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Abstract—Security specification mining is a relatively

new line of research that aims to develop a set of security

properties for use during the design validation phase of the

hardware life-cycle. Prior work in this field has targeted

open-source RISC architectures and relies on access to

the register transfer level design, developers’ repositories,

bugtracker databases, and email archives. We develop

Astarte, a tool for security specification mining of closed-

source, CISC architectures. As with prior work, we target

properties written at the instruction set architecture (ISA)

level. We use a full-system fast emulator with a lightweight

extension to generate trace data, and we partition the

space of security properties on security-critical signals

in the architecture to manage complexity. We evaluate

the approach for the x86-64 ISA. The Astarte frame-

work produces roughly 1300 properties. Our automated

approach produces a categorization that aligns with prior

manual efforts. We study two known security flaws in

shipped x86/x86-64 processor implementations and show

that our set of properties could have revealed the flaws.

Our analysis provides insight into those properties that

are guaranteed by the ISA, those that are required of the

operating system, and those that have become de facto

properties by virtue of many operating systems assuming

the behavior.

I. INTRODUCTION

Validating the security of a processor starts at the spec-

ification and design phases. The current industry practice

for security validation is a mostly manual approach.

Designers and testers study the specification and design

and reason about the necessary and desired security

properties of the processor.

Recently, researchers have developed tools to semi-

automatically generate properties that capture the secu-

rity goals of the design [1], [2]. These properties are

expressed in SystemVerilog using the industry-standard

Open Verification Library (OVL) format [3], making

them suitable for use with existing simulation-based ver-

ification [4] and formal static analysis [5], [6] methods.

An automated approach to security property specifica-

tion is a first step toward a systematic, comprehensive

security validation process.

However, the current security property specification

tools were developed for, and are applicable to, only

open-source RISC processors. In this paper we develop

security specification mining for x86 processor designs.

In turning our attention to the x86 instruction set archi-

tecture (ISA) we face three challenges. First, the size of

the ISA makes even a semi-manual approach prohibitive;

Second, x86 is closed-source and prior approaches for

mining security properties relied on access to both the

source code and the developers’ repositories, bugtracker

databases, and email forums; Third, compared to today’s

RISC architectures, x86 offers a richer landscape of secu-

rity features and privilege modes, increasing the number

and complexity of the associated security properties.

We present Astarte, a fully automatic security speci-

fication miner for x86. A challenge with mining secu-

rity critical properties is automatically identifying those

properties that are relevant for security, that if vio-

lated would leave the processor vulnerable to attack.

In general, there is no fixed line separating functional

properties from security properties. The environment in

which a processor operates and the attacker’s motivation

and capabilities may move some properties across the

security-critical boundary in either direction.

In theory, a design would be validated as correct

against a complete specification with well defined and

proven security policies. In practice, however, the spec-

ification is neither complete, well defined, nor proven

secure. It is up to the security validation team to deter-

mine whether, and to what degree, a given design may

be vulnerable to attack.

Prior work tackled this problem by analyzing existing

design bugs and manually sorting them as exploitable



or not exploitable [1]. However, this approach is labor

intensive and does not easily scale to x86. Furthermore,

perhaps more relevant for our purposes, this approach

requires knowledge of and access to the details of

known design bugs culled from developers’ archives,

code repositories, and bugtacker databases, which we do

not have for the closed-source x86 designs.

We therefore take a different approach. We focus

our attention on mining properties that are relevant to

the various control signals that govern security-critical

behavior of the processor. These properties are by def-

inition important for the correct and secure behavior

of the processor, which in turn is important for the

correct implementation of the security primitives that

operating systems and software rely one. In this respect,

our approach is inspired by prior, manual efforts [7], [8],

[9].

We tackle the complexity of the architecture by inde-

pendently considering the space of properties for each in-

struction preconditioned on the value of a single security-

relevant control signal. In other words, we partition the

specification with respect to each control signal. It is

perhaps counter-intuitive that this approach works; it

would seem necessary to consider all possible combina-

tions of all security-relevant signals for every instruction

in order to produce meaningful security properties. Yet,

when we compare our found properties to prior manual

efforts and to known bugs in shipped x86 products, we

find that considering the security-relevant control signals

independently produces valuable properties.

We implement Astarte on top of Daikon [10], a

popular invariant miner, and we use the QEMU emula-

tor [11] to produce traces of execution. Astarte produces

roughly 1300 properties. We evaluate these properties

against manually discovered security properties and two

historical exploitable bugs in x86. Of the 29 previously

identified security properties, Astarte generates 23, and

the remaining 6 require processor state unimplemented

in QEMU. Astarte generates the properties that could

have detected the two exploitable bugs as well.

By generating trace data during the boot of four

different operating systems we are able to differentiate

between properties that are likely enforced by the pro-

cessor from those that must be enforced by the operating

system. Our analysis also provides insight into properties

that are not specified, but that operating systems have

come to rely on.

Our main contribution is a security specification miner

for closed-source, x86 architectures and its evaluation for

the Intel x86 (Ivy Bridge) processor. The novelty in our

approach includes:

• a partitioning of the security specification with

respect to each security-relevant control signal;

• automatically identifying the control signals of in-

terest;

• differentiating between processor-level properties

and operating system-level properties; and

• identifying de facto security-critical properties that

operating systems have come to rely on.

II. PROPERTIES

The Astarte framework generates properties written

over ISA-level state. Properties describe the constraints

and behavior of ISA state for a given instruction. For

example, the property in Figure 1a states that when the

in instruction executes, the I/O privilege level (IOPL, as

given by bit 13 of the EFLAGS register) must be greater

than or equal to the current privilege level (CPL, as given

by bit 13 of the Code Segment register).

A property may refer to the state of a signal or

register both before and after the instruction executes.

For example, the property in Figure 1b refers to the state

of the IOPL flag before and after execution of the addl

instruction. It states that if the I/O privilege level remains

unchanged during the addl instruction, then the current

privilege level must be 3.

in → EFL[13] ≥ CS[13]

(a) After the in instruction executes IOPL must be greater

than CPL

addl ∧ EFL[13] = orig(EFL[13]) → CS[13] = 3

(b) If the addl instruction does not modify IOPL then CPL

must be 3

Fig. 1: Example properties

III. ASTARTE DESIGN

A. Overview

Astarte works in three phases: trace generation, prop-

erty mining, and post-processing. Figure 2 provides an

overview of the Astarte workflow. In the first phase we

generate traces of execution of the processor. Without

access to the source code of the processor design, we

can not use a simulator to generate traces of processor

execution as prior work has done. Instead we use QEMU,

an x86 emulator, to emulate processor execution. QEMU

translates blocks of code at a time, and as such produces

traces of basic blocks. The miner requires traces of
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Producing the extended trace of events would require

an emulator that translates code line-by-line. But, the

emulator still needs to be fast enough to boot operating

systems and run application-level code. Therefore, we

take a middle approach: we use QEMU as our emulator

and build a lightweight extension to generate partial per-

instruction events. For every TB in a trace, the event

generator creates a new sequence of events, one event

for each instruction in the TB. Each event lists the

instruction executed and partial information about the

CPU state. Any software-visible register that can be

modified by the instruction is marked as invalid, and

all other registers retain their value from the previous

event. The generated event corresponding to the last

instruction in the TB has the full CPU state as given

by the original QEMU event. Continuing with the above

extended trace of events, and considering the second

event at line (2) in the trace, ∀i, 0 ≤ i ≤ m either r2
i
= r1

i

or r2
i
= invalid.

The event generator errs on the side of soundness: if

it is possible for an instruction to change an aspect of

CPU state, the generator assumes it does. We used the

Intel Software Developer Manuals [14] as our reference

when building the event generator.

C. Property Mining

We use the Daikon invariant detector [10] as the base

for the Astarte property mining. We build a custom front-

end that reads in the extended traces of events produced

in the first phase, and outputs a trace of observations

suitable for Daikon.

Daikon was developed for use with software pro-

grams: it looks for invariants over state variables for each

point in a program. Our front-end treats x86 instructions

as program points; Daikon therefore will find invariants

over ISA variables for each x86 instruction.

Daikon can handle individual program modules with

relatively few program points and few program variables,

it is not intended for analysis of entire programs [15].

The amount of ISA state and the number of instructions

in x86 is too large for Daikon to handle. The amount

of trace data required to achieve coverage of a single

addl ∧ orig(IOPL) = 0 ∧ IOPL = 0
addl ∧ orig(IOPL) = 0 ∧ IOPL = 1
addl ∧ orig(IOPL) = 1 ∧ IOPL = 0
addl ∧ orig(IOPL) = 1 ∧ IOPL = 1

TABLE I: Four partitions of IOPL for instruction addl

instruction, and the size of the state over which to find

invariant patterns for a single instruction overwhelm

Daikon.

To mitigate the complexity, for each instruction

Astarte partitions the space of properties on individual

control signals.

1) Partitioning on Control Signals: For each instruc-

tion, Astarte separately considers the space of invariants

over ISA state for that instruction, preconditioned on

a single control bit. The key insight is that if Astarte

chooses the control bits wisely, the partitioning not

only mitigates performance and complexity issues with

Daikon, it also produces sets of properties that are critical

to security, and we can then classify the properties by

their precondition. The properties that make up each

class provide some insight into the modes and behaviors

of the processor governed by the preconditioning control

signal.

For each control signal, how Astarte partitions the

space of invariants for a single instruction depends on the

control signal. For a one-bit signal Astarte creates four

partitions, one for each combination of signal values be-

fore and after the instruction executes. For example, with

the IOPL flag and addl instruction, Table I shows the

four partitions of the space of invariants. Each row of the

table represents one of the four possible antecedents of

a property. The four antecedents represented in the table

completely partition the space. For signals longer than

one bit Astarte divides the space of invariants into two

partitions for each instruction: instruct∧ orig(reg) =
reg and instruct ∧ orig(reg) 6= reg.

The set of properties produced for a particular pre-

conditioning signal tell us something about the behavior

governed by that signal. For example, providing CPL 6=
orig(CPL) as a precondition will mine properties related

to how the current privilege level (CPL) of the processor

is elevated and lowered.

2) Identifying Control Signals: The first step is to

choose which control signals to use as preconditions.

We manually organize the x86 ISA state by category

and then let Astarte find the meaningful signals within

a category. Here we consider the signals available as

variables in QEMU as well as the x86 registers:



• General Purpose Registers: EAX, EBX, ECX, EDX

• Interrupt Pointer: EIP

• Control Registers: EFL, CR0, CR2, CR3, CR4,

EFER

• Bitflags: II, A20, SMM, HLT, CPL

• Current Segments: CS, SS, DS

• Special Segments: ES, FS, GS, LDT, TR

• Descriptor Tables: GDT, IDT

• Debug Registers: DR0, DR1, DR2, DR3, DR6, DR7

• Command Control: CCS, CCD, CC0

Of these, we select three categories to focus on:

Control Registers, Bitflags, and Current Segments. These

registers contain fields that control security critical state,

such as privilege levels and location of page tables. We

chose these categories based on our knowledge of the

x86 ISA. Initially, we had only the Control Registers and

QEMU Bitflags, but our initial evaluation led us to add

the Current Segments. We expect other categories may

also yield interesting properties. Because each control

signal is analyzed independently of the others, additional

categories of ISA state can be analyzed without incur-

ring a combinational explosion in performance cost. (In

Section V-E we discuss the cost.)

During the signal-finding phase Astarte unpacks reg-

isters to consider one- and two-bit fields separately. It

then looks for and discards any unused fields. It does this

by looking for fields that keep a constant value. Astarte

collapses all x86 instructions into a single pseudo-

instruction and runs the property miner on this modified

trace. Any found properties of the form reg = N are an

indication that for all instructions reg has the constant

value N and is therefore unused. Astarte discards these

flags from further consideration. At the end of this phase

we are left with 24 signals of interest.

D. Postprocessing

The Daikon miner produces tens of millions of prop-

erties. In post-processing Astarte removes invalid proper-

ties, removes redundant properties, and combines similar

properties into a format that is easier to read.

1) Intersection Across Trace Sets: Astarte runs the

Daikon miner separately for each set of traces represent-

ing separate operating system boots and bare-metal exe-

cution. In the first step of post-processing properties from

different traces are combined by taking the intersection

of all sets with shared elements within a precondition.

This ensures that no property that is invalidated by any

one trace persists in the property set. It also generalizes

properties to the implementation being studied, rather

than to just a single trace.

2) Transitive Closure: Frequently, especially in the

case of single bit values, many registers will take on the

same value and Daikon will return many such equality

properties. To make these properties more manageable,

Astarte takes the transitive closure of all the equality

properties and, instead of lists of pairwise equalities,

equality properties are presented as sets of registers

that are equal. For example, given the three invari-

ants andb → orig(CPL) = 3, andb → CPL =
DS DPL, and andb → CPL = orig(CPL), the post-

processor would return as a single property andb →
{orig(CPL), 3, CPL, DS DPL}=, where the notation {}=
indicates that any two signals in the set are equal

(∀r, s ∈ {}=, r = s).

instruct ∧ precondition →

{〈var〉, 〈var〉, . . .}=

In the next stage, properties that share a common

instruction and invariant precondition are combined to

form larger properties that more completely express

processor behavior with regard to a control signal. These

properties are similar to the previous properties with the

sole exception of having multiple sets of equal values,

registers, or bits.

instruct ∧ precondition →

{〈var〉, 〈var〉, . . .}=

{〈var〉, 〈var〉, . . .}=

{〈var〉, 〈var〉, . . .}=

. . .

3) OS-Specific Values: In some cases, general purpose

registers take on a particular value or set of values for

an operating system. These values may differ across

operating systems, but there is an underlying pattern that

is upheld across operating systems and that is critical to

security. For example, values must be word aligned or in

a canonical form. To identify these properties the post-

processor applies a bit mask to equalities between values

and general purpose registers to find which bits change

and which do not.

4) Identify Global Properties: As a final step Astarte

ensures that all properties are specific to a control

signal by comparing against global properties. Recall that

Astarte identifies control signals of interest in the first

phase. Eleven of the 24 identified signals were found to

produce properties specific to those bits. The remaining



13 signals all preconditioned the same global properties.

During postprocessing Astarte removes any of these

global properties from the sets of properties produced

for each of the 11 control signals. These properties are

necessarily not specific to a control signal since they

have been found to hold globally.

IV. IMPLEMENTATION

The Astarte framework is written in Python. Exten-

sions to the QEMU trace generation, the front-end for

Daikon, and the post processor are written in Python.

We use QEMU emulating Ivy Bridge 2013 Intel Xeon E3

1200 v2 processor to generate traces of execution. Traces

were generated by running disk images within QEMU

with debug options to log instructions and processor state

(-d in asm,cpu) with output logged to a file and parsed

into traces of execution that could be passed to a miner.

V. EVALUATION

We evaluate the Astarte framework on its ability to

find security properties of the x86 architecture.

We aim to answer the following research questions:

1) Can Astarte efficiently generate high-quality asser-

tions to prevent known CPU security bugs?

2) How effective are the control signals we use to par-

tition the space of properties in achieving effective

security properties?

3) Does Astarte produce a manageable number of

properties?

The experiments are performed on a machine with an

Intel Core i5-6600k (3.5GHz) processor with 8 GB of

RAM.

A. Trace Data

To avoid capturing only properties enforced by, or

relevant to, a specific operating system we generate trace

data while booting multiple operating systems. We boot

two Linux distributions (Ubuntu and Debian), Solaris,

seL4, and FreeDOS ODIN.

To achieve high instruction coverage we use Fast

PokeEMU [16], a tool for testing consistency between

hardware and the QEMU emulator. Fast PokeEMU re-

peatedly executes an instruction with varying inputs to

achieve high path coverage within an instruction with

high probability without relying on manual test genera-

tion. We execute these instructions on the “bare metal”

QEMU emulator.

Over all traces, Astarte modeled 333 distinct instruc-

tions while the Intel specification describes 611. Review-

ing the specification we find that of the 278 instructions

Mnemonic Description Number

aes AES acceleration 6

k mask register operations 13

p packed value operations 87

sha SHA acceleration 7

v vector operations 162

TABLE II: Unmodelled instructions

not modeled by Astarte over the trace set, 275 fall into

one of five categories: AES and SHA acceleration, mask

register operations, packed value operations, and vector

operations (see Table II).

We analyzed 10.2GB of trace data comprising 4.1 mil-

lion instruction executions. We expect this trace volume

to be sufficient: Amit et al. [17] found that in fewer

than 1k iterations of tests of 4096 instructions—a trace

volume similar to our own—most known complex race

conditions could be found.

B. Control Signals

Of the 24 control signals identified prior to mining

(Section III-C2), 11 govern a class of properties precon-

ditioned on that signal. The remaining 13, when used

as a precondition, produced only properties common to

all preconditions; in other words, they do not govern

a particular set of behaviors. Table III shows the 11

control signals along with their common name and a

brief description.

C. Effect of Postprocessing

At the end of the property mining phase (Sec. III-C),

Daikon produces 13,722,294 properties across all in-

structions and preconditions. After taking the intersection

of properties across distinct trace sets and taking the

transitive closure of properties, we are left with 122,122

properties. Identifying the global properties reduces the

total to 1,393 properties, a reduction of close to five

orders of magnitude from the naive property total. These

properties average 6 implied clauses each per precon-

dition. Each class of properties, defined by a single

preconditioning control signal, has 127 properties on

average. The distribution of the number of properties

and average property size by control signal is shown in

Table IV.

D. Assessing the Properties with Respect to Security

To evaluate the efficacy of the Astarte framework in

producing properties relevant for security we consider

two case studies, the 2015 SMM bug from Domas [18]

and the SYSRET bug described by Xen [19]. Both



Bit/Reg Flag Name Description

CPL CPL Current privelege level CPL (or CS DPL) gives the current ring from 0 to 3 while in protected mode

SMM SMM System Management Mode If set, processor is in SMM (ring -2)

EFL[6] ZF Zero Flag Indicates zero result of arithmetic

EFL[9] IF Interrupt enable flag Determines whether to handle maskable hardware interrupts

EFL[11] OF Overflow Flag Indicates overflow result of arithmetic

CR0[0] PE Protected Mode Enable If set, processor is in protected mode

CR0[1] MP Monitor co-processor Controls interaction of WAIT/FWAIT instructions with TS flag in CR0

EFL[4] AF Adjust Flag Indicates arithmetic carry or borrow over four least significant bits

CS CS Code Segment The currently used program code segment (changes only, not values)

SS SS Stack Segment The currently used program stack segment (changes only, not values)

DS DS Data Segment The currently used program data segment (changes only, not values)

TABLE III: Control signals that govern a class of properties preconditioned on that signal

Bit/Reg Flag Clauses Properties Clauses per

Property

CPL CPL 235 59 4.0

SMM SMM 335 60 5.6

EFL[6] ZF 1182 286 4.1

EFL[9] IF 1102 164 6.7

EFL[11] OF 390 46 8.5

CR0[0] PE 1159 173 6.7

CR0[1] MP 777 68 11.4

EFL[4] AF 1402 244 5.7

CS CS 465 55 8.5

SS SS 432 52 8.3

DS DS 480 50 9.6

Total 8571 1393 6.2

Globals 4187 246 17.0

TABLE IV: Number of implied clauses in a property by

control signal

of these cases received considerable attention from the

security and research communities and, thanks to their

efforts to reverse engineer the bugs, we have information

about the technical details of the bugs beyond the high-

level information provided by Intel’s errata documents.

For each case study we examine whether the properties

generated by Astarte could have caught these bugs. We

also compare the properties generated by Astarte to

the set of x86 security properties manually written by

Brown [9]. Tables V and VI show the results.

1) SMM: At Black Hat 2015, Dumas [18] disclosed

the Memory Sinkhole escalation vulnerability in SMM.

The vulnerability allows an OS-level attacker to enter

System Management Mode and execute arbitrary code.

The attack relies on using the call instruction with

a particular parameter while in SMM. The security

properties discovered by Astarte would disallow this

exploit. The properties prohibit the execution of the call

instruction while in SMM.

No. Property Found Ctrl Astarte

Signal Property

1 CALL → SMM=0 X SMM G5

2 SYSRET → canonical(ECX) X CPL 5, 7

TABLE V: Finding case study properties with Astarte

2) SYSRET: This vulnerability, as described by Xen

[19] arises from the way in which Intel processors imple-

ment error handling in their version of AMD’s SYSRET

instruction. If an operating system is written according

to AMD’s specification, but run on Intel hardware, an

attacker can exploit the vulnerability to write to arbitrary

addresses in the operating system’s memory.

The crux of the vulnerability has to do with when the

Intel processor checks that, when returning to user mode,

the address being loaded into the RIP register from

the RCX register is in canonical form. Astarte generates

properties that require RCX to always be in canonical

form when the current privilege level is elevated, which

would prevent the vulnerability. It is interesting to note

that Astarte only finds this property over traces produced

by operating systems, an indication that this desired

behavior is not enforced by the hardware and must be

enforced by an operating system, as is indeed the case.

3) Manually Developed Properties: Brown studied

the Intel specification and crafted 29 properties they

found to be critical to security [9]. The Astarte properties

cover 23 of the 29 manually written properties. The

remaining 6 properties required exercising processor

state unimplemented in QEMU.

E. Performance

Generating the trace data took approximately 8 hours,

processing the traces to make them suitable for Daikon

took 57 minutes, identifying control bits on which to



No. Property Found Ctrl Astarte

Signal Property

1 IN/OUT/INS/OUTS → IOPL ≥ CPL X CS[13] G65, G68-71, G104-107,

G243-244

2 !(JMP/CALL/RET/SYS*) → CS=orig(CS) X CS 298, 300, 302, 304, 306,

308-309, 311-313, 315,

317-318, 320-322, 324,

326, 328, 330-332, 335-

337, 339, 341-343, 345,

347-349, 351

3 POPF/IRET & !CPL=0 → EFL 13=orig(EFL 13) X EFL[13] G72, G111-G112, G206

4 STI/CLI & CPL > EFL 13 → EFL 9=orig(EFL 9) X EFL[9] G53, G141

5 IRET & EFL 9=orig(EFL 9) & CPL > EFL 13 → EFL 9=orig(EFL 9) X EFL[9] 1044-1045

6 IRET & CPL 6= 0 → EFL 13=orig(EFL 13) X CS[13] G72, G206

7 SYSEXIT → CPL=0 X CS[13] 3, 7

8 SYS* → CPL ≤ DPL X CS[13] 37, 39

9 SYS* → CS DPL ≤ CPL X CS[13] 37, 39

10 JMP/CALL(FAR) & CS 6=orig(CS)→ DPL = CPL X CS 15, 16, G18

11 JMP/CALL(FAR) & CS 6=orig(CS)→ DPL ≤ CPL X CS 15, 16, G18

12 CALL(FAR) & CS 6=orig(CS)→ CPL ≤ DPL X CS 15, 16

13 JMP(FAR) & CS 6=orig(CS)→ DPL ≤ CPL X CS G18

14 JMP/CALL(FAR) & CS 6=orig(CS)→ CS DPL ≤ orig(CPL) X CS 15, 16, G18

15 RET & CS 6=orig(CS) → CS DPL≥ CPL X CS G35, G72, G90, G120,

G206, G224

16 SS 6=orig(SS) → SS DPL=CPL X SS G245

17 DS 6=orig(DS) → DS DPL≥CPL X DS G245

18 CS[11]=1 CS[12]=0 X CS G245

19 SS[9]=1 & SS[12]=0 & SS[11]=0 X SS G245

20 DS[9]=DS[11]=DS[12]=1 X DS G245

21 IRET & EFL 13 → CS DPL ≤ SS DPL X CS[13] G35, G72, G90, G120,

G206, G224

22 SYSENTER & CR0 0=1→CS=val,EIP=val,SS=val,SP=val X CS[13] 37, 39

23 SYSEXIT & CR0 0=1→CS=val,EIP=old EIP,SS=val,SP=val X CS[13] 37, 39

24-25 Properties over unimplemented MSRs - unknown

26-29 Properites requiring unimplemented VMX instructions - unknown

TABLE VI: Finding manually crafted properties with Astarte

partition the property space took 44 minutes. Mining

along all preconditions took approximately 16 hours with

each control bit costing roughly 44 minutes. Overall, the

Astarte framework completed the property generation in

29 hours.

We completed the full mining process for 24 con-

trol signals as preconditions. Excluding unused control

signals from consideration provided a speedup of of

5.82x. Comparing all control signals pairwise rather

than treating them independently would have yielded

1936 preconditions over the the 24 bits used, or 262144

comparisons over all possible bits, giving speedups of

44.00x and 5957.82x respectively. (When computing

these speedups, we do assume that control bits all take

roughly the same amount of time to mine. We found all

mined control bits completed within tens of seconds of

each other; we believe it reasonable to assume this timing

trend would apply to other untested preconditions.)

F. Operating System-Enforced Properties

When mining over traces from different operating

systems, we note that some properties are found over

all operating systems and some over only a subset of

operating systems or only on bare metal traces with

no operating system. In Figure 3 we show how many

operating systems are found to enforce each property.

Figure 4 shows for each property enforced by 1, 2, or 3

operating systems, which operating system it is enforced

by.

We found that properties were predominantly enforced

either by a single operating system or by all operating

systems. We interpret properties enforced by a single

operating system to likely fall into two main possibilities:

either the properties are well-founded properties that,

when enforced, make the operating system more secure



Fig. 3: Distribution of properties by how many OSes are

found to enforce them shows clustering around one or

every OS.

Fig. 4: Within the properties implemented by a subset

of the OSes, Linux and seL4 enforce many unique

properties and Solaris and FreeDOS enforce properties

with each other or with Linux.

in some way, or that they are false positives and found

only within a single operating system for this reason. In

manual inspections of properties, we found that many

of the properties unique to Linux and seL4 were related

to ensuring the safety of the specific implementations of

system calls used by the operating system. Unsurpris-

ingly more properties were enforced on Linux and seL4

which have the highest usage levels and most rigorous

theoretical assurances respectively. The remainder of

unique properties governed specific instruction usage

from specific processor states only exercised by that

operating system that may or may not be associated with

security.

We interpret properties enforced by all operating

systems to be necessary implementation features as

changing any one of them would would likely cause

compatibility issues across many operating systems. We

extend this understanding to properties implemented by

all but one operating system, especially as the operating

system most frequently missing was seL4. As seL4 by

design has provably correct behavior it cannot rely on

undocumented or incidental features. Without the burden

of provable correctness and security enforcement, other

operating systems may make reasonable assumptions of

processor behavior. These assumptions may eventually

become part of the processor specification if many oper-

ating systems come to rely on them, making it difficult

for hardware designers to modify the expected, though

undocumented, behavior.

The few properties enforced by just two operating

systems usually govern behavior of a very specific type

of system call that is enforced by precisely two operating

systems. A few properties govern specific instruction

usage enforced by precisely two operating systems.

Similarly, these may be best practice or false positive

properties.

There were also a few properties found to be enforced

on bare metal traces but not operating system traces. We

regard these as either false positives or these are vestigial

properties that persist in hardware but OSes no longer

need to rely upon.

G. Properties in the Specification

To provide a sense for how difficult the properties

generated by Astarte would be to find manually, we

developed a scoring function for properties that con-

sidered each bit or register within a property against

how many times that bit or register is referenced in

the Intel Software Developers Manuals [14] to give a

sense of how many pieces of discrete information must

be considered to generated a property. Figure 6 shows

the cumulative distribution function of this specification

score for properties.

Properties typcially would require reviewing approxi-

mately 7000 mentions (median 6874, mean 7088) with

a minimum of 413, a maximum of 19669, and about

8.9 million in total. The distribution is nearly uniform

with slight clustering at the minimum and slightly longer

tails on the maximum. Figure 5 shows how many dis-

crete mentions of each bit or register occur in the ISA

specification.
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