the same.
Otherwise, the two charges are opposite. The two nodes with
the same color can annihilate each other only when they carry
the opposite topological charges as they meet.

Thus, starting from ε = −∞, the system contains two
nodes connecting bands 3 and 4 with the same topological
charge as indicated by the two blue parallel arrows in Fig. 18.
Later, a pair of red and orange nodes are generated with
opposite topological charges. Notice that both the red curve
and the blue curve (which mutually commute) pass through
the orange loop only once. Therefore, the arrows on the
blue and the red curves change their orientation only once,
but the arrows on the orange curves change twice. As a
consequence, the topological charges of the two orange nodes
are eventually still opposite and thus can meet at ε ∼ ±1.5
and annihilate. Because the charges of the blue and red nodes
change only once, their “world lines” cannot close into a loop.
Therefore, the difference of the number of high-energy and
low-energy nodes is two in any gapped phase at the CNP.
This is consistent with the conclusion made at the end of the
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FIG. 18. The “world lines” of the Dirac nodes as the parameter ε,
defined in Eqs. (67) and (83)–(87), varies from −∞ to ∞. The curves
are obtained using the same C2T -symmetric model as in Fig. 17
with matching colors for the nodes (we omit the label for the px-py
plane but it should be understood). The arrows of the colored curves
follow the prescription for the orientation reversal discussed in a
similar context in Refs. [63,77] and represent the topological charges
of the corresponding nodes. Starting from ε = −∞, there are two
blue lines representing the two nodes connecting the bands 3 and
4 (ordered in energy), with the same topological charge. The orange
loops correspond to the nodes connecting bands 2 and 3 which, as we
prove in the text, must be parallel at ε = 0. The red lines correspond
to the nodes connecting bands 1 and 2. Orange anticommutes with
the blue and the red, the latter two commute. Note the orientation
reversal each time a line passes under an anticommuting line; it
forces the parallel orientation of blue and the red at large |ε|.

previous subsection using the analysis valid throughout the
entire BZ.

VI. DISCUSSION

In this work, we studied the possible ground states of the
TBG near the magic angle at odd integer filling, inspired
by the experiments near ν = 3. Using the hybrid WSs con-
structed within the spin- and valley-polarized BM model, the
projected Coulomb interactions are included in the Hamil-
tonian to study the possible phases in the strong coupling
limit. DMRG identifies different ground states as we vary the
ratio of two interlayer hopping parameters w0 and w1 in the
Bistrizer-MacDonald model. When this ratio is small (� 0.7),
DMRG gives the QAH as the lowest-energy state, suggesting
that the system is adiabatically connected to the chiral limit
where this state is exact. On the contrary, at the larger ratio
w0/w1 � 0.8, DMRG identifies a state different from QAH
as having lower energy. Surprisingly, this state can be well ap-
proximated as a product state of the hybrid WSs, and thus mo-
tivates our study of the competition between various phases
by minimizing the energy of the DMRG inspired trial wave

function. Our variational calculations discover three nearly
degenerate states: QAH,C2T -nematic state, andC2T period-2
stripe state. The tiny energy difference among them leads to
strong competition between these states. Consequently, the
manifold of the low-energy states should include all of them
even in a spin- and valley-polarized model, suggesting rich
physics beyond the U(4) × U(4) manifold [49].

To further obtain the properties of these various phases,
we also calculate their fermion spectrum. The QAH state is
a gapped state, with the minimal gap at the � point, which
is almost certainly further favored by the hBN alignment.
On the other hand, the C2T -nematic state is a gapless state,
with a quadratic node or two very close Dirac nodes near
the � point, and thus must break the C3 symmetry. This
state, as we discussed, has the Landau level degeneracy
[64] of 2, 1, 1, . . . . We propose this C2T -nematic state, with
spin and valley degeneracy restored, as the candidate for the
gapless state observed at the charge neutrality point (CNP)
because the filling factors of the Landau fan in this state
are consistent with the pattern experimentally observed at the
CNP [1,3].

While the nodes in the C2T -nematic phase have been
assumed to be generally protected by C2T and valley U(1)
symmetries, we found that these nodes can be lifted by only
breaking the moiré translation symmetry, without breaking
the C2T and valley U(1) symmetries, and without closing the
gap to the remote bands. Our calculation shows that a gapped
C2T period-2 stripe state is nearly degenerate with the QAH
and C2T -nematic states, and thus is a candidate state for the
ground state at the filling of ν = 3 without the hBN alignment.
To understand how the gap is opened in C2T stripe phase,
we present an analysis of the topological properties of the
Dirac nodes in the C2T -nematic state. During the transition
from the C2T -nematic state to the C2T -symmetric period-
2 stripe state, remarkably, the topological charge associated
with these nodes should not be described by their (Abelian)
winding number, but by elements of (non-Abelian) Salingaros
vee group [77] of real Clifford algebra C�0,3. Since it is
a non-Abelian group, the topological charge of these nodes
depends on how they are braided with other nodes away from
the CNP. Therefore, a gap at CNP can be opened even without
breaking theC2T and valley U(1) symmetries. We expect that
this mechanism is general and applies when spin and valley
degrees of freedom are fully restored, in which case a gap at
odd integer filling may not necessitate translational symmetry
breaking.

Finally, the mechanism discussed makes it apparent that
the gap opening in a C2T -symmetric, but moiré translation
symmetry-broken, state relies on the non-Abelian topolog-
ical charges of the Dirac nodes, which is effective only if
the particle-hole symmetry is broken. Otherwise, the node
lines providing the nontrivial braiding are glued together and
the equal chirality nodes at the neutrality cannot annihilate.
Therefore, if the particle-hole symmetry is a good symmetry,
the C2T -symmetric state must remain gapless even when
translation symmetry is broken. This means that it is, in
principle, possible to be in the strong coupling limit, have
weak particle-hole symmetry breaking, and end up in a state
which has a gap parametrically smaller than U0, the scale set
by the Coulomb repulsion.
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APPENDIX A: HYBRID WANNIER STATES

In this Appendix, we illustrate our approach in detail
to construct the hybrid Wannier states (WS). They are the
eigenstates of the position operator generalized to the periodic
boundary conditions, and projected onto the narrow bands

Ô = P̂e−i 1
N g·rP̂. (A1)

The obtained states are maximally (exponentially) localized in
one direction and extended Bloch states in the other direction
[70,72]. The projection operator P̂ onto the narrow-band
composite can be written in terms of the (energy eigenstate)
Bloch states |k,m〉 as

∑
k,m |k,m〉〈k,m|, where k resides in

the first Brillouin zone (BZ), m is the band index, and ĝ is
a primitive vector of the reciprocal lattice. The Bloch state
overlaps can be expressed in terms of overlaps of the periodic
part of the Bloch function uk,m(r) as

〈k,m|e−i 1
N g·r|k′,m′〉 =

∑
G

δk′,k+ 1
N ĝ+G

∑
r∈uc

eiG·ru∗
k,m(r)uk′,m′ (r), (A2)

where G is a reciprocal lattice vector. The operator Ô thus mixes only states in the first BZ which lie along the line parallel to ĝ.
If we focus on one such line along g1, and choose N = N1 to be the number of unit cells along the direction of L1, the operator
which we wish to diagonalize is

Ôη =
∑
mm′

⎛
⎝N1−2∑

j=0

∣∣∣∣ηg2 + j

N1
g1,m

〉
�mm′ (η, j)

〈
ηg2 + j + 1

N1
g1,m

′
∣∣∣∣ +

∣∣∣∣ηg2 + N1 − 1

N1
g1,m

〉
�mm′ (η,N1 − 1)〈ηg2,m

′|
⎞
⎠, (A3)

where 0 � η < 1 and

�mm′ (η, j) =
∑
r∈uc

u∗
ηg2+ j

N1
g1,m

(r)u
ηg2+ j+1

N1
g1,m′ (r), j �= N1 − 1 (A4)

�mm′ (η,N1 − 1) =
∑
r∈uc

e−ig1·ru∗
ηg2+ N1−1

N1
g1,m

(r)uηg2,m′ (r). (A5)

We seek a solution of the form
N1−1∑
j=0

∑
m

αη, j,m

∣∣∣∣ηg2 + j

N1
g1,m

〉
, so that (A6)

Ôη

N1−1∑
j=0

∑
m

αη, j,m

∣∣∣∣ηg2 + j

N1
g1,m

〉
= εη

N1−1∑
j=0

∑
m

αη, j,m

∣∣∣∣ηg2 + j

N1
g1,m

〉
. (A7)

Clearly, this leads to the equations that∑
m′

�mm′ (η, j)αη, j+1,m′ = εηαη, j,m with j = 0, . . . ,N1 − 2,
∑
m′

�mm′ (η,N1 − 1)αη,0,m′ = εηαη,N1−1,m. (A8)

This gives us an eigenvalue problem ∑
m′

Wmm′ (η)αη,0,m′ = (εη )N1αη,0,m, (A9)

where the matrix W (η) = �(η, 0)�(η, 1) . . . �(η,N1 − 1). In the limit of N1 → ∞, W (η) is a unitary matrix. In practice,
for finite N1, we perform a singular value decomposition (SVD) of each �(η, j) = U (η, j)�(η, j)V †(η, j) where �(η, j) is
diagonal (and very close to 1) and U and V are unitary, and replace � with a unit matrix. Once we have the eigenvectors αη,0

and the eigenvalues εN1
η , we can construct the remaining α’s as

αη, j = (εη ) j�−1(η, j − 1) . . . �−1(η, 1)�−1(η, 0)αη,0 = (εη ) j (�(η, 0)�(η, 1) . . . �(η, j − 1))−1αη,0. (A10)

Note that if εN1
η is an eigenvalue, then replacement εη → e−2π i n

N1 εη also gives an eigenvalue for an arbitrary integer n. Thus, we
set the phase of εη to be in the range of −π/N1 � arg(εη ) < π/N1. For the two bands of interest, there are two eigenvectors α±

0 .
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Our hybrid Wannier states are therefore

|w±(n, ηg2)〉 = ceiχ
±
η

(
α±

0,m|ηg2,m〉 + · · · + e−2π i jn
N1 ε j

η (�(η, 0)�(η, 1) . . . �(η, j − 1))−1
mm′α

±
0,m′

∣∣∣∣ηg2 + j

N1
g1,m

〉

+ · · · + e−2π i (N1−1)n
N1 εN1−1

η (�(η, 0)�(η, 1) . . . �(η,N1 − 2))−1
mm′α

±
0,m′

∣∣∣∣ηg2 + N1 − 1

N1
g1,m

〉)
, (A11)

with repeated m,m′ indices summed. c is a positive number added for normalization. Note that under translation by
L1, T̂L1 |w±(n, ηg2)〉 = |w±(n + 1, ηg2)〉, which holds if χ±

η is n independent. Under the translation by L2, T̂L2 |w±(n, ηg2)〉 =
e−2π iη|w±(n, ηg2)〉.

1. C2T symmetry of the hybrid Wannier states

We first fix the phase of our Bloch states by choosing them to be eigenstates of C2T with a unit eigenvalue. With this
convention, it is clear that

〈r|k,m〉 = 〈−r|k,m〉∗ �⇒ uk,m(r) = u∗
k,m(−r). (A12)

This guarantees that �’s, and therefore W , are real, and because for each valley and spin we have only two bands, it is a 2 × 2
matrix.

The only such real unitary matrix has the form W = eiθσ2 where σ2 = (0 −i
i 0 ). The eigenstates of σ2 can be chosen to be

1√
2
(1,±i)T with W eigenvalues e±iθ . We choose α+

0 in such a way that its eigenvalue winds by 2π as η goes from 0 to 1,

corresponding to the Chern +1 branch. Similarly, we choose α−
0 in such a way that its eigenvalue winds by −2π as η goes from

0 to 1, corresponding to the Chern −1 branch. Although, at each η we may thus have either 1√
2
(1, i)T or 1√

2
(1,−i)T as α+

0 , for

either choice, complex conjugation interchanges α+
0 and α−

0 , and their Oη eigenvalues ε±
η . The action of C2T on the Chern ±1

hybrid Wannier states |w±(n, ηg2)〉 is therefore

Ĉ2T |w±(n, ηg2)〉 = Ĉ2T ceiχ
±
η

(
α±

0,m|ηg2,m〉 + · · · + e−2π i jn
N1 (ε±

η ) j (�(η, 0)�(η, 1) . . . �(η, j − 1))−1
mm′α

±
0,m′

∣∣∣∣ηg2 + j

N1
g1,m

〉

+ · · · + e−2π i (N1−1)n
N1 (ε±

η )N1−1(�(η, 0)�(η, 1) . . . �(η,N1 − 2))−1
mm′α

±
0,m′

∣∣∣∣ηg2 + N1 − 1

N1
g1,m

〉)

= ce−iχ±
η

(
α∓

0,m|ηg2,m〉 + · · · + e2π i jn
N1 (ε∓

η ) j (�(η, 0)�(η, 1) . . . �(η, j − 1))−1
mm′α

∓
0,m′

∣∣∣∣ηg2 + j

N1
g1,m

〉

+ · · · + e2π i (N1−1)n
N1 (ε∓

η )N1−1(�(η, 0)�(η, 1) . . . �(η,N1 − 2))−1
mm′α

∓
0,m′

∣∣∣∣ηg2 + N1 − 1

N1
g1,m

〉)
. (A13)

Therefore, our hybrid WSs satisfy the constraint

Ĉ2T |w±(n, ηg2)〉 = |w∓(−n, ηg2)〉 (A14)

as long as χ+
η = −χ−

η . The C2T symmetry is therefore implemented “onsite” in the hybrid Wannier state basis, where n and
k ≡ ηg2 are the generalized “sites.”

2. Continuity of the hybrid WSs

Before proceeding to the discussion of other symmetries, we should address the continuity of he hybrid WSs. We require that
|w±(n, ηg2)〉 should be continuous in terms of η and |w±(n, (1 + η)g2)〉 = |w±(n ± 1, ηg2)〉. For this purpose, we consider how
to fix the phase factor χ+

η = −χ−
η .

First, notice that the phase of the Bloch states are almost fixed by C2T except their signs:

C2T |k,m〉 = |k,m〉 ⇐⇒ C2T (−|k,m〉) = −|k,m〉.
To further remove this sign freedom, we apply the constraints that

Re

(∑
r∈uc

u∗
ηg2,m(r)u(η+δη)g2,m(r)

)
> 0. (A15)

With this convention set for Bloch states, it is obvious that the hybrid WSs defined in Eq. (A11) are continuous in terms of η as
long as χ±

η are smooth functions of η.
It is also interesting to investigate |w±(n, (1 + η)g2〉. In the most general form, the Bloch states∣∣∣∣(1 + η)g2 + j

N1
g1,m

〉
= eiθη, j,m

∣∣∣∣ηg2,
j

N1
g1,m

〉
. (A16)
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Applying C2T on both sides, we found that eiθη, j,m = e−iθη, j,m , i.e., θη, j,m = 0 or π . Since the phase of Bloch states with j = 0 are
fixed by Eq. (A15), θη, j=0,m should be a smooth function of η. As a consequence, θη, j=0,m is independent of η. Numerically, we
found that θη, j=0,m always vanishes for both bands.

Now, consider |w±(n, ηg2)〉 defined in Eq. (A11). As the hybrid WSs carry the Chern indices ±, the corresponding
eigenvalues of the projected position operator O have the properties of ε±

1+η = ε±
η e

∓i2π/N1 . Furthermore, since∣∣∣∣(1 + η)g2 + j

N1
g1,m

〉

=
∣∣∣∣ηg2 + j

N1
g1,m

〉
�⇒ u(1+η)g2+ j

N1
g1,m

(r) = e−ig2·ruηg2+ j
N1

g1,m
(r) and �mm′ (1 + η, j) = �mm′ (η, j)|w±(n, (1 + η)g2)〉

= eiχ
±
1+η

(
α±

0,m|ηg2,m〉 + · · · + e−2π i j(n±1)
N1 (ε±

η ) j (�(η, 0)�(η, 1) . . . �(η, j − 1))−1
mm′α

±
0,m′

∣∣∣∣ηg2 + j

N1
g1,m

〉

+ · · · + e−2π i (N−1)(n±1)
N1 (ε±

η )N1−1(�(η, 0)�(η, 1) . . . �(η,N1 − 2))−1
mm′α

±
0,m′

∣∣∣∣ηg2 + N1 − 1

N1
g1,m

〉)
�⇒ |w±(n, (1 + η)g2)〉

= ei(χ
±
1+η−χ±

η )|w±(n ± 1, ηg2)〉. (A17)

Now, it is easy to see that we can set χ±
η = 0 so that the hybrid WS |w±(n, ηg2)〉 is a smooth function of η, and satisfies

|w±(n, (1 + η)g2)〉 = |w±(n ± 1, ηg2)〉 and C2T |w±(n, ηg2)〉 = |w∓(−n, ηg2)〉.
Assuming the Bloch states are properly normalized, 〈g,m|g′,m′〉 = δgg′δmm′ , we obtained

〈wα (n, ηg2)|wα′ (n′η′g2)〉 ∝ δαα′δnn′δηη′ and 〈wα (n, ηg2)|wα (n, ηg2)〉 = N1c
2. (A18)

We choose that c = (N1)−1/2 for normalization.

3. C′′
2 symmetry of the hybrid WSs

We also wish to find how the C′′
2 transformation acts on the hybrid Wannier states. To this end we note that for the Bloch

states,

Ĉ′′
2

∣∣∣∣ηg2 + j

N
g1,m

〉
∝

∣∣∣∣(1 − η)g2 +
(

j

N
− η

)
g1,m

〉
. (A19)

Let η = h
N , where h is an integer. Then, because Bloch states at wave vectors related by a reciprocal lattice vector are identical,

and

C′′
2 (xL1 + yL2)C′′

2 = x(L1 − L2) + yL2 �⇒ C′′
2 e

−i 1
N1

g1·rC′′
2 = e−i 1

N1
g1·r (A20)

�⇒ Ĉ′′
2 ÔηĈ

′′
2 = Ô1−η

(C′′
2 )2=1�⇒ Ô1−ηĈ

′′
2 |w±(n, ηg2)〉 = ε±

η e
−i2πn/N1Ĉ′′

2 |w±(n, ηg2)〉 . (A21)

Note that the state at 1 − η, obtained from the state at η, has the same eigenvalue εη. But, because the phase of the eigenvalues
of W winds by ±2π as η changes from 0 to 1, we must have (ε±

η )N1 = (ε∓
1−η )N1 . Therefore, up to a phase factor, the ±1 Chern

index of the hybrid Wannier states is interchanged under C′′
2 :

eiφ
±
η (n)|w∓(n, (1 − η)g2)〉 = Ĉ′′

2 |w±(n, ηg2)〉.
Consider the case when n = 0, we found

C′′
2 |w+(0, ηg2)〉 = eiφ

+
η (0)|w−(0, (1 − η)g2)〉 �⇒ C′′

2 |w−(0, ηg2)〉 = e−iφ+
η (0)|w+(0, (1 − η)g2)〉. (A22)

The second formula is derived by applying C2T to both sides of the first formula. Thus, φ+
η (0) = −φ−

η (0). By applying C′′
2 to

both sides of the first formula, we obtain

|w+(0, ηg2)〉 = eiφ
+
η (0)C′′

2 |w−(0, (1 − η)g2)〉 �⇒ φ−
1−η(0) = −φ+

η (0) �⇒ φ±
η (0) = −φ∓

η (0) = φ±
1−η(0).

Since the hybrid WSs are smooth with respect to η, φ±
η (0) are also smooth functions of η. We redefine the phase factor

χ±
η → χ±

η − φ±
η (0)/2. Therefore,

C′′
2 |w±(0, ηg2)〉 = |w∓(0, (1 − η)g2)〉, C2T |w±(n, ηg2)〉 = |w∓(−n, ηg2)〉, |w±(n, (1 + η)g2)〉 = |w±(n ± 1, ηg2)〉.

(A23)
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FIG. 19. The kinetic energy vector fields [Eq. (A28)] obtained from (locally) smooth gauge using hybrid Wannier states (left) n1(q, k) and
(right) n2(q, k). The bold green lines correspond to the points where n1,2(q, k) = 0. The intersection of the green lines results in the Dirac
nodes. As shown in Fig. 4, the chirality of the two Dirac points [75] is the same, seemingly contradicting the fermion-doubling theorem. Note,
however, that one of the assumptions of the theorem does not hold, namely, the vector fields n1,2(q, k) need to be smooth and periodic. As this
figure shows, n2(q, k) is periodic but is not globally smooth, instead, it has a branch-cut discontinuity at k = 0 and 1.

Because Ĉ′′
2 T̂nL1 = T̂n(L1−L2 )Ĉ′′

2 , we have

Ĉ′′
2 |w±(n, ηg2)〉 = Ĉ′′

2 T̂nL1 |w±(0, ηg2)〉 = T̂−nL2 T̂nL1Ĉ
′′
2 |w±(0, ηg2)〉 = T̂−nL2 T̂nL1 |w∓(0, (1 − η)g2)〉

= T̂−nL2 |w∓(n, (1 − η)g2)〉 = e−2π inη|w∓(n, (1 − η)g2)〉. (A24)

This means that C′′
2 is also implemented “onsite.”

4. Kinetic energy

The kinetic energy in the basis of the hybrid WSs is written as:

Hkin =
∑
n,n′

∑
k

∑
α,α′=±

〈wα (n, kg2)|H |wα′ (n′, kg2)〉d†
α,n,kdα′,n′,k = tαα′ (n − n′, k)d†

α,n,kdα′,n′,k . (A25)

It is obvious that tαα′ (n, k) = t∗α′α (−n, k). Due to C2T , we have
t++(n − n′, k) = 〈w+(n, kg2)|H |w+(n′, kg2)〉 = 〈w−(−n, kg2)|H |w−(−n′, kg2)〉∗

= 〈w−(−n′, kg2)|H |w−(−n, kg2)〉 = t−−(n − n′, k). (A26)

Moreover, due to C′′
2 ,

t+−(n − n′, k) = 〈w+(n, kg2)|Ĉ′′
2HĈ′′

2 |w−(n′, kg2)〉 = e2π ik(n−n′ )〈w−(n, (1 − k)g2)|H |w+(n′, (1 − k)g2)〉
= e2π ik(n−n′ )t−+(n − n′, 1 − k). (A27)

Fourier transforming gives the hybridized band operators d±,n,η = N−1/2 ∑N−1
q=0 e2π inqb±,q,k , in terms of which the kinetic energy

has the form

Hkin =
∑
k,q

(
b+,q,k

b−,q,k

)†(
n0(q, k) + n3(q, k) n1(q, k) − in2(q, k)
n1(q, k) + in2(q, k) n0(q, k) − n3(q, k)

)(
b+,q,k

b−,q,k

)
=

∑
αα′=±

∑
q,k

tαα′ (q, k)b†
α,q,kbα′,q,k, (A28)

where
tαα′ (q, k) =

∑
δn

tαα′ (δn, k)e2π iqδn. (A29)

With Eq. (A26), it is obvious that t++(q, k) = t−−(q, k), i.e., n3(q, k) = 0. Furthermore, with Eq. (A27) by C′′
2 symmetry

([26,55]),

t+−(q, k) =
∑
δn

t+−(δn, k)e2π iqδn =
∑
δn

t−+(δn, 1 − k)e2π ikδne2π iqδn

= t−+(q + k, 1 − k) �⇒ n1(q, k) = n1(q + k, 1 − k),

n2(q, k) = −n2(q + k, 1 − k). (A30)

As shown in Fig. 19, n1 and n2 satisfy the symmetry constraints listed in Eqn. (A30). This in turn implies that, if the two Dirac
nodes are present, then the winding numbers at the two Dirac nodes are the same. The hybrid Wannier states thus provide means
to construct a locally smooth gauge with onsite representation of theC2T andC′′

2 symmetries. However, the gauge is not globally
smooth, in that there are branch cuts at k = 0 and 1. Otherwise, there would be an additional pair of Dirac nodes at the location
of the branch cuts, both nodes with the same chirality, canceling the overall chirality in the Brillouin zone.
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APPENDIX B: GATE-SCREENED COULOMB INTERACTION

In this Appendix, we calculate the metallic gate-screened Coulomb interaction in the bilayer system, with two graphene
layers separated by the distance d⊥, located in the middle of two gates. Assuming the distance between two gates is ξ , due to the
gate-screening effect, the screened Coulomb interaction is

Vintra (r) = e2

4πεhBN

∞∑
n=−∞

(−)n√
r2 + [nξ + ((−)n − 1)d⊥/2]2

= e2

4πεhBN

∞∑
n=−∞

(
1√

r2 + (2nξ )2
− 1√

r2 + [(2n + 1)ξ − d⊥]2

)
,

(B1)

Vinter (r) = e2

4πεhBN

∞∑
n=−∞

(−)n√
r2 + [nξ + ((−)n + 1)d⊥/2]2

= e2

4πεBN

∞∑
n=−∞

(
1√

r2 + (2nξ + d⊥)2
− 1√

r2 + [(2n + 1)ξ ]2

)
.

(B2)

To calculate the Fourier transform of V (r), notice that∫
d2r

eik·r√
r2 + r2

0

= 1

π

∫
d2r dz

eik·r

r2 + z2 + r2
0

= 1

π

∫
d3r

eik‖·r

r2 + r2
0

= 2
∫

dr d cos θ
r2eikr cos θ

r2 + r2
0

= 2

ik

∫
dr

r

r2 + r2
0

(eikr − e−ikr ) = 2

ik

∫ ∞

−∞
dr

reikr

r2 + r2
0

= 2π

k
e−kr0

�⇒ Vintra (q) = e2

4πε

2π

q

(eqd⊥ − e−qξ )(e−qd⊥ − e−qξ )

1 − e−2qξ
(B3)

�⇒ Vinter (q) = e2

4πε

2π

q

eqd⊥ (e−qd⊥ − e−qξ )2

1 − e−2qξ
. (B4)

When qd⊥  1, it is clear that

Vintra (q) ≈ Vinter (q) ≈ e2

4πε

2π

q
tanh

(
qξ

2

)

APPENDIX C: ENERGETICS AT w0/w1 = 0.3

Figure 20 illustrates the energetics of various states at
w0/w1 = 0.3.

FIG. 20. The energy of various states with the trial function in
Eq. (30) at w0/w1 = 0.3. The energies are normalized by U0 =
e2/(4πεLm ). The figure includes the energies of four different states:
C2T -broken state, C2T -nematic state, C2T period-2 stripe state, and
the semimetal state obtained by minimizing the kinetic energy only.
The QAH state is clearly the ground state, with 0.17U0 ≈ 3 meV
below the twoC2T -symmetric states, suggesting that the system with
w0/w1 = 0.3 is close to the chiral limit.

APPENDIX D: PARAMETRIZATION
OFC2T STRIPE PHASE

In this Appendix, we discuss how to parametrize the C2T -
symmetric period-2 stripe phase. As mentioned in the main
text, we consider the states that can be written in the product
form so that the Wick’s theorem can be applied, i.e.,

|�s〉 =
∏

k ∈ [0, 1)
q ∈ [0, 1/2)

χ
†
1 (q, k)χ†

2 (q, k)|∅〉 (D1)

with
χ

†
i (q, k)

= ui(q, k)b†
+,q,k + ui

(
q + 1

2 , k
)
b†

+,q+ 1
2 ,k

+ vi(q, k)b†
−,q,k + vi

(
q + 1

2 , k
)
b†

−,q+ 1
2 ,k

, i = 1, 2.

(D2)

Since the many-body state is C2T symmetric, the effective
Hamiltonian Hs

eff in Eq. (64) for the stripe phase is also C2T
symmetric. The two vectors

ϕi(q, k) = (
ui(q, k) , ui

(
q + 1

2 , k
)
, vi(q, k) ,

vi
(
q + 1

2 , k
))T

(D3)

for i = 1 and 2 can be chosen to be the eigenstates of Hs
eff

and thus also be C2T symmetric. This leads to the constraints
that vi(q, k) = u∗

i (q, k) and vi(q + 1
2 , k) = u∗

i (q + 1
2 , k).
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Therefore, we can write the vectors as

ϕi(q, k) =
(

ψi(q, k)
ψ∗

i (q, k)

)
with ψi(q, k) =

(
ui(q, k)

ui
(
q + 1

2 , k
)).

The normalization gives ψ
†
i (q, k)ψi(q, k) = 1

2 . Furthermore, the two vectors ϕ1(q, k) and ϕ2(q, k) are orthogonal to each other,
leading to another constraint that ψ

†
2 (q, k)ψ1(q, k) + c.c. = 0. Therefore, ψ

†
2 (q, k)ψ1(q, k) is purely imaginary. We write ψ1 =

1√
2
|n̂,↑〉, meaning it is the eigenstate of the operator n̂ · σ with the eigenvalue of 1/

√
2. Notice that the overall phase of ψ1 is also

important because the state ϕ1 is changed with an additional phase added to ψ1. We also write ψ2(q, k) = 1√
2
(iα|n̂ ↑〉 + β|n̂ ↓〉)

with |α|2 + |β|2 = 1. It is obvious that α must be real to ensure the orthogonality condition. Thus, ψ2 = ei
π
2 n̂

′ ·σψ1 = in̂′ · σψ1

with n̂′ being an arbitrary three-dimensional unit vector.
However, this configuration for ϕ1 and ϕ2 still contains redundancy since any real orthogonal transformation that mixes these

two vectors leaves the two-dimensional subspace unchanged. This transformation can be written as

ψ ′
1 = cos

ω

2
ψ1 − sin

ω

2
ψ2 = cos

ω

2
ψ1 − i sin

ω

2
n̂′ · σψ1 = e−i ω

2 n̂
′ ·σψ1, ψ ′

2 = in̂′ · σψ ′
1.

Thus, we can rotate the spinor ψ1 and ψ2 around the n̂′ unit vector, and obtain an equivalent many-body state. Since ψ2 is
acquired by rotating ψ1 by π around the same unit vector n′, we can always choose the spinor ψ1 = 1√

2
|n̂ ↑〉 so that n̂ has the

same azimuthal angle as n̂′. Therefore, we can parametrize these two unit directions as

n̂ = ( sin(θ1 + θ2) cos φ1, sin(θ1 + θ2) sin φ1, cos(θ1 + θ2)) and n̂′ = (sin θ1 cos φ1, sin θ1 sin φ1, cos θ1).

This gives the spinors ψ1 and ψ2 as

ψ1 = 1√
2
eiφ2

(
cos θ1+θ2

2
sin θ1+θ2

2 eiφ1

)
, ψ2 = in̂′ · σψ1 = i√

2
eiφ2

(
cos θ1−θ2

2
sin θ1−θ2

2 eiφ1

)
. (D4)

Therefore, the state in Eq. (D1) can be described by four parameters living on S2 × S2 at every momentum. The projector can be
written as

ϕ1ϕ
†
1 + ϕ2ϕ

†
2 = 1

2

⎛
⎜⎜⎜⎜⎝

1 + cos θ1 cos θ2 e−iφ1 sin θ1 cos θ2 −e2iφ2 sin θ1 sin θ2 ei(φ1+2φ2 ) cos θ1 sin θ2

eiφ1 cos θ2 sin θ1 1 − cos θ1 cos θ2 ei(φ1+2φ2 ) cos θ1 sin θ2 e2i(φ1+φ2 ) sin θ1 sin θ2

−e−2iφ2 sin θ1 sin θ2 e−i(φ1+2φ2 ) cos θ1 sin θ2 1 + cos θ1 cos θ2 eiφ1 sin θ1 cos θ2

e−i(φ1+2φ2 ) cos θ1 sin θ2 e−2i(φ1+φ2 ) sin θ1 sin θ2 e−iφ1 cos θ2 sin θ1 1 − cos θ1 cos θ2

⎞
⎟⎟⎟⎟⎠. (D5)

APPENDIX E: SELF-CONSISTENT EQUATION

In this Appendix, we present the detailed derivation of the self-consistent equations (61) and (67), as well as the expression
of the operator F in Eqs. (62) and (66). First, we consider the state with translation symmetry. For a state given by Eq. (57), the
fermion correlation function is

〈c†(r)c(r′)〉 =
∑
q,k

∑
α,β

g∗
α,q,k (r)gβ,q,k (r′)Mαβ (q, k) with M(q, k) =

( |u(q, k)|2 u∗(q, k)v(q, k)
v∗(q, k)u(q, k) |v(q, k)|2

)
, (E1)

where gα,q,k (r) = 〈r|φα (q, k)〉 is the wave function of the Chern Bloch state at the momentum of (q, k) with the Chern number
α. Since the trial state is a product state, by Wick’s theorem

〈V̂int〉 = 1

2

∫
dr dr′V (r, r′)〈c†(r)c†(r′)c(r′)c(r)〉 = 1

2

∫
dr dr′V (r, r′)

[〈c†(r)c(r)〉〈c†(r′)c(r′)〉 − 〈c†(r)c(r′)〉〈c†(r′)c(r)〉],
(E2)

〈Ĥkin〉 =
∫

dr dr′t (r, r′)〈c†(r)c(r′)〉, (E3)

E = 〈Ĥkin〉 + 〈V̂int〉. (E4)
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Notice that u(q, k) and v(q, k) show only in the matrix Mαβ (q, k). After some calculations, we obtain(
δE

δu∗(q,k)
δE

δv∗(q,k)

)
= Heff (q, k)

(
u(q, k)
v(q, k)

)
, (E5)

(Heff (q, k))αβ =
∫

dr dr′V (r, r′)[〈c†(r)c(r)〉g∗
α,q,k (r′)gβ,q,k (r′) − 〈c†(r′)c(r)〉g∗

α,q,k (r)gβ,q,k (r′)]

+
∫

dr dr′t (r, r′)g∗
α,q,k (r)gβ,q,k (r′). (E6)

Note that we have used the relation V (r, r′) = V (r′, r).
Therefore, (Heff (q, k))αβ can be written as 〈φα (q, k)|F |φβ (q, k)〉 with

F (r1, r2) = 〈r1|F |r2〉 = δ(r1 − r2)
∫

drV (r, r1)〈c†(r)c(r)〉 −V (r1, r2)〈c†(r2)c(r1)〉 + t (r1, r2), (E7)

where the fermion correlation is given by Eq. (E1). It is clear that the operator F is independent of the momentum (q, k), and
thus has the winding number of 0. Since V (r1, r2) = V (r2, r1) and t (r1, r2) = t (r2, r1), F is a Hermitian operator.

In addition, if the state is C2T symmetric,

〈c†(r)c(r)〉 = 〈c†(−r)c(−r)〉 and 〈c†(r1)c(r2)〉 = 〈c†(−r1)c(−r2)〉∗ �⇒ F (r1, r2) = F∗(−r1,−r2). (E8)

Combined with Hermiticity of the operator F , we conclude F (r1, r2) = F (−r2,−r1).
For the period-2 stripe state described by Eq. (D1), we can follow the same approach to find the expression of F . For this

purpose, define the wave function to be

gq,k (r) = (〈r|φ+(q, k)〉, 〈r∣∣φ+
(
q + 1

2 , k
)〉

, 〈r|φ−(q, k)〉, 〈r∣∣φ−
(
q + 1

2 , k
)〉)

.

As a consequence, the fermion correlation function can be expressed as

〈c†(r)c(r′)〉 =
∑

k ∈ [0, 1)
q ∈ [0, 1/2)

2∑
i=1

4∑
α,β=1

g∗
α,q,k (r)gβ,q,k (r′)(Mi(q, k))αβ with Mi(q, k) = (ϕi(q, k))∗(ϕi(q, k))T , (E9)

where ϕi(q, k) is defined in Eq. (D3). The energy can be calculated by applying the Wick’s theorem, and we obtain the same
expression as Eqs. (E2)–(E4). As a consequence,(

δE

δu∗(q, k)

δE

δu∗(q + 1
2 , k)

δE

δv∗(q, k)

δE

δv∗(q + 1
2 , k)

)T

= Hs
eff (q, k)

(
u(q, k) u

(
q + 1

2
, k

)
v(q, k) v

(
q + 1

2
, k

))T

, (E10)

(
Hs

eff (q, k)
)
αβ

=
∫

dr dr′V (r, r′)[〈c†(r)c(r)〉g∗
α,q,k (r′)gβ,q,k (r′)−〈c†(r′)c(r)〉g∗

α,q,k (r)gβ,q,k (r′)]

+
∫

dr dr′t (r − r′)g∗
α,q,k (r)gβ,q,k (r′). (E11)

Thus, (Hs
eff (q, k))αβ = 〈ηα (q, k)|F s|ηβ (q, k)〉, and the operator F s for the stripe state has the same expression as Eq. (E7), but

with the fermion correlation given in Eq. (E9). Notice that F s is also Hermitian. Similar to the nematic phase, if the stripe state
is also C2T symmetric, F s(r1, r2) = F s(−r2,−r1). In the next section, this property will be used to derive a series of periodic
properties of the effective Hamiltonian.

APPENDIX F: PROPERTIES OF THE EFFECTIVE HAMILTONIAN OF THE C2T STRIPE STATE

In this Appendix, we discuss the properties of the matrix elements of Hs
eff given in Eqs. (67) and (E11). As illustrated in the

previous section, the matrix element can be expressed as Eq. (66). With the gauge of Chern Bloch states chosen in Eq. (16),

ε(q, k + 1) = ε(q, k), ε(q + 1, k) = ε(q, k),

δ
(
q + 1

2 , k
) = δ∗(q, k), δ(q, k + 1) = −δ(q, k),

�1(q, k + 1) = e4π iq�1(q, k), �1(q + 1, k) = �1(q, k),

�2
(
q + 1

2 , k
) = �2(q, k), �2(q, k + 1) = −e4π iq�2(q, k). (F1)
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Notice that the definition of the operator F s is needed to prove �2(q + 1
2 , k) = �2(q, k):

�2

(
q + 1

2
, k

)
=

〈
φ+

(
q + 1

2
, k

)∣∣∣∣F s|φ−(q, k)〉 =
∫

dr1 dr2 g
∗
+,q+ 1

2 ,k (r1)F s(r1, r2)g−,q,k (r2)

=
∫

dr1dr2 g−,q+ 1
2 ,k (−r1)F s(−r2,−r1)g∗

+,q,k (−r2) = �2(q, k). (F2)

It is obvious that �2 has the winding number of 1 around the stripe BZ.
Next, we consider how the double degeneracy between the two low- (high-) energy bands is lifted by both δ(q, k) and

�1(q, k). Based on Eqs. (71)–(74), the first-order perturbation gives

H+
12(q, k) = �1 cos2 θ

2
+ δ sin θ

�2

|�2| + �′∗
1 sin2 θ

2

(
�2

|�2|
)2

, (F3)

H−
12(q, k) = �′∗

1 cos2 θ

2
− δ sin θ

�∗
2

|�2| + �1 sin2 θ

2

(
�∗

2

|�2|
)2

. (F4)

Applying the boundary conditions listed in Eq. (F1), we obtain

H+
12(q, k + 1) = ei4πqH+

12(q, k), H+
12

(
q + 1

2
, k

)
= (H+

12(q, k))∗
(

�2

|�2|
)2

,

H−
12(q, k + 1) = e−i4πqH−

12(q, k), H−
12

(
q + 1

2
, k

)
= (H−

12(q, k))∗
(

�∗
2

|�2|
)2

. (F5)

Now, we prove that the winding number of H±
12 around the strip BZ must be even. Consider the closed contour C = (0, 0) −

( 1
2 , 0) − ( 1

2 , 1) − (0, 1) − (0, 0), and define the change of phase as

δθ1 = 1

i

∫ 1
2

0
dq

∂qH
+
12(q, 0)

H+
12(q, 0)

, δθ2 = 1

i

∫ 1

0
dk

∂kH
+
12

(
1
2 , k

)
H+

12

(
1
2 , k

) ,

δθ3 = 1

i

∫ 1
2

0
dq

∂qH
+
12(q, 1)

H+
12(q, 1)

, δθ4 = 1

i

∫ 0

1
dk

∂kH
+
12(0, k)

H+
12(0, k)

.

Applying the formula H+
12(q, k + 1) = e4π iqH+

12(q, k), it is easy to prove that δθ1 + δθ3 = −2π . For notational convenience,
introduce φ2 as the phase of �2. Applying the boundary condition H+

12(q + 1
2 , k) = (H+

12(q, k))∗e2iφ2(q,k), we obtain

δθ2 = 1

i

∫ 1

0
dk

∂kH
+
12

(
1
2 , k

)
H+

12

(
1
2 , k

) = 1

i

∫ 1

0
dk

∂k ((H+
12(0, k))∗e2iφ2(0,k) )

(H+
12(0, k))∗e2iφ2(0,k)

= 1

i

∫ 1

0
dk

(
∂k (H+

12(0, k))∗

(H+
12(0, k))∗

+ 2i∂kφ2(0, k)

)

= −1

i

∫ 1

0
dk

∂kH
+
12(0, k)

H+
12(0, k)

+ 2
∫ 1

0
dk ∂kφ2(0, k) = δθ4 + 2

∫ 1

0
dk ∂kφ2(0, k). (F6)

Since �2(0, 1) = −�2(0, 0),
∫ 1

0 dk ∂kφ2(0, k) = (2n + 1)π . In addition, the boundary condition H+
12(0, 1) = H+

12(0, 0) gives
δθ4 = 2mπ . Therefore, the total change of the phase is

δθ1 + δθ2 + δθ3 + δθ4 = −2π + 2δθ4 + 2
∫ 1

0
dk ∂kφ2(0, k) = 2π [−1 + 2m + (2n + 1)] = 4π (n − m). (F7)

Therefore, the winding number must be even. Similar derivation can be done for H−
12, and we obtain the same conclusion.

As mentioned in the text, the formulas in Eqs. (F3) and (F4) are ill defined at a particular momentum (q′, k′) at which
�2(q′, k′) = 0 and ε′(q′, k′) < 0. Obviously, Eqs. (F3) and (F4) are well defined in the region enclosed by the closed contours C
and γq′,k′ . The winding numbers on the contour C are still given by Eq. (F7). On the small contour γq′,k′ , Eqs. (F3) and (F4) are
dominated by their last terms. Since θ (q′, k′) = π , the winding numbers of H±

12 on the contour γq′,k′ are ±2, respectively. Thus,
we conclude that the total winding numbers on the combined contour C and γq′,k′ are still even. As a consequence, the numbers
of Dirac points of H± are still even in the stripe BZ.
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