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ABSTRACT: Mitochondria are essential targets for treatment of diseases with mitochondrial disorders such as diabetes,
cancer, and cardiovascular and neurodegenerative diseases. Mitochondria penetrating peptides (MPPs) are composed of
cationic and hydrophobic amino acids that can target and permeate the mitochondrial membrane. Herein, a novel p-argine-
phenylalanine-p-argine-phenylalanine-p-argine-phenylalanine-NH, (rFrFrF) was tagged with a rhodamine-based fluorescent
chromophore (TAMRA). This probe (TAMRA-rFrFrF) exhibited advantageous properties for long-term mitochondria tracking
as demonstrated by fluorescence microscopy. Cell viability assays and oxygen consumption rates indicate low cytotoxicity and
high biocompatibility of the new contrast agent. Colocalization studies suggest that TAMRA-rFrFrF is a promising candidate for

continuous mitochondrial tracking for up to 3 days.

Mitochondria are essential organelles as the site of
respiration in eukaryotic cells and are involved in
multiple functions in cell life, such as energy supply, cell cycle
and growth, cell signaling pathways and apoptosis, cell
proliferation, and metabolism."”” Meanwhile, these organelles
are dynamic and continually undergo fusion, fission, transport,
and degradation. These processes are critical for maintaining a
healthy functional mitochondrial network.” Dysfunctions of
mitochondrial metabolism and/or morphologies have been
reported in human cancers as well as cardiovascular and
neurodegenerative diseases. Thus, the capability of monitoring
mitochondrial morphology is important in both scientific and
clinical research.”~” However, due to the continuously moving
and changing morphology, monitoring mitochondria morpho-
logical changes and dynamics over prolonged periods of time is
still difficult, and so far the longest reported time for live cell
mitochondria imaging is 24 h.% Therefore, a long-term
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tracking strategy would be helpful for studying mitochondria
morphology and prospective drug delivery systems.

Over the last few decades, a variety of mitochondria
targeting modules have been developed. Most of those
reported are delocalized lipophilic cations, which exhibit
relatively high toxicity to mitochondria.'”"" Mitochondria
penetrating peptides (MPPs) represent a relatively new
direction to develop mitochondria targeting vectors and are
short peptides with high mitochondria uptake. The structure of
MPPs is generally cationic and hydrophobic, which facilitates
permeation through the hydrophobic mitochondrial mem-
brane and accumulation in the mitochondria matrix."”~"* Due
to their primary peptide structures and biocompatible
properties, MPPs with short amino acid sequences (fewer
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than 10 amino acids) are expected to exhibit low cytotoxicity, The use of the new MPP probe, TAMRA-rFrFrF, was then
making them promising candidates for the development of new investigated as a mitochondrial-targeting agent by fluorescence
probes for investigation of mitochondria.">~"” imaging and colocalization studies. Three experimental groups

Recently, MPPs were employed for targeting and delivering were conducted, including TAMRA-rFrFrF, TAMRA, and
therapeutic cargos into mitochondria with high effi- TAMRA physically mixed with unconjugated rFrFrF. After 1.5
ciency.'”'>"*~'¥ Peptides such as (FxrFxrFxr) (r is D- argine h incubation with one of the aforementioned reagents with
and Fx is cyclohexylalamne) exhibited low cytotoxicity and either HeLa or LLC-PKI1 cells, the culture media was changed

high mitochondria targeting. Although numerous MPPs have to pure Dulbecco’s Modified Eagle Medium (DMEM) and the

been developed to deliver fluorescent dyes, drugs, and other HeLa cells were further incubated for 1 d.
cargos to mitochondria, there are no reports for long-term As shown in Figure 1, bright fluorescence was observed for
mitochondrial trackmg thus far, possibly due to their low cells incubated with TAMRA-rFrFrF. By contrast, no

serum stability."”
Herein, we report a peptide containing six amino acid MitoTracker Green

Dye Merge
residues (Figure Sla), p-argine-phenylalanine-p-argine-phenyl-
alanine-p-argine-phenylalanine-NH, (rFrFrF), con)jugated to a
rhodamine-derived fluorescent probe (TAMRA)*" (Scheme 1 2)
Scheme 1. Molecular Structure of TAMRA-rFrFrF and
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* : < Figure 1. HeLa cells were incubated with S uM of TAMRA, TAMRA
- o mixed with unconjugated rFrFrF, and TAMRA-rFrFrF separately for
1.5 h, and after washing, additional incubation of the cells at 37 °C for
1 d (post-incubation time). (a) HeLa cells treated with TAMRA, (b)
HeLa cells treated with TAMRA mixed with unconjugated rFrFrF, (c)
HeLa cells treated with TAMRA-rFrFrF.

Post-incubation time

and Figure S1b), and studies of the resulting probe, TAMRA-
rFrFrF, in time-dependent mitochondria targeting and

imaging. Unnatural p-arginine (r) in the first and third fluorescence was detected for the other two groups
positions was selected to provide positive charges, mlnlmlze (TAMRA and TAMRA mixed with unconjugated rFrFrF).
amino peptidase degradation, and increase serum-stability.”' Furthermore, TAMRA-rFrFrF displayed a high level of
The natural amino acid phenylalanine (F) residue, which has a selectivity for mitochondria targeting, with a Pearson’s
hydrophobic side group, was selected to tune the hydro- correlation coefficient value of 0.88 relative to MitoTracker
phobicity and impart low cytotoxicity. This prospective Green, a commercial mitochondrial staining agent, while
mitochondria penetrating peptide (MPP) sequence possesses unconjugated TAMRA itself and the physical mixture of

three positive charges with a balance of hydrophilicity and TAMRA with rFrFrF exhibited no mltochondrla targeting
hydrophobicity designed to reduce potential disruptions to ability nor the capability of being uptaken by cells.”® To further

mitochondrial activity and maintain normal mitochondrial evaluate mitochondrial selectivity, TAMRA-rFrFrF colocaliza-
functions.”””® Moreover, the amidated C-terminus was tion studies with Lysotracker Green at short incubation times
designed to increase structural stability and attenuate and endoplasmic reticulum (ER-tracker Green) were also
hydrolysis.' *** performed with HeLa cells. Poor colocalization was observed
The cytotoxicity and biocompatibility of rFrFrF and between TAMRA-rFrFrF with Lysotracker Green or ER-
TAMRA-rFrFrF were evaluated in HeLa and pig kidney tracker Green, in which Pearson’s values were less than 0.4
(LLC-PK1) cells via an MTS assay (Figures S2 and $3).** The (Figures SS and S6). Thus, the designed rFrFrF sequence is
peptide rFrErF itself did not show any acute toxic effects over a attributed for successful cell uptake and high selectivity for

range of concentrations; even at the highest concentration mitochondrial targeting,
employed of 80 uM, cell viability remained at 100% after 24 h To better understand the time dependent mitochondrial
incubation.The TAMRA-rFrFrF probe also exhibited very uptake of TAMRA-rFrFrF, time-dependent cell imaging
good cell viability with a 90% survival rate at concentrations up experiments were conducted. In general, after incubation
to 80 uM after 24 h. Meanwhile, commercial MitoTracker with TAMRA-rFrFrF for 1.5 h, and after washing, HeLa or
Green and Red were evaluated in HeLa cells to compare the LLC-PK1 cells were then incubated in cell medium alone for
cytotoxicity with rFrFrF and TAMRA-rFrFrF (Figure S4). various times (post-incubation time) before cell imaging for
MitoTracker Green appears to be more toxic at concentrations long-term mitochondria tracking was performed. Cells that
over 8 M, while MitoTracker Red exhibits high cytotoxicity at underwent 0 to 4 h post-incubation (Figures S8 and S9)
4 uM with only 30% of cells alive after 24 h incubation. displayed strong fluorescence; however, mitochondria targeting
2313 DOI: 10.1021/acs.bioconjchem.9b00465
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was less efficient at these time points, which may be related to
the charge and hydrophobicity of TAMRA-rFrFrF. The
mitochondrial membrane exhibits hydrophobicity and a
potential difference in which the inner mitochondrial
membrane is negatively charged and the outer membrane is
positively charged.'”'**” MPPs that possess positive charges
and hydrophobicity tend to target and penetrate the
mitochondria membrane more easily.”> However, increasing
the peptide charge or hydrophobicity may increase mitochon-
drial disruptive activity and lead to unwanted side effects and
toxicity.zz’23

We discovered that our MPP could slowly but effectively
target mitochondria. As shown in Figures 2a, S8, S9, and S10,
TAMRA-rFrFrF largely permeated the mitochondria after 6 h
of post-incubation time. Moreover, cells still exhibited

Mitotracker Green TAMRA-rFrFrF

Merge R=
a) 4h

0.57

0.72

0.79

0.92

0.87

0.84

Z

Pearson’s correlation coefficent

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

3h 4h 6h 8h 12h 18h 1d 2d 3d

Post-incubation time

Figure 2. (a) HeLa cells were incubated with S uM of TAMRA-
rFrFrF for 1.5 h, and after washing out the TAMRA-rFrFrF, an extra
incubation of the cells at 37 °C was carried out for various times
(post-incubation time). Then, cells were incubated with MitoTracker
Green for 15 min and washed before cell imaging. Pearson’s value is
labeled as R. (b) Post-incubation time-dependent Pearson’s
correlation coefficient of HeLa cells.
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significant fluorescence in mitochondria even at 3 d post-
incubation. By comparison, MitoTracker Green was not
capable of tracking mitochondria reliably much longer than 6
h (Figure S7). These results clearly demonstrated long-term
mitochondria tracking ability of the new MPP probe.
Mitochondria are highly dynamic organelles that constantly
undergo fission, fusion and degradation,28 e.g, HeLa cells
undergo 1.44 events/min of fission.”” These constant changes
cause asymmetrical distribution of matrix proteins in the
daughter mitochondria.’””' In our study, TAMRA-rFrFrF
exhibited persistent localized mitochondria staining ability
without significant depletion or leakage over the 3 d post-
incubation period, an assertion that was quantitatively
confirmed by the Pearson’s correlation coefficient values
(Figures 2b), indicating TAMRA-rFrFrF is capable of
mitochondria targeting under frequent fission and fusion
events.To further confirm the mitochondria targeting ability of
TAMRA-rFrFrF, mitochondria were isolated from TAMRA-
rFrFrF treated cells and fluorescence intensities were recorded
with a fluorescence spectrometer.”” The fluorescence inten-
sities of isolated mitochondria with 6 h, 12h,1d,2d,and 3 d
post-incubation were unquestionably much more intense than
those of the blank—isolated untreated mitochondria (Figures
3 and S10). These results clearly demonstrate that the uptake
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Figure 3. 5 yM TAMRA-rFrFrF was preincubated with HeLa cells for
1.5 h, followed by washing out TAMRA-rFrFrF and post-incubation
of the HeLa cells for 2 h, 4 h, 6 h, 12 h, 1 d, 2 d, and 3 d. Isolated
mitochondria from untreated cells were the blank (N = 3).

of TAMRA-rFrFrF is time-dependent and appears rather
efficient. There was no intensity decrease of TAMRA-rFrFrF in
mitochondria upon prolonged incubation. In fact, the post-
incubation time was a key factor for TAMRA-rFrFrF to
accumulate in the mitochondria in HeLa cells.

Further, the mitochondria present a whole set of complex
proteolytic enzyme systems that regulate mitochondrial
function and activities. Especially for mitochondrial degrada-
tion,””** endogenous proteases are responsible for the
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degradation of their internal proteins, which are eventually
shuttled back to the cytoplasm by a specific peptide
transporter.”*° The fluorescence intensity of TAMRA-rFrFrF
did not decrease from 12 h to 3 d, which indicated TAMRA-
rFrFrF underwent no apparent release to the cytoplasm and
was proteolytically stable. Overall, TAMRA-rFrFrF is capable
of long-term mitochondrial tracking up to 3 d, with high
stability and selectivity.

To probe mitochondria function of cells incubated with
TAMRA-rFrFrF, oxygen consumption rates were measured in
HeLa cells using a Seahorse analyzer.’” The results
demonstrated that the basal respiratory rate and maximal
respiratory capacity (Figure 4) decreased somewhat in the
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Figure 4. (a) Oxygen consumption rates (OCR) in TAMRA-rFrFrF
treated vs untreated HeLa cells (blank, n = §). OCR was measured
approximately every 8 min using an XF-96 analyzer as described in the
Supporting Information Methods section. (b) The rates of basal
respiration, maximal respiratory capacity, spare respiratory capacity,
and ATP-linked respiration (ATP production).

TAMRA-rFrFrF treated vs untreated HeLa cells. Although
decreases in maximum respiratory capacity and basal
respiratory rate are strong indicators of potential mitochondrial
dys.function,g’8 in this situation, the decreases are most likely a
result of a change in the potential difference of the outer and
inner mitochondrial membranes caused by the cationic rFrFrF
rather than mitochondrial dysfunction.”®*” The drop of
mitochondrial membrane potential difference will inhibit the
activity of the electron transport chain, which would decrease
the maximum respiratory capacity and the basal respiratory
rate.*”*! Furthermore, spare respiratory capacity exhibited only
a slight decrease while ATP production underwent no
significant reduction when compared with a control, indicating
that the TAMRA-rFrFrF 4}Z)robe has a minimal influence on
mitochondrial respiration.” In fact, the results indicated that
mitochondrial functions were mostly unchanged.

In conclusion, a novel MPP probe, TAMRA-rFrFrF, was
designed that contained six amino acid residues. Our
investigations demonstrated the new MPP probe’s utility in
long-term in vivo mitochondrial tracking for up to 3 d, which is
superior to commercial MitoTracker Green and Red.
Importantly, the TAMRA-rFrFrF probe can undergo mito-
chondria distribution, activities, and fission or fusion events
with no degradation or transportation by mitochondria
proteolysis, which fulfills major criteria for long-term
mitochondria tracking. In addition, we have shown that the
TAMRA-rFrFrF was essentially benign and biocompatible
from cell viability and oxygen consumption rate experiments.
There is an important link between the mitochondrial
morphology change and mitochondrial dysfunction,”**~** in
which mitochondrial morphology serves as a marker to study
and treat mitochondria dysfunction-related disease. Therefore,

2315

this TAMRA-rFrFrF MPP probe is a potential candidate for
live-cell mitochondrial morphological and mitochondrial
dysfunction studies.
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