
i
i

“output” — 2020/3/27 — 2:39 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: 2 April 2015
Applications Note

Collaborative Generalized Linear Mixed Model

Privacy-preserving Construction of Generalized
Linear Mixed Model for Biomedical Computation
Rui Zhu 1,, Chao Jiang 2 Xiaofeng Wang 1, Shuang Wang 1, Hao Zheng 3,and
Haixu Tang 1,∗

1Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, 47408, IN.
2Department of Computer Science and Software Engineerin, Auburn University, Auburn, 36849,AL.
3Department of Bioinformatics, Hangzhou Nuowei Information Technology, Hangzhou, 310053,China.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The Generalized Linear Mixed Model (GLMM) is an extension of the generalized linear
model (GLM) in which the linear predictor takes random effects into account. Given its power of precisely
modeling the mixed effects from multiple sources of random variations, the method has been widely used
in biomedical computation, for instance in the genome-wide association studies (GWAS) that aim to detect
genetic variance significantly associated with phenotypes such as human diseases. Collaborative GWAS
on large cohorts of patients across multiple institutions is often impeded by the privacy concerns of sharing
personal genomic and other health data. To address such concerns, we present in this paper a privacy-
preserving Expectation-Maximization (EM) algorithm to build GLMM collaboratively when input data are
distributed to multiple participating parties and cannot be transferred to a central server. We assume
that the data are horizontally partitioned among participating parties: i.e., each party holds a subset of
records (including observational values of fixed effect variables and their corresponding outcome), and
for all records, the outcome is regulated by the same set of known fixed effects and random effects.
Results: Our collaborative EM algorithm is mathematically equivalent to the original EM algorithm
commonly used in GLMM construction. The algorithm also runs efficiently when tested on simulated and
real human genomic data, and thus can be practically used for privacy-preserving GLMM construction. We
implemented the algorithm for collaborative GLMM (cGLMM) construction in R. The data communication
was implemented using the rsocket package.
Availability: The software is released in open source at https://github.com/huthvincent/cGLMM.
Contact: hatang@indiana.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Owing to the rapid advances in DNA sequencing technologies, human
genomic studies, such as genome-wide association studies (GWAS) have
been increasingly used to identify the genetic variants susceptible to
human diseases Hirschhorn and Daly (2005) McCarthy et al. (2008).
Meanwhile, many computational methods have been developed to enhance
the sensitivity and statistical power of GWAS McCulloch (2003a). Among
them, the linear mixed model (LMM) aims to explain the variation

of a target phenotype in a population by a mixture of fixed effects
(variables of interests) and random effects (unknown variables), which are
shown to improve the identification rate of potentially causal variants of
human disease Golan and Rosset (2018). However, LMM is designed for
quantitative traits (e.g., blood pressure), and cannot be directly applied
to categorical phenotypes. The generalized linear mixed model (GLMM)
extends the LMM to support both categorical and quantitative phenotypes,
and thus were frequently used in GWAS (e.g., for binary case-control
studies or ordered disease stages) McCulloch (2003b). In a generic setting,
a GLMM can be constructed using human genomic data (i.e., genotypes

The Author . Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

hatang@indiana.edu

i
i

“output” — 2020/3/27 — 2:39 — page 2 — #2 i
i

i
i

i
i

2 Sample et al.

inferred from genome sequences) from a cohort of phenotyped human
individuals, which requires data analysts to have direct access to the
individual-level genomic data for every member in the cohort. In practice,
it may be of great biomedical interest to assemble a large cohort of human
genomes from multiple studies of the same disease for GWAS (often
referred to as the meta-analysis Pharoah et al. (2013) Jeck et al. (2012)
Begum et al. (2012)). For this purpose, the genomic data need to be
collected and stored across several institutions, since it is difficult to move
the data to a central site due to the challenges in data transmission (large
data size), privacy protection (personal human genomic data are identifiable
and thus sensitive) and the restriction of institutional data disclosure policy.
As a result, privacy-preserving algorithms should be in place to enable
computation on distributed genomic data without sharing individual-level
genomic variants.

In the past decade, privacy-preserving algorithms have been developed
for protecting various statistical methods, including survival analyses
(e.g., using the Cox model Yu et al. (2008); Lu et al. (2015) Bradburn
et al. (2003)), missing data imputation Jagannathan and Wright (2008),
and logistic regression Wu et al. (2012). These algorithms follow the
same collaborative computation approach, where the computation for
targeted statistical methods is partitioned depending on the required input
data: some computation is done on the locally retained genomic data
to obtain often less-sensitive intermediate results, whereas the other
computation is performed on a central server using the intermediate
results as the input. As a step forward on this direction, in this paper,
we present a privacy-preserving method for constructing a GLMM using
a collaborative Expectation-Maximization (EM) algorithm that combines
the Metropolis-Hasting (MH) algorithm in the E-step and the Newton-
Raphson (NR) algorithm in the M-step to estimate parameters of the
GLMM. We partition the computation for both the MH and the NR
algorithm into the private and joint components, which are carried out by
each participating party, whose intermediate results are then combined by a
central server. The resulting collaborative EM algorithm is mathematically
equivalent to the original EM algorithm (that is commonly used in GLMM
model construction Booth and Hobert (1999)). We implemented the
collaborative GLMM algorithm in R, and evaluated its performance
using both simulated and real-world human genome data. The results
show that the collaborative EM algorithm is efficient, and also accurate.
We note that the collaborative GLMM method can be applied to other
biomedical computation tasks where privacy-preserving approaches are
needed, e.g., for building predictive models of human diseases using
diagnostic information retrieved from patients’ Electronic Health Records
(EHRs) that are held by multiple medical institutions but cannot be shared
outside each respective institution.

2 Methods

2.1 Background

2.1.1 Generalized Linear Mixed Model (GLMM)
In an LMM, the outcome is a continuous variable(Please see LMM in
Appendix). In GWAS, however, the outcome is often categorical, e.g., the
binary outcome representing disease or healthy in a case-control study. The
generalized linear mixed model (GLMM) extends LMM by incorporating
a link function to convert a continuous outcome into a categorical outcome
McCulloch (2003b). Here, we use the logit function: f(z) = log z

1−z
as the link function to deal with the binary outcome often used in the
case-control GWAS:

log(
P (Y = 1|X)

1− P (Y = 1|X)
) = βX + Zu (1)

, where X represents fixed effects and Z represents the random effect,
while β and u are the coefficients for the fixed and the random effects,
respectively.

Below, we summarize the Expectation-Maximization (EM) algorithm
for GLMM parameter estimation from a total of N input records, each
with the given fixed and random effects as well as the desirable outcome
(0 or 1). Let T be the number of random effect categories and M be the
number of fixed effect variables. We consider t ∈ [1, ..., T] as one of the
random effect categories, and m ∈ [1, ...,M] as one of the fixed effect
variables. For the convenience of presenting the privacy-preserving EM
algorithm for parameter estimation in the next section, here we assume each
random effect category contains the equal number of P input records (thus,
N = T×P), and p ∈ [1, ..., P] indexes each record. Our implementation
does not have this constraint and allows for each category to contain
different number of records. Hence, the outcomes for all records can be
represented as a response matrix,

Y =

Y11 Y1,2 · · · Y1,P
Y2,1 Y2,2 · · · Y2,P

...
...

. . .
...

YT,1 YT,2 · · · YT,P

 (2)

The input random effects are represented as,

Z =
[
Z1 Z2 · · · ZT

]>
(3)

Z is a vector with length T . For ith element Zi (i ∈ {1, 2, ..., T}) is
sampled from a normal distributionN(0, σ). Note that different with most
notation of GLMM, We remove "Membership matrix" u by reshape input
matrix X as eq(5). For example, in (5) X1 is the first fixed effect variable.
It is a matrix which has T rows, where T is number of levels of random
effect. So for the ith row of X1, all the record has same random effect
level, so that they are all correspond to Zi which is the level of random
effect of ith record. It different from most notation in GLMM, but this is
the only notation way that we think can elaborate cGLMM. Throughout
the rest of this paper, we will use Xt,p,m to represent the mth input fixed
effect values in tth level of random effect, pth record, and use Yt,p to
represent the desirable outcomes, where Xt,p is a M -dimensional vector
(as shown below), and Yt,p ∈ {0, 1} is the binary outcome(as shown on
(3)).

X1 =

X1,1,1 X2,1,1 · · · XP,1,1
X1,2,1 X2,2,1 · · · XP,2,1

...
...

. . .
...

X1,T,1 X2,T,1 · · · XP,T,1

... (4)

XM =

X1,1,M X2,1,M · · · XP,1,M
X1,2,M X2,2,M · · · XP,2,M

...
...

. . .
...

X1,TM X2,T,M · · · XP,T,M

mth fixed effect is a T × P matrix, denote as Xm. So the corresponding
fixed effect coefficients β are represented in an M -dimensional vector,

β =
[
β1 β2 · · · βM

]>
(5)

We use an EM algorithm to estimate the parameters (Z and β) of
an optimal GLMM: in the M-step, given the current latent variables
(σ), we compute the fixed effect coefficients β by using the Newton-
Raphson algorithm, and in the E-step, we compute the latent variables (σ)

i
i

“output” — 2020/3/27 — 2:39 — page 3 — #3 i
i

i
i

i
i

short Title 3

based on the current model parameters β by using the Metropolis-Hasting
(MH) algorithm. The EM algorithm iterates between these two steps until
convergence.

Specifically, in the MH algorithm, we started from randomly selected
σi for each category i, and then sample random effects Z = (z1, ..., zT),
where each zi is randomly sampled from N(0, σ). Then in each MH
sampling step, we first sample new random effects z′ in the neighborhood
of z ∈ Z based on the current N(0, σ), and then compute a proposal
probability A between z′ and z using the current model parameters β to
decide if z should be replaced by z′ in Z for the next step. The proposal
function is defined as

A
(
z, z′

)
= min

(
1,
p∗ (z) q (z′)

p∗ (z′) q (z)

)
∈ [0, 1] (6)

where p∗(·) is the likelihood of random effect according to the current
GLMM model, and q(·) represents the likelihood of observing a record
according to the current N(0, σ). Specifically, A(z′, z) can be written as
McCulloch (2003a):

A
(
z, z′

)
= min

1, e
∑P

p=1 Yp(z′−z)
P∏
p=1

1 + eβXp+z

1 + eβXp+z′

 (7)

Let MMH be the total number of sampling steps in the MH algorithm,
which can be set to between 500 and 1000. After we complete MMH

iterations, the variance of the final samples are used to compute the updated
σ. The details of the MH algorithm will be further illustrated in section 2.3,
when we present the privacy-preserving version of the GLMM construction
algorithm.

In the M-step of the EM algorithm, we use the Newton-Raphson (NR)
algorithm to compute the fixed effect coefficients β based on the current
random effects Z and the parameters σ (updated in the E-step). NR is a
second-order optimization algorithm, which uses the first-order derivative
to choose the optimization direction, and the second-order derivative
to choose the step length. Comparing with the first-order optimization
algorithms, the NR algorithm takes fewer steps to converge. Specifically,
in each NR iteration i, β is updated by

βi = βi−1 + f ′ ·H−1 (8)

where the first-order derivative f ′ and the Hessian matrix H can be
computed by

f ′ =
T∑
t=1

P∑
p=1

[
Yt,pXt,p −

Xt,peβXt,p+Zt

1 + eβXt,p+Zt

]
and (9)

H = −
T∑
t=1

P∑
p=1

X2
t,pe

βXt,p+Z

(1 + eβXt,p+Z)2

We use a threshold ε to determine if the optimization converges, i.e., the
NR algorithm terminates when the distance between the βs from two
consecutive steps is smaller than ε. The details of the NR algorithm will
be illustrated in Section 2.4.

2.2 Privacy-Preserving GLMM Construction on
Horizontally Partitioned Data

In this paper, we consider a scenario of collaborative computation for
privacy-preserving GLMM construction, where each of the collaborative
parties (e.g., medication institutions) holds a sensitive dataset (e.g., the
genotypes from a cohort of human individuals including disease patients

and healthy controls) and attempts to build a GLMM model collaboratively
without sharing its raw dataset to the other parties. This scenario is often
referred to as the collaborative computation on horizontally partitioned
data Wang et al. (2013); Jiang et al. (2013), where each participating
party holds the complete records from a subset of subjects, whereas, in
a different scenario called vertically partitioned data Li et al. (2016),
each participating party holds a different portion of records from the same
set of subjects that can be matched among all parties. The general idea
of collaborative computation is to partition a target algorithm (e.g., to
construct the GLMM) into two parts: the first part of private computation
can be performed on the partial data held by each participating party that
generate intermediate results required for the second part of computation,
and the second part joint computation has to be performed on a central
server using the intermediate results from the private computation of all
parties. In this scenario, the central server is considered to be semi-trusted
(honest-but-curious), and thus the sensitive raw data cannot be directly
sent to the central server by each participating party.

In practice, collaborative algorithms for many tasks (e.g., uncertainty
quantification Sciacchitano et al. (2015)) have been developed. In many
cases, they involved multi-round communications where in each round,
not only the intermediate results were transferred from each party to
the central server for the joint computation, but the intermediate results
from joint computation needs to be sent back to each party for the next
round of private computation. Notably, the collaborative computation for
building a machine learning model is also referred to as the federated
learning approach Konečnỳ et al. (2016), which aims to save the cost of
transferring a large amount of training data among participating parties
while protecting the privacy of sensitive training data. In some cases, the
intermediate results may carry sensitive information and thus can be used
to infer the presence of a record (e.g., by using a re-identification attack
El Emam et al. (2011)). In these cases, the joint computation should be
performed by using encryption protocols (e.g., homomorphic encryption
(HE) Gentry (2009); Wang et al. (2016)), or in a Trusted Execution
Environment (TEE) Sabt et al. (2015).

Consider the input data matrix X containing the fix effects (e.g., the
genotypes) on a total of N records (disease patients) in each of the T
random effect categories (Figure 1a). In the horizontal data partition
scenario, the entire data matrix was not held by a single user, but instead by
K different parties: the ith party holds a subset of T × P records (Figure
1c). Again, for the convenience of presentation, here we assume each party
holds the same number (P) of records in each of the T random effect
categories; as a result, N = T ×P ×K. However, in our implementation,
we can handle the situation where different parties hold a different number
of records, and also the records may be distributed unevenly among random
effect categories. Using the separately held input data matrix, our goal is
to develop the collaborative computation algorithm for building a GLMM
model among the K participating parties, through the partition of private
and joint computation for the EM algorithm as laid out above.

The collaborative GLMM (cGLMM) presented here takes as the input
the data matrix jointly held by multiple parties and uses the EM algorithm
to estimate the parameters of the GLMM (i.e., β for fixed effect coefficients
and σ for the random effect). In each iteration of the E-step (MH algorithm)
and M-step (NR algorithm), each party first computes the intermediate
results from their own data, and then transfer the results to a central server
to compute the updated parameters, which will then be sent back to each
party for the next iteration.

Figure 2 illustrates the workflow of the collaborative EM algorithm for
cGLMM, in which each iteration consists of the E-step (MH algorithm;
Figure 2 left) and M-step (NR algorithm; Figure 2 right), and each of them
is performed in a collaborative manner. Both the MH and NR algorithms
can be partitioned into the private computation (executed by each party
separately) and the joint computation (executed on a central server) such

i
i

“output” — 2020/3/27 — 2:39 — page 4 — #4 i
i

i
i

i
i

4 Sample et al.

T

P

Client 1 Client 2 Client 3 Client 4

(a) Data partition among participating parties (b) Horizontally-partitioned input matrix (c) The data matrix held by the ith party

Fig. 1. The input fixed effect matrix is jointly held by K parties, each holding a subset of records. Hence, the input matrix can be viewed as horizontally

partitioned (b), and each party holds a submatrix containing a subset of rows (c).

that the intermediate results generated by the private computation of each
party are sent to the central server for joint computation (1©), and the
intermediate results generated by the joint computation are then sent back
to each party for the private computation in the next iteration 2©. As a
result, the collaborative EM algorithm involves multiple rounds of data
communications, where the number of rounds is equal to the number of
iterations in the EM algorithm.

In the next two sections, we will present the details of the collaborative
EM algorithm, specifically the partition of the private and joint computation
for the MH and NR algorithms, respectively.

2.3 Collaborative Metropolis-Hasting (MH) Algorithm

As described in Section 2.1.1, in the E-step of the EM algorithm for
the parameter estimation of GLMM, we attempt to estimate the fixed
effect coefficients (β) based on the current estimation of the random
effect parameters (σ), using the MH algorithm. Given the horizontally
partitioned data, we need to modify the MH algorithm into a collaborative
version that consists of the private computation, in which each participating
party computes some intermediate results from its partial data, and the
joint computation, in which the intermediate results from all parties are
transferred to the central server to compute the new fixed effect coefficients
for the next step.

Figure 3a illustrates the procedure of the collaborative MH algorithm.
As an initial step, based on the current estimated σ, the central server
samples a set of random effects Z0 ∼ N(0, σ) as the initial pool of
samples, and sends them to all participating parties. In each subsequent
iteration i, the central server first samples a new set of random effects
Zi from N(0, σ), and sends them to all parties. Then each party k (k =

1, 2, ...,K) computes the intermediate results Ak on its private server by
using the random effect from the previous step (Z′l), the new random effect
(Zl+1), as well as the private data records Xk,p and Yk,p held by the
party. Then by using Ak we can update the result to get Z′l+1.

Ak =

P∑
p=1

Yk,p
(
Z′l − Zl+1

)
+

P∑
p=1

log(1 + eXk,pβ+Zl+1)

−
P∑
p=1

log(1 + eXk,pβ+Z
′
) (10)

, where P is the same number of records in each category of random effect,
and Yk,p is the outcome (e.g., ∈ {0, 1} in the case-control GWAS study)
of the pth record, and Xk,p is the input fixed effect variables (e.g., the
genotypes in GWAS) in all T random effect categories, which are held
privately by the kth participating party. Again, for the convenience of
presentation, here we assume each party k holds the same number (P) of
records in each random effects category. In our implementation, however,
different numbers of records are allowed to be held by different parties and
in different random effects categories.

The intermediate result Ak computed in the private computation by
the kth party is then sent to the central server, where the joint computation
is performed for computing the proposal probability density A,

A = min(1,
K∑
k=1

Ak) (11)

to decide if the previous samples of the random effect zi−1 should be
replaced by the new estimates zi. The proposal probability A acts like
a filter to replace the less likely (i.e., fitting improperly to the outcome
according to the current estimates of fixed effect parameters β) random
effects parameters sampled in the previous step: if A = 1, the previous
parameters are definitively replaced; otherwise, it is replaced with the
probability A. After the update of iteration i, the random effects Zi
are stored in the central server for the subsequent iterations in the MH
algorithm. The iteration of the algorithm continues until the parameter
estimation converges. In our experiments, the MH algorithm usually
converges after 1000 iterations.

After convergence, the central server will retain a pool of random
effects Z∗ obtained in each iteration. In order to better estimate the
parameters Z∗, we adopted the burn-in strategy commonly used in MH
algorithms Chib and Greenberg (1995), which eliminates some sampled
parameters in the initial steps of MH sampling. Based on the final sample
pool of random effects Z∗, the central server updates the parameters σ,
which will be used in the M-step (see the collaborative NR algorithm in
Section 2.4) for estimating the fixed effect coefficients β.

The key idea of the collaborative MH algorithm presented here is the
partition of the computation of proposal probability into two components,
the private and joint computation, respectively. This partitioning approach
is equivalent to the non-collaborative MH algorithm presented in Section
2.1.1. As a result, the collaborative MH algorithm offers mathematically
equivalent solutions as the original MH algorithm in the E-step of the EM
algorithm for GLMM parameter estimation, even though in practice, the
solutions may not be identical due to the stochastic sampling in the MH
algorithm.

Apparently, the collaborative MH algorithm requires the central
server and the server at each participating party to remain online to
facilitate the in-time communication between servers for the coordinated
private/joint computation. The entire computation involves MMH rounds
of communications, where MMH represents the number of MH iterations
before it converges. In each iteration, the central server sends a P
dimensional vector (i.e., zi) to each participating party, and receives
another P dimensional vector i.e., Ak , from each party. In addition, the
server at each party computes Ak privately, which takes O(P) running
time and the central server computes the aggregateA (Equation 11), which
takes O(P) time for each iteration. The private computation completed by
the participating parties spends a majority of the running time during the
entire process.

i
i

“output” — 2020/3/27 — 2:39 — page 5 — #5 i
i

i
i

i
i

short Title 5

A

B

C

1

1

1 2

2

2

Centralized Server

Participating party's
private server

Updating random effect

E step(MH): updating random effect
 under the current fixed effect

 coefficients from previous M step.

A

B

C

1

1

1 2

2

2

Centralized Server

Participating party's
private server

Updating random effect

M step(NR): updating fixed effect
 coefficients under the current random effect

 parameters from previous E step.

Fig. 2. The workflow of the collaborative EM algorithm for building cGLMM jointly by multiple participating parties.

2.4 Collaborative Newton-Raphson (NR) Algorithm

In the M-step, we use a Newton-Raphson (NR) algorithm to estimate the
fixed effect coefficients (β) based on the current estimates of the random
effect parameters σ. Similar to the E-step, we propose a collaborative NR
algorithm that partitions the computation of the first-order derivative and
Hessian matrix of the likelihood function, which are required to update the
fixed effect coefficients, into the private and joint computation.

Figure 3b illustrates the procedure of the collaborative NR algorithm
in the M-step. Before the iteration starts, the central server will pick up the
random β0 and Z as input. In each subsequent iteration i, we attempt to
update βi by using Equation 8, and thus we need to compute the Hessian
matrix H and the first-order derivative f ′.

Notably, the computation of H and f ′ in the non-collaborative NR
algorithm requires the entire input dataset, i.e., Yt and Xt of each
record t (Equations 9). To compute them without sharing the data among
participating parties, we re-write the equations for computing the Hessian
matrix and the first-order derivative. As a result, each participating party k
can compute the intermediate results on its private server, including the
partial Hessian matrix Hk and the partial first-order derivatives f ′k . We
denote the fixed effects of the pth record in the tth category of random
effect held by the kth party as Xt,p,k . The k ∗ th party then computes

Hk = −
T∑
t=1

P∑
p=1

X2
t,p,ke

βXt,p,k+Zt

(1 + eβXt,p,k+Zt)2
(12)

f ′k =

T∑
t=1

P∑
p=1

[
Yt,p,kXt,p,k −

Xt,p,ke
βmXt,p,k+Zt

1 + eβmXt,p,k+Zt

]
(13)

and sends the intermediate results to the central server for the joint
computation of the full Hessian matrix and first-order derivatives,

H =
K∑
k=1

Hk and f ′ =
K∑
k=1

f ′k (14)

which are sent back to each participating party to update the fixed
effect coefficients of its records βi+1 (Equation 8) for the next iteration.
Finally, the iterative procedure terminates after the estimates of the fixed
effect coefficients converge or it reaches the preset maximum number of
iterations.

Notably, the collaborative computation for the Hessian matrix and the
first-order derivatives is equivalent to the non-collaborative NR algorithm
presented in Section 2.1.1. Therefore, the collaborative NR algorithm
generates identical results (i.e., the fixed effect coefficients β) as the
original NR algorithm in the M-step of the EM algorithm for GLMM
parameter estimation.

Similar to the collaborative MH algorithm, the collaborative NR
algorithm also requires the central server and all participating parties’
servers to remain online for in-time communication. The entire
computation involves MNR rounds of communications, where MNR

represents the number of NR iterations before it converges. In each
iteration, the central server receives the Hessian matrix (in M × M

dimension) and first-order derivative (i.e., a M dimensional vector)
computed by each party and then sends back the full Hessian matrix and
first-order derivative vector of the same size to each party. In the private
computation, the server at each party first computes the partial Hessian
matrix and partial first-order derivatives (Equations 12 and 13), which
takes O(|X| ∗ P 2) and O(|X| ∗ P) running time, respectively, and also
updates the fixed effect coefficients β, which takes O(|X|) time, where
|X| represents the number of fixed effect variables. On the other hand,
in the joint computation, the central server combines these intermediate
results into the full Hessian matrix and first-order derivatives (Equation
14), which only takesO(T ×P ×K×|X|) ≈ O(N ×|X|) time, where
N is the total number of records held by all parties. Overall, the private
and the joint computation takes about the same amount of running time in
the collaborative NR algorithm.

Above we presented the collaborative algorithms for the E-step and
M-step, respectively. It is straightforward to combine these them into a
collaborative EM algorithm, which iterates between these two steps until
the estimated parameters (including the fixed effect coefficients β and
the random effect parameter σ) converge. The entire process requires
C × (MMH +MNR) rounds of communications, where C represents
the number of iterations of the EM algorithm.

2.5 Implementation

We implemented the algorithm for collaborative GLMM (cGLMM)
construction in R. The data communication was implemented using
the rsocket package. The software is released in open source at
https://github.com/huthvincent/cGLMM.

i
i

“output” — 2020/3/27 — 2:39 — page 6 — #6 i
i

i
i

i
i

6 Sample et al.

1 2

12

New β

Hi,	fi’

New β

Hi,	fi’

Central
 server

Client	jClient	i	

(a)

1 2

12

Previous	filtered	sample	set:	Z�	,new
New	sample	set:	Z�	+1

intermediary	results:	Ai

Previous	filtered	sample	set:	Z�	,new
New	sample	set:	Z�	+1

Central
 server

Client	jClient	i	
intermediary	results:	Aj

(b)

Fig. 3. The data communication between the central server and participating parties in the collaborative MH algorithm (E-step; a) and the collaborative

NR algorithm (M-step; b).

3 Results

3.1 Simulation Experiments

We first conducted simulated experiments to test the performance of the
collaborative GLMM (cGLMM) construction. We simulated three different
data sets with 50, 100 and 150 fixed effects over 1000, 2000, and 3000
records, respectively, which were held by two participating parties. For
each data set, there is one random effect with 10 different levels. We note
that the numbers of fixed effects simulated here resemble the real cases in
a collaborative study, in which a participating party have already identified
a small number of putative effects from its own data, and hope to use the
data from the other parties to validate these candidates. We compared the
results of cGLMM using the collaborative EM algorithm with results of the
regular GLMM using the non-collaborative EM algorithm. We considered
only two parties; the running time may not be much longer when more
parties are involved because the computation carried out by each party
remains the same as long as each party has about the same number of
records.

For comparison purpose, we used the same convergence conditions and
the same initial selection of parameters in the cGLMM and regular GLMM.
Nevertheless, the final results were similar but not identical because the
MH algorithm in the E-step may introduce some randomness. We set
the maximum MH iteration as 1000, and only retain the last two sets of
samples in the pool (i.e., burn-in=998). The convergence condition of the
EM algorithm is that the Euclidean distances between all parameters in
three consecutive iterations are all below a threshold of 0.08. The same
threshold was also used to determine the convergence of the MH algorithm.

We simulated the genotypes as the fixed effects. The variable of each
fixed effect can take X ∈ {00, 01, 11}, where 00, 01 and 11 represents
the genotypes of homozygous major, heterozygous and homozygous
minor, respectively. The frequencies of the three genotypes were simulated
following the Hardy-Weinberg equilibrium with a specific minor allele
frequency; for example, if the minor allele frequency is 0.3, the simulated
frequencies of three genotypes follow 0.49, 0.42 and 0.09, respectively.
Finally, in the simulation of the linear mixed model, we assume the minor
allele has an additive effect on the outcome; as a result, the fixed effect
variables were simulated as integer values of {0, 1, 2}, representing the
three genotypes, respectively. GLMM can be applied to other models of
genetic effect (e.g., the dominant effect model), which were not tested
here.

Table 1 compares the results from the collaborative (cGLMM) and non-
collaborative (GLMM) EM algorithm on the three simulated datasets. Both
algorithms converge after a small number of iterations, while cGLMM runs
slower than GLMM, which is mostly due to the communication overhead.
We note that our evaluation was conducted using three separate jobs
(simulating two servers of the participating parties and the central server,
respectively) on the same computer; thus, in reality, the running time of
cGLMM can be significantly longer, depending on network bandwidth

among the participating servers. However, even though the number of
rounds of communication between servers is overall high, the total amount
of data transferred is still moderate. Interestingly, we observe that with the
increasing size of the GLMM model (i.e., with more fixed effect variables),
the overhead of cGLMM comparing with GLMM actually decreases,
probably because for complex GLMM problems, significantly more time is
spent on the actual computation comparing to data communication. Finally,
in all cases, cGLMM reported fixed effect coefficients that are nearly
identical to the actual values used in the simulation (Pearson Correlation
Coefficient PCC = 0.99) and the results from GLMM, suggesting cGLMM
achieved the same accuracy as GLMM.

Figure 4 compares the results of GLMM and cGLMM on the simulated
dataset containing 150 fixed effect variables (genotypes) on 3,000 records.
As shown in Fig. 3.1a and 3.1b, respectively, the distances between
the fixed effect coefficients (β) and the random effect parameters (σ)
in consecutive iterations becomes close to zero after only a few iterations
of the collaborative EM algorithm, indicating it converges as fast as the
non-collaborative EM algorithm. Furthermore, the fixed effect coefficients
reported in cGLMM are very to those in GLMM and the actual coefficients
used in the simulation (Fig. 4c; PCC > 0.99 with the actual values),
indicating cGLMM reported comparable results as GLMM. The results
from the other two datasets (containing 50 and 100 fixed effect variables)
are generally similar, and are shown in Supplemental Figures 1-2. These
results suggested the collaborative EM algorithm is accurate and efficient
for constructing GLMM collaboratively among multiple parties.

3.2 Real Human Genomic Data

Next, we used the real human genomic data from the 1000 Genomes
Project Wang et al. (2018) to test our algorithm. The 1000 Genomes
Project has total 2000 records, contain 1000 records in control group and
1000 records in case group. We selected all 2000 records from the whole
data set. We then selected the 10 most significant SNPs (by using a χ2

test; including 5 positively and 5 negatively correlated with Group I versus
Group II) between these two groups (Group I and II, simulating the case
and control groups in GWAS), and another randomly selected 40, 90 and
140 SNPs to form the three testing datasets containing 50, 100 and 150
SNPs (used as the fixed effect variables in GLMM), respectively. We
considered the gender of the individuals as the random effect: Group I
contains 505 males and 495 females while Group II contains 479 males
and 521 females. Similar to the simulation experiment, we consider the
additive genetic model, in which the fixed effect variables take 0, 1, or
2, representing the genotypes of homozygous major, heterozygous and
homozygous minor, respectively. We randomly split the genomes into
two subsets containing 907 and 1093 records, respectively, assuming each
participating party holds one of them.

Table 2 compares the results from the collaborative (cGLMM) and non-
collaborative (GLMM) EM algorithm on the three real human genomic

i
i

“output” — 2020/3/27 — 2:39 — page 7 — #7 i
i

i
i

i
i

short Title 7

Table 1. We run cGLMM and GLMM 10 times, below is the average comparison of GLMM and cGLMM on simulated datasets. ∗PCC:
Pearson Correlation Coefficients between the actual fixed effect coefficients used in simulation and those reported by GLMM and cGLMM,
respectively.

No. of
SNPs

iterations running time (mins) communication
round(cGLMM)

communication
size(cGLMM) (KB)

PCC∗

GLMM cGLMM GLMM cGLMM
50 7 7 0.062 2.9 6107 369.62 0.99994
100 8 7 0.096 4.2 6505 807.40 0.99999
150 9 8 2.6 26.6 7825 1403.22 0.99996

0.25

0.50

0.75

1.00

2 4 6
iteration

ep
i_

ac
c categ

epsilon

mse

(a)

5

6

7

2 4 6
iteration

si
gm

a

model_type
cGLMM

GLMM

true sigma

(b)

−2

−1

0

1

0 50 100 150
beta_index

ab
s_

be
ta

model_type
cGLMM_beta

GLMM_beta

true_beta

(c)

Fig. 4. The comparison between the results from cGLMM and GLMM on the simulated dataset containing 150 fixed effects in a typical run, for the

distances between the fixed effect coefficients (β) (a), and the distances between the random effect parameters (σ) in consecutive iterations of the

collaborative (in red) and non-collaborative (in green) EM algorithm, as well as the actual fixed effect coefficients (β, sorted in decreasing order; in

blue) and those reported by GLMM (in green) and cGLMM (in red), respectively.

Table 2. Comparison between the results from cGLMM and GLMM on real human genomic datasets. ∗PCC: Pearson Correlation Coefficients
between the fixed effect coefficients reported by GLMM and those reported by cGLMM. All resource list in here are averages of 10 runs.

No. of
SNPs

iterations running time (mins) communication
round(cGLMM)

communication
size(cGLMM) (KB)

PCC∗

GLMM cGLMM GLMM cGLMM
50 4 4 0.05 1.6 3006 731.84 0.99994
100 5 5 0.06 3.1 4004 4749.71 0.99999
150 5 5 0.2 5.0 4006 17121.65 0.99996

datasets. Similar to the results from the simulated data, both algorithms
converge after a few EM iterations, while cGLMM runs about 30 times
slower than GLMM, which is mostly due to the communication overhead.
In all cases, cGLMM reported fixed effect coefficients that nearly identical
to the results from GLMM (Pearson Correlation Coefficient PCC > 0.99).

Figure 5 compares the results of GLMM and cGLMM on the real
human genomic dataset containing 150 SNPs (including 10 significant
SNPs between the two groups) over the 2000 genomes in two groups.
Similar to the results from the simulated datasets, the cGLMM algorithm
converges as fast as the GLMM algorithm (Fig. 5a and 5b), and achieved
nearly identical results as the regular GLMM algorithm (Fig. 5c), where
the 10 SNPs (leftmost and rightmost SNPs in Figure 5c) which are highly
correlated with the two groups receive high fixed effect coefficients. The
testing on the other two datasets (containing 50 and 100 SNPs) showed
similar results (see Supplemental Figures 3-4). These results confirmed the

satisfactory performance of our cGLMM algorithm on real-world human
genomic data.

4 Discussions
Our current collaborative EM algorithm follows a distributed computing
approach, in which the input data are partitioned and the computation
is split among participating institutions. As a result, each partition of
the input data can remain on the server of the respective participant that
holds the partial data, and only the intermediate results (e.g., the partial
proposal probabilities and the partial Hessian matrix) need to be sent out.
Still, some computation needs to be performed on a central server, and
the intermediate results need to be communicated between the central
server and the server at each participating party. Our experimental results
showed that even though several thousands rounds of communication are

i
i

“output” — 2020/3/27 — 2:39 — page 8 — #8 i
i

i
i

i
i

8 Sample et al.

0.75

1.00

1.25

1.50

1.75

2.00

1 2 3 4 5
iteration

si
gm

a

categ
cGLMM

GLMM

(a)

0.0

0.2

0.4

0.6

1 2 3 4 5
iteration

ep
si

lo
n categ

cGLMM

GLMM

(b)

−3

0

3

6

0 50 100 150
beta_index

ab
s_

be
ta model_type

cGLMM_beta

GLMM_beta

(c)

Fig. 5. The comparison between the results from cGLMM and GLMM on the human genomic dataset in a typical run, containing 150 SNPs (including

10 SNPs significantly associated with the two groups), for the distances between the fixed effect coefficients (β) (a), and the distances between the

random effect parameters (σ) in consecutive iterations of the collaborative (in red) and non-collaborative (in blue) EM algorithm, as well as the fixed

effect coefficients (β, sorted in decreasing order) reported by GLMM (in blue) and cGLMM (in red), respectively.

required to complete a reasonable-size GLMM task, the total amount of
data transferred between servers is moderate (less than 100 MB). Therefore,
we think our privacy-preserving algorithm can be practically used for
collaboratively building GLMMs. However, we note that the many rounds
of communication due to the required data exchange in each iteration of
the MH algorithm may reduce the applicability of the method. We plan
to explore the approximation approaches to the MH algorithm that may
reduce the rounds of communication while without sacrificing its accuracy.

We note that our current approach does not protect the intermediate
results sent by each participating institution to the central server: they are
sent in plain text. The assumption here is that the intermediate results do not
carry sufficient sensitive information about the individual records, which
is commonly adopted by existing privacy-preserving algorithms for other
biomedical computation tasks, e.g., for logistic regression Wu et al. (2012).
However, our method can be combined with encryption methods to provide
additional protection on the intermediate results. For example, we may use
homomorphic encryption (HE) Kim et al. (2018) to compute the proposal
probability (Equation 11), the Hessian matrix and the first-order derivatives
(Equation 14), respectively, on the central server. Because only additions
are needed for these computations, one can use the light-weight Paillier
cryptosystem with additive homomorphic properties Parmar et al. (2014),
which introduces moderate overhead on running time and communication.
A more efficient solution may also be implemented using the recently
available Trusted Execution Environments (TEEs) Chen et al. (2017b,a,
2016), such as Intel’s Software Guard Extensions (SGX) McKeen et al.
(2016).

Our current approach addresses the collaborative GLMM construction
on horizontally partitioned data, when each participating institution holds
the complete records of a subset of subjects. In comparison, the data may
be vertically partitioned in some scenarios of collaborative computation.
For examples, two medical institutions may have complementary clinical
data (i.e., a subset of fixed effects) of the same patients, and attempt to
combine their partial data for some joint analyses. Privacy-preserving
methods have been developed for some data mining and machine learning
algorithms on vertically partitioned data, e.g., for association rule mining

?, k-means clustering Vaidya and Clifton (2003), naive Bayes classifier
Vaidya and Clifton (2004) and support vector machine (SVM) Yu et al.
(2006). We plan to develop privacy-preserving algorithms for collaborative
GLMM construction on vertically partitioned data in the future.
Funding information.The research was partially supported by the
National Institute of Health grants U01EB023685 and R01HG010798,
and Indiana University (IU) Precision Health Initiative (PHI).
Acknowledgements. We thank Diyue Bu for her help of using the human
genomic data from the 1000 Genomes Project.

References
Begum, F. et al. (2012). Comprehensive literature review and statistical

considerations for gwas meta-analysis. Nucleic acids research, 40(9),
3777–3784.

Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed
model likelihoods with an automated monte carlo em algorithm. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 61(1),
265–285.

Bradburn, M. J. et al. (2003). Survival analysis part ii: multivariate data
analysis–an introduction to concepts and methods. British journal of
cancer, 89(3), 431–436.

Chen, F. et al. (2016). Premix: Privacy-preserving estimation of individual
admixture. In AMIA Annual Symposium Proceedings, volume 2016,
page 1747. American Medical Informatics Association.

Chen, F. et al. (2017a). Presage: Privacy-preserving genetic testing via
software guard extension. BMC medical genomics, 10(2), 48.

Chen, F. et al. (2017b). Princess: Privacy-protecting rare disease
international network collaboration via encryption through software
guard extensions. Bioinformatics, 33(6), 871–878.

Chib, S. and Greenberg, E. (1995). Understanding the metropolis-hastings
algorithm. The american statistician, 49(4), 327–335.

El Emam, K. et al. (2011). A systematic review of re-identification attacks
on health data. PloS one, 6(12).

i
i

“output” — 2020/3/27 — 2:39 — page 9 — #9 i
i

i
i

i
i

short Title 9

Gentry, C. (2009). Fully homomorphic encryption using ideal lattices.
In Proceedings of the forty-first annual ACM symposium on Theory of
computing, pages 169–178.

Golan, D. and Rosset, S. (2018). Mixed models for case-control genome-
wide association studies: major challenges and partial solutions. Borgan,
Breslow N, Chatterjee N, et al.(1st edn). Handbook of Statistical Methods
for Case-Control Studies. Boca Raton, FL: Chapman and Hall/CRC,
pages 495–514.

Hirschhorn, J. N. and Daly, M. J. (2005). Genome-wide association studies
for common diseases and complex traits. Nature reviews genetics, 6(2),
95–108.

Jagannathan, G. and Wright, R. N. (2008). Privacy-preserving imputation
of missing data. Data & Knowledge Engineering, 65(1), 40–56.

Jeck, W. R. et al. (2012). a meta-analysis of gwas and age-associated
diseases. Aging cell, 11(5), 727–731.

Jiang, W. et al. (2013). Webglore: a web service for grid logistic regression.
Bioinformatics, 29(24), 3238–3240.

Kim, M. et al. (2018). Secure logistic regression based on homomorphic
encryption: Design and evaluation. JMIR medical informatics, 6(2), e19.

Konečnỳ, J. et al. (2016). Federated learning: Strategies for improving
communication efficiency. arXiv preprint arXiv:1610.05492.

Li, Y. et al. (2016). Vertical grid logistic regression (vertigo). Journal of
the American Medical Informatics Association, 23(3), 570–579.

Lu, C.-L. et al. (2015). Webdisco: a web service for distributed cox model
learning without patient-level data sharing. Journal of the American
Medical Informatics Association, 22(6), 1212–1219.

McCarthy, M. I. et al. (2008). Genome-wide association studies for
complex traits: consensus, uncertainty and challenges. Nature reviews
genetics, 9(5), 356–369.

McCulloch, C. (2003a). Chapter 4: Generalized linear mixed models
(glmms). Generalized linear mixed models, 7, 28–33.

McCulloch, C. E. (2003b). Generalized linear mixed models. In NSF-
CBMS regional conference series in probability and statistics, pages
i–84. JSTOR.

McKeen, F. et al. (2016). Intel R© software guard extensions (intel R©
sgx) support for dynamic memory management inside an enclave. In
Proceedings of the Hardware and Architectural Support for Security and

Privacy 2016, pages 1–9.
Parmar, P. V. et al. (2014). Survey of various homomorphic

encryption algorithms and schemes. International Journal of Computer
Applications, 91(8).

Pharoah, P. D. et al. (2013). Gwas meta-analysis and replication identifies
three new susceptibility loci for ovarian cancer. Nature genetics, 45(4),
362–370.

Sabt, M. et al. (2015). Trusted execution environment: what it is, and what
it is not. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages
57–64. IEEE.

Sciacchitano, A. et al. (2015). Collaborative framework for piv uncertainty
quantification: comparative assessment of methods. Measurement
Science and Technology, 26(7), 074004.

Vaidya, J. and Clifton, C. (2003). Privacy-preserving k-means clustering
over vertically partitioned data. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 206–215.

Vaidya, J. and Clifton, C. (2004). Privacy preserving naive bayes classifier
for vertically partitioned data. In Proceedings of the 2004 SIAM
International Conference on Data Mining, pages 522–526. SIAM.

Wang, S. et al. (2013). Expectation propagation logistic regression
(explorer): distributed privacy-preserving online model learning. Journal
of biomedical informatics, 46(3), 480–496.

Wang, S. et al. (2016). Healer: homomorphic computation of exact
logistic regression for secure rare disease variants analysis in gwas.
Bioinformatics, 32(2), 211–218.

Wang, X. et al. (2018). idash secure genome analysis competition 2017.
Wu, Y. et al. (2012). Grid binary lo gistic re gression (glore): building

shared models without sharing data. Journal of the American Medical
Informatics Association, 19(5), 758–764.

Yu, H. et al. (2006). Privacy-preserving svm classification on vertically
partitioned data. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pages 647–656. Springer.

Yu, S. et al. (2008). Privacy-preserving cox regression for survival analysis.
In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1034–1042.

	Introduction
	Methods
	Background
	Generalized Linear Mixed Model (GLMM)

	Privacy-Preserving GLMM Construction on Horizontally Partitioned Data
	Collaborative Metropolis-Hasting (MH) Algorithm
	Collaborative Newton-Raphson (NR) Algorithm
	Implementation

	Results
	Simulation Experiments
	Real Human Genomic Data

	Discussions

