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ABSTRACT

As computer networks become more advanced, the necessity for
reliable intrusion detection at extreme efficiency has vastly
increased. Thus, in this work we present a one shot learning
system capable of on-line learning for network intrusion
detection. Adaptive resonance theory is implemented in custom
low power memristor-based neuromorphic hardware. The system
is capable of discriminating with existing knowledge to learn
incrementally. The winner take all circuitry is implemented with
a capacitor and CMOS timing circuit that finds the winning
neuron and controls the weight update for only the winning
neuron. The time required to find a winning neuron was
determined to be in the nanosecond range. The performance of
the system was evaluated on both previously known and zero-day
datasets. The detection accuracy using zero-day packets is 99.97%,
and 99.99% for the known attacks. Furthermore, the system was
tested using various vigilance parameters and learning rates. The
variation of threshold voltage across the capacitor was also
investigated to observe the effect on learning and detection
accuracy.
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1 INTRODUCTION

Internet communication infrastructure is changing and thriving
faster than ever before. Millions of devices are connected to the
internet through various communication channels, and these
devices are generating and sharing information continuously.
With the abundance of information flow, the risk of a network
breach has also increased [1]. Real-time learning of network
packets for intrusion detection is in high demand for an
uninterrupted network monitoring system [2]. There are two
primary types of network intrusion detection systems available:
(1) signature-based intrusion detection systems, and (2) anomaly-
based systems [3]. In signature-based detection, any incoming
packet is compared with a list of known signatures and identified
as either benign or harmful. However, rule-based systems are not
very effective once a brand new threat comes into the network
[3]. For developing an online, adaptable learning system, the
neural network is a feasible solution [2]. Neural networks have
the tunability and self-organizing capabilities required to learn
and detect a new features present in data [4]. These characteristics
are significant when attempting to detect zero-day attacks in real
time.

There are two main learning techniques used in neural
networks: supervised and unsupervised learning. Supervised
learning techniques learn using labeled data and are extremely
good at image processing, recognition, and classification [5, 6].
Unlike supervised learning, unsupervised learning techniques do
not need any label data to learn patterns or sequences [7]. For
online and real-time learning, unsupervised methods are a
primary candidate [2]. Fundamental problems when training
neural networks include the high power and memory
requirements. It is common practice to execute neural networks
using Graphics Processing Units (GPUs) that require ~200W of
power [8]. Thus, utilizing a GPU to operate neural networks in
battery-powered devices such as Internet of Things (IoT) and edge
devices is not feasible [9].

The millions of IoTs and edge modules are connected to the
internet and are all sending data through different networks in
real time. These devices are performing very sophisticated tasks
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like automation, industrial processes, human health analysis, and
environmental monitoring [10]. The integration of real-world
objects with the internet brings network security threats into the
realm of our daily activities. Real-time anomaly detection has a
high demand in the network security industry. Besides intrusion
detection, other critical applications of these types of systems
include malware detection, automated fault detection, and
medical anomaly detection [11].

To enable online learning and real-time intrusion and anomaly
detection in low power devices, nanoscale memristor [12] devices
are a suitable candidate. The memristors require very little power,
and these devices are extremely efficient when performing
multiplication and addition simultaneously in parallel in the
analog domain [13-15]. Memristor devices are also able to store
information based on an adjustment of their internal resistance
[14]. Thus, unlike GPU based architectures, a memristor-based
neuromorphic system can be a Non-Von Neumann architecture
[15] and does not require an external memory and bus to store
and relay data [16]. Neural networks have already been
implemented in memristor crossbar circuits for supervised and
unsupervised learning for image classification, recognition, and
intrusion detection [17-19].

In this study, we are proposing memristor based fast one-shot
online learning for network intrusion detection in real-time. We
have implemented unsupervised Adaptive Resonance Theory
(ART), which is quite stable and does not suffer from catastrophic
forgetting [20]. This study presents a full circuit implementation of
ART in memristor circuits along with the necessary CMOS
peripheral circuits. The ART algorithm is based on the theory of
human cognitive information processing [21]. It can be explained
as an algorithm of incremental clustering which aims at forming
multi-dimensional clusters, automatically discriminating and
creating new categories [22]. While learning, ART will initialize
with a single output neuron, then increase the output nodes
incrementally based on the similarity measure of the incoming
packets. After performing the one-pass training, the network
achieved greater than 99% testing accuracy. The memristor-based
neuromorphic implementation of ART has the potential to provide
online learning in real time in loT and edge devices.

The rest of the paper is organized as follows: Section II
describes related works, and Section III presents the dataset used
for the experiments. Section IV presents ART fundamentals along
with the memristor crossbar implementation, including the
winner take all circuits. Section V explains the online training in
ART, and Section VI presents the experimental setup. Section VII
presents the results and relevant discussion of the outcomes. The
paper ends with a brief conclusion in Section VIII.

2 RELATED WORKS

In our earlier work [19], we implemented an AutoEncoder (AE)
based online learning system. The system was implemented using
two autoencoders for online data processing. One autoencoder
contained pretrained knowledge, and the second autoencoder
learned in real-time. The drawback with the AE model is
catastrophic forgetting when learning a new class [23]. To the best
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of our knowledge, there is no other work in the literature that
discusses unsupervised online learning implemented in
memristor based neuromorphic hardware. However, there are a
few works on the spiking neural network (SNN) neuromorphic
systems which have presented online learning. Recently, the SNN
was introduced for online learning for distributed IoT modules
[37]. Work in [38] presents a supervised online learning
technique, so the system does not emulate real cognitive activity.
Many researchers have been working on software learning
platforms, but they are not tied to any hardware implementation.
Work in [24] uses unsupervised learning via a denoising
autoencoder for incremental learning in an evolving environment.
More recently, researchers have been focusing on Self-Organizing
Map (SOM) techniques for online learning due to their cognitive
learning capability [25]. The Extreme Learning Machine (ELM)
algorithm is proposed for real-time intrusion detection in [1].
Work in [2] introduced a hierarchical temporal memory (HTM)
based unsupervised real-time anomaly detection system proposed
for monitoring a video stream. The Winner Take All (WTA)
algorithm is proposed for network anomaly detection in [25].
Adaptive Resonance Theory (ART) is a member of the SOM family
that is capable of categorizing main brain operations, and it is fast,
scalable, and handy for parallel realizations [26]. Many people
have investigated the ART model from the algorithmic point of
view [20]. Work in [2] studied network intrusion detection with
ART and achieved an accuracy of 96% on normal packets and 98%
on malicious packets. Work in [28] presents a novel algorithmic
scheme to perform the synaptic learning component of ART
networks in memristive hardware for binary inputs, but that
work did not provide any circuit implementations. In this work,
presenting a memristor-based ART
implementation for unsupervised one-shot online learning on
continuous value inputs, providing the ability to perform
network intrusion detection for battery-powered devices.

we  are circuit

3 NETWORK DATASET

NSL-KDD is the revised version of the KDD Cup’99 dataset that
contains samples of network data packets. The dataset contains
both training and testing portions, and they consist of 125,973 and
22,544 samples, respectively [29]. Both datasets have normal and
malicious network packets. There are 22 different attack types in
the training dataset, but there are 39 attack types in the testing
dataset. Given this data, an unsupervised intrusion detection
system may be more suited to the detection of these new attack
types, as they may appear out of place when compared to normal
network data. The normal and malicious packets each have 43
attributes with nominal, binary, and numeric values [29]. The
nominal attributes are at the 2" position (protocol/type), the 3
position (service), the 4th position (flag), and the 4214 position
(attack type). The network packets need to undergo some
preprocessing steps before they are fed into the network for
training and testing. At first, the nominal attributes are replaced
with integers.

Then all features are compressed according to min-max
normalization to bound each feature to a value within 0 and 1
(including the integer representations of features 2 through 4).
The 427 position represents the attack type, and this feature is
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replaced with a 0 or a 1 for normal and malicious packets,
respectively. Example packets from the NSL-KDD dataset are
shown in Figure in raw and preprocessed version of the same
packets.

Figure 1: Example of network packets from NSL-KDD
dataset in its raw and preprocessed form.

After preprocessing, 90% of the samples in the training data
are used for one-shot training of the ART network system, and
the remaining 10% were used for testing. This is the dataset used
to determine the network's ability to recognize previously known
attacks. Alternatively, for the simulation of zero-day learning, the
entire NSL-KDD training dataset is used for training, and the
entire NSL-KDD testing dataset (which contains 17 new attack
types) is used for testing.

4 MEMRISTOR BASED ART
4.1 ART Fundamentals

ART is a type of unsupervised neural network algorithm. It is a
fast and stable incremental learning algorithm with a relatively
small memory requirement [26]. Fast learning refers to the ability
of the synaptic weight vectors to converge to their asymptotic
values directly upon each input sample presentation. The ART
algorithm has the ability to balance between plasticity and
stability, which makes the algorithm more robust when obtaining
new knowledge without suffering from catastrophic forgetting
[20] of prior learned knowledge. ART can be scalable for large-
sized datasets and is capable of processing noisy data [26].

Winner Take All Circuit

Fig. 2. Block diagram of ART with an active output node J1
and other possible nodes.
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Fig. 2 presents the underlying ART architecture with two
layers of neurons. The first layer Fo is known as the comparison
layer, and F: is the recognition layer. Once an input is fed to the
network, a predefined vigilance parameter identifies the possible
candidate(s) from the nodes at the Fz layer. The winner take all
(WTA) method results in choosing only the winning neuron when
updating synaptic weights [20]. In the ART network, the Fzlayer
is initialized with a single output node 7 (the circle with the solid
line in the Fz layer). The node with the solid line indicates the
initial node and faded nodes indicate the possible nodes to be
activated once the active node will discriminate with the incoming
sample(s). If the next instances don’t match with the first node,
then the successive node (or nodes) will be initialized and learn
the respective categories. The output of the Fzlayer is represented
by equation (1).

DP; =Y w.x (1)

The activation function of the neurons is described by
equation (2), which is known as the choice function. The choice
function scales the excitatory signal with the net magnitude of the
neural weight. Here, « is a small constant [32].

DPj (2)

T a+|w|

The matching parameter is equal to the scaled value of the dot
product for an incoming sample divided by the norm of the input
signal, as described as equation (3). The matching function (MF)
searches for the possible winning neurons compared with a
predefined threshold called the vigilance parameter (0 < p < 1),
as in equation (4). If MF;does not satisfy the vigilance parameter,
then the output becomes -1, and ART creates a new neuron with
a random weight and assigns the instance belong to the newly
created neuron [32].

— DPj
Tl
Ty, if MFj > p
—1, otherwise

MF, ©)

©)

The ART updates the synaptic weight only for the winning

Output = {

neuron, which is determined by the maximum value of T
according to the equation (5). The winning neuron j is updated
according to equation (6). Here, f§ is the learning rate and is
bounded accordingly: 0 < § < 1 [20].

Wyinner = Max (Tj) (5)

Wnew = Waia(1 = B) + Bx  (6)

4.2 Memristor Implementations

Fig. 3 shows the flowchart of the ART neural network. The
vigilance parameter scans the matching function to identify
the possible winner neurons, and the WTA finds the winning
neuron, which exhibits the maximum choice function. The ART
system updates the weight for only the winning neuron until it
reaches wmin. If there is no winning neuron, then the output is set
to -1, and the process deactivates the category and creates a new
group and initializes a new node to set the output.

Fig. 4. presents the memristor crossbar for the ART
implementation. Each column represents a neuron with a CMOS
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control circuit, as shown in the inset of Fig. 4. The detailed control
unit is presented in Fig. 5. There is a capacitor connected at the
bottom of each neuron. The role of the capacitor is to accumulate

the charges for any applied potential.

For this particular implementation of ART, the capacitor starts to
accumulate the charges after performing the vigilance test on the
neurons. For the vigilance test, we have implemented a

comparator as in Fig. 6. The comparator compares the magnitude

of the

{0

| Compute Match Function M}‘ |

Vigilance test V)
T;
Output =Tj, if Mj > p _'—l
else —1
Perform WTA
-1 l
onT;
Deactivate Category ¥

Update max(T})
until w,

J=C+1

min

| Initialize new categaryl

Fig. 3: Flowchart of the ART neural network

x40 L L L ___
X lo, T L L ——
1 1 1 1 |
Xy LGN .i. A. L —- !
XpdOb L X L ___
Neuron Output R R R R R

- Vb
Control — Fired
Unit — Reset

Fig. 4. The memristor crossbar circuit with peripheral
CMOS winner take all circuitry to chose the winner neuron

matching function of equation (3) with the vigilance
parameter. If MF; > p, then the respective capacitor starts
charging, otherwise the network switches to a new neuron and
initializes it with a random weight.

At the steady-state, the potential across the capacitor is a
normalized dot product of the input x and the respective synaptic
weight o as R is a high resistance. For zero bias, the accumulated
voltage is described by equation (7). Here, 0y, is a constant value
and represents @ in equation (2). Equation (2) is analogous to
equation (7) which describes the calculation of Ve for an input
network packet with 41 features.
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Vo = %101 + X205 +X,05 + -+ + X41041 + 0.0,/ Lt L, O +0y,

™)
4.3 WTA Circuit Operation

Fig. 5 shows a single neuron with an op-amp comparator and
a capacitor for charge accumulation. The capacitor starts to
accumulate if the matching function satisfies the vigilance
parameter according to equation (4). After turning ON the
switches of candidate neurons, the capacitors begin to
accumulate. The charging rate will be faster for the neuron with

03 [ Neuron Output

oL

Memristor  x,—gZb

— V,
R Control | Fired
Unit | Reset

Op-amp
Comparator
Circuit

Neuron Output

Fired

Reset

Fig. 5. Single neuron crossbar with necessary winner take
all circuitry associated with the neuron for selecting the
category.

MEF
R
+. T Vies=p
1/-1 ‘L

Fig. 6. Op-amp comparator circuit for choosing the neuron
those satisfy the vigilance parameter

the highest column voltage according to the equation (7). The
charging time is determined from the RC relationship as described
in equation (8). Here, R is a high resistance, C is the capacitance
of the capacitor, and I, is the voltage drop across the capacitor.
The winning neuron is decided as the first charge accumulating
column capacitor voltage crosses the threshold voltage Vi.

te = RCllog (“/y, )] ®
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A CMOS inverter is used to detect the moment when the
voltage drop across the capacitor passes V;. The basic operation of
this digital circuit is described in our previous work [33]. The
average time required to find a winning neuron is few
nanoseconds. Once the winning neuron crosses the threshold
voltage, V; switches from low to high, which indicates the
individual neuron has fired, and the neuron updates the weight. It
is crucial to restrict other neurons from firing after the winning
neuron fires. The output of the NAND operation flips high if any
neuron output switches from high to low. This neuron firing
signal is perpetual; thus, no other neuron can switch Vg to high,
and the updating of any other neuron can be deterred.

4.4 Weight Update and Timing Signals

Memristor devices behave like a typical resistor below a threshold
voltage (Vin). Thus, changing the resistance of a memristor
requires an excitation above Vih. The device modeled for this study
has a threshold voltage of 1.3 V [34].

The weight update is performed according to equation (6).
From this equation, we can see that the system needs to read the
existing conductance state of the device. To perform the reading
of the memristor device and weight update, we have adopted the
technique described in [35]. Fig. 7 shows the reading and writing
circuit for the memristor devices.

R Vi
R/W Enable switch AW
Floating "R Vier -
A
Read X
t
Vin Write| R, Vi

Fig. 7. Memristor reading and writing circuit

Reset
Neuron l—l_
o/p o
=
mpu____Data__ X o X
1 1 !
I 1
050 ar|0-5v
Vh :4—47,—»:

Fig. 8. Timing of the signal during the training period.

In Fig. 8, the timing and amplitude of the signals during the
training period are described. We can consider that at a particular
time ¢, the jth neuron is fired. Just after this firing, V; of the jth
neuron flips from low to high, which turns on the NMOS
transistor and the capacitor discharges. Ultimately, the Vb
becomes -0.5 V on the fired neuron, and the memristors that have
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high inputs have a voltage across them that exceeds the threshold
voltage. Therefore, the conductance of these memristors increases
until time t + At;.

Then, Vpswitches to 0.5 V, and each input with a -1 V potential
brings the voltage drop across the memristors to -1.5 V.
Consequently, the conductance of the memristor decreases. This
process continues until t + At; + At,, where At is the learning
rate. The reset pulse is applied with Vp = -0.5 V and Fired = 0 V.
The next training sample then enters the network, and the cycle
repeats. This circuit continues to reduce the weight of the
appropriate neurons until a minimum conductance value is
reached (based on internal memristor properties). Also, the
training phase needs to implement a digital counter to count the
maximum number of neurons to limit the crossbar size in practical
implementation. In this study, the output nodes were limited to
256.

5 ONE-SHOT ONLINE TRAINING OF ART

This algorithm allows for a new output node once it finds an
unknown input, or anomaly in the network according to the
vigilance parameter [32]. The magnitude of the vigilance
parameter plays a vital role in the initialization of a new node. In
this experiment, the network packets are presented to the ART
network randomly (without any label) only once, and the same
packets are not presented multiple times. Despite running
multiple epochs or learning cycles, the system utilizes one pass
fast learning [36,38]. The model performs clustering-based
anomaly detection by focusing on the point anomalies where an
individual data instance can be considered as anomalous with
respect to the rest of the data [36]. A profile of an incoming packet
is assigned to a neuron, then deviation from this profile is regarded
as anomalous to the neuron, and the system allows for the creation
of a new neuron for this datatype.

After performing the one pass online training, the model was
evaluated with two different testing datasets. To implement the
ART network in memristor hardware, we have imposed a
constraint on making new nodes as the hardware is confined to
maximum node number, and cannot make nodes in the same way
the human brain assigns neurons for learning a piece of
information [37]. For this study, we have constrained the
maximum number of nodes to 256, which can be counted by
implementing an 8-bit digital counter.

6 EXPERIMENTAL SETUP

The memristor crossbar circuits were simulated in SPICE, which
facilitates evaluation of the memristor grid accurately by
considering parasitics such as crossbar sneak-paths and wire
resistances. The memristor was simulated with an accurate model
that was published in [34]. For this study, the off and on state
resistances were set to 500k and 100k(), respectively. The full
resistance range of the device can be switched in 100 ns by applying
1.5 V across the device. The values of g, Ri, and C in Fig. 5 are 10
uS, 1 MQ, and 100 fF, respectively. Once the SPICE circuits were
verified, the system was scaled up in MATLAB to facilitate
training on a large dataset. We implemented the full ART circuit in
MATLAB based on these parameters where the crossbar devices
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are able to learn, starting at a random weight value. The threshold
voltage of the capacitor, vigilance parameter, and learning rate
were varied to study the impact this has on performance.

7 RESULT AND DISCUSSION

We executed the proposed ART based unsupervised one-shot
online learning and real-time intrusion detection system on the
NSL-KDD dataset. The ART algorithm is implemented in
traditional software and the simulated memristor neuromorphic
hardware. First, 90% of the training samples were used to train
the network online. Training did not utilize any batched learning,
instead a single shot learning process was used. Then the 10% of
the training packets were used for validation of known samples.
The original NSL-KDD test set was used as a testing set, which
contains zero-day packets, as this data contains attack types not
previously observed during training.

100¢%
— 98 N
§ S
2
s 96 <1
5 \
S —k—Thr-Known
< 94 L7 -Mem-known \
Thr-Zero day
—6—Mem-Zero day \

0.25 0.3 0.35 0.4 0.45 0.5
Vigillance Parameter (p)

Fig. 9. Accuracy of theoretical ART and memristor-based
ART for various vigilance parameters, V.=0.1V, f = 0.8

10 —#—Normal-Known
—+—Malicious-Known /
8 Normal-Zeroday
—6—Malicious-Zero day/

Error (%)
N

4 /

9

0.25 0.3 0.35 0.4 0.45 0.5
Vigillance Parameter (p)

Fig. 10. Percent of error detection Vs. vigilance parameter
of memristor ART, Vc=0.1V, 8 = 0.8

The vigilance parameter plays a vital role in node selection for
an incoming packet. Fig. 9 shows the detection accuracy versus
vigilance parameter for the network packets in the theoretical and
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neuromorphic ART system implemented in the memristor
crossbar. The memristor crossbar based system achieved a 99.97%
detection accuracy. The baseline theoretical model was
implemented in software, and the detection accuracy was 99.99%,
which is higher than that of [29]. Both studies were performed
with the same initial conditions using a vigilance parameter of
0.23 and learning rate 0.8.The performance of unsupervised ART
in memristors also outperformed the memristive autoencoder in
[19]. The vigilance parameter (p) is varied from 0.23 to 0.5. The
learning rate and the threshold voltage of the capacitor in Fig.5
were kept constant at 0.8 and 0.1 V, respectively.

100 —=
—&—Known
99 —o—Zero day |
< 98
8 97 —
= /
%
:C) 96
95/
94

0.5 0.6 0.7 0.8 0.9
Learning Rate,

Fig. 11. Accuracy of memristor ART for various learning
rate, Vc=0.1V, p = 0.23

100 — =
99 />
g 98 /
3
= N
5 97
<% / —p—Zero day
96 i —v—Known

L

95
0.06 0.08 0.1 0.12
Capacitor Threshold Voltage (volt)

Fig. 12. Accuracy Vs. threshold voltage of capacitor used
for triggering the winning neuron, p=0.23, 8 = 0.8

We can see that at lower values of p, the accuracy is higher.
This is because at higher p values, the system creates more output
nodes. Thus, it is more likely that the system selects the wrong
node for an incoming sample. The theoretical accuracy for known
and zero-day attacks is almost the same at lower vigilance
parameters, but error increases at higher vigilance values. Fig. 10
shows the percentage of error in the identification of normal and
malicious packets in memristor-based ART. The error is lower for
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a vigilance parameter 0.23 and increases at higher values, which
is inversely proportional to the accuracy described in Fig. 9. The
effect of the learning rate in memristor-based ART is studied and
presented in Fig. 11. The accuracy changes a little for known data,
but in the case of zero-day packets, the detection accuracy
increases as the learning rate increases.

The charging capacitor within each neuron circuit starts to
accumulate charge when the possible candidate neurons
connected to the WTA circuit are identified after vigilance testing.
The capacitor continues charging until reaching the threshold
voltage V;. The neuron with the maximum value choice function
will charge the capacitor faster and reach the firing threshold first,
and the WTA circuit will fire. The role of threshold voltage was
studied and it was found that at higher voltage, the accuracy
increases (see Fig. 12). However, maximum ranges for voltage
drop for an incoming network packet must be monitored. The
maximum threshold voltage (Vi) needs to be lower than the
maximum value of T;. Otherwise, the capacitor charging time (see
Equation 8) will become imaginary, which is not pragmatic. The
corresponding error values are presented in Fig. 13. The false
detection rate decreases as voltage increases, reaching a minimum
at the threshold voltage of 0.12V.

8

T~

;\? —e—Normal-Zero day
bl 4 ||—¢—Malicious-Zero day
=

m

Normal-Known
—w»—Malicious-Known

S N
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I T

0
0.06 0.07 0.08 0.09 0.1 0.11  0.12
Threshold voltage (Volt)

A

>

Fig. 13. Percent of Error Vs. threshold voltage of the
capacitor, p=0.23,# = 0.8

8 CONCLUSION

An unsupervised, fast one-shot online learning and real-time
intrusion detection system was presented based on an ART neural
network. The ART system was implemented in a memristor-based
neuromorphic system, as well as traditional software. The
memristor crossbar system exhibits the exact functionalities of the
software-based model. The winner take all, and weight update
control circuits were designed to be part of the CMOS peripheral
circuitry. A charging capacitor was used to determine the winning
neuron by introducing a threshold. The computation was
performed in two phases. The training was conducted using
online one shot learning and then was tested using both known
attack types as well as zero-day attacks. The detection accuracy
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for the known datatypes was found to be 99.99%, and for the zero-
day case, an accuracy of 99.97% was observed. In the future, we
plan to investigate the power, energy, and timing of this system
to provide a qualitative comparison to alternative architectures.
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