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ABSTRACT

In many manufacturing processes, equipment reliability plays a crucial role for product qual-
ity assurance. It is important to consider the effect of equipment degradation for the qual-
ity-process model. In this article, we propose a dynamic quality-process model to
characterize the varying effects of a process to product quality due to equipment degrad-
ation. The proposed model considers the effects of process variables on product quality as
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piecewise linear functions with respect to the equipment degradation. It can automatically
estimate the dynamic effects via a meaningful parameter regularization, leading to accurate
parameter estimation and model prediction. The merits of the proposed method are illus-
trated by both simulations and a real case study in a crystal growth manufacturing process.

1. Introduction

In many manufacturing processes, automation of
manufacturing processes plays an invaluable role for
product quality assurance. The effectiveness of manu-
facturing automation in manufacturing operations
relies on well-maintained equipment. When the man-
ufacturing equipment degrades, the manufacturing
operations can become unstable in controlling product
quality. In current manufacturing practice, quality
control or maintenance may not be jointly imple-
mented for both product quality and equipment con-
ditions due to limited understanding of the product
quality and equipment reliability interaction. Thus,
there is an emerging need to investigate the effect of
equipment degradation on product quality.

This research work is motivated by a crystal growth
manufacturing (a Czochralski process) with high qual-
ity standards but inefficient maintenance operations.
Figure 1 shows a crystal growth furnace for silicon
ingots. The furnace grows the ingot by dipping a seed
crystal to the melt of polycrystalline silicon and pulling
up the ingot with rotation (Dai, Wang, and Jin 2014;
Zhang et al. 2014). In semiconductor manufacturing,
the quality of an ingot plays a crucial role in product
quality of all downstream productions. The quality of
the ingot (e.g., polycrystalline defects and diameter
variation) is affected by various process variables, such
as furnace temperature, heating power, pulling speed,

and rotation speed of the ingot. Moreover, complex
chemical reactions take place inside the furnace, pro-
ducing byproducts such as dioxide. The deposition of
byproducts on the heaters increases their resistivity and
reduces the heating efficiency. The increasing resistivity
of heaters will also result in an unstable thermal field
inside the furnace for ingot manufacturing, which
causes quality defects of ingots. In current practice, the
resistivity of the heater is used as an equipment deg-
radation variable to guide the maintenance operations.
For example, when the resistivity reaches to a certain
level, the heater will be replaced by a new one.
However, the knowledge on how the degradation will
affect the product quality is limited. Therefore, if the
process variables are optimized without considering
equipment degradation effects, it could lead to many
quality defects in the crystal growth manufacturing,

In this article, we focus on incorporating effects of
the equipment degradation into the quality-process
modeling. However, it is a challenging problem due to
insufficient engineering knowledge for quantitatively
characterizing the effects of equipment degradation.
The importance of manufacturing equipment reliabil-
ity to product quality was demonstrated in several
manufacturing processes (Jin and Chen 2001). As
technology advances, data of quality, process and deg-
radation can be automatically collected. Thus, a data-
driven modeling strategy can be suitable to address
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Figure 1. A crystal growth furnace for silicon ingots. Details are described in Section 4. (Redrawn from Zhang et al. (2014) with

authors’ permission).

the aforementioned research question on how to
model quality-process relationships considering the
equipment degradation effect.

In the literature, there are various methods to
model the quality-process relationship in manufactur-
ing, such as regression analysis (Agrawal, Lawless, and
Mackay 1999; Fong and Lawless 1998), experimental
design approaches (Jin and Ding 2004; Kang and
Joseph 2009), state space models (Shi 2006; Shi and
Zhou 2009), and data mining methods (Bukkapatnam
et al. 2006; Jin and Shi 2012). However, these methods
do not incorporate the equipment reliability informa-
tion in quality-process models. On the other hand,
there are various methods for modeling manufactur-
ing equipment reliability (Moustafa, 1997; Xue and
Yang, 1997). The research focused on equipment deg-
radation modeling is also widely conducted (Gebraeel
2006), such as general path models (Lu and Meeker
1993; Meeker and Escobar 1998) and stochastic pro-
cess models (Aven and Jensen 2013).

There are some recent studies on the interaction
between product quality and equipment degradation
(Chen and Jin 2005; Jin and Chen 2001). For example,
Jin and Chen (2001) proposed a quality-reliability
(QR) chain model by considering the quality-reliabil-
ity effects for the manufacturing system design.

The main idea of these methods is to treat the deg-
radation variable and its interactions with the process
variables as additional predictors in the quality-pro-
cess models. However, such a model formulation can
be relatively restrictive due to the assumption that the
degradation effects are additive for product quality.
Thus, it may not be appropriate to model the dynamic
effect of degradation on the quality-process relation-
ship. For example, when the resistivity of heaters is

low, the degradation (the increase of the resistivity)
will not affect ingot quality significantly because the
temperature can be well controlled to the target value.
When the resistivity of heaters is high, the degrad-
ation will significantly affect ingot quality because the
temperature cannot reach the target values due to the
low heating efficiency.

To tackle the aforementioned challenges, we pro-
pose a dynamic modeling method to characterize the
varying degradation effects in the quality-process rela-
tionship. Assume that the equipment degradation data
are fully observed in the life cycle of the equipment.
The case of partially observed degradation will be dis-
cussed in Section 5. The proposed method considers
the linear quality-process relationship, while the
parameters of process variables varies with the equip-
ment degradation. That is, the degradation will change
the effects (i.e., parameters in the model) of process
variables to the quality response. Furthermore, such
dynamic effects are modeled as piecewise constant
coefficients of process variables with respect to the
degradation variable, which is justified in details in
Section 2. It is worth pointing out that the objective
of the proposed model is not only to achieve good
prediction performance but also to obtain an analyt-
ical model form with good engineering explanations.
For example, the proposed model can be used to iden-
tify the change point and the values of the estimated
coefficients according to the degradation variable, as
illustrated in Section 5. It is known that data mining
methods (Hastie, Tibshirani, and Friedman 2009) may
have good prediction performance. But they may not
be able to provide an appropriate model structure to
understand the interactions of degradation and the
quality-process relationship.



For the proposed dynamic model, it involves the
estimation of various unknown parameters, including
the number of piecewise constant parameters, the cor-
responding change points over time, and the corre-
sponding values of piecewise constant parameters. To
address this issue, we consider the coefficient of every
process variable at each time point as a parameter,
leading to an over-parameterized model with more
unknown parameters than the sample size. Then a
penalized least-squares estimation is proposed with the
penalty applied on the difference of two consecutive
parameters of process variable, naturally leading to esti-
mation of piecewise constant coefficients of the process
variables in the model. Thus, we can simultaneously
estimate the change points over time and values of the
piecewise constant parameters. Moreover, the equip-
ment degradation variable is also used to determine the
weight of the penalization, which integrates quality-
process information and degradation information in a
joint framework. That is, if there is a large change in
degradation at two consecutive time points, the corre-
sponding model coefficients can change significantly.
This is consistent with the perception of degradation
effects in the quality-process models. Because of the
dynamic model coefficients driven by the degradation
variable, the proposed method can effectively character-
ize the dynamic manufacturing process due to the
equipment degradation and leads to accurate parameter
estimation and prediction of quality.

Note that the proposed model can be viewed as a
varying coefficient (VC) model (Hastie and Tibshirani
1993). However, our parameter estimation procedure
is different from other existing work. For example,
Kolar, Song, and Xing (2009) considered a varying
coefficient model with piecewise linear coefficient
structure. However, their estimation of parameters is a
two-stage procedure with the first step on change
point detection, which may easily result in a subopti-
mal estimation. Huang, Wu, and Zhou (2004) devel-
oped a varying coefficient model with polynomial
spline estimation for the coefficients. Such a model
can work well when the underlying model coefficients
are continuous over time. But it may not be applicable
for the crystal growth manufacturing where the model
coefficients could have sudden changes, the changes
of the effects of process variables to quality variables
due to the degradation effects.

The rest of the article is organized as follows. In
Section 2, we describe the proposed model and esti-
mation methods. Section 3 conducts a simulation to
evaluate the performance of the proposed dynamic
model. We further study the case of the crystal growth
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manufacturing in Section 4. Finally, we conclude this
work with some discussion in Section 5.

2. Dynamic modeling

Denote the quality response as Y(f) and p predictor
variables as Xi(t),...,X,(t). These predictors can be
the process variables or their interactions. The goal is
to model the quality-process relationship. We start
with one equipment degradation variable, denoted as
Z(t), mainly responsible for the dynamic effects in the
quality-process relationship. Note that the quality-pro-
cess relationship can vary as the equipment degrad-
ation changes. The information of Z(f) provides
insights for model formulation and estimation.
Therefore, we consider the following model:

y(t) = B (O)xi () + - + B, (0)x,(£) + &,
Bi(t) = f(Z(1)), k =1,.... p,

where fi(-) can be a nonlinear function. Here f(¢) is
considered to be the piecewise constant function with
respect to Z(t) and ¢ is the error term with zero
mean and constant variance.

The motivation of using the piecewise constant for
Pi(t) is that the degradation effect can be reflected
from the change of model coefficients on the quality
response. It is a reasonable assumption to approxi-
mate the dynamic varying effects of process variables
to the quality response. For a general varying effect,
the piecewise constant function of f.(t) can well
approximate the nonlinear patterns of the parameter
fi(Z(t)), in a similar spirit as the classification and
regression tree models (Breiman et al. 1984). In man-
ufacturing processes, the effects of process variables to
quality response are usually assumed to be static, such
as linear regression models (Agrawal, Lawless, and
Mackay 1999) and state space models (Shi and Zhou
2009). Therefore, the piecewise constant function con-
sents with the static assumption during a short period
of time. When considering a long period of time, the
dynamic effects due to degradation can be well
approximated by the piecewise constant functions.

2.1. The proposed method

Suppose that the observed data contain the response
y(t),t=1,..,n, and p predictor factor
x1(t), ..., %p(t),t =1,...,n. We assume that Z(t) is
nonnegative and monotonically increasing with time ¢,
that is, 0 < Z(1) < Z(2) < ---Z(n—1) < Z(n). In real
practice, if Z(#) is not monotonically increasing, we
can perform transformations to Z(f) or sort Z(t) in an
increasing order.
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To model the piecewise constant function of fS(t),
it is difficult to specify the number of piecewise con-
stant parameters, the change points over time, and the
corresponding constant parameter values in each
piece. To overcome this difficulty, we consider a pen-
alization method to automatically encourage the esti-
mated f5,(t) being a piecewise constant function.
Specifically, we discretize the function f,(¢) onto the
observed time points and parameterize its value at
each time point as a parameter. That is, we use
B = (ﬂm,...,ﬂk’n)/ as a discretized version of f(t)
for k =1,...,p. The advantage of such a formation is
that it enables the flexible function form of fi(t),
while its desirable function form can be pursued by
imposing proper regularization on those parameters
Bi1s s Bn Clearly, it will lead to an over-parameter-
ized model with n observations and np parameters.
Now the parameter vector can be expressed as
B = (B, .-, B,), and the model can be written as

P
y(t) :Zxk(t)ﬁk,t+6t7t: L..,n, [1]
k=1

where ¢, is an error term following a normal distribu-
tion with zero mean and variance as ¢*. Without any
constraint on the model structure, it is not feasible to
estimate the f,’s. To encourage the piecewise con-
stant function form of fi(¢), we will estimate the
model under the framework of penalized minimiza-
tion. That is, we consider

n P 2
ming Z ly(t) — Zxk(t)ﬁk,t]
t=1 k=1

P n
+4 Z wi(t) |ﬂk,t_ﬂk,t71 |, (2]

k=1 t=2
where 4 > 0 is a tuning parameter. By imposing the pen-
alty on two consecutive parameters f§, and B, ;, the
penalization here attempts to encourage their difference
to become zero. Therefore, with the appropriate choice
of the tuning parameter A, the above penalized mini-
mization can largely reduce the number of the parame-
ters in the model. Moreover, the weight wy(t) provides
an adaptive framework of pursuing the piecewise func-
tion of B, to incorporate the degradation information
of Z(t). Regarding the choice of weight wy (), we pro-
pose incorporating the magnitude of change in Z(f) as

follows. Let Z(t) = Z(t)—Z(t—1). Then we assign
1

Wk(t) Z (t) . [3]
It means that, for two consecutive f3, ; and B, if
the values of the corresponding Z(t—1) and Z(t) are

close to each other, then the values of B, ; and f,
should also be close to each other. For example, if
Z(t) = Z(t—1), which is Z(t) =0, then the penalty
wi(t)(Br,—Prs—1)  will  automatically  enforce
B = ﬁk,tq- This is reasonable because it is expected
that the model coefficients remain the same when
there is no change of the degradation variable values.
This also indicates that, when the degradation levels
are changing over time, the parameters will also
change accordingly. One can clearly see that, when
the observed Z(t) is equally spaced, the proposed pen-
alty follows the similar spirit of the fused LASSO
(Tibshirani et al. 2005).

Because there is a large number of parameters in
the model, an efficient algorithm is needed to address
the computational efficiency for parameter estimation.
For the penalty terms, we can define projection matri-
ces for a clear expression as follows:

—Wk(Z) Wk(Z) 0 0

0 —wi(3)  wi(3) 0

Wi = : : . .
0 0 —wi(n)  wi(n)

Then the penalty term can be written as

P n p
YN i OlBee—Braal = 4> I WiBlly,
=1 =2 =1

where || - ||, is a vector L; norm. Therefore, by defin-

ing y= ()’(1>,)/(2)7 ---,)’(”))/ and Xj = diag(xk(l)a
., xk(n)), we can rewrite the objective function in [2]
as

] p ! » P
mﬁm )’—Zxkﬂk> J’—ZXk/fk> +/12||Wkl‘k||1~
k=1 k=1 k=1

(4]

If we further define the model matrix
X = (X1, ...,X;), then the above objective function in
[4] can be written as

. /
ml;“ (v = XB) (y — XB) + 2l[WBl;, [5]

where W = diag(W,...,W,). It is clear that the
coordinate decent algorithm for a generalized LASSO
penalty (Tibshirani and Taylor 2011) can be used to
solve the above minimization problem in [5].

2.2. Selection of tuning parameter

Note that there is a tuning parameter 4 to be specified
for the proposed method. Based on the data, the com-
mon methods to select tuning parameters include



Table 1. An example of model coefficients used in the simu-
lation with six significant predictors.

Z(1) By () B> (1) Bs(0) Ba(t) Bs (1) Bs(t)

[0,1.25) —-0.41 —2.24 —2.13 —0.96 —2.41 —-1.21
[1.25,4.78) —2.88 —1.08 2.08 —3.02 —1.16 0.87
[4.78,6. 73) 1.15 1.04 0.72 178 0.79 —2.30
[6.73,7.47) 2.27 1.86 -1.37 239 —2.39 —2.88
[7.49,00) —2.64 -3.11 —2.79 —1.56 233 1.59

cross-validation, Akaike information criterion (AIC),
and Bayesian information criterion (BIC; McQuarrie
and Tsai 1998). When there is a large number of
parameters in the model, the extended Bayesian infor-
mation criterion (EBIC) can be more effective to
reduce the model size (Chen and Chen 2008). In this
work, we adopt the extended BIC for finding an opti-
mal value of the tuning parameter 4. The extended
BIC for the proposed model can be written as

EBIC() = nlog (6?) + qlog (n) + 2ylog (t(q)), [6]

where

= [7]

Here g is the number of nonzero estimates of parame-

. np
ters in the model, rq =(7), and 7y=
1—log10(n)/log10(p) € [0,1] s rdcommended by
Chen and Chen (2008). Spec1f1cally, we generate a
grid for 1 values, where 1€ A ={4y,...,An}. For
each grid point /; in A, we evaluate the corresponding
extended BIC score and find the optimal choice of 4
that has the minimal extended BIC score among all
grid points in A.

3. Simulation

Here we conduct simulation studies to evaluate the
estimation and prediction performance of the pro-
posed method. Suppose that the underlying quality-
process model is y(t) = > P xc(£)Bi(t) + € where
xk(t),k =1,...,p are p process variables and f(t) is
the corresponding model coefficients. We choose
p =20 in this simulation study. Note that the motiv-
ation example in crystal growth manufacturing has lit-
tle knowledge for complex interactions of quality and
reliability. It may not be appropriate to consider the
data generation based on QR chain models because
the QR chain models assume that the degradation
effects are additive to the quality response.

Assume that the model coefficient f;(¢) varies with
the degradation variable Z(#). Specifically, we consider
generating Z(t) from Z(t) = exp (107%t)|U(t)|, where
U(t) is a fractional Brownian motion with the Hurst
parameter as 0.9, and “|-|” represents the operation
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to take the absolute value. The fractional Brownian
motion can be generated by Abry and Sellan’s (1996)
algorithm. To mimic the dynamic effects of the deg-
radation variable, we generate the piecewise constant
functions of f(t) as follows. First, based on the values
of Z(t), we partition its range into five intervals, as
shown in Table 1. For each k,k =1, ..., p, we generate
a constant value in each interval for f5,(t). That is, we
have five intervals within the range of degradation
variable. For each predictor, the constant value of the
parameter in each interval is randomly generated
from one of the following normal distributions:
N(—3,0.09), N(—2,0.09), N(—1,0.09), N(1,0.09), and
N(2,0.09). Note that there is not a fixed normal dis-
tribution specified for a particular interval to generate
constant values of parameters. Table 1 shows an
example of model coefficients used in the simulation.
Because there are only six significant predictors with
nonzero parameters in the model, the table shows the
parameters of these six predictors. Based on the values
of Z(t), the model coefficients are used as constants
during that region of Z().

In this simulation, we consider two scenarios of
generating data of process variables xi(¢). In scenario
1 (S1), for k=1,...,p, we generate x(t) independ-
ently over time to follow a multivariate normal
N(0,X), where X is a covariance matrix. In scenario 2
(S2), we generate autocorrelated xi(t) over time. That
is, the first instance xj(1) is generated from N(0,X).
The rest xx(t) (t =2,...,n) are generated from an
AR(1) model as xi ;1 = 0.7xx; + Wi, where wy, fol-
lows a normal distribution N(0,0.04). Here the X in
both scenarios are set to be ¥ = (p“‘j‘)po with pli=Jl
as the element in the ith row and jth column in the
matrix, and the correlation parameter p > 0. To con-
duct a comprehensive simulation study, we vary sev-
eral settings, including the sample size n, the
correlation parameter p, and the model sparsity (sp).
Here the model sparsity refers to the percentage of
significant predictors with nonzero parameters among
p predictors in the model. We consider three cases of
different sample sizes as n=100, n=300, and
n=>500. The value of p has two levels: 0 and 0.5. The
sparsity has two levels: sp =30 percent and
sp = 70 percent. The sparsity is regarding the percent-
age of nonzero coefficients out of p coefficients of
predictors. After generating f,(t) and xx(t), we use
the model y(t) = S8 xi(t)Bi(t) + € to generate y(1),
where ¢, follows an 1iid. normal distribu-
tion N(0,0.01).

Figure 2 shows an example of the simulated data,
including the degradation variable, model coefficients,
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Figure 2. An example of simulated data. (a) Degradation variable over time. (b) Model coefficients as piecewise constant functions
over time (for three predictors as an example). (c) Three autocorrelated significant predictors over time. (d) Quality response

over time.

process variables, and quality response in S1 with
n=100,p =0, and sp = 30 percent. It is clear that
the model coefficients are generated as piecewise con-
stant functions over time, which is based on the val-
ues of the degradation variables.

For each simulation setting, we generate 100 repli-
cations of the data sets. The proposed model is com-
pared with two benchmark models in the spirit of QR
chain models. The first benchmark model (BM;) is a
linear regression model to predict y(t) based on all
process variables, and the degradation variable Z(¢) as
an additional predictor, that is,

p

y(t) =D x(OB+ 2B, + e,

k=1

BM1 :

where f3, is the parameter for the predictor Z(¢) and e
is the model error following a normal distribution
with zero mean and a constant variance. The second
benchmark model (BM,) is a linear regression model

to predict y(t) based on all process variables, the deg-
radation variable Z(t), and the pairwise interactions
between Z(t) and xi(t), that is,

P P
BM: y(t) = xi(t)fi+Z(6)B.+ Y () Z(t)m+e,
k=1 k=1

where #’s are the parameters for the pairwise interac-
tions and e is the model error following a normal dis-
tribution with zero mean and a constant variance. For
both BM; and BM,, we adopt the LASSO penalty
(Tibshirani 1996) to perform the variable selection,
where the tuning parameters are chosen using BIC.
The third benchmark model is the MARS method
(Friedman 1991) to model y(tf) based on all process
variables and the degradation variable Z(t) as an add-
itional predictor, that is,

M
MARS: y(t) = ZamBm(x) +e,

m=1
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Table 2. Averages and standard errors (in parentheses) of root mean squared prediction error from 100 simulation replications

(lowest average values in bold).

sp = 30% sp = 70%
n p Method s1 S2 s1 S2
BM, 4.47 (0.06) 3.91 (0.07) 7.04 (0.09) 6.12 (0.10)
BM, 4.44 (0.15) 3.50 (0.07) 7.62 (0.23) 5.31 (0.10)
n=100 p=0 MARS 5.33 (0.10) 4.33 (0.09) 8.68 (0.16) 6.86 (0.15)
VC 5.60 (0.16) 4.77 (0.22) 9.83 (1.00) 8.81 (0.41)
Proposed 3.00 (0.06) 3.13 (0.11) 6.26 (0.10) 5.23 (0.16)
BM, 3.98 (0.06) 4.17 (0.07) 7.28 (0.10) 6.17 (0.09)
BM, 3.91 (0.09) 3.77 (0.10) 7.51 (0.19) 5.58 (0.11)
n=100 p=05 MARS 4.94 (0.09) 4.34 (0.10) 8.74 (0.17) 6.85 (0.13)
VC 5.11 (0.15) 4.23 (0.23) 9.37 (0.31) 7.18 (0.33)
Proposed 3.07 (0.06) 3.41 (0.09) 5.98 (0.11) 5.22 (0.14)
BM, 4.35 (0.03) 3.87 (0.04) 6.53 (0.06) 6.55 (0.06)
BM, 3.75 (0.03) 2.91 (0.04) 5.72 (0.06) 5.43 (0.06)
n=300 p=0 MARS 4.83 (0.05) 3.77 (0.04) 7.37 (0.08) 6.53 (0.06)
VC 6.54 (1.24) 2.74 (0.13) 8.49 (0.28) 9.69 (0.70)
Proposed 1.32 (0.04) 1.52 (0.07) 3.37 (0.05) 3.39 (0.11)
BM, 3.58 (0.04) 4.31 (0.05) 6.54 (0.05) 6.88 (0.07)
BM, 3.21 (0.03) 3.10 (0.04) 5.30 (0.06) 5.57 (0.07)
n=300 p=05 MARS 3.98 (0.05) 4.16 (0.05) 7.41 (0.08) 6.83 (0.06)
VC 3.82 (0.13) 7.96 (0.69) 10.56 (0.93) 12.80 (1.13)
Proposed 1.56 (0.04) 1.52 (0.06) 3.05 (0.05) 3.46 (0.11)
BM, 4.67 (0.03) 4.58 (0.03) 6.54 (0.04) 6.72 (0.04)
BM, 4.26 (0.03) 3.60 (0.03) 5.78 (0.04) 5.00 (0.05)
n=500 p=0 MARS 4.97 (0.03) 4.45 (0.04) 7.00 (0.05) 6.61 (0.05)
VC 8.68 (0.88) 3.68 (0.23) 8.21 (0.61) 7.40 (0.68)
Proposed 1.12 (0.03) 1.37 (0.06) 2.51 (0.05) 2.26 (0.06)
BM, 4.36 (0.03) 3.59 (0.03) 6.58 (0.04) 6.30 (0.04)
BM, 3.49 (0.03) 3.11 (0.03) 6.05 (0.05) 5.29 (0.04)
n=500 p=05 MARS 4.67 (0.04) 3.45 (0.03) 7.16 (0.05) 6.28 (0.05)
VC 4.45 (0.65) 9.10 (0.83) 11.79 (2.00) 18.81 (4.26)
Proposed 1.02 (0.03) 1.30 (0.06) 2.47 (0.04) 2.35 (0.05)

where M is the dimension of knots, which is automat-
ically selected by the algorithm of MARS; g, is the
mth coefficient of the expansion whose values are
jointly adjusted to give the best fit to the data, B,,(x)
is an indicator function having value one determined
by the algorithm of MARS, x= (xi(t),x(t),...,
x,(t),Z(t)), and € is the model error. The fourth
benchmark model is the VC model in terms of time ¢
(Kolar, Song, and Xing 2009) with a similar model
structure as the model in [1] but with a different loss
function.

n p
VC: mI}nZ ly(t)—zxk(t)ﬁk,t
t=1 k=1

P n
+40)> > Bk Brels
1 t=2

k=

2 » n
+1122|ﬁk,t|

k=1 t=1

where a two-step algorithm proposed is implemented
to minimize the loss function.

To check the prediction performance of the meth-
ods in comparison, we conduct five-fold cross valid-
ation (Hastie, Tibshirani, and Friedman 2009) to
compute the root mean squared prediction error
(RMSPE). Specifically, we randomly divide the simu-
lated data into five portions Cj,...,Cs based on time
instances. Then we use the four portions to fit the

models and evaluate the prediction error based on the
unused portion. By iteratively using every portion for
prediction, we can calculate RMSPE as

RMSPE = |>3" S 00502, [

k=1 teCy

where J(t) is the predicted response. Table 2 summa-
rizes the average RMSPEs and their standard errors
over 100 replications (in parentheses) for the three
models. Clearly, the proposed model has the smallest
RMSPEs in most scenarios. This is because the advan-
tage of the proposed model lies in the flexibility of
dynamically adjusting the parameters of process pre-
dictors according to the degradation. Note that, when
the sample size n is relatively small with #» =100, the
proposed model has comparable prediction perform-
ance as BM,, under the scenario S2 with the observa-
tions xi(t) being autocorrelated. One possible reason
is that the proposed method involves a large number
of parameters for estimation. When the observations
are autocorrelated over time, there are less new infor-
mation for parameter estimation. As the sample size
increases in the case of n=300 and n =500, the pro-
posed method performs much better than the bench-
mark models BM,;, BM,, MARS, and VC. The
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Table 3. The average and standard errors (in parentheses) of parameter estimation accuracy of B from 100 simulation replica-
tions (numbers are in percentage and lowest values are in bold).

sp = 30% sp = 70%

n p Method s1 S2 s1 S2

BM, 115.21 (1.72) 133.47 (2.86) 105.93 (0.83) 112.42 (1.02)

BM, 157.74 (5.21) 157.71 (6.30) 128.88 (3.86) 136.51 (3.75)
n=100 p=0 MARS * - - - -

VC 129.07 (4.80) 133.03 (3.68) 123.07 (10.34) 118.73 (1.92)

Proposed 108.13 (1.22) 116.59 (1.34) 104.61 (0.80) 103.32 (0.88)

BM, 107.53 (1.28) 137.27 (3.06) 105.30 (1.01) 112.35 (1.17)

BM, 149.48 (5.47) 183.29 (7.75) 140.60 (5.11) 139.62 (4.93)
n=100 p=05 MARS - - - -

VC 124.88 (2.91) 132.14 (9.69) 115.40 (1.51) 123.97 (3.90)

Proposed 118.26 (1.53) 119.90 (1.84) 107.85 (0.87) 108.35 (0.81)

BM, 104.72 (0.82) 118.07 (1.46) 100.59 (0.37) 105.18 (0.55)

BM, 109.12 (0.99) 127.49 (1.53) 102.72 (0.48) 112.59 (1.02)
n=300 p=0 MARS - - - -

VC 127.43 (8.42) 103.64 (2.87) 100.41 (1.25) 111.73 (1.79)

Proposed 56.09 (0.79) 50.69 (0.76) 64.56 (0.42) 69.07 (0.62)

BM, 100.23 (0.51) 118.17 (1.53) 99.06 (0.28) 104.32 (0.52)

BM, 106.55 (0.85) 133.65 (1.99) 112.90 (1.68) 116.04 (1.12)
n=300 p=05 MARS - - - -

VC 116.19 (2.29) 138.74 (2.47) 107.41 (1.01) 108.26 (1.41)

Proposed 66.07 (1.04) 55.57 (0.87) 61.91 (0.46) 60.64 (0.60)

BM, 101.12 (0.59) 115.32 (1.29) 99.29 (0.29) 103.20 (0.38)

BM, 103.50 (0.63) 121.30 (1.30) 100.53 (0.31) 111.27 (0.87)
n=>500 p=0 MARS - - - -

VC 120.58 (3.03) 98.88 (2.47) 86.50 (1.24) 90.51 (3.03)

Proposed 40.73 (0.49) 37.39 (0.70) 58.92 (0.54) 53.40 (0.58)

BM, 100.29 (0.41) 108.93 (1.04) 97.99 (0.29) 102.92 (0.41)

BM, 104.20 (0.76) 112.36 (1.23) 100.58 (0.49) 106.13 (0.57)
n =500 p=05 MARS - - - -

VC 92.98 (1.49) 127.33 (2.65) 103.76 (1.42) 99.03 (1.84)

Proposed 48.12 (0.62) 50.05 (0.68) 60.68 (0.50) 60.97 (0.48)

Note. "The parameter estimation accuracy metric is not applicable for MARS model.

explanation for relatively large standard errors of
RMSPE in the VC model may be due to the use of
randomized LASSO, which may result in suboptimal
estimations, as we argued in Section 1.

We further examine the parameter estimation
accuracy of the proposed model and the two bench-
mark models. Note that the parameters of the under-
lying models are piecewise constant functions over
To evaluate the accuracy of the estimated
parameters, we compare the percentage of difference
between the estimated parameters and the true
parameters. Specifically, we define the performance
measure as

time.

smaller the percentage is, the better the estimation
accuracy of the parameters is. For BM; and BM,, the
parameters are estimated as constants over time, so
they will be treated as constant lines in the compari-
son. For BM,, because it involves both predictors
xk(t), Z(t) and interactions xx(t)Z(t), we only com-
pare the parameters of xi(¢) in the model. For the
MARS model, because it is a polynomial spline-based
regression and the parameter estimation accuracy
metric is not applicable for it, we do not compare its
parameter estimation errors in Table 3. For the VC
model, which involves both predictors x¢(¢) and Z(¢),
here we only compare the parameters of xi(¢) in the
model in Table 3. Table 3 summarizes the perform-

i ZT:‘ Bl ance measure of the parameter estimation accuracy
== kit for three models. Clearly, the proposed dynamic

PM = x 100%, . -
P n model also gives the best parameter estimation accur-
kz; Z Bl acy in most scenarios. However, most of the accura-

where 8 ks is the value of the estimated parameters for
the kth predictor at time ¢ and f, is the true param-
eter for the kth predictor at time ¢ in the underlying
model. The quantity represents the percentage of the
difference area between two curves ﬁk’t and f, in the
total areas under f, for all predictor variables. The

cies are shown to be larger than 50 percent. A
possible explanation is that the piecewise constant on
parameter coefficients and independent assumption of
the residuals of the proposed model is not fully satis-
fied (see Section 5 for discussion). In summary, the
results from the simulation study indicate that the
proposed dynamic models can outperform the
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Table 4. Process variables, degradation variable, and quality response in the crystal growth process.

Types Variable names

Physical explanations

Process variables Power
Temperature ingot
Temperature heater

Pulling speed

Rotation speed
Degradation variable Resistivity
Quality response Ingot diameter

The power of the heater
Temperature of the top part of ingot
Temperature of the heater

The pulling speed of the ingot

The rotation speed of the ingot

The resistivity of the heater

The diameter of the ingot

conventional models on both prediction and param-
eter estimation.

4. Case study: Crystal growth manufacturing

In this section, we apply the proposed dynamic model
to a real case study of the crystal growth process.
Recall the crystal manufacturing described in Section
1. Because the heating efficiency is affected by the
degradation of the heater, the effects of the process
variables on the quality are expected to be dynamic
over time. Table 4 summarizes the variables of data
collected from the manufacturing process. The ingot
diameter is chosen as the quality response because
poor control of the diameter will cause huge waste in
crystal manufacturing (Zhang et al. 2014). In total,
there are over 1000 samples collected over time in the
case study. Note that the flow time of crystal growth
usually is much shorter than the life cycle of the
equipment. Because of the continuous growth of the
ingot in different batches, both the quality response
(the diameter) and the degradation variable (the
resistivity) are measured at every time instance. When
the time scales for quality response and degradation
variable are different, the collected data are sampled
and aligned to make the time scale consistent. The
response here is a centered response (i.e., a zero-
mean response).

To model the quality-process relationship, we use
the main effects of process variables as predictors in
the models. The variable “resistivity” is considered as
the degradation variable. For the benchmark models,
we consider the degradation variable “resistivity” as
an additional predictor in BM; and consider all the
pairwise interactions of the resistivity and the process
variables as additional predictors in BM,. Figure 3
shows the estimated model coefficients obtained from
the proposed dynamic modeling method. Specifically,
Figure 3(a) shows the change of the resistivity sorted
in an increasing order. Figures 3(b)-(f) show the esti-
mated model coefficients for power, temperature
ingot, temperature heater, pulling speed, and rotation
speed. Clearly, the estimated parameters vary

significantly at different time points, which is driven
by the degradation of the heater. Taking the power as
an example (Figure 3(b)), it generally has bigger
impact on the ingot quality (ingot diameter) at the
early stage when the resistivity is small than at the
later stage. This is consistent with the engineering
knowledge that, when the resistivity is small, the
power can be easily adjusted to target values. Thus, it
can affect the ingot quality significantly. When the
resistivity of heaters becomes larger, the heating effi-
ciency is limited. In this case, adjusting the power
would not largely change the heating performance.
Therefore, the parameter of power becomes a small
constant in the later stage of the manufacturing pro-
cess when the resistivity become large, as shown in
Figure 3(b). Taking the pulling speed as another
example, it is clear that the pulling speed has signifi-
cant impact on the ingot quality when the resistivity
is small, but the variable becomes less influential to
the ingot quality when the resistivity is large (i.e., the
parameter of pulling speed becomes close to zero).
The result implies that no matter how the pulling
speed is adjusted, the ingot quality will not be signifi-
cantly changed when the resistivity is large. Besides, it
can be easily noticed that Figures 3(b)-(f) start with
small values near zeros. This can be attributed to the
sorting of Z(t). Specifically, because the degradation
measure Z(t) is sorted in increasing order along the
time ¢, it means that the sorted degradation measures
start with small values. As a result, small quality
defects (i.e., small y(f) with small variation) will also
occur in the beginning. Therefore, the fitted coeffi-
cients will start with small values. In summary, the
estimated varying coefficients from the proposed
model can reflect the dynamic effects of the process
variables due to the degradation of the heater. Driven
by the degradation variable, abrupt changes com-
monly occurred in the estimated varying coefficients.
The conventional varying coefficient model in the lit-
erature may not be directly applicable in this case.

To further show the effectiveness of the proposed
model, we use cross validation with 100 folds to evalu-
ate the prediction performance. For each iteration, we
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Figure 3. Performance of the proposed method in the crystal growth process. (a) Resistivity of the heater sorted in increasing
order. (b) Estimated model coefficient of power. (c) Estimated model coefficient of temperature ingot. (d) Estimated model coeffi-
cient of temperature heater. (e) Estimated model coefficient of pulling speed. (f) Estimated model coefficient of rotation speed.

partition the data into the training set and the test set.
Then we calculate the RMSPE in the test set using the
model estimated from the training set. Figure 4 shows
the box plots of the prediction errors of the proposed
dynamic models and two benchmark models in 100-
fold of cross validation. It should be noted that,
although the box plot of prediction errors of the VC

model is presented with good performance, the VC
model is not applicable for prediction in this case study
because it is based on the partitions of time, which are
not replicable for real manufacturing processes. This
VC model can be only used for process analysis. From
Figure 4, it is clear that the proposed dynamic model
outperforms BM;, BM,, and MARS for prediction,



indicating that the dynamic model can better character-
ize the quality-process relationship with the consider-
ation of equipment degradation.

5. Discussion

In modern manufacturing, automation plays an
important role for quality assurance. When the equip-
ment degrades, the manufacturing process becomes
less robust with low product quality. The dynamic
interaction of equipment reliability and product qual-
ity is not fully understood in the literature. In this art-
icle, we propose a dynamic modeling strategy to
integrate equipment degradation information for qual-
ity-process modeling, enabling effective automation of
manufacturing processes to improve product quality.
The effects of process variables are modeled as

1} )
* +
08f 1 e :
: : )
1 | - + 3
0.6} -
. ‘ L -
| | . T |
04 -+ 3 — : l
- ]
0.2 ' !
Sl -1
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Figure 4. Box plots of prediction errors for three methods in
100-fold of cross validation for the crystal growth process.
Note that, although the boxplot of VC prediction errors is pre-
sented, the VC model is not applicable for prediction.
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piecewise constant functions according to the equip-
ment degradation, which can be useful for quality
control (Qiu 2014; Woodall and Montgomery 2014).
The proposed dynamic model provides an opportunity
to conduct joint decision making for quality control
and maintenance scheduling. Such a model can play a
significant role in future quality engineering as the
increasing customization of products results in fewer
samples of products for quality control. Many trad-
itional quality control methods, which require a large
sample size, may not be applicable in these applica-
tions. One possible solution is to pursue high product
quality through the optimized process settings and
well-maintained manufacturing equipment. Therefore,
the quality-process modeling needs to take account of
the effects of equipment degradation.

For the proposed method, the model assumption
may not be fully suitable for the real data of crystal
manufacturing. Figure 5 shows two diagnostic figures
for the residuals of the proposed method. It appears
that the residuals may not strictly follow the normal
distribution and there may be some autocorrelation in
the residuals. It would be interesting to study how to
incorporate the temporal information into the pro-
posed method. For manufacturing systems with equip-
ment degradation, we note that the degradation often
changes over time. One may consider time series
modeling techniques to characterize the autocorrela-
tions of the residuals. The modeling of the autocorrel-
ation can also characterize the trend or seasonality
due to the degradation and maintenance operations.

There are also several directions for future research.
First, instead of using linear models for the quality-
process relationship, nonlinear models will be
explored to characterize complicated manufacturing
processes. Second, the dynamic effects in the quality-

600 800 1000 1200

(b)

200 400

Figure 5. Diagnostics for the estimated model in the crystal growth process. (a) The QQ-plot of residuals. (b) The scatter plot of

residuals versus time.
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process model are not restricted to piecewise constant
function of parameters of process variables. We will
further explore complex model structures for dynamic
effects. For example, we can incorporate piecewise lin-
ear functions to approximate more complex dynamic
effects. Third, we can allow additional L; penalties on
the model coefficients to encourage a sparse model.
The estimation algorithm in this work can also be
extended to maintain the computational efficiency.

Fourth, it is likely in practice that the degradation
data are partially observed. For example, at a certain
time, the degradation data for future equipment con-
dition are not observed. In this case, one can model
the relationship between the degradation variable and
the corresponding factors, such as process variables
and ambient variables. The future degradation trend
can be predicted, similar to the general path model
incorporating the dynamic covariate information
(Hong and Meeker 2013). Moreover, because the
measurement noises typically exist for degradation sig-
nals, the effects of signal-to-noise ratio will be investi-
gated in the future to study the robustness of the
proposed model to the degradation noise. Fifth, how
the product quality affects equipment degradation is
also very important (Hao 2015). In the crystal growth
process, higher quality requirements usually call for
more demanding use of heaters, leading to quicker
degradation. We will consider modeling the quality as
a covariate in the degradation model (Hong and
Meeker 2013). The modeling and parameter estima-
tion on this aspect will be further investigated. Finally,
the dynamic models can be used for joint quality con-
trol and maintenance scheduling. By integrating the
degradation modeling (Lu and Meeker 1993) and
automatic process control (Zhong, Shi, and Wu 2010),
we will develop joint quality control and equipment
maintenance strategies. It thus will bring significant
benefit for manufacturing quality and equipment reli-
ability improvements.
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