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ABSTRACT: Mitochondria are essential targets for treatment of diseases with mitochondrial disorders such as diabetes,
cancer, and cardiovascular and neurodegenerative diseases. Mitochondria penetrating peptides (MPPs) are composed of
cationic and hydrophobic amino acids that can target and permeate the mitochondrial membrane. Herein, a novel D-argine-
phenylalanine-D-argine-phenylalanine-D-argine-phenylalanine-NH2 (rFrFrF) was tagged with a rhodamine-based fluorescent
chromophore (TAMRA). This probe (TAMRA-rFrFrF) exhibited advantageous properties for long-term mitochondria tracking
as demonstrated by fluorescence microscopy. Cell viability assays and oxygen consumption rates indicate low cytotoxicity and
high biocompatibility of the new contrast agent. Colocalization studies suggest that TAMRA-rFrFrF is a promising candidate for
continuous mitochondrial tracking for up to 3 days.

Mitochondria are essential organelles as the site of
respiration in eukaryotic cells and are involved in

multiple functions in cell life, such as energy supply, cell cycle
and growth, cell signaling pathways and apoptosis, cell
proliferation, and metabolism.1,2 Meanwhile, these organelles
are dynamic and continually undergo fusion, fission, transport,
and degradation. These processes are critical for maintaining a
healthy functional mitochondrial network.3,4 Dysfunctions of
mitochondrial metabolism and/or morphologies have been
reported in human cancers as well as cardiovascular and
neurodegenerative diseases. Thus, the capability of monitoring
mitochondrial morphology is important in both scientific and
clinical research.5−7 However, due to the continuously moving
and changing morphology, monitoring mitochondria morpho-
logical changes and dynamics over prolonged periods of time is
still difficult, and so far the longest reported time for live cell
mitochondria imaging is 24 h.8,9 Therefore, a long-term

tracking strategy would be helpful for studying mitochondria
morphology and prospective drug delivery systems.
Over the last few decades, a variety of mitochondria

targeting modules have been developed. Most of those
reported are delocalized lipophilic cations, which exhibit
relatively high toxicity to mitochondria.10,11 Mitochondria
penetrating peptides (MPPs) represent a relatively new
direction to develop mitochondria targeting vectors and are
short peptides with high mitochondria uptake. The structure of
MPPs is generally cationic and hydrophobic, which facilitates
permeation through the hydrophobic mitochondrial mem-
brane and accumulation in the mitochondria matrix.12−14 Due
to their primary peptide structures and biocompatible
properties, MPPs with short amino acid sequences (fewer
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than 10 amino acids) are expected to exhibit low cytotoxicity,
making them promising candidates for the development of new
probes for investigation of mitochondria.15−17

Recently, MPPs were employed for targeting and delivering
therapeutic cargos into mitochondria with high effi-
ciency.10,12,14−18 Peptides such as (FxrFxrFxr) (r is D-argine
and Fx is cyclohexylalanine) exhibited low cytotoxicity and
high mitochondria targeting.16 Although numerous MPPs have
been developed to deliver fluorescent dyes, drugs, and other
cargos to mitochondria, there are no reports for long-term
mitochondrial tracking thus far, possibly due to their low
serum stability.19

Herein, we report a peptide containing six amino acid
residues (Figure S1a), D-argine-phenylalanine-D-argine-phenyl-
alanine-D-argine-phenylalanine-NH2 (rFrFrF), conjugated to a
rhodamine-derived fluorescent probe (TAMRA)20 (Scheme 1

and Figure S1b), and studies of the resulting probe, TAMRA-
rFrFrF, in time-dependent mitochondria targeting and
imaging. Unnatural D-arginine (r) in the first and third
positions was selected to provide positive charges, minimize
amino peptidase degradation, and increase serum-stability.21

The natural amino acid phenylalanine (F) residue, which has a
hydrophobic side group, was selected to tune the hydro-
phobicity and impart low cytotoxicity. This prospective
mitochondria penetrating peptide (MPP) sequence possesses
three positive charges with a balance of hydrophilicity and
hydrophobicity designed to reduce potential disruptions to
mitochondrial activity and maintain normal mitochondrial
functions.22,23 Moreover, the amidated C-terminus was
designed to increase structural stability and attenuate
hydrolysis.14,24

The cytotoxicity and biocompatibility of rFrFrF and
TAMRA-rFrFrF were evaluated in HeLa and pig kidney
(LLC-PK1) cells via an MTS assay (Figures S2 and S3).25 The
peptide rFrFrF itself did not show any acute toxic effects over a
range of concentrations; even at the highest concentration
employed of 80 μM, cell viability remained at 100% after 24 h
incubation.The TAMRA-rFrFrF probe also exhibited very
good cell viability with a 90% survival rate at concentrations up
to 80 μM after 24 h. Meanwhile, commercial MitoTracker
Green and Red were evaluated in HeLa cells to compare the
cytotoxicity with rFrFrF and TAMRA-rFrFrF (Figure S4).
MitoTracker Green appears to be more toxic at concentrations
over 8 μM, while MitoTracker Red exhibits high cytotoxicity at
4 μM with only 30% of cells alive after 24 h incubation.

The use of the new MPP probe, TAMRA-rFrFrF, was then
investigated as a mitochondrial-targeting agent by fluorescence
imaging and colocalization studies. Three experimental groups
were conducted, including TAMRA-rFrFrF, TAMRA, and
TAMRA physically mixed with unconjugated rFrFrF. After 1.5
h incubation with one of the aforementioned reagents with
either HeLa or LLC-PK1 cells, the culture media was changed
to pure Dulbecco’s Modified Eagle Medium (DMEM) and the
HeLa cells were further incubated for 1 d.
As shown in Figure 1, bright fluorescence was observed for

cells incubated with TAMRA-rFrFrF. By contrast, no

fluorescence was detected for the other two groups
(TAMRA and TAMRA mixed with unconjugated rFrFrF).
Furthermore, TAMRA-rFrFrF displayed a high level of
selectivity for mitochondria targeting, with a Pearson’s
correlation coefficient value of 0.88 relative to MitoTracker
Green, a commercial mitochondrial staining agent, while
unconjugated TAMRA itself and the physical mixture of
TAMRA with rFrFrF exhibited no mitochondria targeting
ability nor the capability of being uptaken by cells.26 To further
evaluate mitochondrial selectivity, TAMRA-rFrFrF colocaliza-
tion studies with Lysotracker Green at short incubation times
and endoplasmic reticulum (ER-tracker Green) were also
performed with HeLa cells. Poor colocalization was observed
between TAMRA-rFrFrF with Lysotracker Green or ER-
tracker Green, in which Pearson’s values were less than 0.4
(Figures S5 and S6). Thus, the designed rFrFrF sequence is
attributed for successful cell uptake and high selectivity for
mitochondrial targeting.
To better understand the time dependent mitochondrial

uptake of TAMRA-rFrFrF, time-dependent cell imaging
experiments were conducted. In general, after incubation
with TAMRA-rFrFrF for 1.5 h, and after washing, HeLa or
LLC-PK1 cells were then incubated in cell medium alone for
various times (post-incubation time) before cell imaging for
long-term mitochondria tracking was performed. Cells that
underwent 0 to 4 h post-incubation (Figures S8 and S9)
displayed strong fluorescence; however, mitochondria targeting

Scheme 1. Molecular Structure of TAMRA-rFrFrF and
Mitochondria Penetration

Figure 1. HeLa cells were incubated with 5 μM of TAMRA, TAMRA
mixed with unconjugated rFrFrF, and TAMRA-rFrFrF separately for
1.5 h, and after washing, additional incubation of the cells at 37 °C for
1 d (post-incubation time). (a) HeLa cells treated with TAMRA, (b)
HeLa cells treated with TAMRA mixed with unconjugated rFrFrF, (c)
HeLa cells treated with TAMRA-rFrFrF.
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was less efficient at these time points, which may be related to
the charge and hydrophobicity of TAMRA-rFrFrF. The
mitochondrial membrane exhibits hydrophobicity and a
potential difference in which the inner mitochondrial
membrane is negatively charged and the outer membrane is
positively charged.12,13,27 MPPs that possess positive charges
and hydrophobicity tend to target and penetrate the
mitochondria membrane more easily.15 However, increasing
the peptide charge or hydrophobicity may increase mitochon-
drial disruptive activity and lead to unwanted side effects and
toxicity.22,23

We discovered that our MPP could slowly but effectively
target mitochondria. As shown in Figures 2a, S8, S9, and S10,
TAMRA-rFrFrF largely permeated the mitochondria after 6 h
of post-incubation time. Moreover, cells still exhibited

significant fluorescence in mitochondria even at 3 d post-
incubation. By comparison, MitoTracker Green was not
capable of tracking mitochondria reliably much longer than 6
h (Figure S7). These results clearly demonstrated long-term
mitochondria tracking ability of the new MPP probe.
Mitochondria are highly dynamic organelles that constantly

undergo fission, fusion and degradation,28 e.g., HeLa cells
undergo 1.44 events/min of fission.29 These constant changes
cause asymmetrical distribution of matrix proteins in the
daughter mitochondria.30,31 In our study, TAMRA-rFrFrF
exhibited persistent localized mitochondria staining ability
without significant depletion or leakage over the 3 d post-
incubation period, an assertion that was quantitatively
confirmed by the Pearson’s correlation coefficient values
(Figures 2b), indicating TAMRA-rFrFrF is capable of
mitochondria targeting under frequent fission and fusion
events.To further confirm the mitochondria targeting ability of
TAMRA-rFrFrF, mitochondria were isolated from TAMRA-
rFrFrF treated cells and fluorescence intensities were recorded
with a fluorescence spectrometer.32 The fluorescence inten-
sities of isolated mitochondria with 6 h, 12 h, 1 d, 2 d, and 3 d
post-incubation were unquestionably much more intense than
those of the blankisolated untreated mitochondria (Figures
3 and S10). These results clearly demonstrate that the uptake

of TAMRA-rFrFrF is time-dependent and appears rather
efficient. There was no intensity decrease of TAMRA-rFrFrF in
mitochondria upon prolonged incubation. In fact, the post-
incubation time was a key factor for TAMRA-rFrFrF to
accumulate in the mitochondria in HeLa cells.
Further, the mitochondria present a whole set of complex

proteolytic enzyme systems that regulate mitochondrial
function and activities. Especially for mitochondrial degrada-
tion,33,34 endogenous proteases are responsible for the

Figure 2. (a) HeLa cells were incubated with 5 μM of TAMRA-
rFrFrF for 1.5 h, and after washing out the TAMRA-rFrFrF, an extra
incubation of the cells at 37 °C was carried out for various times
(post-incubation time). Then, cells were incubated with MitoTracker
Green for 15 min and washed before cell imaging. Pearson’s value is
labeled as R. (b) Post-incubation time-dependent Pearson’s
correlation coefficient of HeLa cells.

Figure 3. 5 μM TAMRA-rFrFrF was preincubated with HeLa cells for
1.5 h, followed by washing out TAMRA-rFrFrF and post-incubation
of the HeLa cells for 2 h, 4 h, 6 h, 12 h, 1 d, 2 d, and 3 d. Isolated
mitochondria from untreated cells were the blank (N = 3).
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degradation of their internal proteins, which are eventually
shuttled back to the cytoplasm by a specific peptide
transporter.35,36 The fluorescence intensity of TAMRA-rFrFrF
did not decrease from 12 h to 3 d, which indicated TAMRA-
rFrFrF underwent no apparent release to the cytoplasm and
was proteolytically stable. Overall, TAMRA-rFrFrF is capable
of long-term mitochondrial tracking up to 3 d, with high
stability and selectivity.
To probe mitochondria function of cells incubated with

TAMRA-rFrFrF, oxygen consumption rates were measured in
HeLa cells using a Seahorse analyzer.37 The results
demonstrated that the basal respiratory rate and maximal
respiratory capacity (Figure 4) decreased somewhat in the

TAMRA-rFrFrF treated vs untreated HeLa cells. Although
decreases in maximum respiratory capacity and basal
respiratory rate are strong indicators of potential mitochondrial
dysfunction,38 in this situation, the decreases are most likely a
result of a change in the potential difference of the outer and
inner mitochondrial membranes caused by the cationic rFrFrF
rather than mitochondrial dysfunction.38,39 The drop of
mitochondrial membrane potential difference will inhibit the
activity of the electron transport chain, which would decrease
the maximum respiratory capacity and the basal respiratory
rate.40,41 Furthermore, spare respiratory capacity exhibited only
a slight decrease while ATP production underwent no
significant reduction when compared with a control, indicating
that the TAMRA-rFrFrF probe has a minimal influence on
mitochondrial respiration.42 In fact, the results indicated that
mitochondrial functions were mostly unchanged.
In conclusion, a novel MPP probe, TAMRA-rFrFrF, was

designed that contained six amino acid residues. Our
investigations demonstrated the new MPP probe’s utility in
long-term in vivo mitochondrial tracking for up to 3 d, which is
superior to commercial MitoTracker Green and Red.
Importantly, the TAMRA-rFrFrF probe can undergo mito-
chondria distribution, activities, and fission or fusion events
with no degradation or transportation by mitochondria
proteolysis, which fulfills major criteria for long-term
mitochondria tracking. In addition, we have shown that the
TAMRA-rFrFrF was essentially benign and biocompatible
from cell viability and oxygen consumption rate experiments.
There is an important link between the mitochondrial
morphology change and mitochondrial dysfunction,6,43−45 in
which mitochondrial morphology serves as a marker to study
and treat mitochondria dysfunction-related disease. Therefore,

this TAMRA-rFrFrF MPP probe is a potential candidate for
live-cell mitochondrial morphological and mitochondrial
dysfunction studies.
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