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1. Introduction
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Cost-effective phenotyping methods are urgently needed to advance crop genetics in order to meet the food, fuel, and fiber demands of
the coming decades. Concretely, characterizing plot level traits in fields is of particular interest. Recent developments in high-
resolution imaging sensors for UAS (unmanned aerial systems) focused on collecting detailed phenotypic measurements are a
potential solution. We introduce canopy roughness as a new plant plot-level trait. We tested its usability with soybean by optical
data collected from UAS to estimate biomass. We validate canopy roughness on a panel of 108 soybean [Glycine max (L.) Merr.]
recombinant inbred lines in a multienvironment trial during the R2 growth stage. A senseFly eBee UAS platform obtained aerial
images with a senseFly S.0.D.A. compact digital camera. Using a structure from motion (SfM) technique, we reconstructed 3D
point clouds of the soybean experiment. A novel pipeline for feature extraction was developed to compute canopy roughness from
point clouds. We used regression analysis to correlate canopy roughness with field-measured aboveground biomass (AGB) with a
leave-one-out cross-validation. Overall, our models achieved a coefficient of determination (R?) greater than 0.5 in all trials.
Moreover, we found that canopy roughness has the ability to discern AGB variations among different genotypes. Our test trials
demonstrate the potential of canopy roughness as a reliable trait for high-throughput phenotyping to estimate AGB. As such,
canopy roughness provides practical information to breeders in order to select phenotypes on the basis of UAS data.

unmanned aerial sensing (UAS) became a highlighted tool
in plant phenotyping [4]. The easy control and operation of
UAS in combination with improved accuracy, high temporal,

Solar radiation directly impacts crop growth by influencing
biophysical parameters such as canopy photosynthetic rate,
crop evapotranspiration, crop radiation capture, and water-
use efficiency [1]. The underlying hypothesis of our study
states that the morphological traits of the plant canopy are
associated with the canopy interaction with solar radiation.
Remote sensing has the capability to measure canopy
traits nondestructively in early growing stages, improving
data quality over manual trait measurements and reducing
time and cost for phenotyping [2, 3]. Over the last decade,

radiometric, and spatial resolution of the data acquired, plus
the possibility to fly them when soil conditions make fields
inaccessible has led to a growing user community. Yet, this
community needs automatic pipelines to fully exploit the
potential of UAS-collected data.

The next breakthrough in breeding efficiency is expected
to be highly dependent on automating the phenotyping pro-
cess to link the genotype to the phenotype using genomic and
phenotypic information throughout plant development [5].


https://orcid.org/0000-0002-4134-557X
https://orcid.org/0000-0002-1071-5355
https://orcid.org/0000-0003-0985-4443
https://doi.org/10.34133/2020/6735967

Plant Phenomics

Input data

Processing

Biomass estimation ]

UAS-based RGB imagery SfM algorithm

Field measurements
(i) AGB per plot
(i) GPS

Preprocessing of the point cloud:
(i) Georeferencing
(ii) Outlier removal

(iii) Height control

Regression model
(i) Canopy roughness
versus AGB per plot

Assessment
(i) Cross-validation

3D point cloud approach

Soil removal

K Point regularization

Original point cloud Green band threshold

Mesh reconstruction

k Sample point extraction

Plot & row extraction Canopy roughneb

0 i) Y el v [ o
IJT%T%I L
UTTEH II;{I\’ L

TP
TR

Distances to
fitting planes

Field map plot cropping

Connected component

J

F1GURE 1: Schematic overview of the developed pipeline to estimate AGB by the proposed canopy roughness trait by 3D point clouds coming
from RGB imagery. Canopy roughness by plot is calculated by a chain process once the point cloud of the study area is reached: (a)
regularizing the point quantity of the field point cloud, (b) soil removal trough a green band filter, (c) plot and, subsequently, row
extraction from the point cloud, and (d) computation of the canopy roughness using distances from points to best fitting plane.

For example, the characterization of quantitative traits from
agricultural plant populations at the plot level allows complex
phenotypes, such as yield, to be identified from RGB or hyper-
spectral imagery [6, 7]. These plant traits at the plot level recog-
nized by images can be used to detect genetic markers and
improve selection of highly efficient phenotypes. Therefore,
developing automatic data processing pipelines to obtain phe-
notypic traits with new technologies like UAS platforms directly
addresses the phenotypic bottleneck.

Aboveground biomass (AGB) of crops indicates the
physiological conditions of the plant, affecting management
decisions regarding crop productivity, fertilizer application,
and pest control, as well as being a critical variable for plant
phenotyping [5]. AGB is demarcated as a complex and mul-
tidimensional plant trait [8]. Recent studies reveal AGB’s
high correlation with point cloud-derived canopy volume
metrics [8-11]. Active light detection and ranging (LiDAR)
sensors have the capacity to penetrate and acquire 3D mea-
surements of the crop, allowing plant parameter estimations
[12-15]. However, the cost and weight of LIDAR sensors still
remain a disadvantage to overcome. In contrast, photogram-
metric passive sensors are lighter and less expensive. There-
fore, UAS equipped with photogrammetric sensors are a

cost-effective solution to collect plant canopy traits across a
wide wavelength range with high spatial resolution [16-24].
In addition, structure from motion (SfM) offers the possibil-
ity to obtain 3D point clouds on the basis of 2D images taken
from various viewpoints [25-27]. First, the view of each
image is automatically determined, and subsequently, 3D
coordinates are computed to get a dense and scaled point
cloud of the scene [28].

Our study introduces canopy roughness as a new plot
level trait that can be efficiently computed from UAS imaging
data for large numbers of plots. The presented pipeline was
tested in a multienvironmental soybean trial in Indiana
(USA), with high spatial resolution data coming from UAS-
based RGB imagery and field-measured AGB as ground
truth. As a result, we present canopy roughness as an indica-
tor for AGB that allows the selection of high performing phe-
notypes in large-scale plant breeding operations.

2. Materials and Methods

The schematic overview of the pipeline visualizes data of
RGB images and field measurements (Figure 1). The 3D
point clouds were generated with the SfM method. Using
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FIGURE 2: Test site locations in Indiana (left) and the setup of the soybean experiment with marked locations of each plot, height bars, and
GCPs (right). GCPs are used to properly georeference the point cloud, and height bars are used to adjust and check the altitude accuracy.

the 3D point clouds as input, we compute the canopy rough-
ness index per plot. In the statistical evaluation, we estimate
biomass from trend lines resulting from regression models
and assess estimates for robustness with a leave-one-out
cross-validation.

2.1. Experimental Setup. Experiments were carried out at two
locations in Indiana (USA) in 2018. Location 1 was at ACRE
(the Agronomy Center for Research and Education from
Purdue University) (40°28'20.5" N 86°59'32.3" W) and Loca-
tion 2 was at Romney (40°14'59.1"N 86°52'49.4" W), about
27 km north from Location 1. 108 recombinant inbred lines
from 32 families were planted. The panel includes lines from
three classes of families: 16 from elite parents, 12 with diverse
pedigrees, and four that are high-yielding under drought
conditions [29].

The soil of the soybean fields was a silt loam with a pH of
approx. 6.5. Both trials were planted at 2.5 cm depth in rows
0.76 m apart to a density of 35 seeds/m* on May 22™ for
Location 1 and on May 17™ for Location 2. Each individual
plot had 8 rows for a total of 108 plots. For the analysis, we
eliminated the border plants such that only 6 rows per plot
were analyzed. No fertilizers or herbicides for weed control
were applied. Absence of water stress and adequate nutri-
tional status in natural conditions during the growing season
was monitored by measuring the water balance following the
FAO 56 guide and soil analysis in the ACRE laboratory at
Purdue University [29].

Six GCPs (Ground Control Points) were placed on the
ground for correct scaling and georeferencing in both trials.
In addition, five height-fixed bars of equal length were ran-
domly placed over the study area to control for height accu-

racy. All accuracy targets had high reflection markers for easy
detection in the UAS images. Figure 2 shows the test site loca-
tion on the left and the experimental design on the right as an
orthomosaic computed from the UAS data.

2.2. Data Acquisition. Data was collected for the early pheno-
logical growth stage R2, in which rows are visually distin-
guishable in the aerial images. The R2 stage is characterized
by an open flower at one of the two uppermost nodes on
the main stem with a completely developed leaf.

First, we did a topographic survey using the accuracy tar-
gets in the study area (6 GCPs and 5 height-fixed bars) with a
Topcon GNSS device (Topcon corporation, Tokyo, Japan)
using Real-Time Kinematic [30] for georeferencing. The eBee
platform (senseFly, Lausanne, Switzerland) to collect imag-
ing data is a fixed-wing UAS with on-board GPS, IMU, and
magnetometer. The weight of the eBee is 700 g, and it carries
a payload of 150 g. The on-board digital camera is controlled
by the autopilot function during the flight. The senseFly
S.0.D.A. (senseFly, Lausanne, Switzerland) was used as the
photogrammetric sensor and has a focal length of 10.6 mm,
a pixel size of 3 um, and a sensor size of 116.2 mm” and pro-
duces images of 5742 x 3648 pixels.

Flight routes were planned and designed with the sense-
Fly software (senseFly, Lausanne, Switzerland). The software
calculates the flight strips, the camera orientation, and the
image acquisition parameters for the autonomous flying
mode. The photogrammetric flight configuration was set up
with an along- and across-track overlap of 75%. The senseFly
software estimated a flight altitude of 95m for the required
ground sample distance (2.54 cm). A total of 189 images for
Location 1 and 142 images for Location 2 were obtained as
an input to compute the 3D point cloud. The exposure time
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TaBLE 1: Statistics of AGB field measurements per plot: location (site), date of AGB measurements (DAP), number of plots where AGB was
collected (# plots), mean AGB (g/mz) (mean), median AGB (g/mz) (median), standard deviation based on the mean (g/mz) (std), minimum

AGB (g/mz) (min), maximum AGB (g/mz) (max), kurtosis coeflicient (kurtosis), and skewness coefficient (skewness).

Site DAP # plots Mean Median std Min Max Kurtosis Skewness
1 48 106 150.30 148.10 42.31 10.45 251.62 0.52 -0.21
2 50 103 124.62 126.29 35.09 35.92 230.92 0.90 0.19

was fixed at 1/1000 sec with ISO (the International Organiza-
tion of Standardization) 125 for both flights. The UAS col-
lected imaging data at 43 DAP (day after planting) (July
4™) for Location 1 and at 46 DAP (July 2™9) for Location
2. The acquisition time for both flight campaigns was noon,
due to the sun lighting conditions, minimizing the shadows
captured by nadir images.

We collected AGB samples per plot at 48 DAP (July 9thy
at Location 1 and 50 DAP (July 6™) at Location 2, by cutting
all the stems at a 1-meter distance in each of two neighboring
rows, roughly 2cm above the ground. These samples were
processed in a drying oven at 60.0°C until the weights stabi-
lized; they were then weighed and analyzed by plot. Table 1
represents the AGB data per plot reached in these conditions
(Locations 1 and 2).

2.3. Processing of Aerial Data. UAS images were processed
with the Pix4Dmapper software package (Pix4D SA, Lau-
sanne, Switzerland) to georeference aerial images. The soft-
ware output also includes the camera calibration, image
orientation, and dense point cloud extraction. The software
employs the GCPs’ measurements to retrieve the camera’s
interior parameters and corrects for any systematic error or
block deformation. As a result, point clouds are accurately
georeferenced to the earth reference system World Geodetic
System 84, specifying the error in this process.

From our experience, the automatically generated point
clouds are likely to contain outlier points. Therefore, we
implemented an outlier removal routine implemented in
C++ using Point Cloud Library (PCL) [31], compiled
and run on the Ubuntu 14.04 64-bit operating system, tak-
ing a 20-point neighborhood of each point into account.
We remove all points that are more than 3 times the stan-
dard deviation away from the mean of the Gaussian distri-
bution of all pairwise distances in the neighborhood [32].
Secondly, the distance to the underlying surface is ana-
lyzed by locally fitting a plane to the 20-point neighbor-
hood. Again, the threshold to remove a point is set to 3
times the standard deviation from the mean of the Gauss-
ian distribution of the point distances to the fitted plane.
After completing the two outlier removal procedures, we
identify the five height-fixed bars randomly placed within
the point cloud. These bars were measured by the GNSS
device, to easily locate them and in order to adjust the
measured height to the z-coordinate (elevation) of the bars
manually extracted from the point cloud.

2.3.1. Regularizing the 3D Point Cloud. 3D reconstruction
from images typically generates point cloud datasets of vary-
ing point densities with frequent holes. The explication is

that the accuracy of the depth map per image is dependent
on the density and distribution of feature points used to align
the images. To solve this issue, we regularize the point density
in order not to influence the shape of the canopy surface used
in the next calculations. To do that, we compute a mesh from
the point cloud with the 3D Delaunay triangulation algo-
rithm [33]. Once the mesh is computed, meshing gaps are
repaired using planar triangulation [34] followed by smooth-
ing of the mesh using a Laplacian filter to a 10cm radius
around user selected locations [35]. Next, randomly sampled
points over the mesh are extracted by fixing a desired density
(500 points/m?) and obtaining a restored point cloud. We
then apply Dart Throwing Poisson Disk sampling to the
point cloud to make the points appear more uniform by cul-
ling those points that are close to a randomly selected point
[36]. In this step, a threshold based on Euclidean distance
between points of 1 cm is set. After this process, a significant
reduction of points is achieved because the Poisson subsam-
pling approach considers the local point distribution. This
method retains key elements of the structure, preserving a
good amount of detail while significantly reducing the num-
ber of points, particularly on the ground plane. Thus, the reg-
ularized point cloud is achieved.

2.3.2. Soil Removal from the 3D Point Cloud. We imple-
mented a radiometric classification to separate the vegetation
from the ground that exploits the information contained in
the visible spectrum of the UAS images. In doing so, each
point of the point cloud is labeled with the average color from
the pixels of all images contributing to the reconstruction of
the point during the SfM process considering the viewing
angle. To analyze the colored point cloud, we set a cut-off
in the green band of 115 in an 8-bit scale to automatically
classify vegetation and soil, tested by a visual inspection.
The cut-off is derived from the physical characteristics of
the sensor configuration, the light conditions, the crop type,
and the phenological state of the vegetation.

2.3.3. Plot and Row Segmentation. We used rapidlasso LAS-
tools [37] to crop out each plot from the point cloud, specif-
ically the tool named “lasclip” using the SHP file already
generated based on the field map. Once the plots are
extracted, the rows within the plot are defined by the con-
nected component labeling algorithm. For that, the space is
divided into a regular 3D grid of 0.15 m step. Thus, every sin-
gle point is inside this grid. Labels are assigned based on their
grid neighborhood connectivity. Clusters formed by few
points are removed (50 points in this case), considered as
they cannot represent a homogeneous growth of the soybean
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plants. Therefore, the method to extract individual rows con-
sists of a discretization of the point cloud through a 3D grid.

2.3.4. Canopy Roughness. We introduce canopy roughness as
a new trait for crop phenotyping. Canopy roughness is a
numerical value which characterizes the irregularities of the
canopy surface measured by high resolution 3D point clouds
coming from RGB imagery acquired by UAS. We compute
canopy roughness for each preprocessed plot in two steps:

(i) We estimate the point roughness as the Euclidean dis-
tance between each point and the best fitting plane of
the neighbors circumscribed by a sphere of a user
defined radius (0.10m in this case). The roughness
per point is measured in meters

(i) We calculate canopy roughness at the plot level from
the interquartile range and the median of the point
roughnesses of all points (Equation (1)).

CR = IQR™, (1)

where CR is the canopy roughness at plot level, med
is the median, and IQR is the interquartile range of
the roughness values from all the points within the
plot. Canopy roughness is measured in m” and repre-
sents the distribution of point roughness

Equation (1) is derived from the best empiric correlation
with AGB.

2.4. Biomass Estimation. Regression models that correlate CR
and AGB on the plot level were analyzed. A leave-one-out
cross-validation (LOOCV) was chosen to evaluate the model
estimation strength to minimize potential overfitting and
allow for accurate and unbiased assessment [38]. To accu-
rately and robustly analyze the regression model, several sta-
tistical metrics were calculated, in particular, the coeflicient
of determination (R*) and the p value. In addition, the root
mean square error (RMSE), the relative RMSE (RRMSE),
the average systematic error (ASE), and the mean percent
standard error (MPSE) were calculated. These metrics were
computed as follow:

2

RMSE = Z?:l (xlr - foGB) (2)
n bl
RMSE
RRMSE = 100  ———, (3)
XAGB
nooi i
Asg= 100, ZM, (4)
n 01 Xacs
100 &b —xop
MPSE = —— »x Y |°r_"AGB| (5)
h ol Xacs

where x' is the canopy rougliness of the i™ plot, x/, 5 is the
measured AGB within the i plot, X,y is the mean of the

measured AGB per plots, and # is the number of plots in
the testing dataset.

3. Experimental Results

Canopy roughness was computed for the two trial locations.
The 3D point clouds of the field experiments were obtained
with a georeferencing mean RMSE error of 1.1cm (Location
1) and 1.7 cm (Location 2), using the GNSS measurements of
the six GCPs per location. Our processing pipeline achieved a
spatial resolution of more than 700 points per m” for Location
1 and more than 1,100 points per m” for Location 2. This nota-
ble difference in the number of points between the two locations
is due to the Pix4D settings for the dense point cloud extraction
step, optimal point density for Location 1 and high point den-
sity for Location 2. After performing outlier removal, the
point clouds contained 2,177,801 points (Location 1) and
3,501,126 points (Location 2). Next, the elevation of the
point cloud was adjusted using the z-coordinate of the five
reference height bars measured by GNSS. The adjustment
resulted in a height error of less than 2.11cm and
1.97cm for both locations, respectively.

We first regularize the point cloud density by computing
and repairing the 3D mesh from the original point cloud. The
regularized point cloud is obtained by sampling points over
the mesh, setting a value of 500 points/m?” This value is
selected as a compromise between the computational cost
and the irregularities on the crop surface. Now, by the Dart
Throwing Poisson Disk method, we sample the point cloud
by setting a minimum Euclidean distance between points of
1 cm. This value gives us enough detail of the crop surface.
In the next stage, the point cloud is classified into vegetation
and ground using a threshold on the green band of a value of
115 in an 8-bit scale. To evaluate the performance of the final
classification, 1,000 independent points were randomly
selected and manually checked. The overall accuracy of the
classification was higher than 99.68%, and the Kappa coefli-
cient was higher than 0.996 for both locations. These valida-
tion metrics indicate that incorrectly classified points have
insignificant influence on the estimated trait. 243,608 points
were classified as soybean plants (including flower points)
from a total of 791,572 points (30.8%) for Location 1
and 323.859 from a total of 962.317 points (33.6%) for
Location 2. After the classification, plots and rows were
extracted using a 3D grid step less than 0.150 m. Compo-
nents with less than 50 points were omitted. Next, we
computed point roughness as the distance to the best fit-
ting plane within a sphere radius of 0.10m for all soybean
points within each row (the extreme rows from each plot
are eliminated in order to avoid border effects). Following,
canopy roughness per plot is computed according to
Equation (1). Figure 3 illustrates the point cloud process-
ing results of each step of the pipeline on an example plot.

After computing canopy roughness per plot, univariate
regression models to estimate AGB from canopy roughness
at a plot level were derived. The error metrics associated with
the regression analysis at a significance level of 0.05 for a two-
tailed Gaussian distribution are shown in Table 2. A total of
10 and 17 outliers from plot-level canopy roughness were
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TaBLE 2: Validation statistics of univariate regression models for AGB estimation (significance at 0.05 level (2-tailed)) by canopy roughness at
the two locations (the best model per experimental test site is highlighted in boldface).

Site Model R RMSE (g/m?) RRMSE (%) ASE (%) MPSE (%)
Linear y=3187.2x — 2938.3 0.506 26.273 16.74 3.19 14.73
Power y =274.22x7006! 0.488 26.468 16.87 1.58 14.37
1 Exponential y=3E - 07E*62 0.487 26.853 17.11 -0.26 14.15
Polynomial y=2764x" — 2189x — 324.27 0.506 26.272 16.74 3.15 14.72
Logarithmic ¥ =3099.3In(x) + 247.71 0.506 26.274 16.74 3.13 14.72
Linear y=-1705.5x +1751.2 0.502 16.706 13.28 2.08 11.86
Power y=60.331x""4%7 0.531 16.736 13.31 1.04 11.84
2 Exponential y=3E + 08¢ > 0.531 19.129 15.21 -5.65 12.62
Polynomial y=7886.9x* — 16844x + 9114.6 0.503 16.691 13.27 2.12 11.90
Logarithmic y=-1637 In (x) + 46.94 0.502 16.703 13.28 2.05 11.86

R2: coefficient of determination; RMSE: root mean square error; RRMSE: relative RMSE; ASE: average systematic error; MPSE: mean percent standard error.

detected for Locations 1 and 2, respectively, reaching a max-
imum standard residual of -1.98 and 1.99 at each location.
The best model from each location is compared with corre-
sponding measured values using a 1:1 scatterplot
(Figure 4), ending up with a p value < 0.001 for both
locations.

The LOOCV method excluded one sample per trial to
determine the model and used all other samples for comput-
ing the model in both trials. Table 2 summarizes the error
metrics (Equations (2)-(5)) as averages of 106 plots for Loca-

tion 1 and 103 plots for Location 2 where the plants are grown
properly, from which the best model per site was selected.
The robustness of the proposed methodology for AGB
estimation was evaluated by soybean genotype. Figure 5
and Table 3 present an analysis of the genotype dependency
of our AGB estimations. Error metrics were grouped by
genotypes. With these results, we affirm that the best biomass
prediction was found for genotype PI437169B. The weakest
predictive strength for biomass was found for genotype
LG94-1906. The best site-independent prediction was made
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FIGURE 5: Errors (%) for AGB estimation grouped by genotype at Location 1 (a) and Location 2 (b).

for genotype LG04-6000, which showed consistent results at
both experimental sites. This means that genotype LG04-
6000 shows overall less influence of gene * environment
interaction in our model. Therefore, the proposed new trait
(canopy roughness) confirms efficacy to characterize AGB
variations among genotypes.

4. Discussion

The proposed data processing pipeline computes canopy
roughness at the plot level from high resolution point cloud
data. In our first application, we used soybeans as a dem-
onstration model. Regression analysis revealed a coeflicient
of determination of over 0.5 with field-measured AGB for

two different locations. Moreover, phenotypic correlation
depends on genetic and environmental correlations [39].
This dependency might explain differences between the
regression models used for AGB estimations for Locations
1 and 2, even if the planted genotypes are exactly the same at
both experimental sites (Figure 4). Notably, the model per-
formance is inverted between Locations 1 and 2; for example,
linear, polynomial, and logarithmic models perform better in
Location 1, but worse in Location 2. Moreover, Table 2 shows
that CR and AGB are directly proportional in the linear
model for Location 1 and inversely proportional for Location
2. Our data indicates that the environment acts in different
directions at both trial sides, as well as the interaction
between the genotype and the environment [40]. However,
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TaBLE 3: Validation statistics for AGB estimation grouped by genotype, with 3 or more estimations per experimental site (extreme values per

experimental test site are highlighted in boldface).

Location Genotype No. of plots RMSE RRMSE ASE MPSE
4J105-3-4 4 19.75 13.63 -4.34 0.70
5M20-2-5-2 5 27.19 16.38 1.32 0.65
CL0J095-4-6 5 15.66 10.32 7.84 2.40
CL0J173-6-8 4 28.16 16.25 4.50 0.43
LD02-4485 4 34.05 24.13 14.04 7.12
LD02-9050 3 19.18 11.34 -2.99 2.15
LGO00-3372 6 25.12 18.22 8.29 4.38
LG04-6000 5 30.63 18.94 1.10 11.00
1 (ACRE) LG05-4464 4 16.01 10.19 4.63 1.61
LG05-4832 4 23.69 14.28 -0.66 1.46
LG94-1906 3 49.67 27.83 -7.41 10.31
Magellan 8 17.13 11.38 6.33 0.26
PI398881 5 23.23 13.84 -6.24 3.31
P1437169B 3 6.70 3.98 0.55 1.18
Prohio 3 17.13 11.10 8.56 0.42
Skylla 4 35.06 20.49 -4.42 6.50
TNO05-3027 5 11.64 7.33 -2.91 0.52
4J105-3-4 3 25.32 19.08 5.80 0.77
5M20-2-5-2 3 10.70 8.10 -3.13 3.86
CL0J095-4-6 4 20.26 17.00 10.46 6.16
CL0J173-6-8 4 7.95 7.33 2.34 1.16
LD02-4485 3 18.24 13.07 -8.69 431
LD02-9050 3 21.54 15.98 6.82 10.00
LG00-3372 7 14.15 12.89 7.25 2.60
LG04-6000 5 11.42 9.82 1.46 3.42
2 (Romney)
LG05-4464 6 19.82 13.66 -4.59 2.13
LG05-4832 4 17.87 12.41 -8.19 0.04
LG94-1906 4 19.53 19.64 14.81 1.98
Magellan 6 14.87 12.23 -4.56 3.71
P1437169B 3 7.08 5.16 -5.11 1.58
Prohio 3 7.71 5.46 -5.08 0.72
Skylla 4 19.52 15.92 1.27 3.11
TNO05-3027 4 23.32 19.58 -0.34 6.55

at least one more year of data collection with the new method
is needed to formulate a sound hypothesis. When the model
is computed with enough plots to consider the variability
within the study field, the calibration procedure will neu-
tralize these differences in the interactions. Therefore, the
model capabilities could be improved with additional data
and through the combination of different traits and sen-
sors. Key techniques based on testing data, feature combi-
nation, and model selection currently depend on highly
specialized knowledge from both computer science and
plant science [41]. In addition, canopy roughness evi-
dences the potentiality of distinguishing among genotypes
required for high-throughput phenotyping. As we demon-
strated, the estimation quality is genotype dependent; how-
ever, we acknowledge that more successive studies should

be conducted, including a wide variety of genotypes with
more replications. In that way, the statistical power to dif-
ferentiate genotypes of extracted canopy roughness could
be improved.

The results presented in this research paper demonstrate
the potential of canopy roughness as a new trait closely
related to AGB in soybeans. The canopy roughness is a sim-
ple but efficient metric for plant scientists, convenient for
automated high-throughput crop biomass phenotyping. Spe-
cifically, this study evaluates the capability of 3D modeling,
combined with regression models to effectively give accurate
predictions of AGB in soybean experimental fields. More-
over, this study highlights the power of UAS platforms as a
rapid, accurate, and cost-effective tool in collecting high spa-
tial resolution optical data for high-throughput phenotyping.
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One advantage to consider is that the proposed pipeline
does not require a reference flight over the experimental field,
making an easy flight campaign, planning, and data process-
ing. In addition, the registration errors that occur when a
point cloud of flights from different time points is registered
to each other are nonexistent. As a possible limitation, we
found that the model has to be computed by each trial due
to different environmental and genotype characteristics.
However, a standardized test plot per genotype is enough to
efficiently compute the model by environment. In the future,
our approach can be effectively applied to other plant species
and UAS platforms for high-throughput phenotyping and
even with LiDAR-collected point clouds. Still, more compre-
hensive studies are required on diverse crop species at differ-
ent phenological stages to calibrate the algorithm parameters
to other plants or even to monitor other aspects as crop
health. Additionally, future work should explore the suitabil-
ity of canopy roughness as a trait to high-throughput AGB
phenotyping using a large replicability and number of soy-
bean genotypes. Another technical aspect to investigate is
the use of voxel-based methods that structure point clouds
to regularize point density [42]. We argue that point cloud
regularization can be optimized in a way that the morphol-
ogy of individual plants becomes computable from UAS data.

Altogether, our study introduced canopy roughness as a
new trait to high-throughput phenotyping for UAS plat-
forms. We believe that plant breeders can make immediate
use of canopy roughness as a new trait to improve phenotyp-
ing selection in ongoing trials. We also envision future appli-
cations of canopy roughness in precision agriculture if
combined with automated pest management and on-line
yield estimates.
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