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Abstract—This paper presents Transys, a tool for translating
security critical properties written for one hardware design
to analogous properties suitable for a second design. Transys
works in three passes adjusting the variable names, arithmetic
expressions, logical preconditions, and timing constraints of the
original property to retain the intended semantics of the property
while making it valid for the second design. We evaluate Transys
by translating 27 assertions written in a temporal logic and
9 properties written for use with gate level information flow
tracking across 38 AES designs, 3 RSA designs, and 5 RISC
processor designs. Transys successfully translates 96% of the
properties. Among these, the translation of 23 (64%) of the
properties achieved a semantic equivalence rate of above 60%.
The average translation time per property is about 70 seconds.

I. INTRODUCTION

The Spectre [1] and Meltdown [2] attacks, along with

their variants [3], [4], have demonstrated the importance of

validating the security of a processor design. To do so,

one needs a comprehensive set of properties describing the

security requirements of the design. Developing such a set

is challenging. The high-level goals of confidentiality and

integrity of a particular security domain—and availability of

a machine in general—may be well understood, but mapping

these goals to the cycle-by-cycle behavior of specific registers,

signals, and ports in a design is difficult, and a matter of art as

much as science. In practice this effort must be repeated for

each new design, even for new generations of existing designs.

We present Transys, a tool that takes in a set of security

critical properties developed for one hardware design and

translates those properties to a form that is appropriate for

a second design. The insight that led to this work is the

recent research into security specification development and

security validation tools, which uses properties developed

for one processor design in order to evaluate the proposed

methodology on a second design [5], [6], [7]. The properties

must be translated manually, and this process is mentioned

only in passing, but it suggests that the properties crafted for

one processor design can be made suitable for a second design.

We examine the question more closely. We investigate

how the translation may be done programmatically, and we

build Transys to implement our approach. We go beyond

processor cores and include RSA and AES implementations in

our evaluation. We examine properties from the two security

verification methods in use today: assertion based verification

using a restricted temporal logic, and gate level information

flow tracking using set and assert tags. We find that cross-

design, and in the case of a processor core, cross-architecture

security specification translation is feasible and practical.

The problem statement is this: given a property written for

one design, produce an equivalent property suitable for the

verification of a second design.

It is not always clear what “equivalent” means. For exam-

ple, prior work has demonstrated that the following policy,

although relatively simple, is critical to security and holds for

many pipelined RISC architectures [6]:

Policy 1. The zeroth general purpose register (GPR0) must

always contain the value 0.

To ensure that the above policy is upheld for a particular

design D, a designer might craft the following property, which

if proven to hold for all possible traces of execution (along

with a proof that GPR0 is initialized to 0), will enforce the

desired policy.

PD
.
= wr_enable → rf_addr 6= 0. (1)

Property PD states that if a write to the register file is en-

abled (wr_enable) then the register being written (rf_addr)

is not zero—i.e., general purpose register 0 is not the target

of the write.

However, the same property may not be true of a second

design D′, even though the design enforces the same policy.

Design D′ might require the following property:

PD′

.
= wr_enable → rf_addr 6= 0 ∨ rf_data = 0, (2)

which states that writes are enabled only when GPR0 is not

the target of the write or when the value being written is 0.

Design D′ does not satisfy property PD and an effort to verify

the property will fail; however the underlying policy that we

care about is upheld.

Given two properties written over the registers, signals,

and ports of two different designs, it is not clear how to

formally define equivalence between them. We therefore take

an operational approach. We start with observations about how

properties are likely to morph from one design to another: for

example, varying pipeline stages may affect in which clock

cycle a signal becomes valid; flags may be laid out differently

in control registers; and additional gating signals may be used

in one design, but not in another. We then define a set of steps

that modify property PD in a set, limited number of ways to

build a property PD′ that is valid for design D′. We build a

system that can reliably translate properties from one design to



another, without requiring a formal definition of the intended

high-level security policies each property is in aid of.

The gist of the approach is to do the translation in three

phases: the first phase substitutes the appropriate signals, ports,

and register names of the second design into the property; the

second phase adjusts the arithmetic expressions and timing

constraints of the newly drafted property; and the third phase

refines the precondition of the new property. Transys takes as

input the property to be translated and the RTL implementation

of both the original design and the new design. No instrumen-

tation or manual modeling of either design is required.

Transys does not obviate the need for human involvement

in security property specification. In fact, manual review of

the generated properties is a required step of the Transys

workflow. Transys does, however, do much of the heavy

lifting for the designer, leveraging work done by others in the

community tackling the security validation of similar designs,

and providing an initial set of security properties. In our

evaluation, we manually analyze the new properties to decide

if they are semantically analogous to the original set.

We have implemented a prototype of Transys on top of

Yosys[8] and it supports translating security assertions for

hardware designs written in Verilog. To evaluate Transys, we

collect 38 AES designs, 3 RSA designs, and 5 RISC processor

designs, along with 27 temporal logic assertions and 11

information flow tracking assertions. Transys can successfully

translate 96% of the properties across the evaluated hardware

designs. Among these, the translation of 23 (64%) of the

properties achieved a semantic equivalence rate of above 60%.

The average translation time per property is about 70 seconds.

The results indicate that Transys can be practically used by

hardware verification teams.

II. SECURITY PROPERTIES

We focus on properties developed for a hardware design

at the register transfer level (RTL). An RTL design defines

the registers, signals, and ports in a hardware module and

describes how data flows through the module in each clock

cycle. Properties are written for use with a particular verifica-

tion method, and each method has an associated specification

language in which the properties can be expressed. We present

the two main logic systems used to express security properties

of hardware designs.

A. Restricted Temporal Logic

Assertion based verification (ABV) is widely used in in-

dustry for the functional validation of hardware designs [9].

Properties expressed in a restricted temporal logic are added,

in the form of assertion statements, to the RTL design and

simulation-based testing or static analysis is used to find

violations. Researchers have recently begun to adapt ABV for

the security validation of a hardware design [10], [5], [7], [6].

The security properties that have been developed to date

make use of existing industry standard libraries for expressing

assertions [11] and are written in a fragment of linear temporal

logic that includes the globally (G) and next (X) operators

LTL(G,X)
.
= G(φ)

φ
.
= s → s

s
.
= f | Xs

f
.
= a | ¬f | f ∨ f | f ∧ f | f → f

a
.
= t == t | t 6= t | true

t
.
= reg | N | reg+ reg | reg− reg

| reg << N | reg >> N

| reg[N : N ]

Fig. 1: The restricted temporal logic used by security properties expressed as
assertions, where reg is a signal, register, or port in the design, and N is the
set of natural numbers.

property : (set_stmt)∗ . . . (assert_stmt)∗

|(set_stmt)∗ . . . (gated_assert_stmt)∗

|(set_stmt)∗ . . . (declass_assert_stmt)∗

set_stmt : ‘set’ reg ‘:=’ tag

assert_stmt : ‘assert’ reg ‘==’ tag

gated_assert_stmt : ‘assert’ reg ‘==’ tag ‘when’ expr

declass_assert_stmt : ‘assert’ reg ‘==’ tag ‘allow’ reg

tag : ‘high’ | ‘low’

Fig. 2: The syntax used to track how information flows through a hardware
design at the gate level. A property is a series of set statements over source
variables and assert statements over sink variables. The assert statements may
be made conditional using when. Declassification is done using allow.

with a syntactic restriction that conforms to the grammar

shown in Figure 1. In particular, the properties are of the

form G(A → B), where A and B are boolean combinations

of arithmetic expressions and may contain the X operator.

Transys can be used to translate these properties.

B. Information Flows

The properties expressible in the temporal logic are trace

properties: individual traces of execution either satisfy or

violate the given property. However, properties about how

information flows through the processor are not immediately

expressible as trace properties, but rather require hyperproper-

ties [12], [13]. Whereas a trace property can be defined by a set

of traces—those traces that satisfy the property, a hyperprop-

erty is defined by a set of sets of traces—those systems that

satisfy the property. Properties about confidentiality, such as

asserting an absence of side channels, or about integrity, such

as asserting which security domains can influence the control

flow of a protected domain are examples of hyperproperties.

These properties can be handled at the language level, using

typed hardware description languages [14], [15], [16]. An

alternative approach is gate level information flow tracking

in which shadow state added to the hardware design tracks

how data flows. Standard trace properties expressed over the

shadow state can then evaluate how information is allowed

to flow through the original design. This approach has the

advantage that existing designs, written in current industry

standard hardware description languages, can be validated.

The approach has been studied in the literature in a series

of papers [17], [18], [19].



Type Description

Memory
Access

P01: Memory value in equals register value out
P02: Register value in equals memory value out
P03: Memory address equals effective address
P04: Calculation of memory address or memory data
is correct

Exception
Related

P05: Execution privilege matches page privilege
P06: Updates to exception registers make sense
P07: Privilege escalates correctly
P08: Privilege deescalates correctly
P09: Exception return updates state correctly
P10: Interrupt implies handled
P11: Enter supervisor mode is on reset or exception
P12: Exception handling implies exception mecha-
nism activated
P13: Exception handler accessed only during excep-
tion, in supvr mode, or on reset

Control
Flow

P14: Jumps update the PC correctly
P15: Jumps update the LR correctly
P16: Continuous Control Flow
P17: Flags that influence control flow should be set
correctly
P18: Link address is not modified during function
call execution

Update
Registers

P19: SPR equals GPR in register move instructions
P20: SR is not written to a GPR in user mode
P21: SPR modified only in supervisor mode

Correct
Results

P22: Destination matches the target
P23: Reg change implies that it is the instruction
target

Instruction
Executed

P24: Instruction is in a valid format
P25: Instructions unchanged in pipeline
P26: Unspecified custom instructions are not allowed

Table I: Security properties of OR1200 processor mined from the specification.

Gate level information flow tracking requires tagging source

variables with the appropriate level (e.g., “high” or “low”)

of information, asserting the correct level is maintained for

sink variables, and deciding when to conditionally disable the

assert or under what circumstances to allow declassification.

Transys can be used to translate these properties as well and

we describe their syntax in Figure 2.

C. Hardware Security Properties

We present the security properties for three classes of

designs: RISC processor cores, AES implementations, and

RSA implementations. Table I shows the security properties of

the OR1200 processor. These security properties are collected

from the literature [10], [5], [6] and can be categorized

as follows: control flow related properties, exception related

properties, memory access related properties, properties to

ensure execution of the correct and specified instructions, and

properties about correctly updating results.

Tables II and III show the security properties of the AES

designs and RSA designs, respectively. These we developed

manually by studying the respective specifications.

Table IV shows information flow properties for AES and

RSA implementations. These properties are collected from

work on gate level information flow tracking [20] and were,

to the best of our knowledge, developed manually.

We used only a subset of the AES properties during the

development of Transys. The rest of the properties we reserved

for use in the evaluation of Transys.

Module Description

Key
Expansion

P27: The round constant for each round of the key
expansion should be correct.
P28: Round keys should be derived from the cipher
key correctly.

Substitution
Box

P29: The S-box should avoid any fixed points and
any opposite fixed points.

Add Round
Key

P30: The subkey is added by combining each byte of
the state with the corresponding byte of the subkey
using bitwise XOR.

Shift Rows P31: The ShiftRows step operates on the rows of the
state; it cyclically shifts the bytes in each row by a
certain offset.

Table II: Security critical properties of AES cryptographic hardware mined
from the specification.

Module Description

RSA Top P32: The output cipher should be different from the
input key.

Table III: Security critical properties of RSA cryptographic hardware mined
from the specification.

Type Description

Confidentiality P33: The key or intermediate results should not
directly flow to a point observable by an attacker.

Integrity P34: The key should never be altered.

Isolation
P35: The intermediate encryption results are allowed
to flow to output when the core is working in debug
mode, but are prohibited under normal operation.
P36: The key is safe to flow to the ciphertext while
it should not flow to another location.

Timing
Channel

P37: The secret key should not flow to the ciphertext
ready signal otherwise there would be a timing side
channel.

Table IV: Information flow security properties of cryptographic hardware.

III. PROBLEM STATEMENT

Given an RTL design D1, a property PD1
that is written in

a formal logic stated over the registers, signals, and ports of

design D1, and a second design D2, how can we produce a

second property PD2
that

1) is a valid property for the specification of design D2, and

2) captures the same security policy as property PD1
.

IV. THREAT MODEL

Transys is a tool to ease the development of security critical

properties, and in doing so promote and encourage the security

validation of hardware designs and expand the set of security

critical properties validated.

The end goal is to strengthen the security of our hardware

designs by eliminating bugs in the implementation or flaws in

the design that are exploitable in software, post deployment,

by the attacker. The attacker has knowledge of or can learn

the details of the hardware design and is capable of finding

and designing exploits for any bugs or flaws in the design.

Security validation is not addressing the threat of malicious

trojans that get added during fabrication, nor does it prevent

attacks post-deployment that involve tampering with or mod-

ifying the hardware.

Once the set of properties have been developed for a design

they can be used to detect subsequent malicious modifications

to the design. If the modification violates one of the security



No. Original New Format Simplified

1

A → B

A ∧ C → B (A ∧ C) → B
2 A ∨ C → B (A → B) ∧ (C → B)
3 A → B ∧D (A → B) ∧ (A → D)
4 A → B ∨D (A ∧ ¬D) → B

Table V: Possible formats of translated assertions in the new design. The
simplifications are standard propositional rewrite rules.

properties, the violation can be found during verification. (The

method of verification matters here—model checking, execu-

tion monitors in use post-deployment, and symbolic execution

can provide guarantees about coverage, whereas simulation

based testing does not.) We caution, however, that Transys uses

the code of the second design to build the translated property;

a well crafted trojan already extant in the code can affect the

final property. Manual review of the set of properties created

is a required step of the Transys workflow.

V. DESIGN

Transys takes as input two hardware designs and a set of

security-critical properties for the first design, and outputs a

set of translated properties for the second design. For each

property P of the first design, the goal is to produce a new

property P ′ that is written over the registers, signals, and ports

of the second design and that preserves the semantics of P for

the second design. To achieve this goal, Transys must solve

four challenges:

1) The registers, signals, and ports in the original property

may not have counterparts in the second design; if they

do, the counterparts will likely not have the same name.

2) The arithmetic expressions in the original property may

not be appropriate for the second design.

3) The conditions required to enforce a given policy might

differ between designs. For example, in the property

described in the introduction, PD has the form A → B,

but PD′ requires the form A → B ∨ C to capture the

same policy.

4) Policies often have to be stated across multiple clock

cycles. For example, a wr_enable signal set in one clock

cycle may be seen by the register file in the following

clock cycle. Timing details depend on the specifics of

an implementation and can vary across designs. The

translated property will need to take that into account.

A. Overview

Transys works in three passes to address the four challenges

above: variable mapping pass, structural transformation pass,

and constraint refinement pass. We start with an overview of

the three passes and then describe each one in detail in the

following sections. Figure 3 shows the workflow of Transys.

Variable Mapping Pass. To begin, Transys maps the registers,

signals, and ports named in the properties of the first design

to the registers, signals, and ports (hereafter, variables) of the

second design (Section V-B).

We first find the matching code windows of the two designs

to narrow the scope of variables to map. We then extract

statistical, semantic, and structural features of each variable,

Variable 
Mapping Pass

Structural 
Transformation 

Pass

Constraint 
Refinement 

Pass

Po = Ao -> Bo

P = A -> B

P' = A -> B'

P'' = A' -> B' Transys

Input Property
Design

D1
Design

D2

Output Property

Fig. 3: The workflow of Transys.

Type Feature

Statistical

Variable Type (Input, Output, Wire, Reg)
No. of Blocking Assignments
No. of NonBlocking Assignments
No. of Assignments
No. of Branch Conditions
No. of Always Block Conditions

Semantic Variable Names

Structural
Dependence Graph Depth
No. of Operators
Centroid

Table VI: Features from AST and PDG for variable mapping.

and calculate the distances between each pair of variables from

the two designs. The variable pairs with shortest distance are

used as mapped variables.

Structural Transformation Pass. In the next pass, Transys

uses the Program Dependence Graphs (PDGs) [21] of the two

designs to adjust the arithmetic expressions in the translated

property. We use the PDG of the first design to learn the

relationship between multiple variables in the property, and

we traverse the PDG of the second design to build the arith-

metic expressions of, and capture the analogous relationship

between, the variables in the translated property. In practice

we apply this step to only the consequent part of the property;

we found the structural transformation was not needed for the

antecedent. However, there is no limitation that would prevent

applying this pass to the antecedent as well, should future

properties require it.

Constraint Refinement Pass. In the third pass Transys refines

the constraints of the property by adding terms to the boolean

formula. Starting with the form A → B, there are four possible

modifications Transys might make. These, along with their

simplified forms, are laid out in Table V. The first and fourth

formats represent a refinement of the original property—

an added constraint under which the property holds—and

Transys will produce properties that require this refinement.

The second and third formats are not refinements of the

original property, but rather introduce new properties of the

second design. This can be seen in the “Simplified” column

of Table V. Transys does not produce these new properties.

B. Variable Mapping Pass

In this pass we are concerned only with mapping variables

named in one design to their appropriate counterpart in the

second design.



1) Matching Windows: Similar to feature-based image

alignment approaches [22], we search for matching variables

within a reasonable range instead of within the entire code

base. Modules in the Hardware Description Language by

nature are good windows for matching: it keeps the semantic

meaning of some functionalities and the size of each module

is often reasonable to search. As the two hardware designs

for assertion translation often share the same specification, we

simply match modules with their names using Equation 4. We

thus narrow down the scope of variables to map and search

the mapped variables within corresponding modules.

2) Extracting Features: For each variable from the two de-

signs within the corresponding matching windows, we extract

three types of features from the Abstract Syntax Tree (AST)

and the Program Dependence Graph (PDG): statistical fea-

tures, semantic features, and structural features (see Table VI).

The statistical features include: the variable type; the num-

ber of times this variable appears in the left-hand-side of

blocking assignments, nonblocking assignments, and assign-

ment statements; and the number of times it appears in the

branch conditions and always block conditions. The statistical

features describe local statistics of a variable within a module.

These features are extracted from the AST of the design.

The semantic features point to the semantic meaning of a

variable. We use the variable name as a feature because it

usually explains what this variable is about. For example, the

variable ex_insn in the OR1200 processor holds the instruction

in the EX pipeline stage. Different design implementations

often share similar variable names for the same variable.

The structural features capture the position of a variable in

a PDG. We choose three features: dependence graph depth,

numbers of operators, and centroid. The dependence graph

depth is the maximum length of paths of the PDG from any

statement that contains the variable to the input ports of the

module. The numbers of operators calculates the number of

times each operation (e.g. &&, ||, ≫, ==, >, etc.) appears

in the paths from the statements to the input ports in the

PDG. The centroid measures the centrality of the dependence

graph [23]. We assign each operator a weight (we use the same

weight for every operator) and calculate the centrality of all

the paths from the variable to the input ports of the PDG.

3) Matching Variables: To match variables of two hardware

designs, we calculate distances between the features of pairs

of variables, one from each design. The variable pairs with

shortest distance are used for drafting the assertions.

For statistical features, we use the Euclidean distance for

distance calculation:

dstat(p, q) =
√

(q1 − p1)2 + · · ·+ (qn − pn)2 (3)

For semantic features, we use the Sørensen-Dice index [24]

for distance between two strings calculation:

dseman(s1, s2) = 1−
2× |pairs(s1) ∩ pairs(s2)|

|pairs(s1)|+ |pairs(s2)|
(4)

where pairs(s) is a set of character pairs in string s. The

Sørensen-Dice index satisfies two requirements: (1) a signifi-

Design 1

always @(round_i)

begin

case (round_i)

1: rcon_o = 1;

2: rcon_o = 2;

3: rcon_o = 4;

......

end

Design 2

initial

begin

rcon[0] = 8'h01;

rcon[1] = 8'h02;

rcon[2] = 8'h04;

rcon[3] = 8'h08;

......

end

Fig. 4: Code snippets from AES designs.

Design 1

assign w0 = key[127:96];

assign keyout[127:96] =

w0^tem^rcon(rc);

Design 2

always @*

begin

w0 = key[127:096];

w4 = w0^subword1^{rcon1,24'b0};

w8 = w4^subword2^{rcon2,24'b0};

w12 = w8^subword3^{rcon3,24'b0};

.....

end

Fig. 5: Code snippets from AES designs.

cant substring overlap should point to a high level of similarity

between the strings; (2) two strings which contain the same

words, but in a different order, should be recognized as being

similar. The factor 2 ensures that when the two strings are

exactly the same, the distance is 0.

For structural features, we use Euclidean distance (Equa-

tion 3). Each feature—depth, number of operators, and

centroid—appears as a term in the calculation.

We combine the three distances by assigning each of them

a weight, and thus the distance between two variables is:

d(v1, v2) = αdseman + βdstat + γdstruct (5)

where v1 and v2 are variables from the first and second

designs, respectively. When assigning values to parameters

α, β, and γ, we empirically choose α to be the largest as

the semantic meanings of variable names are usually similar

between designs. We choose β to be the smallest as the

detailed implementation are often different between designs,

thus the structural information will be less similar.

C. Structural Transformation Pass

In the structural transformation pass, we amend the arith-

metic expressions that make up each of the terms in the

property. We start by describing the challenges we met in

translating the properties after the variable mapping pass. We

then discuss our observations and solutions to the challenges.

1) Challenges: We identify three types of structural dissim-

ilarities between designs, which Transys must handle: mapping

state to array, mapping one to many, and mapping constants.

Mapping state to array refers to the case where a variable

is updated according to a state machine in one design, but

in another design, the variable is an array that stores all the

possible values at different states of the state machine. Figure 4

shows code snippets of two AES implementations of the key

expansion. In Design 1, the round constant rcon_o changes

every time the state machine changes to the next state. In

Design 2, all possible values of rcon are stored in an array.



Mapping one to many refers to the case where a variable

from one design can be mapped to several variables in another

design. For example, one design might use temporary variables

to store the intermediate results of long calculations or avoid

large arrays, and a second design might not. Figure 5 shows

code snippets from two AES cores. The variable keyout in

Design 1 maps to the concatenation of variables w0, w4, w8,

and w12 in Design 2. Mapping many to one is the dual case

and also requires structural transformation.

The last type is mapping the constant values used in one

design to the analogous constant values of a second design.

For example, the syscall instruction is encoded differently in

OpenRISC cores versus RISC-V cores. In some cases it is

possible to find a linear transformation from the constant of

one design to its semantic equivalent in the second design, but

in other cases, such as with the syscall encoding, it is not.

2) Transformation Algorithm: We observe that if in the first

design, the variables in the property are related to each other,

the correlation among the variables in design two are often

explicitly stated in the code. Thus, we leverage the PDG to

build the arithmetic expressions of, and capture the analogous

relationship between, the variables in the translated property.

As shown in Algorithm 1, we first check whether in the first

design, the variables in the property are in the same PDG. If

not, we assume that in the second design, the variables in the

translated property are also not in the same PDG. In this case,

we use the translation result of the Variable Mapping Pass as

the result for this pass.

Otherwise, we leverage the PDG to build the property. We

take the mapped variable with the highest score (max_var) and

check whether the other mapped variables are in the same

PDG as the max_var. If not, we move to the next variable in

the vector of mapped variables and check again. We iterate

until all variables in the translated property are in the same

PDG as max_var. Then we find the variable with the second

highest score (line 10).

Finally, we use a propagation algorithm in the PDG to

build the new property. The propagation algorithm takes in

two variables: a starting point variable, and an ending point

variable (max_var is usually taken as the starting point). The

ending point variable can be either an ancestor or a descendant

of the starting point in the dependency graph. We explore both

the ancestors and descendants of the starting point variable

in the PDG until we hit the ending point variable. During

the exploration of each node in the PDG, we replace the

intermediate variables until the ending point variable is shown

in the property. We stop at the ending point variable so that the

property can cover the logic involving the mapped variables

but does not include too long of a calculation.

There is a timing issue during the propagation. Every time

we encounter a nonblocking assignment, we add a Next (X)

to the property (or equivalently, a prev), indicating that there

will be a delay of one clock-cycle for this assignment. Sec-

tion VI shows an example of how we handle the nonblocking

assignment timing.

ALGORITHM 1: Transformation Pass

Input : The property generated from the VM Pass P
Input : A set of PDGs of the Design 1 pdgSet1
Input : A set of PDGs of the Design 2 pdgSet2
Input : A map of variable mapping scores vScoreMap
Output: A new property P ′

1 newAssertSet ← ∅;
2 if in_same_pdg(P, pdgSet1) then
3 max_var ← max_score(P, vScoreMap);
4 for var in P do
5 for v in vScoreMap[var] do
6 if in_same_pdg(max_var, v, pdgSet1) then

break ;
7 end
8 substitute(P , var, v);
9 end

10 var ← max_score(P -{max_var}, vScoreMap);
11 P ′ ← propagate(max_var, var);
12 else

13 P ′ ← P ;
14 end
15 return P’;

D. Constraint Refinement Pass

At this point, we have a draft property of Design 2 in the

form P ′
.
= A → B. We first check whether P ′ is a valid

property of Design 2. If it is, we are done. If it is not, then

we continue with the constraint refinement pass. The goal of

this step is to refine A to A′, such that P ′′
.
= A′ → B is a

valid property of Design 2.

We first introduce notation and define the problem; we then

describe the algorithm.

1) Notation and Problem Statement: A hardware design

unrolled for multiple clock cycles can be represented as a

boolean formula φ in conjunctive normal form (CNF): φ
.
=

(lp∨ lq)∧ (lr ∨ ls∨ lt)∧ . . ., which is written as a conjunction

of clauses ω, where each clause is a disjunction of literals l
(e.g., ω

.
= (lp ∨ lq)). A literal is either a variable xi or its

negation ¬xi.

Let φD2
be the CNF formula representing Design 2 unrolled

for some finite but unbounded number of clock cycles. P is a

valid property of Design 2 if and only if the boolean formula

φD2
∧ ¬P is unsatisfiable:

φD2
|= P ⇔ (φD2

∧ ¬P ) UNSAT (6)

If φD2
∧ ¬P is satisfiable, in other words, if P is not a

valid property of Design 2, then we look for a sequence of

conjuncts A1 ∧ A2 ∧ . . . ∧ An such that the formula F
.
=

φD2
∧ ¬P ∧ A1 ∧ A2 ∧ . . . ∧ An is unsatisfiable. Using the

new conjuncts, we define P ′ as follows:

P ′ .
= (A1 ∧A2 ∧ . . . ∧An ∧A) → B (7)

Then φD2
∧ ¬P ′ is equivalent to F : F ⇔ φD2

∧ ¬P ′, and

therefore equisatisfiable with F . If we are successful in findng

A1∧A2∧ . . .∧An that make F unsatisfiable, then φD2
∧¬P ′

will also be unsatisfiable, and P ′ will be a valid property of

the design: φD2
|= P ′.

There are two possible cases when F is unsatisfiable. The

first case is that the subformula φD2
∧ A1 ∧ A2 ∧ ... ∧ An is



ALGORITHM 2: Refinement Pass

Input : A CNF formula φ
Input : The property generated from the T Pass P ′

Output: A new property with refined antecedent P ′′

1 if φ ∧ ¬P ′ is UNSAT then return P ′;
2 for t in range(1,MAX_SEQ) do

3 Ωt ← {ωi|(ωi in φ) ∧ (P ′
t in ωi)};

4 for ωi in Ωt do

5 Ω′
t ← {ωj |(ωj in φ) ∧ (¬l in ωj) ∧ (l in ωi)};

6 for ωj in Ω′
t do

7 S ← ∅; step ← 0;
8 ωl ← ωi ⊙ ωj ;
9 S ← S ∪ {l|l in ωl};

10 while step < MAX_STEP or False not in ωl or

ωl changes do
11 ωante ← find_ante(ωl, S);
12 S ← S ∪ {l|l in ωante};
13 ωl ← ωante ⊙ ωl;
14 step ← step +1;
15 end
16 Ante ←

∧

l in ωl,l 6=I′
t

λ(l, 0);

17 if φ∧ Ante is SAT then

18 return P ′∧ ¬Ante;
19 else

20 end
21 end
22 end
23 end
24 return Not Found;

unsatisfiable. In this case, the negation of the new conjuncts

¬(A1∧A2∧ ...∧An) is itself a valid property of φD2
. We are

not interested in this case as it does not relate to the original

property we are translating. The second case is that φD2
∧

A1 ∧A2 ∧ ... ∧An is satisfiable, and F = φD2
∧ ¬P ∧A1 ∧

A2 ∧ ...∧An is unsatisfiable. In this case, A1 ∧A2 ∧ ...∧An

are the preconditions of the property P . This is the refinement

of the constraints of the translated property.

Constraint Refinement Problem. Given φD, the CNF repre-

sentation of a hardware design unrolled a finite but unbounded

number of clock cycles, and a draft property P such that

φD ∧ ¬P is satisfiable, find a sequence of n conjuncts

A1 ∧A2 ∧ ... ∧An such that:

• φD ∧A1 ∧A2 ∧ ... ∧An is satisfiable, and

• φD ∧ ¬P ∧A1 ∧A2 ∧ ... ∧An is unsatisfiable.

2) Constraint Refinement Algorithm: The constraint refine-

ment algorithm works by finding conflict clauses in the CNF

representation of the design. For each literal l appearing in the

clause ω that contains B (the consequent of the property), the

algorithm searches for a clause ω′ in φD such that ¬l appears

in the clause. These two clauses are conflict clauses. If we

force all other literals appearing in ω and ω′ to evaluate to

false, then φD will be unsatisfiable.

Let λ(l, v) be a function that takes in a literal l ∈ {x,¬x}
and a truth value v ∈ {true, false} and returns a new literal

l′ ∈ {x,¬x} such that l′ evaluates to true when l evaluates

to v.

λ(l, v) =











x if l = x, v = true

x if l = ¬x, v = false

¬x otherwise

Given a CNF formula φ, if there exist conflict clauses ωi and

ωj in φ, where ωi = li1∨ ...∨ lis∨xc, and ωj = lj1∨ ...∨ ljt∨
¬xc, then φ∧λ(li1, 0)∧ ...∧λ(lis, 0)∧λ(lj1, 0)∧ ...∧λ(ljt, 0)
is unsatisfiable. This is because xc ∧ ¬xc is unsatisfiable. By

assigning all other literals in the two clauses ωi and ωj to 0,

subformula ωi ∧ ωj can be simplified to xc ∧ ¬xc, which is

unsatisfiable. Thus, P = ¬(λ(li1, 0)∧...∧λ(lis, 0)∧λ(lj1, 0)∧
... ∧ λ(ljt, 0)) is a property of φ.

Algorithm 2 takes a CNF formula φD and the property

to be refined P ′ as inputs. It first checks whether P ′ is a

valid property of φD, if it is, the algorithm just returns P ′.

Otherwise, it searches for clauses that contain the property P ′

(line 3), and for each clause that contains P ′, it searches for

its conflict clauses (line 5). By combining the results of these

two sets of clauses, the algorithm produces the new property

for φD.

3) Greedy Search: The results we obtained from combining

ωi and ωj often do not include any interesting preconditions,

but just a restatement of the property P ′. This is because when

unrolling the design together with the invariant, some clauses

to connect the invariant with the design need to be added to

φD. To get the preconditions, we have to search further.

We first define the resolve operator ⊙: given two clauses ωi

and ωj , for which there is a unique variable x such that one

clause has a literal x and the other has ¬x, ωi ⊙ ωj contains

all the literals of ωi and ωj with the exception of x and ¬x.

Starting from the conflict clauses (line 8), we search for

more clauses that can introduce potential precondition vari-

ables (line 11). ωl keeps track of the current resolved clause.

Every time we find a new conflict clause, we resolve ωl with

the new clause (line 13). The new ωl clause can still make φ
unsatisfiable. We keep expanding the resolved clause, until we

reach the maximum step, or False shows in ωl, or ωl does not

change any more (line 10). Then we generate the antecedent

from ωl and check whether it satisfies the requirements (line

16). If yes, we output the new invariant; otherwise, we keep

on searching (line 17-19).

During the search in find_ante, we search for clauses

greedily. The goal is to keep the antecedent short to be readable

and managable. Thus, every time we find a conflict clause, we

only find the one that introduces one new variable to ωl (we

use a set S to keep track of the found variables).

4) Timing in the Assertions: A property P ′ is asserted at

each clock cycle: φ ∧ ¬P ′
.
= φ ∧ ¬P ′

t=1
∧ ¬P ′

t=2
∧ ... ∧

¬P ′

t=MAX_SEQ. To determine the timing constraints in the

assertion, the search for conflict clauses takes place only within

a specific clock cycle (φ ∧ ¬P ′

t=ti
, line 2 in Algorithm 2),

instead of all clock cycles together (φ ∧ ¬P ′).

The generated property P ′′ from the refinement pass can

contain literals in different time steps. We rank them according

to the timing information, and add the delays between them.



E. Property Does not Exist

A property of one design may not be true of a second design.

This can happen when the two designs implement different

specifications or when one of the designs implements only part

of the specification. For example, some of the AES designs we

collected implemented only encryption and did not implement

decryption. Thus, the properties related to decryption cannot

be translated to these designs. Another example is that for

RISC-V processors, there are three privilege levels, but for

OpenRISC processors, there are only two privilege levels.

Thus, properties related to the middle privilege level of the

RISC-V processor do not have corresponding properties in the

OpenRISC processors. In these cases Transys will typically

fail to produce a translation, which is a reasonable outcome.

F. Bugs in the Code

The structural transformation and constraint refinement

passes leverage the second design itself to translate the prop-

erty. This raises a concern: If there is a bug in the design, it

will be captured in the translated property. This is true. Transys

is meant to be used as an aide to the verification team tasked

with writing security critical properties of a design. Transys

does the heavy lifting of producing a candidate translation,

but it does not obviate the need for human involvement in

property design. A manual review of the translated properties

is a required part of the workflow.

VI. IMPLEMENTATION

We implement Transys based on the Yosys Open Syn-

thesis Suite [8], a framework for Verilog synthesis. Transys

is implemented in C++ with approximately 4,500 lines of

code. The assertions are implemented in SystemVerilog. Each

Pass is implemented as a command in Yosys: the Variable

Mapping Pass and the Transformation Pass are implemented

as new commands (match_variables and transform), and

the Refinement Pass is implemented by modifying the sat

command. We also implement three assisting commands for

building the program dependence graphs (build_pdg), parsing

security assertions to a standard format (read_assertlist) and

adding assertions to the designs for refinement and validation

(append_assertlist).

We build the PDGs on the Register Transfer Level Interme-

diate Language (RTLIL) representation in Yosys. Each node

in the PDG is a Cell or a Wire object, which represents the

netlist data; or a Switch, a Case, or a Sync object, which

represents the decision trees and synchronization declarations;

or an assignment block, which we build to represent the assign

statements. Each edge represents either the control or data

dependence. To build the PDG, we first convert the objects

into nodes. An edge from node A to node B is added if the

inputs to B depend on the outputs of A.

For the timing delays caused by non-blocking assignments

from the Transformation Pass, we add a state machine to

keep track of the signal values in different clock cycles.

For example, if we have an assertion (a == prev(b)), the

implementation of this assertion is:

always @(posedge clk)

begin

prev_b <= b;

end

assert property (a == prev_b);

VII. EVALUATION

Our evaluation aims to answer the following questions: (1)

whether Transys can successfully translate security-critical as-

sertions from one design to another; (2) whether the translated

assertions are valid and capture the meaning of the original

assertions; (3) whether Transys is practical in terms of run-

time; (4) how the translation results are affected by bugs in

the second design.

A. Experiment Setup and Dataset

The experiments are performed on a machine with the Intel

Xeon E5-2620 V3 12-core CPU (2.40GHz, dual-socket) and

62GB RAM. We evaluate Transys on 38 AES designs, 3 RSA

designs, and 5 RISC processor designs in total.

Specifically, we collect 36 open-source AES cores from

GitHub and OpenCores. Of these, 18 are implemented in

Verilog and are evaluated. The remaining 20 are written in

SystemVerilog, which Transys currently does not support. In

addition, we collect 20 AES cores with injected trojans from

TrustHub [25], [26]. We also collect 11 open-source RSA

cores from GitHub, OpenCores, and TrustHub, and 3 of the

them are implemented in Verilog. For CPU designs, we collect

5 open-source RISC processor, 3 of them are implementations

of the OpenRISC architecture (OR1200, Espresso, Cappuc-

cino) and 2 of them are implementations of the RISC-V

architecture (OpenV, Picorv32).

To evaluate Transys on the AES and RSA designs, we

draft 17 assertions for 3 designs to feed as input to Transys

(see Table VII). We also collect 14 information-flow security

assertions for AES and RSA cores from the IFT Model

project [20] (see Table IX). These assertions are drafted for 3

AES and 3 RSA implementations, and cover properties about

confidentiality, integrity, isolation and timing channels. The

first 9 assertions in Table IX are drafted for general AES

and RSA designs, and the last 5 assertions are drafted for

specific malicious designs. Thus, we use the first 9 asser-

tions for our translation evaluation. We use the last 5 for

evaluating the security impact of translated assertions (see

Section VII-G). To evaluate Transys on the processor designs,

we collect 10 security assertions for OR1200 processors from

the SPECS [5], Security Checkers [10], and SCIFinder [7]

projects (see Table VIII). These assertions represent the 6 types

of security properties in Table I.

B. Translation Results

To evaluate whether Transys can successfully translate

security-critical assertions from one design to another, we

test whether it can successfully generate valid assertions for

the new designs. Table X shows the main translation results.

Figures 6, 7, 8, and 9 show the detailed results of the

translation rate for each assertion.



A No. Assertions

A27-01 (keysched.round_i == 1) → (keysched.rcon_o == ’h1)
A27-02 (keysched.round_i == 2) → (keysched.rcon_o == ’h2)
A27-03 (keysched.round_i == 3) → (keysched.rcon_o == ’h4)
A27-04 (keysched.round_i == 4) → (keysched.rcon_o == ’h8)
A27-05 (keysched.round_i == 5) → (keysched.rcon_o == ’h10)
A27-06 (keysched.round_i == 6) → (keysched.rcon_o == ’h20)
A27-07 (keysched.round_i == 7) → (keysched.rcon_o == ’h40)
A27-08 (keysched.round_i == 8) → (keysched.rcon_o == ’h80)
A27-09 (keysched.round_i == 9) → (keysched.rcon_o == ’h1b)
A27-10 (keysched.round_i == 10) → (keysched.rcon_o == ’h36)

A28-01 (keysched.state == 4) → (keysched.next_key_reg[31:0] ==
keysched.next_key_reg[63:32] ⊕ keysched.last_key_i[31:0])

A28-02 (keysched.state == 4) → (keysched.next_key_reg[63:32] ==
keysched.next_key_reg[95:64] ⊕ keysched.last_key_i[63:32])

A28-03 (keysched.state == 4) → (keysched.next_key_reg[95:64] ==
keysched.next_key_reg[127:96] ⊕ keysched.last_key_i[95:64])

A28-04 (keysched.state == 4) → (keysched.next_key_reg[127:96]
== keysched.col_t ⊕ keysched.last_key_i[127:96] ⊕
{keysched.rcon_o, 32’h0})

A29-01 (aes_sbox.d ⊕ aes_sbox.a != 8’hff)
A29-02 (aes_sbox.d != aes_sbox.a)

A32-01 (rsa.msg_in != rsa.msg_out)

Table VII: Security critical assertions of cryptographic hardware. Assertion
A27-01—10 and A28-01—04 are drafted for the AES09 design; Assertion
A29-01—02 are for AES11; Assertion A32-01 is for RSA03. The first number
in A No. refers to the property number in Table II.

ANo. Example Assertions

A01 ((or1200_ctrl.ex_insn&’hFC000000)≫26==’h21)→
(or1200_rf.rf_dataw==dcpu_dat_o)

A03 ((or1200_ctrl.ex_insn&’hFC000000)≫26==’h21)→
(dcpu_adr_o==operand_a+ex_simm)

A04 (or1200_rf.rf_we==1)→(or1200_rf.rf_addrw!=0)|
(or1200_rf.rf_dataw==0)

A08 ((or1200_ctrl.ex_insn&’hFC000000)≫26==9)→
(or1200_sprs.to_sr==or1200_except.esr)

A09 ((or1200_ctrl.ex_insn&’hFC000000)≫26==9)→
(or1200_genpc.pc==or1200_except.epcr)

A15 ((or1200_ctrl.ex_insn&’hFC000000)≫26==1)→
(or1200_rf.rf_addrw==9)

A17 ((or1200_ctrl.ex_insn&’hFFE00000)≫21==1826)&
(operand_a>operand_b)→(or1200_sprs.to_sr[9]==1)

A19 ((or1200_ctrl.ex_insn&’hFC000000)≫26==48)→
(or1200_sprs.spr_dat_o==operand_b)

A23 ((or1200_ctrl.ex_insn&’hFC000000)≫26==’h38)→
((or1200_ctrl.ex_insn&’h03e00000)≫21==or1200_rf.addrw)

A26 ((or1200_ctrl.ex_insn&’hFC000000)≫26!=’h1c)

Table VIII: Security critical assertions of the OR1200 design. The first number
in A No. refers to the property number in Table I.

(1) For AES designs, the overall translation rate is 93%.

The 8 failures in the Transformation Pass occur in translating

A28 to the AES08 design, and A29 to the AES06 and AES12

designs. The reason that the Transformation Pass fails is that

the highest-score variable found in the first pass is incorrect,

making it impossible to find a subgraph in the PDG that

includes at least two variables in the assertions.

For the AES05 design, the implementation of one module

is missing in the code we collected, which caused 16 failures

in the Refinement Pass. Transys can translate the assertions

in the first two passes, but fails in the third pass as the code

is incomplete. This shows that our first two passes do not

rely on the completeness of the code base, but the third pass

requires that the code should be complete. If we comment

out the part of the code that instantiates the missing module

A No. Assertion Core

A36-01 set key[0] := high; assert cipher[0] == high AES-04
A36-02 set key[1] := high; assert cipher[7:0] == high AES-04
A36-03 set key[1] := high; assert cipher[31:0] == high AES-04
A36-04 set key[1] := high; assert cipher[63:0] == high AES-04

A33-06 set indata[1] := high; assert count[1] == low RSA-03
A36-05 set inExp[1] := high; assert cipher[1] == high

when ready == 1
RSA-03

A36-06 set inExp[0] := high; assert cipher[0] == low RSA-03
A37-01 set inExp[0] := high; assert ready == low RSA-03
A37-02 set inExp[1] := high; assert ready == low RSA-03

A33-01 set key[0] := high; assert Antena == low AES-T400
A33-02 set key[0] := high; assert TSC_SHIFTReg[0]

== low
AES-T400

A33-03 set key[0] := high; assert Capacitance[0] == low AES-T1100
A33-04 set key[1] := high; assert Capacitance[1] == low AES-T1100
A33-05 set key[1]:=high; assert Capacitance[0] == high AES-T1100

Table IX: Information flow assertions of cryptographic hardware. The first
num in A No. refers to the property num in Table IV, III.

in the original design, Transys can successfully translate the

assertions to AES05.

(2) For AES designs with trojans, Transys successfully

translates all assertions to the 20 trojan-injected AES designs.

For example, as shown in Figure 7, Transys translates 4

AES Information Flow Tracking assertions written in the

AES-04 design (a trojan-free design) to the 20 AES designs

with different trojans injected. The trojans include leaking the

secret key through AM radio, leakage current, spread spectrum

communications, and draining the battery to cause denial-of-

service [25], [26]. In this case, the translated assertions can

potentially be used to detect the injected trojans.

(3) For processor designs, we translate assertions from the

OR1200 to 5 processor designs in two different architectures.

We found that the assertions A19 and A26 do not exist in the

two RISC-V cores: A19 and A26 are about the l.mtspr in-

struction and custom instructions, which are not implemented

in the two RISC-V cores.

We first evaluate the remaining 46 of the 50 total transla-

tions, and among those the translation rate is 85%. Among

the 7 failed cases, 3 of them fail in the Transformation Pass

and 4 of them fail in the Refinement Pass—Transys cannot

find valid preconditions to make the consequent true. All the

failed cases happen when we try to translate the assertions

from OR1K designs to RISC-V designs: 2 of them are to the

OpenV core, and 5 of them are to the Picorv32 core.

We separately evaluate the 4 translations for which the as-

sertion does not exist in the target design. Transys successfully

translates 3 of them. These 3 new assertions are valid but the

policies they capture are different than the original assertions’

policies. The false positive rate here is 75%.

(4) For RSA designs, we translate 1 assertion mined from

the specification, and 5 Information Flow Tracking assertions.

All of them are successfully translated to the new designs.

(5) We also test Transys by translating the assertions back

to the original designs. Transys successfully translates all as-

sertions back to the original designs. This implies the variable

mapping pass can map the variables to themselves, and the

second and third pass preserve the structure of the assertions.



Designs Total Translations Total Succ Fail in VM Pass Fail in T Pass Fail in R Pass Total Transl. Rate

AES 360 336 0 8 16 93%
AES w/ Trojan 400 400 0 0 0 100%
CPU 46 39 0 3 4 85%
RSA 18 18 0 0 0 100%

Total 824 793 0 11 20 96%

Table X: Main results of assertion translation for 18 AES designs, 20 AES designs with trojans, 5 processor designs, and 3 RSA designs.
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Fig. 6: AES01—AES18 translation
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cess transl. rate.
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results: total transl. number and suc-
cess transl. rate.
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C. Quality

To evaluate the quality of the translated assertions, we

first check whether the translated assertions are valid for the

target design using the model checking tool Cadence IFV.

We then manually review the assertions alongside the design

specifications to determine whether the translated assertions

are semantically equivalent to the original assertions.

1) Validity: We check whether the translated assertions

are valid by adding them to the target designs and running

Cadence IFV. Figures 6, 7, 8, and 9 shows the results. For

the nine Information Flow Tracking assertions, we do not have

the tool to check the validity of the translated assertions (167 in

total) and thus their validity result is not available. All the other

626 translated assertions can pass verification by Cadence IFV,

indicating that the assertions Transys generates are valid.

2) Equivalence: Figures 10, 11, 12, and 13 show the results

of the equivalence checking. Type equivalence refers to the

case that the translated assertion and the original assertion

belong to the same type or module of security properties,

as given in column 1 of Tables I, II, III, and IV. Semantic

equivalence refers to the case that the translated assertion and

the original assertion are semantically the same.

The translation of assertions to trojan-injected AES designs

achieves 100% semantic equivalence rate. For other designs,

the translation of 23 (64%) assertions has type and semantic

equivalence rate above 60% (between 60% and 100%). The

translations of the remaining 13 (36%) assertions have type

and semantic equivalence rate between 20% to 50%. The

low rates mainly happen in two cases: the translation of

Information Flow Tracking assertions and the translation from

OpenRISC cores to RISC-V cores.

The main reason for the translated assertions to fail to

capture the meaning of the original assertion is because the

variable mapping pass fails to map to an accurate variable or

even fails to map to the correct module in the target design. In

No. Translation Results

Original (keysched.state == 4) → (keysched.next_key_reg[31:0] ==
keysched.next_key_reg[63:32] ⊕ keysched.last_key_i[31:0])

AES01 (round_ctr_reg[0]) & (key_mem_we) & (!round_ctr_inc) →
(key_mem_new == key[255:128])

AES02 u1.r1.t0.w0 == u1.r1.t0.key[127:96]

AES03 (key_exp.key_start==1)&(key_exp.round[1:0]==2’b01)→#1
(key_exp.wr_data==prev(key_exp.key_in[255:192]))|
(key_exp.wr3==0)

AES04 a1.k0b == a1.k0a ⊕ a1.k4a

AES05 n.a.

AES06 (!u0.kld)→#1(u0.w[0]==prev(u0.w[0]⊕u0.subword⊕u0.rcon))

AES07 a1.k0a == prev({a1.k0[31:24] ⊕ rcon, a1.k0[23:0]})

AES08 n.a.

AES09 (keysched.state == 4) → (keysched.next_key_reg[31:0] ==
keysched.next_key_reg[63:32] ⊕ keysched.last_key_i[31:0])

AES10 AES_CORE_DATAPATH.KEY_EXPANDER.key[3] ==
AES_CORE_DATAPATH.KEY_EXPANDER.key_in[31:0]

AES11 (!u0.kld) → #1 (u0.w[1] == prev(u0.w[0] ⊕ u0.w[1] ⊕
u0.subword ⊕ u0.rcon))

AES12 w0_next == sbox_out ⊕ rcon ⊕ w0

AES13 w4 == key[127:96] ⊕ subword ⊕ 16777216

AES14 w4 == w0 ⊕ subword ⊕ {rcon2[31:24],24’b0}

AES15 wNext[1] == w[1] ⊕ wNext[0]

AES16 roundkey_text == mixcolumns_text ⊕ okey

AES17 roundkey_text == mixcolumns_text ⊕ okey

AES18 w7 == key[127:96] ⊕ key[95:64] ⊕ key[63:32] ⊕ key[31:0]
⊕ subword ⊕ 16777216

Table XI: The results of translating A28-01 to 18 AES designs.

all our experiments, we choose the parameters in the Variable

Mapping Phase empirically to be α : β : γ = 3 : 2 : 1. This

combination works well in most cases, but not all of them.

D. Case Studies

In this section, we show 3 examples: (1) translation from

one AES design to another AES design; (2) translation from

one processor design to two different processor designs from

two architectures (OR1K architecture and RISC-V architec-

ture); (3) translating an Information Flow Tracking assertion

from one trojan-free AES design to a trojan-injected design.
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Fig. 11: Type and semantic equiv. for
AES-T100—AES-T2100 designs.
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Pass Translation Results

VM
Pass

(key_exp.pstate==4)→(key_exp.key_in[31:0]==
key_exp.key_in[63:32]⊕key_exp.key_in[31:0])

(key_exp.pstate==4) → (key_exp.wr_data==key_exp.key_in[255:192])
ST (key_exp.pstate==4) → (key_exp.wr_data==key_exp.key_in[191:128])
Pass (key_exp.pstate==4) → (key_exp.wr_data==key_exp.key_in[127:64])

(key_exp.pstate==4) → (key_exp.wr_data==key_exp.key_in[63:0])
i_key == key_exp.key_in

(key_exp.key_start==1)&(key_exp.round[1:0]==2’b01)→#1
(key_exp.wr_data==prev(key_exp.key_in[255:192]))|(key_exp.wr3==0)

CR
Pass

(key_exp.key_start==0)&(key_exp.key_start_L==1)
&(key_exp.round[1:0]==2’b01)→#1
(key_exp.wr_data==prev(key_exp.key_in[191:128]))|(key_exp.wr3==0)
(key_exp.key_start==0)&(key_exp.wr3==1)&(key_exp.init_wr3==1)
&(key_exp.round[1:0]==2’b01)→#1
(key_exp.wr_data==prev(key_exp.key_in[127:64]))|
(key_exp.wr3==0)
(key_exp.key_start==0)&(key_exp.wr3==1)&(key_exp.init_wr4==1)
&(key_exp.round[1:0]==2’b01)→#1
(key_exp.wr_data==prev(key_exp.key_in[63:0]))|
(key_exp.wr3==0)
i_key == key_exp.key_in

Table XII: Detailed results of translating A28-01 to the AES03 design. VM:
Variable Mapping, ST: Structural Transformation, CR: Constraint Refinement.

1) Example 1: We show the details of translating the

assertion A28-01 from AES09 to all AES designs. Table XI

shows the resulting assertions. For the assertions in AES02,

AES03, AES12, we classify them as in the same type as

the original assertion, but not as having equivalent semantics.

For the assertions in AES16 and AES17, they belong to the

calculation of round keys, and thus are neither type equivalent

nor semantically equivalent to the original assertion.

Table XII shows the detailed results of translating assertion

A28-01 from AES09 to AES03. After the Variable Mapping

Pass, keysched.next_key_reg and keysched.last_key_i are

both mapped to key_exp.key_in. The assertion generated is

not valid yet. After the Transformation Pass, Transys outputs

5 assertions. These assertions are generated from the part of

the PDG that contains the variable key_exp.key_in. Only the

5th assertion is valid. Finally, from the Refinement Pass, all

the 4 assertions are refined and are valid. It is worth noting

that the antecedents generated from the Refinement Pass are

neither close to the part of the code of the consequent nor

similar to the original code, and thus it would be difficult for

a human to figure them out manually.

2) Example 2: Table XIII shows the translation results

for translating assertion A04 to five processor designs. The

translation fails in the Refinement Pass when translating

the assertion to the OpenV design. For the other designs,

Transys can successfully generate valid assertions. The trans-

No. Translation Results

Original (or1200_rf.rf_we==1)→(or1200_rf.rf_addrw!=0)|
(or1200_rf.rf_dataw==0)

OR1200 (or1200_rf.rf_we==1)→(or1200_rf.rf_addrw!=0)|
(or1200_rf.rf_dataw==0)

Espresso (mor1kx_rf_espresso.rfa_o_use_last)&
(mor1kx_rf_espresso.result_last[0]==0)&
(mor1kx_rf_espresso.rfd_last==mor1kx_rf_espresso.rfa_r)&
(mor1kx_rf_espresso.rfa_adr_i[0])&
(mor1kx_rf_espresso.rfa_o[0]==0)→
(mor1kx_rf_espresso.rfa_adr_i 6=0)|
(mor1kx_rf_espresso.rfa_o==0)

Cappuccino mor1kx_rf_cappuccino.rf_wradr==
mor1kx_rf_cappuccino.wb_rfd_adr_i
(mor1kx_rf_cappuccino.rf_wradr)&
(mor1kx_rf_cappuccino.rf_wrdat)→
(mor1kx_rf_cappuccino.rf_wrdat==0)|
(mor1kx_rf_cappuccino.rf_wraddr!=0)

OpenV n.a.

Picorv32 picorv32.dbg_mem_rdata == picorv32.mem_rdata

Table XIII: The results of translating A04 to 5 CPU designs.

lated assertions for the OR1200, Espresso, and Cappuccino

processors are semantically equivalent. These three designs

are all implementations of the OR1K architecture and it is

easier to translate assertions among them. The assertion for

the Picorv32 does not capture the same semantic meaning,

but it also belongs to the type of security properties that are

relavent to the memory.

3) Example 3: In this example, the Information Flow

Tracking assertion A36-01 for the AES04 design is translated

to the AES-T400 design. In the AES-T400 design, the injected

trojan utilizes an unused pin to generate an RF signal that

can be used to transmit the key bits. The leaked data can

be received by an AM radio, and can be interpreted with a

specific beep scheme. The trojan is implemented in two addi-

tional modules: AM_Transmission and Trojan_Trigger. When

a predefined plaintext is observed, the trojan will be triggered

and the AM_Transmission module will output the key to the

Antena signal following the beep scheme to leak data.

Ideally, the key will flow only to the output ciphertext

(A36-01). The result of our translation for A36-01 to the

AES-T400 design is: set key[0] := high; assert cipher[0]

== high. This indicates that Transys can successfully translate

the assertion to a new design and is not influenced by the two

additional modules of the trojan.

E. Performance

We evaluate the total time it takes for Transys to translate

each assertion from a source design to a target design. Fig-
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Fig. 14: Translation time for the AES, RSA and CPU designs.

ure 14 shows the results. The translation times for the trojan-

injected AES designs are similar to the time for the trojan-free

AES design, and are not shown due to space constraints.

We observe that the translation time varies across different

designs, depending on their complexity. The average times

for translating one assertion for AES designs, RSA designs

and CPU designs are 28.8 seconds, 0.46 seconds, and 189

seconds, respectively. For AES and RSA designs, most of

the translation time is spent on the Refinement Pass. For

processor designs, most of the translation time is spent on

the Variable Mapping Pass. The maximum average property-

translation time is 436.8 seconds for the OR1200 design. The

results suggest that Transys is practical enough to be used

by hardware designers on a daily basis to quickly generate

security assertions through translating existing ones.

F. Effectiveness of Each Pass

We evaluate the effectiveness of each pass on translating

assertions across the AES designs and the processor designs.

Tables XIV and XV show the ratio of valid results at the end

of each pass. We observe that each pass increases the valid-to-

invalid ratio substantially, indicating that each pass is effective.

G. Security Impact

In this section, we discuss the security impact of the

translated information flow tracking assertions when there is

a vulnerability in the code. Assertions A33-01—A33-05 in

Table IX can detect trojans in AES-T400 and AES-T1100 [20].

We translate these five assertions to the AES cores with

trojans.

We do not have access to the information flow tracking

tool [20] needed to add the tracking logic necessary to verify

whether the translated assertions can detect trojans. Therefore,

we instead compare the translated assertions with the original

assertions, and compare the trojans between designs. If the

assertions are logically equivalent, and the information leakage

circuits are the same other than the triggering mechanism, then

we infer that the translated assertions would detect the injected

trojans as well.

Table XVI shows the results. The translated assertions of

A33-01 and A33-02 would detect trojans in three AES designs,

Assertion VM Pass ST Pass CR Pass

Total Transl. 360 352 336

Valid Ratio 14% 52% 93%

Table XIV: Accumulative valid ratio of each pass for AES designs.

Assertion VM Pass ST Pass CR Pass

Total Transl. 46 43 39

Valid Ratio 39% 59% 85%

Table XV: Accumulative valid ratio of each pass for CPU designs.

Orig Assert No. Trans. assert can detect trojans in

A33-01, A33-02 AES-T1600, AES-T1700, AES-T400

A33-03, A33-04 AES-T100, AES-T1000, AES-T1100, AES-T1200
A33-05 AES-T200, AES-T700, AES-T800, AES-T900

Table XVI: Results of security impact of translated assertions to detect trojans
in AES cores.

and the translated assertions of A33-03—A33-05 would detect

trojans in eight AES designs. For the remaining nine trojan-

injected designs, we do not have assertions that can detect the

trojans and therefore we cannot determine whether translated

assertions would detect them.

H. Bugs in the Code

We discuss three examples to show the translation results

of Transys when there is a bug in the design. For different

types of bugs, the translation results of Transys can be: failing

to translate, outputting trivially true assertions, or propagating

the bug to the resulting assertions.

1) Translation Failed: The first example shows the case

of translation failure. In the AES05 design we mentioned in

Section VII-B, part of the code base is missing. When we use

Transys to translate the assertions to the AES05 design, we get

the error message in the Refinement Pass showing that some

modules or cells are not part of the design. Thus, one possible

reason for translation failure is missing parts of the code. This

corresponds to the case of no refinement output at all.

2) Trivial Assertions: The second example shows the case

that a certain constraint should be explicitly stated in the

design, but it is not. We show the GPR0 bug in the OpenRISC

cores. In the OR1K specification, the general purpose register

R0 should always be set to zero [27]. A violation of this

property can lead to malicious modification of the memory

data or memory address in calculation. This bug exists in both

the Espresso and the Cappuccino designs [6].

We translate the assertion that enforces R0 to always

be 0 (A04 in Table VIII) from the OR1200 to both the

Espresso and the Cappuccino designs. The results are shown

in Table XIII. The result assertion for the Espresso design can

be simplified to (mor1kx_rf_espresso.rfa_adr_i 6=0)→
(mor1kx_rf_espresso.rfa_adr_i 6=0). The result

assertion for the Cappuccino design can be

simplified to (mor1kx_rf_cappuccino.rf_wraddr6=0)→
(mor1kx_rf_cappuccino.rf_wraddr 6=0). In both cases, the

assertions are trivially true (A → A) and there are no other

valid and meaningful assertions. Thus, a bug in the design

due to missing constraints is reflected in translation results

that only have trivially true assertions.



3) Overly Restrictive Assertions: The third example shows

the case that some malicious or buggy code are explic-

itly added in the design. For the AES assertion A29-02

from the AES11 design, Transys successfully translate it to

the AES18 design: aes_sbox.a != aes_sbox.d. This assertion

states the security property that the S-box should avoid

any fixed points. We then maliciously modify the S-box

design in AES18 such that when the input to the S-box is

8’hff, it should output 8’h16 but instead outputs 8’hff. We

then run Transys to translate this assertion again and we

get the new assertion: (aes_sbox.a[7] 6= aes_sbox.d[7]) →
(aes_sbox.a 6= aes_sbox.d). This new assertion is valid for

the buggy design. With the additional antecedent, hardware

experts can easily identify the bug and the condition to trigger

it.Thus, a malicious bug in the design can manifest itself in

the translated assertions (typically as additional antecedents).

VIII. RELATED WORK

Property driven hardware security. There has lately been

a call for “property driven hardware security” [28], [29],

[30] that advocates building security specifications into the

hardware design workflow, automating the process of doing

so, and developing quantifiable measures of security. We see

Transys as a contribution in response to this call.

Developing security specifications. A body of work on the

use of execution monitors in processor designs has pro-

duced a set of security properties for various open source

designs [31], [10], [32], [5]. These properties were developed

manually. Subsequent work showed how to partially automate

the process [7], and tackled temporal properties [33], but still

required an initial set of manually written properties for each

design under consideration. With Transys, the work done to

specify properties for one design can be leveraged to bootstrap

property generation for a second design.

Extracting assertions from hardware designs. Considering

properties beyond those critical to security, there is a body of

work on specification mining from hardware designs. The Io-

dine tool looks for possible instances of known design patterns,

such as one-hot encoding or mutual exclusion between signals,

and creates assertions that encode the found patterns [34].

More recent papers use data mining of simulation traces

to extract more detailed assertions [35], [36] or temporal

properties [37]. While these techniques are not concerned with

finding security properties, they provide lessons on how to

scale assertion extraction effectively.

Assertion based verification of hardware designs. The

properties developed by Transys can be encoded as assertions

and added to the design under review, at which point standard

assertion based verification (ABV) techniques can be used

to find property violations [38]. These techniques include

simulation-based testing [39] and formal static analysis [40],

[41], and are implemented in both commercial [42] and

open source tools [43]. Software-style symbolic execution has

also proven to be effective at finding property violations in

hardware designs [44], [6].

Language based verification. A body of work has emerged

on developing new or extending current hardware descrip-

tion languages for hardware verification. One language based

approach uses typed hardware description languages, which

can enforce security policies by construction [16], [45], [14],

[15]. A second language based approach uses a formally

defined language to first specify a policy and then refine the

specification to a provably correct design [46], [47], [48].

Tracking information flow in hardware. Information Flow

Tracking logic can be added at the gate level [17] or register

transfer level [49] of a hardware design, and can capture timing

flows [18], [19] or data flows [50]. While there is a trade-off

to be made between precision and performance [51], [52],

these techniques can demonstrate whether sensitive inputs to

a design, e.g., the key material input to a cryptographic core,

is directly or indirectly visible in the output signals. As with

language based verification, this approach can provide strong

guarantees, but also requires modifying the original design,

either by adding tracking logic or, as in the case of CPUs,

redesigning from the ground up to provide provable isolation

between software contexts [53], [54].

Software code clone detection. Our Variable Mapping Pass

is inspired by research in software code clone detection. The

techniques used are token-based [55], [56], [57], semantic-

based [58], [59], [60], [61], graph-based [62], [63], [64],

and tracelet-based [65] approaches. Genius [63] uses features

extracted from control flow graphs and converted to high-level

numeric feature vectors to conduct searches. The approach

is scalable and robust to code variation. Gemini [64] uses

a graph-based deep learning approach and achieves high

accuracy and high speed. Our approach combines graph and

semantic-based features and adapts them to RTL code.

IX. CONCLUSION

In this work, we advocate building security properties for

new designs by leveraging existing properties. We present

Transys, an automated tool that translates given security asser-

tions from one hardware design to another in three passes—

variable mapping, structural transformation and constraint

refinement. Transys is able to translate 27 temporal logic

assertions and 11 information flow tracking assertions across

38 AES designs, 3 RSA designs, and 5 RISC processor

designs. The overall translation success rate is 96%. Among

them, the translations of 23 (64%) assertions achieve semantic

equivalence rates of above 60%. The average translation time

per assertion is about 70 seconds.
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