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Ellipticity dependence of excitation and ionization of argon atoms by short-pulse infrared radiation
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When atoms or molecules are exposed to strong short-pulse infrared radiation, ionization as well as “frustrated
tunneling ionization” can occur, in which some of the nearly freed electrons recombine into the initial ground or
an excited bound state. We analyze the ellipticity dependence of the relative signals that are predicted in a single-
active-electron (SAE) approximation, the validity of which is checked against a parameter-free multielectron
R-matrix (close-coupling) with time-dependence approach. We find good agreement between the results from
both models, thereby providing confidence in the SAE model potential to treat the process of interest.
Comparison of the relative excitation probabilities found in our numerical calculations with the predictions
of Landsman et al. [A. S. Landsman et al., New J. Phys. 15, 013001 (2013)] and Zhao et al. [Y. Zhao et al.,
Opt. Express 27, 21689 (2019)] reveals good agreement with the former for short pulses. For longer pulses, the
ellipticity dependence becomes wider than that obtained from the Landsman et al. formula, but we do not obtain

the increase compared to linearly polarized radiation predicted by Zhao er al.
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I. INTRODUCTION

Strong-field ionization utilizes a slowly varying few-cycle
infrared laser pulse to eject an electron from an atom. With
an intense infrared laser, the electric field significantly alters
the effective potential. In this process described by Corkum
[1], the electron has the ability to “tunnel” through the ef-
fective barrier and become free. After ionization, however,
the electric field can guide the electron back to the target
ion. There it can be recaptured into the ground state or any
other bound state, such as high-lying Rydberg states. This
is the strong-field process of “frustrated tunnel ionization”
(FTD), which is negligible in the treatment of the standard
photoeffect. From some of these excited bound states, the
electron can jump to metastable states of the atom. Produc-
tion of metastable sources through FTI may have practical
advantages, for example, a potentially high yield with minimal
heating of the sample [2].

In addition to studying the process with linearly polarized
light, the ellipticity dependence of both FTI and successful
ionization has been of significant theoretical interest. Intu-
itively, one might expect that FTT will diminish with increas-
ing ellipticity of the IR radiation, since rescattering is most
likely a very important contributing process, in addition to
direct excitation. Successful ionization, on the other hand,
while also potentially benefitting from recollisions, may be
less sensitive to the latter. If these hypotheses are correct, one
would expect the rates for these processes, at a fixed peak
intensity of a pulse (in practice, a fixed total energy delivered
by the pulse), to peak at or near zero ellipticities, i.e., linearly
or near linearly polarized light. It should then drop off with
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increasing ellipticity and have a minimum for (near) circularly
polarized light. Also, the drop should be steeper for FTI than
for actual ionization, as discussed in [3].

An early FTI experiment was performed by Nubbemeyer
et al. [4] on helium, where the above expectations were,
indeed, fulfilled. Since FTT is a strong-field process, in which
the motion of the electron is predominantly driven by the
slowly varying electric field, it is not surprising that models
were developed in which the motion of the electron was
described classically, with very limited account for the target
structure. Landsman et al. [5], for example, derived an analyt-
ical formula based on the strong-field approximation model,
which neglected the effect of the Coulomb field until the pulse
had passed. They considered the conditions where the initial
transverse momentum of the tunneled electron is canceled by
the drift momentum gained in the field. This results in a Gaus-
sian probability distribution with respect to ellipticity, which
depends only on the laser intensity, wavelength, and ionization
potential of the target. The approximations employed in the
derivation of the formula limit it, in principle, to laser fields
that are much stronger than the Coulomb field and small
ellipticity, but it was apparently sufficient to reproduce the
experimental results of Nubbemeyer e al. [4]. More recent
work on the helium target was reported by Yun et al. [6].

For situations involving targets with lower ionization po-
tentials or lower laser intensities, semiclassical calculations
that account for the Coulomb field even during the laser
interaction, such as those presented by Shvetsov-Shilovski
et al. [7], are typically employed. At lower intensities, these
calculations sometimes predict a maximum in the excita-
tion probability at a nonzero ellipticity. Zhao et al. [8], for
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example, recently reported predictions for FTI of Ar(3p) with
laser pulses of two wavelengths (800 and 1 600 nm), two peak
intensities (0.8 x 10'* and 1.6 x 10'* W/cm?), and pulse
lengths of 30, 10, and 4 cycles, respectively. At the higher
intensity, the distribution deviates from a Gaussian shape,
exhibiting a relatively flat top around linear polarization
& = 0.0. At the lower intensity and a pulse length of 30 fs
for the 800 nm radiation, a maximum of the relative FTI
rate occurs at ¢ = 0.2, where there is a predicted increase
of more than 10% compared to ¢ = 0. For shorter pulses of
10 and 4 cycles, the increase disappears in the Zhao et al.
[8] predictions. We note that peaks at ¢ £ 0 were previously
predicted for Mg [9], where it was shown that they are
sensitive to the initial conditions of the calculations.

No experimental data to confirm or disprove the Zhao
et al. [8] predictions are currently available, but an experiment
is underway at Griffith University. Preliminary results were
already announced [10], but no firm conclusions are available
yet. In fact, further theoretical guidance is highly desirable for
this challenging experimental project.

Very recently, experimental FTT and ionization results for
Ar(3p) obtained with linear polarization were published [11].
These data were compared with calculations carried out by
the authors of the present paper. Good qualitative agreement
was obtained with predictions from a single-active-electron
(SAE) model, with the effective potential proposed by Tong
and Lin [12]. A few calculations to cross-check those results
were also carried out with other potentials proposed in the
literature, and—most importantly—with predictions from a
fully ab initio all-electron R-matrix with time-dependence
(RMT) approach. The latter (see below) is based on the close-
coupling expansion, with full account of electron exchange
where it is potentially important and a multiconfiguration
Hartree-Fock target description.

The principal objectives of the present work were to extend
those latter calculations to elliptically polarized light. This
would allow us to (i) further test the validity of the SAE
approach by comparing with RMT predictions, (ii) once again
check the predictions of Landsman et al. [5] and Zhao et al.
[8] (which clearly disagree for the 800 nm, 30 fs, 0.8 x
10'* W /cm? case), and (iii) provide guidance for the experi-
mental investigations. In the latter context, it is also of interest
to determine how the experimental signal might actually arise.
The measured observable is the relative yield of metastable Ar
atoms in the (3p>4s)>P, and (3p°4s)3 Py states. Given that the
ground state is a relatively well LS-coupled singlet state, while
the metastables are equally well LS-coupled triplet states, the
process almost certainly proceeds via intermediately-coupled
excited states, whose triplet component can be reached while
fulfilling the spin-conserving selection rule of electric dipole
radiation.

To model the actual experiment, therefore, one would
ideally carry out a semirelativistic calculation accounting for
the intermediate-coupling nature of the target states involved,
followed by a set of rate equations to predict the ultimate fate
of the 3p electron that is subjected to the strong laser field.
Even though the RMT method has recently been extended
to the semirelativistic regime [13], such calculations for the
process of interest here are far beyond the currently available
computational resources. Fortunately, as shown in [11], the

relative probabilities as a function of laser parameters appear
to be predictable without these efforts, and hence the present
calculations are expected to be useful in the further planning
of the experimental study.

This paper is organized as follows. In Sec. II, we briefly
describe the SAE and RMT models used in the present calcu-
lations. This is followed by our results presented in Sec. III,
with the conclusions drawn in Sec. IV. Unless specified
otherwise, atomic units are used throughout.

II. COMPUTATIONAL DETAILS
A. Single-active-electron approach

The basic principles behind these calculations were de-
scribed in [11]. In modeling the process, we need to solve the
nonrelativistic time-dependent Schrodinger equation (TDSE).
In atomic units, this is a partial differential equation,

a
iE\IJ(r,t): [Hy+ V()] ¥, 1), (1)

for the wave function W(r, t). Here, H; is the field-free Hamil-
tonian and V (¢) is the time-dependent interaction represented
by the laser pulse. Instead of including the kinetic energy and
the Coulomb interaction of all electrons with the nucleus and
with each other, only one electron is considered in the single-
active-electron (SAE) approximation. Its interaction with the
nucleus and all other electrons is approximated by a (usually
local) potential. For the present work, we used the potential
proposed by Tong and Lin [12], which was recently employed
successfully in FTI calculations with linearly polarized radia-
tion [11]. For maximum internal consistency, we recalculated
the 3p and all other orbitals in this potential, and we also used
it to generate the distorted Coulomb waves needed to extract
the ionization probability.

The electric field of the laser is represented by the vector
potential

A@l) = f(t) wf—\/%[cos(wt + @)X + e sin(wt + ¢)J].
(2

Here, ¢ is the ellipticity, with ¢ = 0 corresponding to linearly
polarized and ¢ = 1 to circularly polarized light. Furthermore,
Ey is the maximum amplitude of the electric field, and ¢
is the carrier-envelope phase (CEP). The factor Ey/+/1 + &2
ensures that for a given pulse represented by the envelope
function f(¢) (typically a Gaussian or a sin® function closely
resembling a Gaussian), the same amount of energy (i.e.,
the field squared integrated over the length of the pulse)
is delivered to the target. This is needed to unambiguously
test the effects of different ellipticities. In order to avoid a
potentially unphysical displacement [14], we set the vector
potential and calculate the electric field as its time derivative
according to E(t) = —%A ().

In writing Eq. (2), we chose the quantization axis (£) per-
pendicular to the electric field, i.e., along the laser propagation
direction. For the special case of linear polarization (¢ = 0),
it is better to rotate the coordinate system and take advantage
of the cylindrical symmetry by choosing the quantization axis
parallel to the direction of the electric-field vector.
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Since the initial state is spherically symmetric, right-and
left-hand elliptically polarized light yield the same answers.
In the electric dipole approximation, there is no spatial depen-
dence in A(t) and E(t). We use sin® envelopes with FWHM
of the intensity set to 6 or 30 fs, respectively. For 800 nm,
the FWHM time in fs is very close to the number of cycles
for a sin? envelope of the field. In the 6 fs calculations, we
average over the CEP by performing calculations for ¢ =
0°, 45°, 90°, and 135°.

The initial state of the system (a 3p orbital with a magnetic
quantum number m) is propagated in time until the end of
the pulse. In order to simulate an unpolarized 3p electron
in the Ar atom, calculations are carried out for all possible
initial projections of the orbital angular momentum, i.e., m =
0, +1, and the results are then summed incoherently. For
linearly polarized radiation, the results for initial m = +1
and m = —1 are the same and the value of m is conserved.
As mentioned above, we then choose the quantization axis
along the direction of the electric field. In this case, we use
the straightforward Crank-Nicolson (CN) method [15] with
the electric dipole operator written in the length gauge to
propagate the wave function.

The case of a nonzero ellipticity, on the other hand, is much
more numerically challenging due to the reduced symmetry
that no longer conserves the initial projection of the angular
momentum. Here we choose the quantization axis perpen-
dicular to the electric field, i.e., along the laser propagation
direction, as written in Eq. (2). Since the CN method is no
longer applicable directly, we employ the matrix iterative
method (MIM) [16] with the dipole operator chosen in the
velocity gauge.

After the pulse is over, the wave function of the active
electron is projected onto the initial 3p orbital to obtain
the survival probability Py, as the square of the overlap
matrix element, as well as onto selected excited states to yield
individual excitation probabilities, and, finally, on distorted
Coulomb waves to obtain the energy-differential ionization
probability dP/dE, where E is the energy of the continuum
electron. The integral over all ejected energies yields the total
ionization probability P,,. Finally, the total probability for
excitation, P.y., (regardless of the Rydberg state) is obtained
by using the conservation of the norm of the total wave
function, i.e., Pexe = 1 — Poyry — Pion. Special care was taken
to ensure that the numerics were sufficiently stable to ensure
meaningful results, even when Py, and Py, are small.

All the SAE calculations reported below were carried out
with an updated version of the computer code described by
Douguet et al. [17], and references therein. Also, spot checks
against results from the independent SAE code used for most
of the calculations reported in [11] were performed.

B. R-matrix with time-dependence approach

The R-matrix with time-dependence method (RMT) is an
ab initio, multielectron method capable of describing the
interaction of general atoms and molecules with arbitrary
laser fields [18-20]. RMT employs the well-known R-matrix
paradigm [21] of dividing configuration space into two sep-
arate regions, in this case over the radial coordinate of the
ejected electron. In the inner region (close to the nucleus),

the time-dependent multielectron wave function is represented
by an R-matrix basis with time-dependent coefficients. This
configuration-interaction approach ensures that we take into
full account all electronic interactions, including electron
correlation and exchange. Specifically, we used the target
description developed by Burke and Taylor [22] for photoion-
ization of argon.

In the outer region, where one electron is sufficiently far
removed that we can neglect the effect of exchange, the
wave function is described in terms of residual-ion states
coupled with the radial wave function of the ejected electron,
and is expressed explicitly on a finite-difference grid. The
outer region also includes several long-range potentials, which
describe the interactions between the ejected electron, laser,
and residual ion.

In contrast to traditional R-matrix-based approaches, the
wave function itself is matched explicitly at the boundary, in
both directions, rather than via an R matrix. The wave function
is propagated in the length gauge, as it has been found to con-
verge faster than the velocity gauge with the atomic structure
description typically employed in time-dependent R-matrix
calculations [23]. Time propagation of the wave function is
achieved by the Krylov subspace method of Arnoldi and
Lanczos [24]. RMT has been successfully applied to a wide
range of strong-field problems, from high-order harmonic
generation (HHG) in two-color [25] and near-IR fields [26],
XUV-initiated HHG [27,28], and strong-field rescattering
[29].

The default polarization plane in the RMT code is the zy
plane, with Z and —y the major and minor axes of the polar-
ization ellipse, respectively. A general, elliptically polarized
electric field will therefore be of the form

E(t) = f(t) EgRe[ee " 19)], 3)

where é = (£ — is§)/+/1 + &2 is an arbitrary polarization vec-
tor and Re[x] denotes the real part of the complex quantity
x. As before, ¢ is the ellipticity and f(¢) is the envelope
function, chosen to create a sin’ pulse envelope, and ¢ is
the carrier-envelope phase. This choice of polarization axes
allows calculations for linear fields (¢ = 0) to be polarized
along the z axis. For calculations with circularly polarized
laser pulses, it is often practical to rotate the polarization plane
to the xy plane, as this reduces the number of dipole-accessible
states relative to the zy plane, thereby reducing the size of the
calculation significantly.

In the current study, the argon target is described within
an R-matrix inner region of radius 20 and an outer region
of 3500. The latter ensures that no significant part of the
wave packet describing the ejected electron gets to the bound-
ary, where it would be reflected. The finite-difference grid
spacing in the outer region is 0.08 and the timestep for
the wave-function propagation is 0.01 (= 0.24 attoseconds).
The description of argon includes all available 3s°3p° €€ and
353 p° £ channels up to a maximum total angular momentum
of Ly = 80. Doubly-excited states of the residual Ar' ion
are also included to ensure an accurate description of the
3s3p®np window resonances [30].

The continuum functions are constructed from a set of 50
B-splines, of order 13, for each available angular momentum
of the outgoing electron. The ground-state survival probability
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Total Excitation: 800 nm, 1.0 x 10'* W/ecm?, 6 cycles (SAE and RMT)
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FIG. 1. Present SAE results for total excitation of Ar(3p) for a
6-cycle 800 nm pulse of peak intensity 10'* W/cm? for three
different CEPs, compared with the predictions obtained from the
Landsman et al. formula and an RMT calculation for a CEP of 90°.
See text for details.

is determined directly from the wave function at the end of the
laser pulse. The ionization probability is calculated by first
projecting the channel-resolved wave functions, from some
radius 7myin = 20 up to rmax = 3500, onto plane waves to
determine the photoelectron spectrum, and then integrating
over all energies. As with the SAE method outlined above,
the total excitation probability is then obtained using the
conservation of the norm of the wave function.

Due to the significant computational expense of these cal-
culations, RMT results are only available for selected elliptic-
ities at a laser intensity of 1.0 x 10'* W /cm?. In principle, the
coupled-channel formulation used here also allows ionization
leaving the residual Ar ion in the (3s3p°)2S state. However,
this excited ionic state has a much higher ionization poten-
tial, and hence the signal for the process of interest here is
negligible.

III. RESULTS AND DISCUSSION

Figure 1 depicts a comparison of SAE results for three
different CEPs of a 6-cycle 800 nm pulse of peak inten-
sity 10" W/cm?. Also shown are results from our RMT
calculation and the predictions obtained from the Landsman
et al. formula. Recall that the electric field rather than the
vector potential is set in the RMT code, and so the RMT
calculation was carried out for an electric field with CEP = (°,
which is equivalent to an SAE calculation with CEP = 90°,
assuming that the derivative of the envelope function only has
a minor effect on the calculation of the field used in the SAE
calculation. To simplify the comparison, we therefore use the
label 90° for the RMT calculations. We also checked that SAE
calculations performed with setting the electric field directly
(i.e., as in RMT), while producing a nonzero displacement and
small changes in the individual probabilities, hardly affect the
ratios and hence the conclusions of the present work. Clearly,
all the results are so close to each other that the all-electron
RMT results for the observable of interest can certainly be
taken as support for the much simpler SAE calculations.

Total Excitation: 800 nm, 6 cycles (30 cycles in Zhao et al.)

T T T T
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FIG. 2. Comparison of the present SAE results for total excita-
tion with the predictions obtained from the Landsman et al. formula
and those of Zhao et al. for a central wavelength of 800 nm and peak
intensities of 0.8 x 10' and 1.6 x 10 W /cm?. See text for details.

Generally, our results for the 6-cycle pulses are in qual-
itative agreement with the Landsman et al. formula, even
though they assumed “long” pulses in their derivation and
made further approximations mentioned in Sec. I. However,
we note a small but systematic trend of the numerical results
always lying slightly above those predicted by the formula.
Finally, averaging over the CEP only has a small effect on the
6-cycle results.

Figure 2 shows a comparison between the present SAE
results and the predictions of Landsman et al. [5] and Zhao
et al. [8] for a central wavelength of 800 nm and several
peak intensities and pulse lengths. Most of our calculations
were performed for 6-cycle pulses and averaged over four
CEPs, as described above. The formula given in [5] contains
neither the pulse length nor the CEP. The simulations in [8]
were performed for 30-cycle, 10-cycle, and 4-cycle pulses.
The most interesting result appears to be the one for 30 cycles,
800 nm, and a peak intensity of 0.8 x 10'* W /cm?, where the
relative FTI maximum is predicted to have an unambiguous
maximum at &€ ~ 0.2. In order to check this, we carried out
several calculations for 30 cycles, so that it was possible
to obtain the relevant ratios. The calculations with a small
but nonzero ellipticity such as ¢ = 0.2 are computationally
demanding, and hence we do not map out the entire curve.
However, the available points at ¢ = 0.2, 0.3, and 0.5 clearly
show that the width of the curve representing the ratio of the
excited-state population normalized to its value at ¢ = 0.0 is
significantly wider for the 30 fs pulse compared to the 6 fs
pulse at 0.8 x 10'* W /cm?, albeit not by as much as predicted
by Zhao et al. [8]. We still find the maximum at ¢ = 0.0.

The apparently better agreement of our calculations for
1.6 x 10'* W/cm? with the Landsman et al. formula for
0.8 x 10 W /cm? is accidental. It simply reflects the fact that
the Landsman er al. formula predicts the curve too narrow.
Similarly, the better agreement with Zhao et al., also for the
higher intensity, is due to their method predicting the curve
too wide. This clearly demonstrates that for the processes
discussed in the present paper, neither one of the essentially
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Excitation: 800 nm, 2 x 10'* W/cm?, 6 cycles, CEP avg. (SAE)
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classical methods is sufficiently accurate. Instead a quantum g
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Figure 3 shows results for yet another peak intensity,
this time 2 x 10'* W/cm?. Here we investigate the ellipticity 0.0 1 1 1 . g
dependence of ending up in the 4s orbital, any of the n =5 0.0 0.2 0.4 0.6 0.8 1.0
or n = 6 orbitals, or any excited state directly at the end of ellipticity

the laser pulse. Interestingly, the 4s excitation is predicted
to peak at a nonzero ellipticity, while n =5 and n = 6 are
very similar to the entire relative excitation probability. Recall
that the experimentally observed signal originates from the
metastable states involving the 4s orbital. However, this is not
the signal that one would expect from the target immediately
after the laser pulse is over, but rather much later (on an atomic
timescale) when excited states have optically decayed either
back to the ground state or to either one of the (3 p54s)3P2,0
metastable states.

Finally, we show in Fig. 4 the relative ionization proba-
bility for a number of peak intensities of a 6-cycle, 800 nm
pulse obtained in the SAE model (top panel) as well as for a
peak intensity of 10'* W/cm? for two CEPs, CEP averaged,
and compared once again with RMT results for a CEP of
90°. Compared to the previous figures, we clearly see a much
wider curve than for FTI. Even for ¢ = 0.9, the signal can
visually be distinguished from zero. Not surprisingly, in light
of the previous results, the CEP dependence is weak even for
a short 6-cycle pulse. Also, the RMT calculations once again
reveal a similar ellipticity dependence as predicted by the SAE
model.

IV. CONCLUSIONS

We have investigated the ellipticity dependence of frus-
trated and completed ionization of the Ar(3p®) ground state,
when the target was exposed to a 6-cycle or, in some cases,
30-cycle, 800 nm infrared pulse with peak intensities between

FIG. 4. Top: CEP-averaged SAE results for the relative ellipticity
dependence of Ar(3p) ionization for a 6-cycle, 800 nm pulse of
various peak intensities, indicated in the legend. Bottom: Compar-
ison of SAE results for ionization for a 6-cycle, 800 nm pulse of
peak intensity 10" W/cm? compared with RMT results for a few
ellipticities.

0.8 x 10' and 2.0 x 10 W /cm?, respectively. Predictions
based on calculations in the single-active-electron approxi-
mation were spot-checked against results obtained in a mul-
tielectron R-matrix (close-coupling) with time-dependence
model. Excellent agreement was obtained for the ratio of these
probabilities as a function of ellipticity when normalized to
the results for linearly polarized light. In practice, this ratio
is close, although not identical, to what would be measured
experimentally.

Reasonable agreement with the analytic formula proposed
by Landsman et al. [5] for the relative ellipticity was obtained
for the 6-cycle pulses. For the longer 30-cycle pulse with a
peak intensity of 0.8 x 10'* W/cm?, the curve widens. This
is in qualitative agreement with the predictions of Zhao et al.
[8], but we do not confirm an increase at nonzero ellipticity.
In general, the Landsman e al. formula appears to predict the
curve too narrow, while the treatment of Zhao et al. predicts
it too wide. Finally, we confirm that the relative ellipticity
dependence for ionization follows a much wider bell curve
than that for frustrated ionization.
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