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1. Introduction

In many engineering applications, a dynamical system is mod-
eled as a switched system [1–6]. In this study, dynamical systems
comprised of a finite number of subsystems/modes are studied.
Furthermore, it is assumed that at each time instant, only one sub-
system is active [7]. Also, the solutions provided in this study are
meant to solve the problems in which the final time is fixed and
it is not free. In case the dynamics of the subsystems include a con-
tinuously varying control, the subsystems are called controlled sub-
systems. Otherwise, the subsystems are called autonomous.

In switched systems, the sequence of active subsystems is
called the mode sequence. The mode sequence can be fixed or free.
In a fixed mode sequence, the system should activate the subsys-
tems according to a prespecified mode sequence [7]. For instance,
consider a manual gearbox in an automobile. Each gear ratio is a
mode in this system. For acceleration from rest, the mode sequence
is gear 1, gear 2, gear 3, and then gear 4. The role of the driver in
this system is assigning the switching times from one mode to
another.1 On the other hand, in switched systems with free mode
sequence, the system can activate any arbitrary mode at any time.
The control problem in switched systems can be categorized
based on the type of the subsystems and the type of the mode
sequence. In switched systems with fixed mode sequence and con-
trolled subsystems, the controller does not decide about the mode
sequence. Therefore, the controller only assigns the switching
times and the continuous control in the subsystems [7–9]. On
the other hand, in switched systems with free mode sequence, at
each time instant, the controller assigns the active mode and the
continuous control in that active mode [10–16]. Control of
switched systems with autonomous subsystems follows the same
logic except that lack of continuous control signal in the subsys-
tems eliminates the need to find the continuous control in the
active subsystems. In general, control of switched systems is a
challenging task due to discontinuous nature of the problem [13].

Optimal control generates control signals that minimize a cost
function subjected to state and input constraints. Solving optimal
control problems is in fact solving the underlying Hamilton–
Jacobi-Bellman (HJB) equation which provides the necessary and
sufficient condition for optimality [17]. However, solving the HJB
equation explicitly is difficult and in most cases impossible. As a
solution, Dynamic Programming (DP) was proposed to solve the
optimal control problems through recursive application of the Bell-
man Principle of Optimality. However, as the order of the system
increases, rapid access to memory becomes prohibitive which is
known as the curse of dimensionality in DP [17]. To remedy the
problems in DP, Approximate Dynamic Programming (ADP) was
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introduced. In summary, ADP methods use function approximators
to approximate the optimal cost-to-go, namely critic, and some-
times the optimal policy, namely actor. Then, the ADP methods
use iterative techniques to tune the parameters of those function
approximators. In other words, ADP methods find the near or
approximate optimal control solution instead of the exact optimal
control solution. This results in sub-optimality.

Reinforcement Learning (RL) is a common learning strategy in
humans and most mammals. In simple words, RL is a learning
strategy in which a cognitive agent learns from interacting with
the environment [18]. The agent learns to repeat the actions lead-
ing to rewards and avoids the actions leading to punishments. The
relationship between the ADP and RL can be described as follows.
ADP methods use iterative schemes from RL to solve optimal con-
trol problems.

In this paper, two ADP solutions are introduced to solve the
optimal tracking problem in switched systems with controlled
subsystems, fixed mode sequence, and fixed final time. Hence, this
study combines some ADP solutions for optimal tracking and opti-
mal switching control to develop new solutions.

In systems with conventional dynamics, i.e., control affine and
non-switching dynamics, optimal tracking with ADP was investi-
gated in [19] by using a Single Network Adaptive Critic (SNAC) to
approximate the costates, and in [20] by approximating the value
functions and augmenting the reference signal and the tracking
error in the state vector. Also, in [21,22] model free tracking was
investigated.

ADP solutions for optimal control of switched systems with free
mode sequence was studied in [10,23,13,12,11,24,16] for optimal
regulation, and in [15,3,25,13] for optimal tracking. Optimal con-
trol of switched systems with fixed mode sequence was studied
in [7] through introducing a transformation to incorporate the
switching instants as parameters in the optimal control problem.
This transformation was used in [8] to develop an ADP solution
to solve the optimal regulation problem. Therefore, [8] provided
a Heuristic Dynamic Programming (HDP) solution which trained
two networks, namely actor and critic. Also, Non-ADP methods
to control switched systems with fixed mode sequence were stud-
ied in [9,26,27].

This study explores two possible solutions for optimal tracking
in switched systems with fixed mode sequence and fixed final
time. The backbone of this study is using the transformation intro-
duced in [7] to incorporate the switching instants as parameters in
the optimal control problem. As a result, in both discussed solu-
tions of the present study, there are two levels of control. In the
upper level, optimal switching instants are sought through con-
straint optimization. In the lower level, a feedback optimal control
policy is sought through ADP methods. Hence, the contributions of
this paper are mainly focused on the lower level control. The key
contributions of the paper are as follows2.

� A SNAC solution is introduced for optimal tracking in the
switched systems.

� Based on the SNAC solution, a new method is introduced to
reduce the computational burden.

The first solution uses the SNAC structure introduced in [19] to for-
mulate and solve the optimal control problem. As the second solu-
tion, to improve the speed of training and reduce the computational
burden of the controller, a new method is introduced which uses
the immature costates at each time instant to find the optimal
policies.
2 The preliminary results of this research were presented in ASME 2019 Dynamic
Systems and Control Conference [28].
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Compared to [15,3,25,13], where optimal tracking in switched
systems with free mode sequence is performed with ADP, the
mode sequence in this paper is fixed. This necessitates a different
solution for control. Both of the solutions discussed in this paper
are inspired by [19]. However, the methods discussed in this paper
deal with switching dynamics which is a more challenging prob-
lem than the one discussed in [19]. Compared to [8], the methods
discussed in this paper deal with a tracking problem rather than a
regulation one. Also, the methods discussed in this paper try to
eliminate the dependency of the convergence on the sampling
time, as discussed in [8,19]. At last, the second method in this
paper works faster than the methods discussed in [8,19] by elimi-
nating the inner loop for training the actor or the costate approxi-
mators. In [29], an event triggering system is designed and a
thorough stability analysis is conducted. The system in [29] acti-
vates piecewise constant controls at each time instant. This is
unlike the present study that the control signals in each mode
are designed. In [30], a decentralized optimal tacking solution is
presented which deals with interconnected fuzzy systems with
partially unknown dynamics. Compared to [30], the present work
deals with finite horizon problem and the lack of the convergence
of the feedback control to zero will not affect our solution.

The rest of the manuscript is organized as follows. In Section 2,
optimal control problem formulation and some assumptions are
presented. The SNAC solution is presented in Section 3 and the sin-
gle loop SNAC solution is presented in Section 4. Simulation results
are discussed in Section 5. At last, Section 6 concludes the paper.

Remark 1. The practical motivation behind this research is
applying the developed method in this paper for optimal control
of autonomous systems including wheel loaders in a construction
site. The movement of a wheel loader to pick up a load from one
point and drop it in another point can be modeled as a switched
system with a fixed mode sequence. The interested readers are
referred to [31,32] for more information.
2. Problem formulation

Let the dynamics of a switched system be

_x tð Þ ¼ �f v x tð Þð Þ þ �gv x tð Þð Þu tð Þ;
v 2 V ¼ 1;2; . . . ;Mf g; x 0ð Þ ¼ x0 ð1Þ
where x 2 Rn; u 2 Rm, and t denote the state vector, the input control,
and the time, respectively. In (1), the dynamics of the subsystems are
shown with smooth functions �f v : Rn ! Rn and �gv : Rn ! Rn�m. The
active mode is shown by sub-index v and the set of all available
modes is shown by V. It is further assumed that �f v 0ð Þ ¼ 0, for all
modes v 2 V. The inclusion of continuous control, i.e., u :ð Þ, in (1)
shows that the subsystems are controlled subsystems.

To formulate the optimal control problem, consider the cost
function as

J x0; r0ð Þ ¼ 1
2 x tf
� �� r tf

� �� �TS x tf
� �� r tf

� �� �
þ R tf

t0
1
2 x tð Þ � r tð Þð ÞTQ x tð Þ � r tð Þð Þ þ u tð ÞTRu tð Þ
� �

dt
ð2Þ

where the initial time and the final time are denoted by t0 and tf ,
respectively. In (2), S 2 Rn�n is a positive semi-definite matrix for
penalizing the terminal cost, Q 2 Rn�n is the state penalizing matrix
which is positive semi-definite, and R 2 Rm�m is a positive definite
control penalizing matrix. Also, the reference signal is shown by
r 2 Rn and the dynamics of the reference signal can be depicted as

_r tð Þ ¼ �f rv r tð Þð Þ ð3Þ
where �f rv : Rn ! Rn is a smooth function.
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To include the mode sequence in the dynamics introduced in (1)
and the cost function introduced in (2), consider the following
transformation [7]

t ¼

t0 þ t1 � t0ð Þt̂ if 0 6 t̂ < 1
t1 þ t2 � t1ð Þ t̂ � 1

� �
if 1 6 t̂ < 2

..

. ..
.

tp þ tf � tp
� �

t̂ � p
� �

if p 6 t̂ 6 pþ 1

8>>>>><>>>>>:
ð4Þ

where t1; t2; . . . tp are the switching times and p is the number of
switchings. In (4), t is the actual time domain, and t̂ denotes the
transformed time domain. Considering the set of switching times
as C ¼ t0 ¼ 0; t1; t2; . . . tp

� �
, one can consider the mode sequence

as v t0 ;v t1 ;v t2 ; . . . ;v tp

� �
. Hence, when t0 6 t < t1, mode v t0 is active.

Similarly, when t1 6 t < t2, mode v t1 is active. With a similar proce-
dure, one can identify the active modes at each time. The merit of
the transformation introduced in (4) is that the switching times
t1; . . . ; tp can be any point in t0; tf

� 	
. However, in the transformed

time domain, switching happens only at t̂ ¼ 1;2; . . . ; p. Using (4),
one can transform (1) as

x0 t̂
� � ¼ dx

dt̂
¼ dx

dt
dt
dt̂

ð5Þ

Considering the known sequence of active modes as
v t0 ;v t1 ;v t2 ; . . . ;v tp

� �
, (1) transforms as

x0 t̂
� � ¼

f
�
vt0

xð Þ þ g
�
vt0

xð Þu
� �

t1 � t0ð Þ if 0 6 t̂ < 1

f
�
vt1

xð Þ þ g
�
vt1

xð Þu
� �

t2 � t1ð Þ if 1 6 t̂ < 2

..

. ..
.

f
�
vtp

xð Þ þ g
�
vtp

xð Þu
� �

tf � tp
� �

if p 6 t̂ 6 pþ 1

8>>>>>>>><>>>>>>>>:
ð6Þ

where x � x t̂
� �

and u � u t̂
� �

for notational simplicity. With the same
procedure, one can transform the cost function in (2) as

J x0; r0ð Þ ¼ 1
2 x pþ 1ð Þ � r pþ 1ð Þð ÞTS x pþ 1ð Þ � r pþ 1ð Þð Þ

þ 1
2

R 1
0 x� rð ÞTQ t1 � t0ð Þ x� rð Þ þ uTR t1 � t0ð Þu
� �

dt̂

þ 1
2

R 2
1 x� rð ÞTQ t2 � t1ð Þ x� rð Þ þ uTR t2 � t1ð Þu
� �

dt̂

..

. ..
.

þ 1
2

R pþ1
p x� rð ÞTQ tf � tp

� �
x� rð Þ þ uTR tf � tp

� �
u

� �
dt̂

ð7Þ

where x � x t̂
� �

; r � r t̂
� �

, and u � u t̂
� �

for notational simplicity.

Remark 2. As one can see from (7), the transformed cost function
is a function of x0; r0, and the switching times, i.e., C. Hence,
J :; :; :ð Þ ¼ J C; x0; r0ð Þ. This is an important observation which will be
used in the subsequent sections to solve the optimal control
problem.

Using the Euler integration method, by choosing a small sample
time dt̂, one can discretize (6) as

xk̂þ1 ¼

f vt0
xk̂
� �þ gvt0

xk̂
� �

uk̂ if 0 6 k̂dt̂ < 1

f vt1
xk̂
� �þ gvt1

xk̂
� �

uk̂ if 1 6 k̂dt̂ < 2

..

...
.

f vtp
xk̂
� �þ gvtp

xk̂
� �

uk̂ if p 6 k̂dt̂ 6 pþ 1

8>>>>>>>>><>>>>>>>>>:
ð8Þ
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where

f vt0
xk̂
� � ¼ x t̂

� �þ �f vt0
x t̂
� �� �

t1 � t0ð Þdt̂
gvt0

xk̂
� � ¼ �gvt0

x t̂
� �� �

t1 � t0ð Þdt̂
f vt1

xk̂
� � ¼ x t̂

� �þ �f vt1
x t̂
� �� �

t2 � t1ð Þdt̂
gvt1

xk̂
� � ¼ �gvt1

x t̂
� �� �

t2 � t1ð Þdt̂
Similarly, one can define f vti

:ð Þ and gvti
:ð Þ for the rest of i 6 p. In (8),

k̂ 2 0;N0� 	
is the discrete time index where N0 ¼ pþ1

dt̂
[8]. Considering

Remark 2, one can discretize (7) as

J C; x0; r0ð Þ ¼ 1
2 xN0 � rN0ð ÞTS xN0 � rN0ð Þ

þ Pk̂¼1=dt̂

k̂¼0

1
2 xk̂ � rk̂
� �TQ1 xk̂ � rk̂

� �þ 1
2u

T
k̂
R1uk̂

þ Pk̂¼2=dt̂

k̂¼1=dt̂

1
2 xk̂ � rk̂
� �TQ2 xk̂ � rk̂

� �þ 1
2u

T
k̂
R2uk̂

..

. ..
.

þ Pk̂¼N0

k̂¼p=dt̂

1
2 xk̂ � rk̂
� �TQp xk̂ � rk̂

� �þ 1
2u

T
k̂
Rpuk̂

ð9Þ

where

Q1 ¼ Q t1 � t0ð Þdt̂; R1 ¼ R t1 � t0ð Þdt̂
Q2 ¼ Q t2 � t1ð Þdt̂; R2 ¼ R t2 � t1ð Þdt̂
Qp ¼ Q tf � tp

� �
dt̂; Rp ¼ R tf � tp

� �
dt̂

Considering (9), one can define the cost-to-go at each time instant k̂
as

J C; xk̂; rk̂
� � ¼ 1

2 xN0 � rN0ð ÞTS xN0 � rN0ð Þ

þ 1
2

Xbk̂dt̂cþ1
dt̂

�k¼k̂

x�k � r�kð ÞTQ bk̂dt̂cþ1 x�k � r�kð Þ þ uT
�k
Rbk̂dt̂cþ1u�k

þ 1
2

Xp
j¼bk̂dt̂cþ2

Xjþ1ð Þ=dt̂

�k¼j=dt̂

x�k � r�kð ÞTQj x�k � r�kð Þ þ uT
�k
Rju�k

ð10Þ

where b:c denotes the floor function. Using (10), one can define the
minimum cost-to-go, i.e., value function, as

V C; xk̂; rk̂; k̂
� �

� Vk̂ C; xk̂; rk̂
� �

¼ min
u :ð Þ

 
1
2 xN0 � rN0ð ÞTS xN0 � rN0ð Þ

þ 1
2

Xbk̂dt̂cþ1
dt̂

�k¼k̂

x�k � r�kð ÞTQ bk̂dt̂cþ1 x�k � r�kð Þ þ uT
�k
Rbk̂dt̂cþ1u�k

þ 1
2

Xp
j¼bk̂dt̂cþ2

Xjþ1ð Þ=dt̂

�k¼j=dt̂

x�k � r�kð ÞTQj x�k � r�kð Þ þ uT
�k
Rju�k

!
ð11Þ

Considering the time step k̂ to k̂þ 1, one has

Vk̂ C; xk̂; rk̂
� � ¼ min

u :ð Þ

 
1
2 xN0 � rN0ð ÞTS xN0 � rN0ð Þ

þ 1
2 xk̂ � rk̂
� �TQ bk̂dt̂cþ1 xk̂ � rk̂

� �þ 1
2u

T
k̂
Rbk̂dt̂cþ1uk̂

þ 1
2

Xbk̂dt̂cþ1
dt̂

�k¼k̂þ1

x�k � r�kð ÞTQ bk̂dt̂cþ1 x�k � r�kð Þ þ uT
�k
Rbk̂dt̂cþ1u�k

þ 1
2

Xp
j¼bk̂dt̂cþ2

Xjþ1ð Þ=dt̂

�k¼j=dt̂

x�k � r�kð ÞTQj x�k � r�kð Þ þ uT
�k
Rju�k

!
ð12Þ
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Letting v k̂ ¼ bk̂dt̂c þ 1, through some algebraic manipulations one
has

Vk̂ C; xk̂; rk̂
� � ¼ min

u :ð Þ
1
2 xk̂ � rk̂
� �TQv k̂

xk̂ � rk̂
� ��

þ 1
2u

T
k̂
Rv k̂

uk̂ þ Vk̂þ1 C; xk̂þ1; rk̂þ1

� �� ð13Þ

Eq. (13) is the representation of the Bellman principle of optimality
which simply states that the minimum cost of going from time

k̂ ! N0 is the sum of minimum cost of going from k̂ ! k̂þ 1 and

the minimum cost of going from k̂þ 1 ! N0. This equation is the
backbone of the formulations which is also known as the
Hamilton–Jacobi-Bellman (HJB) equation. As mentioned before,
solutions of the HJB equation provide the necessary and sufficient
condition for optimality [17]. Given (13), one can define the optimal
policy as

u�
k̂
C; xk̂; rk̂
� � ¼ argmin

u :ð Þ
1
2 xk̂ � rk̂
� �TQv k̂

xk̂ � rk̂
� ��

þ 1
2u

T
k̂
Rv k̂

uk̂ þ Vk̂þ1 C; xk̂þ1; rk̂þ1

� �� ð14Þ

In order to continue the solution, one assumes that the value func-
tions are smooth. In the case of quadratic cost functions as in (2), it
is straightforward to see that

u�
k̂
C; xk̂; rk̂
� � ¼ �R�1

v k̂
gT
v k̂

xk̂
� � @Vk̂þ1 C; xk̂þ1; rk̂þ1

� �
@xk̂

jxk̂þ1
ð15Þ

In (15), if Vk̂þ1 C; xk̂þ1; rk̂þ1

� �
is known, one can easily find the opti-

mal policy.

By defining the costates as kk̂ C; xk̂; rk̂
� � ¼ @Vk̂ C;xk̂ ;rk̂ð Þ

@xk̂
, one can see

that the otpimal policy can be defined as

u�
k̂
C; xk̂; rk̂
� � ¼ �R�1

v k̂
gT
v k̂

xk̂
� �

kk̂þ1 C; xk̂þ1; rk̂þ1

� � ð16Þ

Similar to (15), in case kk̂þ1 is known, one can find the optimal pol-

icy from (16). Considering (13) and time step k̂ ¼ N0, by taking the
gradient with respect to xN0 from both sides one has

kN0 C; xN0 ; rN0ð Þ ¼ S xN0 � rN0ð Þ ð17Þ

Also, considering (13) for k̂ < N0, by taking the gradient with respect
to xk̂ one has

kk̂ C; xk̂; rk̂
� � ¼ Qv k̂

xk̂ � rk̂
� �þ @xk̂þ1

@xk̂


 �T

kk̂þ1 C; x�
k̂þ1

; rk̂þ1

� �
ð18Þ

where x�
k̂þ1

means x is propagated from xk̂ to xk̂þ1 along policy u�
k̂
.

Evaluating (18) at k̂þ 1 leads [19]

kk̂þ1 C; x�
k̂þ1

; rk̂þ1

� �
¼ Qv k̂þ1

x�
k̂þ1

� rk̂þ1

� �
þ @xk̂þ2

@xk̂þ1

� �T
kk̂þ2 C; x�

k̂þ2
; rk̂þ2

� � ð19Þ

Using (17) and (19), one can go backward in time and find kk̂þ1 for
all times and then find the optimal policies from (16).

As seen in the optimal control problem formulation, by using
the transformation introduced in (6), one treated the switching
times as parameters. This parametrization of the switching times
necessitates two levels of optimization. In the upper level, the
switching times are sought. In the lower level, one finds the opti-
mal policies as (16).
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3. SNAC solution

In this section, a SNAC solution introduced in [19] is adapted to
solve the optimal tracking in switched systems. The main idea is
using function approximators to approximate/predict the costates.
Due to smoothness assumption of the value functions, one can use
neural networks to uniformly approximate the costates [33]. Also,
considering the Weierstrass Approximation Theorem [34], one can
use linear in parameter neural networks with polynomial basis
functions to approximate the costates to any degree of precision.

For approximation, neural networks can be used to approxi-
mate kk̂þ1 C; xk̂þ1; rk̂þ1

� �
from C; xk̂; rk̂

� �
. Consider the exact costate

at discrete time index k̂þ 1 as

kk̂þ1 C; xk̂þ1; rk̂þ1

� � ¼ W�
k̂
T/ C; xk̂; rk̂
� �þ e�

k̂
C; xk̂; rk̂
� � ð20Þ

whereW�
k 2 Rmk�n is a weight vector and / : Rp � Rn � Rn ! Rmk is a

vector ofmk number of linearly independent polynomial basis func-
tions (neurons). Similar to the previous sections, the dependence of
the parameters/functions to discrete time index is shown with a

sub-index k̂ in (20). Let the approximate costates bebkk̂þ1 C; xk̂þ1; rk̂þ1

� � ¼ cWT
k̂
/ C; xk̂; rk̂
� � ð21Þ

where cWk̂ 2 Rmk�n is a tunable weight vector adjusted through
training. Considering (16), it is straightforward to find the approxi-
mate optimal policy with the approximate optimal costates as

buk̂ C; xk̂; rk̂
� � ¼ �R�1

v k̂
gT
v k̂

xk̂
� �bkk̂þ1 C; xk̂þ1; rk̂þ1

� �
¼ �R�1

v k̂
gT
v k̂

xk̂
� �cWT

k̂
/ C; xk̂; rk̂
� � ð22Þ

For finding the optimal costates, one can go backward in time as fol-

lows. Considering k̂ ¼ N0, by substituting for kN0 from (21) in (17)
one hascWT

N0�1/ C; xN0�1; rN0�1ð Þ ¼ S xN0 � rN0ð Þ ð23Þ

Also, by substituting kk̂ from (21) in (19) for the rest of k̂, one has

cWT
k̂
/ C; xk̂; rk̂
� � ¼ Qv k̂þ1

x�
k̂þ1

� rk̂þ1

� �
þ @xk̂þ2

@xk̂þ1

� �TcWT
k̂þ1

/ C; x�
k̂þ1

; rk̂þ1

� � ð24Þ

In (23), one notes that the states on the right-hand side are propa-
gated along policy buN0�1 from xN0�1 to xN0 . As one can see from (22),

policy buN0�1 requires bkN0 which is unknown. Hence, bkN0 is present on
both sides of (23). Similarly, in (24), one notices a propagation from

xk̂ to xk̂þ1 and the requirement of bkk̂þ1. With the same discussion

about the presence of bkN0 on both sides of (23), one can see the pres-

ence of bkk̂þ1 on both sides of (24).
In order to solve this problem, an iterative solution was intro-

duced in [19] as follows. Let the iteration index be denoted by i.
Considering the state propagated from xk̂ to xk̂þ1 using policybui

k̂
:ð Þ as xi

k̂þ1
, one has

kiþ1
N0 C; xN0 ; rN0ð Þ ¼ S xiN0 � rN0

� � ð25Þ
Substituting from (21) in (25) leadscWiþ1T

N0�1/ C; xN0�1; rN0�1ð Þ ¼ S xiN0 � rN0
� � ð26Þ

Considering (19), for k̂ < N0 one has

kiþ1
k̂þ1

C; xk̂þ1; rk̂þ1

� � ¼
Qv k̂þ1

xi
k̂þ1

� rk̂þ1

� �
þ @xk̂þ2

@xk̂þ1

� �T
kk̂þ2 C; xi

k̂þ2
; rk̂þ2

� � ð27Þ
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Similar to (26), substituting from (21) leadscWiþ1T

k̂
/ C; xk̂; rk̂
� � ¼

Qv k̂þ1
xi
k̂þ1

� rk̂þ1

� �
þ @xk̂þ2

@xk̂þ1

� �TcWT
k̂þ1

/ C; xi
k̂þ1

; rk̂þ1

� � ð28Þ

In (26) and (28), the inner loop starts with a random initial guess for

k0k̂þ1, i.e.,
cW 0

k̂
. With cW 0

k̂
, one finds u0 and uses this policy to propagate

the states.Using (26)or (28), onefindscW 1
k̂
. Thisprocesscontinuesuntil

the weights converge. After calculating cWk̂, one can go backward in
time to find the rest of the costates. When the training is concluded,
the stored optimal costates are used for online control without re-
training. This training process is summarized in Algorithm 1.

Algorithm 1: SNAC Solution
Remark 3. The convergence of the inner loop in steps 3–7 of
Algorithm 1 was studied in Theorem 1 of [19] for systems with
conventional dynamics. The convergence of inner loop in Algo-
rithm 1 is studied in Theorem 1.
Theorem 1. Considering the iterative solution illustrated by (25) and
(27), there exists a control penalizing matrix, i.e., R�, such that for any
control penalizing matrix R that kRk P kR�k, the iterations shown in
(25) and (27) converge to the optimal solution.
Proof. Please see Appendix A.
Remark 4. The presented control in this paper deals with finite
horizon. As mentioned in (11) and (18), the value functions and

the costates are functions of the time, k̂. The time dependence of
the costates (or the value function) results in different weights at
different times. Therefore, the history the weights of the neural
network does not need to show a convergent behavior. This can
also be verified from the presentation of Algorithm 1 where the
convergence is required in the inner loop and not the outer loop.
In Algorithm 1, the inner loop deals with solving Eqs. (26) and
(28) iteratively. However, the outer loop only goes backward in
the time to perform the recursions.
Remark 5. Once the training is concluded, one needs to find the
optimal switching times from the costates for a selected initial
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condition x0 2 X. Three methods are suggested below to find the
optimal switching times from the optimal costates.

� – Method 1: propagating the states analytically along the opti-
mal policy by treating switching time as a parameter and find-
ing the optimal cost-to-go from the cost function. Once done,
one can use constrained minimization methods to find switch-
ing times.

� – Method 2: integrating the costate analytically to find the
value function. Similar to finding the velocity field from poten-
tial flow in fluid mechanics, one can integrate the costates ana-
lytically to find the value functions. The convenient feature of
this method is that the analytical solutions provide the optimal
value function 8x0 2 X. In order words, one does not need to
integrate the costates again when the initial condition is chan-
ged. However, this method becomes very complicated as the
order of system increases. Therefore, Method 2 is more suitable
for systems with low order dynamics.

� – Method 3: propagating the states along all possible switching
times and find the optimal cost to go for all possible switching
times. Once done, choose the switching times which lead to the
minimum value function. Method 3 is similar to the forward
dynamic programming method and when the number of
switching increases, performing this method might become
time-consuming.

4. Single loop SNAC solution

In this section, a new algorithm is introduced which uses imma-
ture policies to derive the optimal control solution. In Algorithm 1,
an inner loop was introduced in step 3 to step 7. The purpose of
this inner loop is finding the parameters of the function approxi-
mator to predict the costates. As mentioned in Algorithm 1, steps
3 to 7 are repeated until the iterations converge, i.e., the

kcWiþ1
k̂

�cWi
k̂
k becomes smaller than a selected convergence toler-

ance c. Therefore, neglecting the inner loop results in generation
of immature policies. In the Algorithm 2, the inner loop in step 3
to step 7 of Algorithm 1 is eliminated. By eliminating the inner
loop, the overall training process can be performed faster. In what
follows, we discuss the effect of eliminating the inner loop in Algo-
rithm 1.

Theorem 2. The error between the states propagated along policies
generated by Algorithm 1 and Algorithm 2 is bounded.
Proof. Please see Appendix B.

Algorithm 2: Single Loop SNAC Solution



Fig. 1. Flowchart of Algorithm 1.
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Fig. 2. The history of the weights of the neural network to approximate costates.
Training was conducted by Algorithm 1. The switching time is denoted at t̂ ¼ 1.
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Fig. 3. The history of the weights of the neural network trained with Algorithm 2.
Similar to Fig. 2, the jump at t̂ ¼ 1 shows the switching at this time.

T. Sardarmehni and X. Song Neurocomputing 420 (2021) 197–209
5. Numerical simulations

Consider a switched system comprised of 3 modes as follows.

_x tð Þ ¼ x2 tð Þ
1� x21 tð Þ� �

x2 tð Þ � x1 tð Þ þ u tð Þ

(
ð29Þ

_x tð Þ ¼ x2 tð Þ
2x1 � x2 þ u tð Þ

�
ð30Þ

_x tð Þ ¼ x2 tð Þ
x21 � x22 þ u tð Þ

�
ð31Þ

Eqs. (29)–(31) indicate mode 1, mode 2, and mode 3, respectively.
Also, consider two different mode sequences as
202
C1 ¼ mode 1; mode 2f g, and C2 ¼ mode 1; mode 2; mode 3f g. It can
be seen that C1has only one switching, and C2 has two switchings.
At last, the dynamics of the reference signal can be represented as a
function of time or a function of states. The dynamics of the time-
based reference signal was selected as

_r1 tð Þ ¼ sin ptð Þ
_r2 tð Þ ¼ p cos ptð Þ ð32Þ

Also, the state-based reference signal was selected as

_r1 tð Þ ¼ �r1 tð Þ
_r2 tð Þ ¼ �r2 tð Þ ð33Þ
5.1. One switching

5.1.1. Time-based reference signal

Considering the mode sequence as C1, it is desired to find the
optimal switching time t1, and the optimal policies such that the

system tracks (32). Selecting S ¼ diag 105;105
� �

;

Q ¼ diag 105;107
� �

;R ¼ 103, the discretization sample time

dt̂ ¼ 0:001, one starts the simulations.
For training, 1000 random training patterns were generated in

X ¼ t1; x1; x2ð Þj 0 6 t1 6 3; jx1j 6 4; jx2j 6 4f g. To approximate the
costates, a linear-in-parameter neural network with basis func-
tions comprised of polynomials with all possible combinations of
t1; x1, and x2 up to the power of 3 without repetition was selected.
The training for finding the optimal costates was concluded in
22.62 (s) using Algorithm 1 and only 7.52 (s) using Algorithm 2.
By analytically integrating the optimal costates at t̂ ¼ 0, the value
functions were found. Afterward, the value functions were evalu-
ated at x0 ¼ 1;�0:5½ �T to get the value functions with only one vari-
able as t1. Then, the value functions were minimized with respect
to the switching time, i.e., t1. Using the optimal costates trained by
Algorithms 1 and 2, the optimal switching time was found at
t1 ¼ 2:655 (s) and t1 ¼ 2:656 (s), respectively (see Fig. 1).

The histories of the weights of the neural networks used to
approximate the costates with Algorithms 1 and 2 are illustrated
in Figs. 2 and 3. As one can see from Figs. 2 and 3, the behavior
of the weights before and after the switching time, i.e., t̂ ¼ 1, is dif-
ferent. In fact a jumping behavior can be detected at the switching
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Fig. 5. The history of the weights of the neural network to approximate costates
trained by Algorithm 1 and the state-based reference signal.
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Fig. 6. The history of the weights of the neural network to approximate costates
trained by Algorithm 2 and the state-based reference signal.
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Fig. 7. Comparison among the state trajectories generated by controllers trained by
Algorithms 1 and 2.
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time in both Figs. 2 and 3. Such behavior is similar to what was
reported in [8].

At last, the performance of the controllers trained by Algorithms
1 and 2 are compared in Fig. 4. As one can see the performance of
the controllers are very similar which shows the effectiveness of
the methods discussed in this paper.

5.1.2. State-based reference signal
Similar to the previous section, consider the mode sequence as

C1. It is desired to find the optimal switching time t1, and the opti-
mal policies such that the system tracks (33). Selecting the state
and control penalizing matrices, and the discretization sample
time the same as the previous example, one starts the solution.

In this example, since the reference signal is a function of the
the states, the reference signal should be included in the costates.
The domain of training was chosen as X ¼ t1; x1; x2; r1; r2ð Þj0 <f
t1 < 3; jx1j 6 4; jx2j 6 4; jr1j 6 4; jr2j 6 4g. In order to approximate
the costates, a linear in parameter neural network with polynomial
basis functions comprised of t1; x1; x2; r1, and r2 up to the power of
4 without repetition was selected. Using Algorithms 1 and 2, the
training process concluded in 91.53 (s) and 30.94 (s), respectively.
The history of the weights of the neural networks used to approx-
imate the costates are shown in Figs. 5 and 6.

Once the training concluded, the optimal costates were inte-
grated analytically to find the optimal value functions. Evaluating
the value functions at x0 ¼ 1;�0:5½ �T and r0 ¼ 1;�1½ �T , the optimal
switching time was sought as t1 ¼ 2:50 for the controller trained
by Algorithm 1. The optimal switching time for the controller
trained by Algorithm 2 was t1 ¼ 2:433.

The history of the state trajectories using controllers trained by
Algorithms 1 and 2 are compared in Fig. 7. As one can see, both
controllers could effectively track the reference signal and the per-
formance of the controllers are close to each other.

5.2. Two switching

5.2.1. Time-based reference signal

Let the mode sequence be as C2. It is desired to find the optimal
switching times t1 and t2 such that the cost function in (2) is min-
imized and the system tracks the reference signal denoted in (32).
The penalizing parameters of the cost function are selected as

S ¼ diag 105;105
� �

;Q ¼ diag 105;107
� �

;R ¼ 103. Also, the dis-

cretization sample time was selected as dt̂ ¼ 0:001.
For training, 1000 random training patterns were generated in

X ¼ t1; t2; x1; x2ð Þj0 6 t1 6 t2 6 3; jx1j 6 4; jx2j 6 4f g. For approxi-
mating the costates, a linear in parameter neural network with
polynomial basis functions up to the power of 4 without repetition
was selected. The training process concluded in 85.59 (s) using
Algorithm 1 and only 18.5 (s) using Algorithm 2. The histories of
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Fig. 8. The history of the weights of the neural network to approximate costates
using Algorithm 1. The jumps at t̂ ¼ 1 and t̂ ¼ 2 show the switching at these times.
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Fig. 4. Comparison among the state trajectories generated by controllers trained by
Algorithms 1 and 2.
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weights of the neural networks for approximating the costates
using Algorithms 1 and 2 are shown in Figs. 8 and 9, respectively.

Once the training concluded, the optimal costates were used to
find the optimal switching times with a similar procedure that was
used in the previous example. Using Algorithm 1, the optimal
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Fig. 9. The history of the weights of the neural network to approximate costates
using Algorithm 2. The jumps at t̂ ¼ 1 and t̂ ¼ 2 show the switching at these times.
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Fig. 10. Comparison among the state trajectories propagated along the controls
generated by the ADP methods discussed in this paper.
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Fig. 13. Comparison among the state trajectories generated by controllers trained
by Algorithms 1 and 2.
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Fig. 11. The history of the weights of the neural network to approximate costates
trained by Algorithm 1 and the state-based reference signal.
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Fig. 14. Comparison of the performance of the controllers trained in Section 5.1.1
with DP.
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Fig. 12. The history of the weights of the neural network to approximate costates
trained by Algorithm 2 and the state-based reference signal.

T. Sardarmehni and X. Song Neurocomputing 420 (2021) 197–209
switching time instants were sought as t1 ¼ 2:72 (s) and t2 ¼ 2:78
(s). Also, using Algorithm 2, the optimal switching times were
sought as t1 ¼ 2:72 (s) and t2 ¼ 2:82 (s) which are close to the
results of using Algorithm 1.

At last, the controllers trained by Algorithms 1 and 2 were used
online to propagate the states. The performance of these con-
trollers are compared in Fig. 10. As one can see from Fig. 10, both
controllers have a very good performance in tracking the reference
signal and the performance of the controllers are close to each
other.

5.2.2. State-based reference signal

Considering the mode sequence as C2, the cost function as (2),
and the reference signal as (33), it is desired to find the optimal
switching times t1 and t2, and the optimal policy such that (2) is
minimized and the system tracks the reference signal.

Selecting the state/control penalizing matrices, and the
discretization sample time the same as the previous example,
one starts the simulations. The domain of training was selected
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as X ¼ t1; t2; x1; x2; r1; r2ð Þj0 < t1 < t2 < 3; jx1j 6 4; jx2j 6 4;f
jr1j 6 4; jr2j 6 4g. Using Algorithms 1 and 2, the training process
concluded in 92.8 (s) and 31.6 (s), respectively. The histories of
the weights of the neural networks trained by Algorithms 1 and
2 are shown in Figs. 11 and 12, respectively. Like the previous
examples, one can detect jumps at the switching instants.

Once the training concluded, the controllers trained by Algo-
rithms 1 and 2 were used for online control without re-training.
The optimal costates were first integrated at an initial condition
to find the value function as a function of switching times. Then,
the resulted value function was minimized with respect to the
switching times to find the optimal switching times. Using the
costates trained by Algorithm 1, the switching times were sought
as t1 ¼ 2:8 (s) and t2 ¼ 2:9 (s). The same switching times were
sought using the costates trained by Algorithm 2.

At last, the performance of the controllers trained by Algorithms
1 and 2 are compared in Figs. 13. As one can see from 13, both con-
trollers could track the desired trajectory and the performance of
the controllers are close to each other.
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5.3. Comparing with dynamic programming

In order to further evaluate the performance of the introduced
ADP methods, the performance of the controllers trained in Sec-
tion 5.1.1 is compared with that of a DP controller. To perform
DP, the quantizaion values were selected as
dx1 ¼ 0:1; dx2 ¼ 0:1; dt1 ¼ 0:05, and du ¼ 0:5. The discretization
sample time was selected as dt̂ ¼ 0:01 and it took 1286.8 (s) for
the DP to complete the solution. Once the solution concluded,
the optimal switching time was sought at t1 ¼ 2:56 (s) for the same
initial condition as used in the previous examples, i.e.,
x0 ¼ 1;�0:5½ �T . The history of the states are compared in Fig. 14.
As one can see from Fig. 14, the performance of the controllers
trained in this paper is very close to that of the DP one.

6. Conclusion

Optimal tracking in switched systems with fixed mode
sequence was studied in this paper. The main feature of the pro-
posed controller was using a transformation [7] to parametrize
the switching times and then incorporating the parametrization
in a Single Network Adaptive Critic (SNAC) [19] to find the optimal
costates. Afterward, the optimal switching times were sought
through constrained minimization for each initial condition once
the training was concluded. Also, to improve the speed of training,
a single loop SNAC controller was introduced, and the performance
of this controller was studied. At last, the performance of the pro-
posed controllers was evaluated through numerical simulations.

Some potential directions for future research are as follows. As
the first direction, the proposed method in this paper can be used
for optimal control of autonomous systems such as off-road vehi-
cles. Also, one can consider the application of fault tolerancing such
as the one reported in [35] to improve the performance of the sys-
tem in the occurrence of faults. At last, one can study the effect of
input constraints as studied in [36].
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Appendix A. Proof of Theorem 1

Proof: The proof is inspired by [19]. In order to start the proof,
one first considers the time step N0 � 1 ! N0. Considering (25),
one has

kiþ1
N0 xiþ1

N0
� � ¼ S xiN0 � rN0

� �
¼ S f vN0�1

xN0�1ð Þ þ gvN0�1
xN0�1ð Þ �RvN0�1

� ��1
�

�gT
vN0�1

xN0�1ð ÞkiN0 xiN0
� �� rN0

� ð34Þ
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Also, evaluating (25) at iteration i gives

kiN0 xiN0
� � ¼ S xi�1

N0 � rN0
� �

¼ S f vN0�1
xN0�1ð Þ þ gvN0�1

xN0�1ð Þ �RvN0�1

� ��1
�

�gT
vN0�1

xN0�1ð Þki�1
N0 xi�1

N0
� �� rN0

� ð35Þ

Subtracting (35) from (34), one can find kiþ1 � kias

kiþ1 � ki ¼ Sg xN0�1ð Þ �Rð Þ�1gT xN0�1ð Þ ki � ki�1
� �

ð36Þ

In (36), ki ¼ kiN0 xiN0
� �

; g xN0�1ð Þ ¼ gvN0�1
xN0�1ð Þ, and R ¼ RvN0�1

for nota-

tional simplicity. Letting eiþ1 ¼ kiþ1 � ki and ei ¼ ki � ki�1 in (36),
one has

eiþ1 ¼ Sg xN0�1ð Þ �Rð Þ�1gT xN0�1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a

ei ð37Þ

Applying norms leads

keiþ1k 6 kakkeik ð38Þ
In (38), one notes that kak ¼ q2

1kR�1k where q1 is an upper bound
for the smooth function kg :ð Þk in a compact set X. It can be seen that
the value of kak can be adjusted through choice of R. Hence, there
exists a control penalizing matrix R� such that for any R that
kRk > kR�k one has kak < 1. Therefore, one has keiþ1k < keik. As a
result, the sequence of keik resulted from the proposed iterations
forms a monotonically decreasing sequence which is bounded
below by 0 as

ke0k > ke1k > ke2k � � � > ke1k P 0 ð39Þ
The convergence of the sequence of keik can be concluded since any
lower bounded monotonically decreasing sequence converges [34].
Hence, keik ! 0 which means kiþ1 ! ki.

Depending on the discrete time index and the active mode, the

iteration iþ 1 for k̂ < N0 can be denoted by

kiþ1
k̂þ1

C; xiþ1
k̂þ1

; rk̂þ1

� �
¼

Qv k̂þ1
xi
k̂þ1

� rk̂þ1

� �
þ @xk̂þ2

@xk̂þ1

� �T
kk̂þ2 C; xi

k̂þ2
; rk̂þ2

� � ð40Þ

For the sake of notational simplicity, hereafter in this proof,

kik̂þ1 C; xi
k̂þ1

; rk̂þ1

� �
� kik̂þ1, and the sub-index for active mode, i.e.,

v k̂, is dropped in showing Q ; R; f :ð Þ, and g :ð Þ unless otherwise sta-
ted. Therefore, one has

kiþ1
k̂þ1

¼ Q xi
k̂þ1

� rk̂þ1

� �
þ @xk̂þ2

@xk̂þ1

 !T

kk̂þ2 xi
k̂þ2

� �
ð41Þ

In (41),

@xk̂þ2

@xk̂þ1

¼ @

@x
f xð Þ þ g xð Þu tð Þð Þjxi

k̂þ1

where xi
k̂þ1

¼ f xk̂
� �þ g xk̂

� � �Rð Þ�1gT xk̂
� �

kik̂þ1. Considering the gradi-

ent as a column vector, one can easily find @f :ð Þ
@x . Also, one has

@ g xð Þui tð Þ� �
@x

¼

@g1j
@x1

ui
j

@g2j
@x1

ui
j � � � @gnj

@x1
ui
j

@g1j
@x2

ui
j

@g2j
@x2

ui
j � � � @gnj

@x2
ui
j

..

. ..
. � � � ..

.

@g1j
@xn

ui
j

@g2j
@xn

ui
j � � � @gnj

@xn
ui
j

26666664

37777775 ð42Þ

In presenting (42), one used tensor notations to show the summa-
tions. Hence,
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@g�j
@x��

ui
j ¼

Xm
j¼1

@g�j
@x��

ui
j

where �and � � 2 1;2; . . . ;nf g. For notational simplicity, let us
denote all the elements in a row or a column of a matrix with :.
For instance, g 1;:ð Þ means all the elements in the first row of matrix
g :ð Þ. Similarly, g :;1ð Þdenotes all the elements in the first column of
matrix g :ð Þ. Using the above mentioned notation, one can rewrite
(42) as

@ g xi
k̂þ1

� �
ui
k̂þ1

� �
@xi

k̂þ1

¼

rg 1;:ð Þ xi
k̂þ1

� �
ui
k̂þ1

� �T
rg 2;:ð Þ xi

k̂þ1

� �
ui
k̂þ1

� �T
..
.

rg n;:ð Þ xi
k̂þ1

� �
ui
k̂þ1

� �T

26666666664

37777777775
ð43Þ

With the notations developed in (43), one can find kik̂þ1 and kiþ1
k̂þ1

.
From (41), one has
kiþ1
k̂þ1

¼ Q xi
k̂þ1

� rk̂þ1

� �

þ rf xi
k̂þ1

� �
þr g xi

k̂þ1

� �
ui
k̂þ1

Þ
� �T

kk̂þ2 xi
k̂þ2

� �
¼ Q xi

k̂þ1
� rk̂þ1

� �
þrT f xi

k̂þ1

� �
kk̂þ2 xi

k̂þ2

� �
þ

ui
k̂þ1

TrTg 1;:ð Þ xi
k̂þ1

� �
ui
k̂þ1

TrTg 2;:ð Þ xi
k̂þ1

� �
..
.

ui
k̂þ1

TrTg n;:ð Þ xi
k̂þ1

� �

266666664

377777775kk̂þ2 xi
k̂þ2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
!i
k̂þ1

0BBBBBBBBBBBBBB@

ð44Þ
Considering (44), substituting for ui
k̂þ1

T one has

!i
k̂þ1 ¼

kTk̂þ2 xi
k̂þ2

� �
g xi

k̂þ1

� �
�R�1
� �

rTg 1;:ð Þ xi
k̂þ1

� �
kTk̂þ2 xi

k̂þ2

� �
g xi

k̂þ1

� �
�R�1
� �

rTg 2;:ð Þ xi
k̂þ1

� �
..
.

kTk̂þ2 xi
k̂þ2

� �
g xi

k̂þ1

� �
�R�1
� �

rTg n;:ð Þ xi
k̂þ1

� �

266666664

377777775kk̂þ2 xi
k̂þ2

� �

ð45Þ
In order to further simplify the notations, consider Ki

1k̂þ1
as

Ki
1k̂þ1

¼

ki
T

k̂þ2g
i
k̂þ1

0 0 � � � 0

0 ki
T

k̂þ2g
i
k̂þ1

0 � � � 0

..

.

0 0 � � � 0 ki
T

k̂þ2g
i
k̂þ1

266666664

377777775 ð46Þ

where ki
T

k̂þ2g
i
k̂þ1

¼ ki
T

k̂þ2 xi
k̂þ2

� �
g xi

k̂þ1

� �
and 0 2 R1�m is a matrix of all

elements zeros. Similarly, consider Ki
2k̂þ1
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Ki
2k̂þ1

¼

�R�1 0½ � 0½ � � � � 0½ �
0½ � �R�1 0½ � � � � 0½ �
..
. ..

. ..
. ..

. ..
.

0½ � 0½ � � � � 0½ � �R�1

2666664

3777775 ð47Þ

where 0½ � is a m�m matrix with all elements as zeros. At last, con-

sider Ki
3k̂þ1

as

Ki
3k̂þ1

¼

rTg 1;:ð Þ xi
k̂þ1

� �
rTg 2;:ð Þ xi

k̂þ1

� �
..
.

rTg n;:ð Þ xi
k̂þ1

� �

266666664

377777775kk̂þ2 xi
k̂þ2

� �
ð48Þ

With (46)–(48), one can rewrite (44) as

kiþ1
k̂þ1

¼ Q xi
k̂þ1

� rk̂þ1

� �
þrT f xi

k̂þ1

� �
kk̂þ2 xi

k̂þ2

� �
þKi

1k̂þ1
Ki

2k̂þ1
Ki

3k̂þ1

ð49Þ
Similar to (49), one can perform the same calculations for kik̂þ1 as

kik̂þ1 ¼ Q xi�1
k̂þ1

� rk̂þ1

� �
þrT f xi�1

k̂þ1

� �
kk̂þ2 xi�1

k̂þ2

� �
þKi�1

1k̂þ1
Ki�1

2k̂þ1
Ki�1

3k̂þ1

ð50Þ

Subtracting (50) from (49), one has

kiþ1
k̂þ1

�kik̂þ1 ¼ Q xi
k̂þ1

� xi�1
k̂þ1

� �
þ rT f xi

k̂þ1

� �
kk̂þ2 xi

k̂þ2

� �
�rT f xi�1

k̂þ1

� �
kk̂þ2 xi�1

k̂þ2

� �� �
þ Ki

1k̂þ1
Ki

2k̂þ1
Ki

3k̂þ1
�Ki�1

1k̂þ1
Ki�1

2k̂þ1
Ki�1

3k̂þ1

� � ð51Þ

In (50), one notes that Ki
2k̂þ1

¼ Ki�1
2k̂þ1

which is not dependent to the

iterations. Hence, one can consider Ki
2k̂þ1

¼ Ki�1
2k̂þ1

� K2k̂þ1
. To con-

tinue the proof, consider the following algebraic equation with
A1; B; C1; A2; B2 being matrices of the same dimensions as

Ki
1k̂þ1

; K2k̂þ1
; Ki

3k̂þ1
;Ki�1

1k̂þ1
; Ki�1

3k̂þ1

A1BC1 � A2BC2 ¼ A1 � A2ð ÞBC1 þ A2B C1 � C2ð Þ ð52Þ
Using (52) in (50), one has
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kiþ1
k̂þ1

� kik̂þ1 ¼ Q xi
k̂þ1

� xi�1
k̂þ1

� �
þ rT f xi

k̂þ1

� �
kk̂þ2 xi

k̂þ2

� �
�rT f xi�1

k̂þ1

� �
kk̂þ2 xi�1

k̂þ2

� �� �
þ Ki

1k̂þ1
�Ki�1

1k̂þ1

� �
K2k̂þ1

Ki
3k̂þ1

þKi�1
1k̂þ1

K2k̂þ1
Ki

3k̂þ1
�Ki�1

3k̂þ1

� �
ð53Þ

Similar to (38), one is interested to find a monotonic behavior in the
iterations. Therefore, By taking the norm of (53), through some
algebraic manipulations one has

kkiþ1
k̂þ1

� kik̂þ1k 6 kQkk xi
k̂þ1

� xi�1
k̂þ1

� �
k

þkrT f xi
k̂þ1

� �
kk̂þ2 xi

k̂þ2

� �
�rT f xi�1

k̂þ1

� �
kk̂þ2 xi�1

k̂þ2

� �
k

þk Ki
1k̂þ1

�Ki�1
1k̂þ1

� �
kkK2k̂þ1

kkKi
3k̂þ1

k

þkKi�1
1k̂þ1

kkK2k̂þ1
kk Ki

3k̂þ1
�Ki�1

3k̂þ1

� �
k

ð54Þ

By Assumption, the value functions are smooth. This results in
smoothness of the costates, i.e., kk̂þ2 :ð Þ. Also, smoothness of f :ð Þ
leads to smoothness ofrf :ð Þ. Furthermore, smoothness of g :ð Þ along
with smoothness of f :ð Þ and the value functions lead to Lipschitz
continuity of rf :ð Þkk̂þ2 :ð Þ with Lipschitz constant of b1, Lipschitz

continuity of Ki
1k̂þ1

with Lipschitz constant of b2, and Lipschitz con-

tinuity of Ki
3k̂þ1

with Lipschitz constant of b3. In addition, one notes

that the smoothness of g :ð Þ;Ki
1k̂þ1

and Ki
3k̂þ1

leads to boundedness

in the compact region X. Therefore, one has

kg :ð Þk 6 q1; kKi
1k̂þ1

k 6 q2, and kKi
3k̂þ1

k 6 q3. Also, it is straightfor-

ward to see that kKi
2k̂þ1

k 6 nkR�1k. Therefore, one has

kkiþ1
k̂þ1

� kik̂þ1k 6 kQkk xi
k̂þ1

� xi�1
k̂þ1

� �
k

þb1k xi
k̂þ1

� xi�1
k̂þ1

� �
k

þnq3b2kR�1kk xi
k̂þ1

� xi�1
k̂þ1

� �
k

þnq2b3kR�1kk xi
k̂þ1

� xi�1
k̂þ1

� �
k

ð55Þ

Considering (55), one notes that

k xi
k̂þ1

� xi�1
k̂þ1

� �
k 6 kg xk̂

� �k2kR�1kkkik̂þ1 � ki�1
k̂þ1k

6 q2
1kR�1kkkik̂þ1 � ki�1

k̂þ1k
ð56Þ

Using (56) in (55), one has

kkiþ1
k̂þ1

� kik̂þ1k 6 kQk þ b1ð
þ nq3b2 þ nq2b3ð ÞkR�1k

�
q2

1kR�1kkkik̂þ1 � ki�1
k̂þ1k

6 a1kkik̂þ1 � ki�1
k̂þ1k

ð57Þ

Letting eiþ1 ¼ kiþ1
k̂þ1

� kik̂þ1 and ei ¼ kik̂þ1 � ki�1
k̂þ1, one has

keiþ1k 6 a1keik ð58Þ

Considering the boundedness of a1, it is easy to see that keik in (58)
forms a monotonically decreasing sequence by the correct choice of
R. Therefore, using the same discussion in the first part of the proof,
the convergence of keiks to zero can be concluded.

Consider k1k̂ as i ! 1. We can find the policy u1
k̂

using k1k̂ and

(16). Also, let V1
k̂ as the integral of k1k̂ along trajectory resulted

from using policy u1
k̂
. One can see that the pair V1

k̂ and u1
k̂

solve
(14). Due to uniqueness of the HJB equation [37], it can be
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deducted that V1
k̂ and u1

k̂
are the optimal value function and the

optimal policy. Hence, k1k̂ is the optimal costate. �.

Appendix B. Proof of Theorem 2

Proof: Let the costates generated by Algorithm 1 be denoted by
k1k̂þ1 :ð Þ and the costates generated by Algorithm 2 be represented as

k1k̂þ1. Considering xk̂, one can denote the states propagated along

k1k̂þ1 :ð Þ and k1k̂þ1 as

x1
k̂þ1

¼ f xk̂
� �þ g xk̂

� � �Rð Þ�1gT xk̂
� �

k1k̂þ1 ð59Þ
x1
k̂þ1

¼ f xk̂
� �þ g xk̂

� � �Rð Þ�1gT xk̂
� �

k1k̂þ1 ð60Þ

Subtracting (60) from (59), at each time instant k̂ one has

x1
k̂þ1

� x1
k̂þ1

¼ g xk̂
� � �Rð Þ�1gT xk̂

� �
k1k̂þ1 � k1k̂þ1

� �
ð61Þ

Considering time instant k̂ ¼ N0 � 1, one has

x1N0 � x1N0 ¼ g xN0�1ð Þ �Rð Þ�1gT xN0�1ð Þ k1N0 � k1N0
� � ð62Þ

Substituting for k1N0 and k1N0 , one has

x1N0 � x1N0 ¼ g xN0�1ð Þ �Rð Þ�1gT xN0�1ð Þ
� S f xN0�1ð Þ þ g xN0�1ð Þ �Rð Þ�1gT xN0�1ð Þk1N0 � rN0

� ��
�S f xN0�1ð Þ þ g xN0�1ð Þ �Rð Þ�1gT xN0�1ð Þk0N0 � rN0
� �� ð63Þ

After some algebraic manipulations, one has

x1N0 � x1N0 ¼ g xN0�1ð Þ �Rð Þ�1gT xN0�1ð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

�S g xN0�1ð Þ �Rð Þ�1gT xN0�1ð Þ k1N0 � k0N0
� � ¼ WSW k1N0 � k0N0

� �� ð64Þ

Considering the right-hand side of (64), one has

x1N0 � x1N0 ¼ WSW k1N0 � k0N0
� �

¼ WSW k1N0 � k1�1
N0 þ k1�1

N0 � � � � � k2N0 þ k1N0 � k0N0
� � ð65Þ

Letting eiþ1
N0 ¼ kiþ1

N0 � kiN0 , one can re-write (65) as

x1N0 � x1N0 ¼ WSW e1�1
N0 þ e1�2

N0 þ � � � þ e2N0 þ e1N0
� � ð66Þ

Applying norms on (66), after some algebraic manipulations one
has

kx1N0 � x1N0 k 6 kWk2kSk
� ke1�1

N0 k þ ke1�2
N0 k þ � � � þ ke2N0 k þ ke1N0 k

� � ð67Þ

As shown in the proof of Theorem 1, the sequence of keiN0 k is mono-

tonically decreasing with keiþ1
N0 k 6 kakkeiN0 k where kak < 1. There-

fore, (67) leads

kx1N0 � x1N0 k 6
kWk2kSk ke1N0 k þ ake1N0 k þ a2ke1N0 k þ � � � þ a1ke1N0 k

� �
6 kWk2kSkke1N0 k 1þ aþ a2 þ � � � þ a1� � ð68Þ

In (68), since kak < 1, the series form a geometric series which con-
verges to 1

1�kak. As a result, one has

kx1N0 � x1N0 k 6 kWk2kSkke1N0 k 1
1�kak

6 q4
1kR�1k2kSkke1N0 k 1

1�kak
ð69Þ
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In (69), q1 is an upper bound for g :ð Þ in a compact set of training X.
It is straightforward to see that ke1N0�1k is bounded. Hence, the mag-
nitude of the error can become small as kRk increases.

For the rest of times k̂, consider (59), (60) and (62). For

k̂ < N0 � 1, one has

x1
k̂þ1

� x1
k̂þ1

¼ g xk̂
� � �Rð Þ�1gT xk̂

� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W

k1k̂þ1 � k1k̂þ1

� �
¼ W Q f xk̂

� �þ g xk̂
� � �Rð Þ�1gT xk̂

� �
k1k̂þ1 � rk̂þ1

� ��
þ @xk̂þ2

@xk̂þ1
jx1

k̂þ1
kk̂þ2 x1

k̂þ2

� �
�Q f xk̂

� �þ g xk̂
� � �Rð Þ�1gT xk̂

� �
k0k̂þ1 � rk̂þ1

� �
� @xk̂þ2

@xk̂þ1
jx0

k̂þ1
kk̂þ2 x0

k̂þ2

� ��
ð70Þ

After some algebraic manipulations, one has

x1
k̂þ1

� x1
k̂þ1

¼ WQW k1k̂þ1 � k0k̂þ1

� �
þW rf x1

k̂þ1

� �
kk̂þ2 x1

k̂þ2

� �
�rf x0

k̂þ1

� �
kk̂þ2 x0

k̂þ2

� �� �
þW K1

1k̂þ1
K1

2k̂þ1
K1

3k̂þ1
�K0

1k̂þ1
K0

2k̂þ1
K0

3k̂þ1

� � ð71Þ

In (71), K�
1k̂þ1

;K�
2k̂þ1

and K�
3k̂þ1

were introduced in (46)–(48), respec-

tively. Applying norms on (71) leads

kx1
k̂þ1

� x1
k̂þ1

k 6 kWQWkkk1k̂þ1 � k0k̂þ1k
þkWkkrf x1

k̂þ1

� �
kk̂þ2 x1

k̂þ1

� �
�rf x0

k̂þ1

� �
kk̂þ2 x0

k̂þ1

� �
k

þkWkkK1
1k̂þ1

K1
2k̂þ1

K1
3k̂þ1

�K0
1k̂þ1

K0
2k̂þ1

K0
3k̂þ1

k
ð72Þ

Following the same procedure as explained in Eqs. (52)–(56), (58),
(53)–(56), (58), (58), through some algebraic manipulations one has

kx1
k̂þ1

� x1
k̂þ1

k 6 q4
1kQkkR�1k2 þ b1q2

1kR�1k
�

þq4
1nkR�1k3 q3b2 þ q2b3ð Þ

�
kk1k̂þ1 � k0k̂þ1k

6 a2kk1k̂þ1 � k0k̂þ1k

ð73Þ

Letting eiþ1
k̂þ1

¼ kiþ1
k̂þ1

� kik̂þ1, by similar procedure used in (65)–(67),

one can use (58) to derive

kx1
k̂þ1

� x1
k̂þ1

k 6 a2kk1k̂þ1 � k0k̂þ1k
6 a2ke1k̂þ1

k 1
1�ka1k

ð74Þ

In (74), a2 becomes arbitrary small by a correct choice of R.
Eqs. (69) and (74) show that the error between the states prop-

agated for one time step along controllers trained by Algorithm 1
and Algorithm 2 is bounded. To derive such relations, it was

assumed that the states propagated from time k̂ to time k̂þ 1 are

initiated from the same values at time k̂. To further continue the

proof, consider time step k̂ ¼ 0 to k̂ ¼ 1. Considering (74), one
can deduct the boundedness of d ¼ x11 � x11which can become arbi-
trary small by the choice of R. Also, one notes that x11 ¼ x11 þ d.

Now, consider time step k̂ ¼ 1 to k̂ ¼ 2. It follows

x12 ¼f x11
� �þ g x11

� � �R�1gT x11
� �

k12 x12
� �� �

ð75Þ

x12 ¼f x11
� �þ g x11

� � �R�1gT x11
� �

k12 x12
� �� �

ð76Þ

Through some algebraic manipulations, one can write (75) as

x12 ¼ f x11 þ d
� �þ g x11 þ d

� � �R�1gT x11 þ d
� �

k12 x12
� �� �

ð77Þ
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Subtracting (76) from (77) one has

x12 � x12 ¼ f x11 þ d
� �� f x11

� �
þg x11 þ d
� � �R�1gT x11 þ d

� �
k12 x12
� �� �

�g x11
� � �R�1gT x11

� �
k12 x12
� �� � ð78Þ

Applying norms on both sides of (78), after some algebraic manip-
ulations one has

kx12 � x12k 6 kf x11 þ d
� �� f x11

� �k
þkg x11 þ d

� �
R�1gT x11 þ d

� �
k12 x12
� �

�g x11
� �

R�1gT x11
� �

k12 x12
� �k ð79Þ

Considering w1 ¼ g x11 þ d
� �

R�1gT x11 þ d
� �

and w1 ¼ g x11
� �

R�1gT x11
� �

,
one has

w1k12 x12
� �� w1k12 x12

� � ¼
w1 � w1� �

k12 x12
� �þ w1 k12 x12

� �� k12 x12
� �� � ð80Þ

Applying norms on (80), one has

kw1k12 x12
� �� w1k12 x12

� �k 6
kw1 � w1kkk12 x12

� �k þ kw1kkk12 x12
� �� k12 x12

� �k ð81Þ

Through some algebraic manipulations, one has

w1 � w1 ¼ g x11 þ d
� �� g x11

� �� �
R�1gT x11 þ d

� �
þg x11
� �

R�1 g x11 þ d
� �� g x11

� �� �T ð82Þ

Applying norms on (82), through further algebraic manipulations
one has

kw1 � w1k ¼ 2b4q2
1kR�1kkdk ð83Þ

where b4 is selected as Lipschitz constant for g :ð Þ in X. Considering
kk12 x12

� �k 6 q4, it is easy to see that

kw1 � w1kkk12 x12
� �k 6 2b4q2

1q4kR�1kkdk. Also, considering the sec-
ond term on the right-hand side of (81) one has

kw1kkk12 x12
� �� k12 x12

� �k 6
q2

1kR�1kkk12 x12
� �� k12 x12

� �k 6
q2

1kR�1kkk12 x12
� �� k1�1

2 x1�1
2

� �þ k1�1
2 x1�1

2

� �� � � �
þk22 x22

� �� k12 x12
� �k 6 q2

1kR�1k kk12 x12
� �� k1�1

2 x1�1
2

� �k�
þkk1�1

2 x1�1
2

� �� k1�1
2 x1�1

2

� �k þ � � � þkk22 x22
� �� k12 x12

� �k�
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Considering (58), with a similar procedure used to derive (74), one
can re-write (84) as

kw1kkk12 x12
� �� k12 x12

� �k 6
q2

1kR�1kkk22 x22
� �� k12 x12

� �k 1
1�ka1k

ð85Þ

Using (83) and (85) in (79) along Lipschitz assumption of f :ð Þ leads

kx12 � x12k 6 b1kdk þ 2b4q2
1q4kR�1kkdk

þq2
1kR�1kkk22 x22

� �� k12 x12
� �k 1

1�ka1k
ð86Þ

It can be seen that all the terms on the right hand side of (86) can
become arbitrary small by the choice of R. Also, kdk in the first term
on the right-hand side of (86) can be calculated from (74) in which
a2 can become small through the choice of R.

With similar procedure, one can find the error for the rest of
times. Since the time horizon is finite, such bounds for the error
complete the proof. �.
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