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ABSTRACT 
As computer networks become more advanced, the necessity for 
reliable intrusion detection at extreme efficiency has vastly 
increased. Thus, in this work we present a one shot learning 
system capable of on-line learning for network intrusion 
detection. Adaptive resonance theory is implemented in custom 
low power memristor-based neuromorphic hardware. The system 
is capable of discriminating with existing knowledge to learn 
incrementally.  The winner take all circuitry is implemented with 
a capacitor and CMOS timing circuit that finds the winning 
neuron and controls the weight update for only the winning 
neuron. The time required to find a winning neuron was 
determined to be in the nanosecond range. The performance of 
the system was evaluated on both previously known and zero-day 
datasets. The detection accuracy using zero-day packets is 99.97%, 
and 99.99% for the known attacks. Furthermore, the system was 
tested using various vigilance parameters and learning rates. The 
variation of threshold voltage across the capacitor was also 
investigated to observe the effect on learning and detection 
accuracy.   
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1 INTRODUCTION 
Internet communication infrastructure is changing and thriving 
faster than ever before. Millions of devices are connected to the 
internet through various communication channels, and these 
devices are generating and sharing information continuously. 
With the abundance of information flow, the risk of a network 
breach has also increased [1]. Real-time learning of network 
packets for intrusion detection is in high demand for an 
uninterrupted network monitoring system [2]. There are two 
primary types of network intrusion detection systems available: 
(1) signature-based intrusion detection systems, and (2) anomaly-
based systems [3]. In signature-based detection, any incoming 
packet is compared with a list of known signatures and identified 
as either benign or harmful. However, rule-based systems are not 
very effective once a brand new threat comes into the network 
[3]. For developing an online, adaptable learning system, the 
neural network is a feasible solution [2]. Neural networks have 
the tunability and self-organizing capabilities required to learn 
and detect a new features present in data [4]. These characteristics 
are significant when attempting to detect zero-day attacks in real 
time.  

There are two main learning techniques used in neural 
networks: supervised and unsupervised learning. Supervised 
learning techniques learn using labeled data and are extremely 
good at image processing, recognition, and classification [5, 6]. 
Unlike supervised learning, unsupervised learning techniques do 
not need any label data to learn patterns or sequences [7]. For 
online and real-time learning, unsupervised methods are a 
primary candidate [2]. Fundamental problems when training 
neural networks include the high power and memory 
requirements. It is common practice to execute neural networks 
using Graphics Processing Units (GPUs) that require ~200W of 
power [8]. Thus, utilizing a GPU to operate neural networks in 
battery-powered devices such as Internet of Things (IoT) and edge 
devices is not feasible [9].  

The millions of IoTs and edge modules are connected to the 
internet and are all sending data through different networks in 
real time. These devices are performing very sophisticated tasks 
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like automation, industrial processes, human health analysis, and 
environmental monitoring [10]. The integration of real-world 
objects with the internet brings network security threats into the 
realm of our daily activities. Real-time anomaly detection has a 
high demand in the network security industry. Besides intrusion 
detection, other critical applications of these types of systems 
include malware detection, automated fault detection, and 
medical anomaly detection [11]. 

To enable online learning and real-time intrusion and anomaly 
detection in low power devices, nanoscale memristor [12] devices 
are a suitable candidate. The memristors require very little power, 
and these devices are extremely efficient when performing 
multiplication and addition simultaneously in parallel in the 
analog domain [13-15]. Memristor devices are also able to store 
information based on an adjustment of their internal resistance 
[14]. Thus, unlike GPU based architectures, a memristor-based 
neuromorphic system can be a Non-Von Neumann architecture 
[15] and does not require an external memory and bus to store 
and relay data [16]. Neural networks have already been 
implemented in memristor crossbar circuits for supervised and 
unsupervised learning for image classification, recognition, and 
intrusion detection [17-19].  

In this study, we are proposing memristor based fast one-shot 
online learning for network intrusion detection in real-time. We 
have implemented unsupervised Adaptive Resonance Theory 
(ART), which is quite stable and does not suffer from catastrophic 

forgetting [20]. This study presents a full circuit implementation of 

ART in memristor circuits along with the necessary CMOS 

peripheral circuits. The ART algorithm is based on the theory of 

human cognitive information processing [21]. It can be explained 

as an algorithm of incremental clustering which aims at forming 

multi-dimensional clusters, automatically discriminating and 

creating new categories [22]. While learning, ART will initialize 
with a single output neuron, then increase the output nodes 
incrementally based on the similarity measure of the incoming 
packets. After performing the one-pass training, the network 
achieved greater than 99% testing accuracy. The memristor-based 

neuromorphic implementation of ART has the potential to provide 

online learning in real time in IoT and edge devices.  
The rest of the paper is organized as follows: Section II 

describes related works, and Section III presents the dataset used 
for the experiments. Section IV presents ART fundamentals along 
with the memristor crossbar implementation, including the 
winner take all circuits. Section V explains the online training in 
ART, and Section VI presents the experimental setup. Section VII 
presents the results and relevant discussion of the outcomes. The 
paper ends with a brief conclusion in Section VIII. 

2 RELATED WORKS 
In our earlier work [19], we implemented an AutoEncoder (AE) 
based online learning system. The system was implemented using 
two autoencoders for online data processing. One autoencoder 
contained pretrained knowledge, and the second autoencoder 
learned in real-time. The drawback with the AE model is 
catastrophic forgetting when learning a new class [23]. To the best 

of our knowledge, there is no other work in the literature that 
discusses unsupervised online learning implemented in 
memristor based neuromorphic hardware. However, there are a 
few works on the spiking neural network (SNN) neuromorphic 
systems which have presented online learning. Recently, the SNN 
was introduced for online learning for distributed IoT modules 
[37]. Work in [38] presents a supervised online learning 
technique, so the system does not emulate real cognitive activity. 
Many researchers have been working on software learning 
platforms, but they are not tied to any hardware implementation. 
Work in [24] uses unsupervised learning via a denoising 
autoencoder for incremental learning in an evolving environment. 
More recently, researchers have been focusing on Self-Organizing 
Map (SOM) techniques for online learning due to their cognitive 
learning capability [25]. The Extreme Learning Machine (ELM) 
algorithm is proposed for real-time intrusion detection in [1]. 
Work in [2] introduced a hierarchical temporal memory (HTM) 
based unsupervised real-time anomaly detection system proposed 
for monitoring a video stream. The Winner Take All (WTA) 
algorithm is proposed for network anomaly detection in [25]. 
Adaptive Resonance Theory (ART) is a member of the SOM family 
that is capable of categorizing main brain operations, and it is fast, 
scalable, and handy for parallel realizations [26]. Many people 
have investigated the ART model from the algorithmic point of 
view [20]. Work in [2] studied network intrusion detection with 
ART and achieved an accuracy of 96% on normal packets and 98% 
on malicious packets. Work in [28] presents a novel algorithmic 
scheme to perform the synaptic learning component of ART 
networks in memristive hardware for binary inputs, but that 
work did not provide any circuit implementations. In this work, 
we are presenting a memristor-based ART circuit 
implementation for unsupervised one-shot online learning on 
continuous value inputs, providing the ability to perform 
network intrusion detection for battery-powered devices.  

3 NETWORK DATASET 
NSL-KDD is the revised version of the KDD Cup’99 dataset that 
contains samples of network data packets. The dataset contains 
both training and testing portions, and they consist of 125,973 and 
22,544 samples, respectively [29]. Both datasets have normal and 
malicious network packets. There are 22 different attack types in 
the training dataset, but there are 39 attack types in the testing 
dataset. Given this data, an unsupervised intrusion detection 
system may be more suited to the detection of these new attack 
types, as they may appear out of place when compared to normal 
network data. The normal and malicious packets each have 43 
attributes with nominal, binary, and numeric values [29]. The 
nominal attributes are at the 2nd position (protocol/type), the 3rd 

position (service), the 4th position (flag), and the 42nd position 
(attack type). The network packets need to undergo some 
preprocessing steps before they are fed into the network for 
training and testing. At first, the nominal attributes are replaced 
with integers.  

Then all features are compressed according to min-max 
normalization to bound each feature to a value within 0 and 1 
(including the integer representations of features 2 through 4). 
The 42nd position represents the attack type, and this feature is 
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replaced with a 0 or a 1 for normal and malicious packets, 
respectively. Example packets from the NSL-KDD dataset are 
shown in Figure in raw and preprocessed version of the same 
packets.  

 

Figure 1: Example of network packets from NSL-KDD 
dataset in its raw and preprocessed form. 

After preprocessing, 90% of the samples in the training data 
are used for one-shot training of the ART network system, and 
the remaining 10% were used for testing. This is the dataset used 
to determine the network's ability to recognize previously known 
attacks. Alternatively, for the simulation of zero-day learning, the 
entire NSL-KDD training dataset is used for training, and the 
entire NSL-KDD testing dataset (which contains 17 new attack 
types) is used for testing. 

4 MEMRISTOR BASED ART 

4.1  ART Fundamentals 
ART is a type of unsupervised neural network algorithm. It is a 
fast and stable incremental learning algorithm with a relatively 
small memory requirement [26]. Fast learning refers to the ability 
of the synaptic weight vectors to converge to their asymptotic 
values directly upon each input sample presentation. The ART 
algorithm has the ability to balance between plasticity and 
stability, which makes the algorithm more robust when obtaining 
new knowledge without suffering from catastrophic forgetting 
[20] of prior learned knowledge. ART can be scalable for large-
sized datasets and is capable of processing noisy data [26].  

 

Fig. 2. Block diagram of ART with an active output node J1 
and other possible nodes.  

Fig. 2 presents the underlying ART architecture with two 
layers of neurons. The first layer F0 is known as the comparison 
layer, and F2  is the recognition layer. Once an input is fed to the 
network, a predefined vigilance parameter identifies the possible 
candidate(s) from the nodes at the F2 layer. The winner take all 
(WTA) method results in choosing only the winning neuron when 
updating synaptic weights [20]. In the ART network, the F2 layer 
is initialized with a single output node J1 (the circle with the solid 
line in the F2 layer). The node with the solid line indicates the 
initial node and faded nodes indicate the possible nodes to be 
activated once the active node will discriminate with the incoming 
sample(s). If the next instances don’t match with the first node, 
then the successive node (or nodes) will be initialized and learn 
the respective categories. The output of the F2 layer is represented 
by equation (1). 

𝐷𝑃𝑗 = ∑𝑤. 𝑥         (1) 

The activation function of the neurons is described by 
equation (2), which is known as the choice function. The choice 
function scales the excitatory signal with the net magnitude of the 
neural weight. Here, 𝛼 is a small constant [32].  

𝑇𝑗 =
𝐷𝑃𝑗

𝛼+|𝑤|
           (2) 

The matching parameter is equal to the scaled value of the dot 
product for an incoming sample divided by the norm of the input 
signal, as described as equation (3). The matching function (MFj) 
searches for the possible winning neurons compared with a 
predefined threshold called the vigilance parameter (0 < 𝜌 < 1), 
as in equation (4). If MFj does not satisfy the vigilance parameter, 
then the output becomes -1, and ART creates a new neuron with 
a random weight and assigns the instance belong to the newly 
created neuron [32].  

𝑀𝐹𝑗 =
𝐷𝑃𝑗

|𝑥|
  (3) 

Output = {
𝑇𝑗 ,   𝑖𝑓 𝑀𝐹𝑗 > 𝜌

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

The ART updates the synaptic weight only for the winning 
neuron, which is determined by the maximum value of 𝑇 
according to the equation (5). The winning neuron j is updated 
according to equation (6). Here, 𝛽  is the learning rate and is 
bounded accordingly: 0 < 𝛽 ≤ 1 [20]. 

𝑤𝑤𝑖𝑛𝑛𝑒𝑟 = max (𝑇𝑗) (5) 

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑
𝑗

(1 − 𝛽) + 𝛽𝑥 (6) 

4.2   Memristor Implementations 
 Fig. 3 shows the flowchart of the ART neural network. The 
vigilance  parameter  scans  the  matching  function to identify  
the possible winner neurons, and the WTA finds the winning 
neuron, which exhibits the maximum choice function. The ART 
system updates the weight for only the winning neuron until it 
reaches wmin. If there is no winning neuron, then the output is set 
to -1, and the process deactivates the category and creates a new 
group and initializes a new node to set the output.  

Fig. 4. presents the memristor crossbar for the ART 
implementation. Each column represents a neuron with a CMOS 

x1 x2 x3 x4 xi

wij

J1 J2 J3 J4 Jj

Winner Take All Circuit

F0

F2
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control circuit, as shown in the inset of Fig. 4. The detailed control 
unit is presented in Fig. 5. There is a capacitor connected at the 
bottom of each neuron. The role of the capacitor is to accumulate 
the charges for any applied potential.  

For this particular implementation of ART, the capacitor starts to 
accumulate the charges after performing the vigilance test on the 
neurons.  For the vigilance test, we have implemented a 
comparator as in Fig. 6. The comparator compares the magnitude 
of the  

 

Fig. 3: Flowchart of the ART neural network 

 

Fig. 4. The memristor crossbar circuit with peripheral 
CMOS winner take all circuitry to chose the winner neuron 

matching function of equation (3) with the vigilance 
parameter. If 𝑀𝐹𝑗 > 𝜌 , then the respective capacitor starts 
charging, otherwise the network switches to a new neuron and 
initializes it with a random weight.  

At the steady-state, the potential across the capacitor is a 
normalized dot product of the input x and the respective synaptic 
weight 𝜎 as R is a high resistance. For zero bias, the accumulated 
voltage is described by equation (7). Here,  𝜎𝑏 is a constant value 
and represents 𝛼  in equation (2). Equation (2) is analogous to 
equation (7) which describes the calculation of Vc for an input 
network packet with 41 features.  

𝑉𝑐 = 𝑥1𝜎1 + 𝑥2𝜎2 +𝑥2𝜎2 +⋯+ 𝑥41𝜎41 + 0. 𝜎𝑏/∑ 𝜎𝑘
41
𝑘=1 +𝜎𝑏 

(7) 

4.3 WTA Circuit Operation 
Fig. 5 shows a single neuron with an op-amp comparator and 

a capacitor for charge accumulation. The capacitor starts to 
accumulate if the matching function satisfies the vigilance 
parameter according to equation (4). After turning ON the 
switches of candidate neurons, the capacitors begin to 
accumulate. The charging rate will be faster for the neuron with 

 

 

Fig. 5. Single neuron crossbar with necessary winner take 
all circuitry associated with the neuron for selecting the 
category. 

 

Fig. 6. Op-amp comparator circuit for choosing the neuron 
those satisfy the vigilance parameter 

the highest column voltage according to the equation (7). The 
charging time is determined from the RC relationship as described 
in equation (8). Here, R is a high resistance, C is the capacitance 
of the capacitor, and 𝑉𝑐  is the voltage drop across the capacitor. 
The winning neuron is decided as the first charge accumulating 
column capacitor voltage crosses the threshold voltage Vi. 

𝑡𝑐 = 𝑅𝐶[𝑙𝑜𝑔 (
𝑉𝑐

𝑉𝑐 − 𝑉𝑖
⁄ )]  (8) 
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A CMOS inverter is used to detect the moment when the 
voltage drop across the capacitor passes 𝑉𝑖 . The basic operation of 
this digital circuit is described in our previous work [33]. The 
average time required to find a winning neuron is few 
nanoseconds. Once the winning neuron crosses the threshold 
voltage, Vg switches from low to high, which indicates the 
individual neuron has fired, and the neuron updates the weight. It 
is crucial to restrict other neurons from firing after the winning 
neuron fires. The output of the NAND operation flips high if any 
neuron output switches from high to low. This neuron firing 
signal is perpetual; thus, no other neuron can switch Vg to high, 
and the updating of any other neuron can be deterred.  

4.4 Weight Update and Timing Signals 
Memristor devices behave like a typical resistor below a threshold 
voltage (Vth). Thus, changing the resistance of a memristor 
requires an excitation above Vth. The device modeled for this study 
has a threshold voltage of 1.3 V [34].  

The weight update is performed according to equation (6). 
From this equation, we can see that the system needs to read the 
existing conductance state of the device. To perform the reading 
of the memristor device and weight update, we have adopted the 
technique described in [35]. Fig. 7 shows the reading and writing 
circuit for the memristor devices.  

 

Fig. 7. Memristor reading and writing circuit 

 

Fig. 8. Timing of the signal during the training period. 

In Fig. 8, the timing and amplitude of the signals during the 
training period are described. We can consider that at a particular 
time t, the jth neuron is fired. Just after this firing, Vg of the jth 
neuron flips from low to high, which turns on the NMOS 
transistor and the capacitor discharges. Ultimately, the Vb 
becomes -0.5 V on the fired neuron, and the memristors that have 

high inputs have a voltage across them that exceeds the threshold 
voltage. Therefore, the conductance of these memristors increases 
until time 𝑡 + ∆𝑡1.  

Then, Vb switches to 0.5 V, and each input with a -1 V potential 
brings the voltage drop across the memristors to -1.5 V. 
Consequently, the conductance of the memristor decreases. This 
process continues until 𝑡 + ∆𝑡1 + ∆𝑡2, where ∆𝑡2 is the learning 
rate. The reset pulse is applied with Vb = -0.5 V and Fired = 0 V. 
The next training sample then enters the network, and the cycle 
repeats. This circuit continues to reduce the weight of the 
appropriate neurons until a minimum conductance value is 
reached (based on internal memristor properties). Also, the 
training phase needs to implement a digital counter to count the 
maximum number of neurons to limit the crossbar size in practical 
implementation. In this study, the output nodes were limited to 
256.  

5 ONE-SHOT ONLINE TRAINING OF ART 
This algorithm allows for a new output node once it finds an 
unknown input, or anomaly in the network according to the 
vigilance parameter [32]. The magnitude of the vigilance 
parameter plays a vital role in the initialization of a new node. In 
this experiment, the network packets are presented to the ART 
network randomly (without any label) only once, and the same 
packets are not presented multiple times. Despite running 
multiple epochs or learning cycles, the system utilizes one pass 
fast learning [36,38]. The model performs clustering-based 

anomaly detection by focusing on the point anomalies where an 

individual data instance can be considered as anomalous with 

respect to the rest of the data [36]. A profile of an incoming packet 

is assigned to a neuron, then deviation from this profile is regarded 

as anomalous to the neuron, and the system allows for the creation 

of a new neuron for this datatype.  
After performing the one pass online training, the model was 

evaluated with two different testing datasets. To implement the 
ART network in memristor hardware, we have imposed a 
constraint on making new nodes as the hardware is confined to 
maximum node number, and cannot make nodes in the same way 
the human brain assigns neurons for learning a piece of 
information [37]. For this study, we have constrained the 
maximum number of nodes to 256, which can be counted by 
implementing an 8-bit digital counter. 

6 EXPERIMENTAL SETUP 
The memristor crossbar circuits were simulated in SPICE, which 
facilitates evaluation of the memristor grid accurately by 
considering parasitics such as crossbar sneak-paths and wire 
resistances. The memristor was simulated with an accurate model 
that was published in [34]. For this study, the off and on state 
resistances were set to 500𝑘Ω and 100𝑘Ω, respectively. The full 

resistance range of the device can be switched in 100 ns by applying 

1.5 V across the device. The values of 𝜎𝑏, Rh, and C in Fig. 5 are 10 

μS, 1 MΩ, and 100 fF, respectively. Once the SPICE circuits were 

verified, the system was scaled up in MATLAB to facilitate 

training on a large dataset. We implemented the full ART circuit in 

MATLAB based on these parameters where the crossbar devices 
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are able to learn, starting at a random weight value. The threshold 

voltage of the capacitor, vigilance parameter, and learning rate 

were varied to study the impact this has on performance. 

7 RESULT AND DISCUSSION 
We executed the proposed ART based unsupervised one-shot 
online learning and real-time intrusion detection system on the 
NSL-KDD dataset. The ART algorithm is implemented in 
traditional software and the simulated memristor neuromorphic 
hardware.  First, 90% of the training samples were used to train 
the network online. Training did not utilize any batched learning, 
instead a single shot learning process was used. Then the 10% of 
the training packets were used for validation of known samples. 
The original NSL-KDD test set was used as a testing set, which 
contains zero-day packets, as this data contains attack types not 
previously observed during training. 

 

Fig. 9. Accuracy of theoretical ART and memristor-based 
ART for various vigilance parameters, Vc=0.1V, 𝜷 = 𝟎. 𝟖 

 

Fig. 10. Percent of error detection Vs. vigilance parameter 
of memristor ART, Vc=0.1V, 𝜷 = 𝟎. 𝟖 

The vigilance parameter plays a vital role in node selection for 
an incoming packet. Fig. 9 shows the detection accuracy versus 
vigilance parameter for the network packets in the theoretical and 

neuromorphic ART system implemented in the memristor 
crossbar. The memristor crossbar based system achieved a 99.97% 
detection accuracy. The baseline theoretical model was 
implemented in software, and the detection accuracy was 99.99%, 
which is higher than that of [29]. Both studies were performed 
with the same initial conditions using a vigilance parameter of 
0.23 and learning rate 0.8.The performance of unsupervised ART 
in memristors also outperformed the memristive autoencoder in 
[19]. The vigilance parameter (𝜌) is varied from 0.23 to 0.5. The 
learning rate and the threshold voltage of the capacitor in Fig.5 
were kept constant at 0.8 and 0.1 V, respectively.  

 

Fig. 11. Accuracy of memristor ART for various learning 
rate, VC=0.1V, 𝝆 = 𝟎. 𝟐𝟑 

 

Fig. 12.  Accuracy Vs. threshold voltage of capacitor used 
for triggering the winning neuron, ρ=0.23, 𝜷 = 𝟎. 𝟖 

We can see that at lower values of  𝜌, the accuracy is higher. 
This is because at higher 𝜌 values, the system creates more output 
nodes. Thus, it is more likely that the system selects the wrong 
node for an incoming sample. The theoretical accuracy for known 
and zero-day attacks is almost the same at lower vigilance 
parameters, but error increases at higher vigilance values. Fig. 10 
shows the percentage of error in the identification of normal and 
malicious packets in memristor-based ART. The error is lower for 
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a vigilance parameter 0.23 and increases at higher values, which 
is inversely proportional to the accuracy described in Fig. 9. The 
effect of the learning rate in memristor-based ART is studied and 
presented in Fig. 11. The accuracy changes a little for known data, 
but in the case of zero-day packets, the detection accuracy 
increases as the learning rate increases.  

The charging capacitor within each neuron circuit starts to 
accumulate charge when the possible candidate neurons 
connected to the WTA circuit are identified after vigilance testing. 
The capacitor continues charging until reaching the threshold 
voltage 𝑉𝑖 . The neuron with the maximum value choice function 
will charge the capacitor faster and reach the firing threshold first, 
and the WTA circuit will fire. The role of threshold voltage was 
studied and it was found that at higher voltage, the accuracy 
increases (see Fig. 12). However, maximum ranges for voltage 
drop for an incoming network packet must be monitored. The 
maximum threshold voltage (Vi) needs to be lower than the 
maximum value of 𝑇𝑗. Otherwise, the capacitor charging time (see 
Equation 8) will become imaginary, which is not pragmatic. The 
corresponding error values are presented in Fig. 13. The false 
detection rate decreases as voltage increases, reaching a minimum 
at the threshold voltage of 0.12V.  

 

Fig. 13. Percent of Error Vs. threshold voltage of the 
capacitor, ρ=0.23, 𝜷 = 𝟎. 𝟖 

8 CONCLUSION 
An unsupervised, fast one-shot online learning and real-time 
intrusion detection system was presented based on an ART neural 
network. The ART system was implemented in a memristor-based 
neuromorphic system, as well as traditional software. The 
memristor crossbar system exhibits the exact functionalities of the 
software-based model. The winner take all, and weight update 
control circuits were designed to be part of the CMOS peripheral 
circuitry. A charging capacitor was used to determine the winning 
neuron by introducing a threshold. The computation was 
performed in two phases. The training was conducted using 
online one shot learning and then was tested using both known 
attack types as well as zero-day attacks. The detection accuracy 

for the known datatypes was found to be 99.99%, and for the zero-
day case, an accuracy of 99.97% was observed. In the future, we 
plan to investigate the power, energy, and timing of this system 
to provide a qualitative comparison to alternative architectures.  
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