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Capitalizing on the nucleophilic addition of hydrazine toward the central cyclobutenyl core and affinity of
aldehydes to hydrazine group, two water-soluble squaraine dyes (SQOH and SQPY) were synthesized as sensitive
colorimetric and fluorescent chemosensors for aldehydes. The color change from blue to colorless and back to
blue these sensors underwent was readily observed, even by the naked eyes. The response was fast (less than 1 s)
and the detection limit for formaldehyde as an example was about 60 uM. In contrast to the previous nucleo-
philic attack to squaraines and the other amine references studied, this work underwent a whole ON-OFF-ON

sensing circle based on the characteristics of hydrazine. Meanwhile, the different photophysical properties of the
two squaraines related to their different structures were also demonstrated. Importantly, a possible sensing
mechanism is proposed suggesting these types of dyes hold great potential in the area of rapid, sensitive, and
convenient detection of aldehydes.

1. Introduction

Aldehydes are an important class of chemicals that play important
roles in numerous industrial and biological systems. They are naturally
contained in foods such as fruits and vegetables, dairy products, and
various beverages, and sometimes used as flavoring compounds in E-
cigarette aerosols and food manufacturing since it has a fruit-like fla-
vour [1,2]. It is also known that generation of volatile aldehydes is one
of the main causes of beer flavour deterioration during both brewing
and storage [3-6]. While some aldehydes, including formaldehyde
(HCHO), acetaldehyde, and benzaldehyde, are considered as well-
known pollutant and poses a great threat to human health because of its
carcinogenic and mutagenic properties [7-11]. A high concentration of
acetaldehyde in wine during the brew process causes suppression of
yeast function and decrease of alcohol fermentation rate [4]. Therefore,
the establishment of a highly sensitive and selective method of de-
tecting aldehydes in aqueous media is of great importance in the fields
of chemical, environmental, and industrial sciences.

In the sensing of aldehydes, colorimetric and fluorescence methods
are advantageous by virtue of their simplicity, high sensitivity, real-
time detection, low cost, and ability to provide in situ and real-time
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information [12-19]. Over the past decade, various fluorescent re-
agents such as oligothiophene, coumarin, dimethylquinoline, naph-
thalimide, BODIPY, squaraines, etc have been developed for the de-
tection of aldehydes [18-25]. However, some of the reported
fluorescent probes suffer from drawbacks including long reaction time,
fluorescence turn-off, and nonlinear calibration curves, which limit
their practical use. Hence, development of efficient colorimetric or
fluorescent sensing materials for detecting aldehydes remains a sig-
nificant challenge.

Squaraines (SQs) with resonance stabilized zwitterionic structure
exhibit narrow and intense absorption and fluorescence in the near-
infrared region [26-28]. One attractive feature of the electron-deficient
cyclobutene ring of SQs is its susceptibility to attack by sterically un-
encumbered nucleophiles, which leads to a loss of m-conjugation and
the subsequent bleaching of the solution. A number of SQs have been
reported in recent years as colorimetric and fluorescent probes for de-
tecting nucleophilic anions such as thiols, fluorides, and cyanides
[29-36]. Among these, Martinez-Manez and co-workers reported a
squaraine-thiol conjugate for sensitive and selective detection of Hg?*
in aqueous media based on the strong thiophilic affinity of Hg>* and
the subsequent regeneration of the squaraine dye [37]. Anslyn et al.
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Fig. 1. Chemical structures of the SQs (SQOH and SQPY) and schematic illustration of the possible sensing mechanism of the SQ-hydrazine system for detecting

aldehydes in aqueous media.

reported the pattern-based discrimination of thiols and metal ions using
a single squaraine indicator [38]. Recently, the extension of this
methodology has been achieved for chromo- and fluorogenic
“switching-on” response toward some other analytes such as carbon
dioxide, formaldehyde, pyrophosphate, and chemical warfare agents,
etc [34,39-44].

Herein, we developed two symmetrical SQs, namely SQOH and
SQPY, for the highly sensitive detection of aldehydes in aqueous media
based on the “on-off-on” sensing concept [16,38]. Briefly, addition of
various amines can bleach the characteristically blue SQs to the cor-
responding colorless SQ-amine adducts. Addition of aldehydes to the
adducts resulted in the retroversion of the parent SQs that can be col-
orimetrically detected, especially in the most effective SQ-hydrazine
system. The chemical structures of the SQs and proposed sensing me-
chanism are depicted in Fig. 1 [44]. This is an interesting sensing
strategy based on the adduct of SQs-hydrazine for detecting aldehydes.
Moreover, the sensing concept presented here was employed in quan-
tifying total aldehydes in beer, yielding satisfactory results.

2. Experimental section
2.1. Synthesis of squaraine dyes

As depicted in Fig. 1 and Scheme S1, dyes SQOH and SQPY were
obtained via a condensation reaction between the related intermediates
and squaric acid in a mixture of 1-butanol/toluene (1/1, v/v) using a
Dean-Stark apparatus, where the water that formed was removed
continuously [45-48]. The chemical structure and purity of the related
compounds were confirmed by NMR and high-resolution mass spec-
troscopy. An overview of the synthetic procedures and molecular
characterization details are presented in the Supporting Information
(c.f. Figs. S1-S8).

3. Results and discussion
3.1. Characterization and photophysical properties of the squaraine dyes

Initially, both SQs exhibited good solubility in common organic
solvents, yielding a characteristically blue solution with intense
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absorption maximum as well as fluorescence emission maxima bands in
the far-red spectral region [47,48]. The main linear absorption features
for SQOH and SQPY in tetrahydrofuran (THF) were narrow absorption
centered at 640nm and 680 nm, respectively (s-t* transition). As
shown in Fig. 2a and b, SQPY exhibited red-shifted maximum fluores-
cence emission at 691 nm with a typically small Stokes shift (AL = 11
nm), while SQOH displayed fluorescence emission at 663 nm in THF.

In aqueous solution, SQOH did not aggregate and exhibited a
characteristic sharp and intense absorption band of the monomeric
squaraine chromophore at ca. 640nm (¢ = 1.70 x 10° L/M, c.f. Fig.
S9) with relatively strong far-red fluorescence at 667 nm (&r = 0.03)
[28,29]. Meanwhile, the strong absorption of SQPY at 616 nm is as-
signed as H-aggregates with a broad shoulder at approximately 682 nm
for the SQ monomer [49]. The ability of SQOH to avoid aggregation can
be attributed largely to the ethoxyether substituents adjacent to the
squaraine core, and, perhaps, to a lesser extent the ethanol terminal
moieties. In other words, functionalization of triethylene glycol chains
close to the squaraine core not only provide enhanced solubility, it
significantly attenuates squarainyl intramolecular interactions, pre-
venting aggregation in aqueous media [26-29].

3.2. Sensing performance of the SQs to different amines and aldehydes

Subsequently, in order to compare the chemical stability of SQOH
and SQPY, both dyes were treated with various primary amines, in-
cluding hydrazine hydrate (N,H4H,0), ethanolamine, methylamine,
and f-phenylethylamine, as well as the secondary amines diethylamine
and urea. Fig. 2c shows that addition of 500-fold N,H, results in > 90%
decrease in the absorption intensity, along with a distinct blue-to-col-
orless change in solution. In contrast to urea and diethylamine with less
than 6% decrease of the original intensity at 640 nm, all the primary
amines bleached the SQs rapidly and hydrazine has the most effective
attack (c.f. Fig. 2d). It is known that decrease of the main absorption
band can be ascribed to the addition of nucleophilic amines to the
central cyclobutene core. Meanwhile, a new absorption band at ca.
300 nm corresponding to a semi-squaraine showed up and increased
proportionally [29-36,44]. We also evaluated ammonia and NaOH at
similar concentrations and got moderate bleaching effects.

Accordingly, considering aldehydes could react
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corresponding SQ-amine adducts and reverse the bleaching reaction,
the parent SQOH could be regenerated by adding aldehydes to a SQOH-
hydrazine adduct solution. As depicted in Fig. 3b and c, titration of
HCHO to the SQOH-hydrazine adduct showed an obvious increase of
the absorption band at 640 nm. Addition of excess HCHO can com-
pletely scavenge the hydrazine, evidenced by a 23-fold increase in ab-
sorption intensity and 86% recovery in the emission intensity of the
original SQOH. This response was obtained in less than 1s, implying
the fast response of the adduct to HCHO. Furthermore, the solution
exhibited a visual color change from colorless to blue, easily
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distinguished by the naked eye or quantitatively analyzed with the aid
of a portable spectrometer (c.f. Fig. S10). The high sensitivity of this
chemosensor in aqueous solution afforded a detection limit of 60 uM for
HCHO based on fluorescence detection. We know that the concentra-
tion of the dyes and the analytes play an important effect in the prac-
tical detecting applications. Based on the above analyses, the optimal
bleaching ratio for hydrazine to the SQs and the maximum recovery
ratio of adding HCHO to the adducts was 500 and 1650, respectively.

We further examined whether the other relevant adducts could react
with HCHO to give positive results. Interestingly, the switching-on
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Fig. 4. Solution color changes of the SQOH-N,H, adduct
by adding different concentrations of HCHO (from left to
right: 0-36 mM).
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Fig. 5. Schematic diagram depicting the realization of colorimetric and fluorescent signaling of aldehydes based on the SQs-N,H,4 adduct.

signal by HCHO could be obtained only in the SQ-hydrazine system.
Furthermore, we inspected the spectra changes of the SQOH-hydrazine
adduct toward different aldehydes such as acetaldehyde (c.f. Fig. S11),
glyoxal, glutaric dialdehyde, propionaldehyde and pyridine-2-carbox-
aldehyde in aqueous solutions and the same results were obtained (c.f.
Fig. 3d). The results show that all the aldehydes can cause the re-
generation of SQOH, clearly demonstrating the crucial role played by
the hydrazone in the SQ-hydrazine adduct. Meanwhile, the same con-
centrations of alcohol, ethyl acetate, and ketone derivatives showed no
obvious effect to the detecting process, suggesting the selectivity of the
SQ-hydrazine adduct to aldehydes (c.f. Fig. S12).

3.3. Detection of aldehydes

Compared to traditional sensing systems for HCHO, the colorimetric
method based on squaraine-hydrazine adduct is relatively easy to im-
plement and inexpensive, since it offers a convenient “mix-and-detect”
protocol for homogeneous detection and does not require complicated
synthesis, strict storage conditions, and expensive equipment (c.f.
Fig. 4). Similar results were obtained for SQPY and confirmed the
bleaching process (c.f. Figs. S13-S15). Relative to the non-fluorescent
H-aggregates of SQPY, the emission intensity of SQOH decreased faster,
which indicates that SQOH is a more sensitive probe for aldehydes than
SQPY.

3.4. The sensing mechanism

According to the discussion aforementioned, primary amines un-
dergo a nucleophilic addition at the double bond that is proximate to
the cyclobutene ring in SQs. This double bond in resonance stabilized
SQ is delocalized adjacent to the aniline or pyrrole ring, and the reac-
tion preferentially occurs on one of these electrophilic centers instead of
the carbonyl group in the core [50]. Upon addition of aldehydes, the
initial emission band gradually emerged and, concomitantly, the semi-
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squaraine peak at 300 nm disappeared, which agreed well with the
expected recovery of the adduct to the original squaraine [29-36,44].

In order to validate the reaction mechanism of SQOH with N,H,, we
confirmed via HRMS that the fluorescence increase resulted from con-
version of the SQ-N,H, adduct to the original SQ upon adding the al-
dehydes to the adduct system. The APCI-HRMS showed that a new peak
emerged at m/z 797.3701 for [SQOH+H™"]. Additionally, the ESI-
HRMS displayed new peaks appearing at m/z 797.3708 (M+H™) and
819.3522 (M + Na™), corresponding to the parent SQOH (c.f. Fig. S16).
These results are consistent with the hydrazine-initiated chemical
conversion shown in Fig. 1 and the proposed sensing mechanism de-
picted in Fig. 5. The specificity of the SQ-hydrazine adduct originates
from the so-called a-effect which is, in fact, the repulsion between the
unshared pairs of electrons of the nucleophilic nitrogen atoms [51,52].
Some previous studies have reported the nucleophilic addition of
amines to the central squaraine core [53-55].

The formation of carbonyl compounds has been widely used to
monitor the degradation in the quality of foods and beverages, in-
cluding beer. Oxidation occurs readily in beer at elevated temperatures,
and subsequently its flavor quality decreases. Among oxidation pro-
ducts, carbonyl compounds such as acetaldehyde and diacetyl have
been considered to be responsible for off-flavors caused during the
production and storage of beer [11,56]. After demonstrating excellent
responsiveness to aldehydes and exceptional selectivity in aqueous so-
lution, we tested the ability of SQOH to quantify the total aldehydes in
beers. Based on the relationship of acetaldehyde concentration with the
recovery efficiency of SQOH (c.f. Fig. S11), total aldehydes content in a
beer sample was evaluated to be around 100 mM, and the aldehydes
content increased with the higher storage temperature and longer
oxidative degradation in open air (c.f. Fig. S17).

4. Conclusions

In conclusion, water-soluble squaraine dyes SQOH and SQPY were
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successfully designed and synthesized for sensing aldehydes. SQOH did
not form aggregates in aqueous condition, and exhibited intense ab-
sorption with a maximum peak at 640 nm and relatively strong fluor-
escence. These signals could selectively disappear in the presence of
amines and switch-on by adding aldehydes to the adduct. The detection
limit of the SQOH-hydrazine adduct for HCHO was around 60 uM. A
sensing mechanism of the SQs for detecting aldehydes was proposed.
We envision that this work provides a simple, sensitive, and convenient
method for the rapid and naked eye detection of aldehydes, with great
potential for the development of squaraine-based HCHO detection
system. Future work will focus on improving the detection limit of this
class of probe and realize the concise detection for aldehydes through
developing novel SQs by structural modification.
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