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Given the advances in online data acquisition systems, statistical learning models are
increasingly used to forecast wind speed. In electricity markets, wind farm production
forecasts are needed for the day-ahead, intra-day, and real-time markets. In this work,
we use a spatiotemporal model that leverages wind dynamics to forecast wind speed.
Using a priori knowledge of the wind direction, we propose a maximum likelihood
estimate of the inverse covariance matrix regularized with a hierarchical sparsity-
inducing penalty. The resulting inverse covariance estimate not only exhibits the benefits
of a sparse estimator, but also enables meaningful sparse structures by considering wind
direction. A proximal method is used to solve the underlying optimization problem. The
proposed methodology is used to forecast six-hour-ahead wind speeds in 20-minute
time intervals for a case study in Texas. We compare our method with a number of
other statistical methods. Prediction performance measures and the Diebold–Mariano
test show the potential of the proposed method, specifically when reasonably accurate
estimates of the wind directions are available.
© 2020 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
1. Introduction

As weather-dependent stochastic electricity power
ources, such as wind- or solar-based production units,
ncreasingly penetrate the generation mix, precise fore-
asting techniques for the production of these sources
re needed. There is a range of methods for wind speed
nd power prediction. Although predicting wind speed
nd generated power are different in nature, with the
oal of predicting power generation, the methods can
e categorized as: physics-based mathematical methods,
ata-driven statistical methods, and hybrid methods that
ombine techniques from the first two categories.
There are a number of numerical weather predic-

ion (NWP) methods that use physics-based mathemat-
cal models that rely on the current state of the ocean
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and atmosphere to predict the future speed and direc-
tion of the wind. For detailed studies on NWP meth-
ods, see Cassola and Burlando (2012), Lange and Focken
(2006), Richardson (2007) and the references therein.

Advances in remote sensing devices have resulted in
an abundance of weather-related data that are used as
inputs to data-driven prediction methods. The easiest
data-driven method is the persistence method, which is
based on the assumption that wind does not change in
the near future. The persistence method simply sets the
predictions equal to the most current observed value for
any time horizon. Moreover, given the autocorrelation in
wind data, time series methods—e.g., autoregressive in-
tegrated moving average (ARIMA) methods (Box, Jenkins,
Reinsel, & Ljung, 2015)—are common for wind speed or
power output forecasting based on historical data (Erdem
& Shi, 2011; Kavasseri & Seetharaman, 2009; Sanchez,
2006; Torres, García, De Blas, & De Francisco, 2005). Fur-
thermore, advances in machine learning algorithms based
on high-dimensional modeling of wind or wind power
temporal wind forecasting by learning a hierarchically sparse inverse
020), https://doi.org/10.1016/j.ijforecast.2020.09.009.
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ata indexed by time and space have found applications
n wind speed and power output prediction—see e.g.,
hitsaz, Amjady, and Zareipour (2015), Damousis, Alex-
adis, Theocharis, and Dokopoulos (2004), El-Fouly, El-
aadany, Salama, El-Fouly, El-Saadany, and Salama (2006),
usiak, Zheng, and Song (2009), Landry, Erlinger, Patschke,
nd Varrichio (2016), Mandic, Javidi, Goh, Kuh, and Aihara
2009), Mangalova and Agafonov (2014), Mangalova and
hesterneva (2016), Mohandes, Halawani, Rehman, and
ussain (2004), Salcedo-Sanz, Ortiz-Garcı, Pérez-Bellido,

Portilla-Figueras, and Prieto (2011), Zhang and Wang
(2016), Zhou, Shi, and Li (2011). Spatiotemporal methods
hat are related to this research are discussed in more
etail below.
Besides the two conventional categories, there are also

ybrid methods that combine the outputs of NWP with
ata-driven methods for better prediction performance—
ee e.g., Chen, Qian, Nabney, and Meng (2014), Jursa and
Rohrig (2008), Negnevitsky, Johnson, and Santoso (2007).

Considering a collection of wind farms, spatiotempo-
al information can be incorporated into a data-driven
odel to improve the prediction performance. For in-
tance, Tastu, Pinson, Trombe, and Madsen (2014) in-
lude the spatial correlation information into a vector
utoregressive model for reliable and economic power
ystems operations in a smart grid. Morales, Minguez,
nd Conejo (2010) propose a multivariate time series
odel that quantifies spatial correlations between the
ites. Alexiadis, Dokopoulos, and Sahsamanoglou (1999),
arbounis and Theocharis (2007) use spatial information
f neighboring sites to train neural network models to
redict wind speed. Gneiting, Larson, Westrick, Genton,
nd Aldrich (2006) build regime-switching space–time
odels considering all salient features of wind speed

ncluding spatial correlation—see also (Hering & Genton,
010; Zhu, Genton, Gu, & Xie, 2014). Khalid and Savkin

(2012) predict wind speed and power from the observed
data at nearby sites and use an NWP model for supple-
mentary adjustments. Xie, Gu, Zhu, and Genton (2014)
ombine the spatiotemporal correlation of the wind speed
nd direction with a statistical model—see also (Dowell,
eiss, Hill, & Infield, 2014; Messner & Pinson, 2018;

Tastu et al., 2014; Zhao, Ye, Pinson, Tang, & Lu, 2018).
aussian processes have also been implemented for wind
nd power prediction in a number of studies. For instance,
u, Chen, Mori, and Rashid (2013) use a localized Gaussian
rocess model for long-term wind speed prediction based
n a large data set.
The sparsification of the spatiotemporal model has

lso been deployed to enhance predictions by reducing
ariance. For instance, Dowell and Pinson (2016) repre-
ent spatial information by a sparse vector autoregressive
rocess. Zhao et al. (2018) build a sparsity-controlled
ector autoregressive model to include spatiotemporal
ependence. Tascikaraoglu, Sanandaji, Poolla, and Varaiya
2016) exploit the sparsity of interconnections using
avelet transforms in a spatiotemporal model—see also
He, Yang, Zhang, & Vittal, 2014). Finally, Wytock and
olter (2013) sparsify a high-dimensional conditional
aussian process model for spatiotemporal wind power
rediction and extend it to non-Gaussian data using a
opula transform.
2

In these works, sparsification is mainly performed for
ariance reduction or to attain computational gain. Using
he ℓ1-norm to induce sparsity, the sparsity pattern of
he optimal solution is determined by data. In this work,
owever, we want the sparsity pattern of the optimal
olution (i.e., the elements of the inverse covariance ma-
rix) to belong to a predetermined set of hierarchical
tructures known a priori from wind direction. Hence, to
stimate the inverse covariance matrix, we incorporate
specific penalty function that induces such a hierar-

hical structure. Therefore, the optimal solution of the
roposed learning problem is more interpretable and re-
ults in better prediction performance. Specifically, the
aper discusses a new penalty function and how to solve
he underlying learning optimization problem efficiently.
he main idea of this work is described in Sections 3.1 and
.2. The learning problem and a first-order optimization
lgorithm to solve it are discussed in Sections 3.3–3.5. In
ection 4, we apply the proposed methodology to a case
tudy in Texas. Finally, Section 5 provides our concluding
emarks.

.1. Notation

The wind speed at spatial location s ∈ S and time t is
enoted by wt (s), where s ∈ S = {1, . . . ,m} is the index
et of m wind sites. Furthermore, wt ′

t (S) ∈ Rm(t ′−t+1)

enotes a collection of wind speeds from time t to t ′ for all
patial sites, written as (wt (S)⊤,wt+1(S)⊤, . . . ,wt ′ (S)⊤)⊤,
here wt (S) ∈ Rm denotes the wind speeds at time t at
ll S spatial sites. Transforming the non-Gaussian wind
ata to a Gaussian field (see the transformation in 2.1),
t (s), yt

′

t (S) ∈ Rm(t ′−t+1), and yt (S) ∈ Rm are defined
imilarly. Here, 1w denotes the column vector of all ones
f size w. Similarly, 0w denotes the column vector of all
eros of size w, and Sd

++
denotes the cone of d×d positive

efinite matrices. The matrix inner product is defined as
A, B⟩ = Tr(AB⊤). Let G be a set, and then |G| denotes
he set cardinality. Let g ⊆ G be an element of the set,
nd then gc denotes its complement. Finally, vec(·) takes
matrix column-by-column and stacks the columns as a

ong vector.

. Some preliminaries and contributions of the work

.1. Transformations between Gaussian and non-Gaussian
ields

Since the predictions are performed in the Gaussian
ield based on the conditional Gaussian distribution, there
s a need to transform the non-Gaussian wind data to
he Gaussian field. Similarly, when predictions are ob-
ained, there is a need to transform them back to the
on-Gaussian field. In the forward transformation, given
wind speed wt (s), the empirical marginal distribution
f wind at each spatial site in some time window is
sed to find the corresponding value of the cumulative
istribution function, i.e., F̃s(wt (s)). The transformed data
n the Gaussian field is then obtained by applying the
nverse cumulative distribution function of the standard
ormal distribution, i.e., y (s) = F−1(F̃ (w (s))). Similarly,
t s t
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Fig. 1. True and normalized distributions of wind speed.
iven a prediction in the Gaussian field ŷt (s), the trans-
ormed value in the non-Gaussian field is obtained as
ˆ t (s) = F̃−1s (F (ŷt (s))). These transformations are shown in
Fig. 1—see also (Möller, Lenkoski, & Thorarinsdottir, 2013;
Morales et al., 2010).

2.2. Gaussian random field (GRF) model on a discrete set

A Gaussian random field (GRF) is an indexed stochastic
process such that for a fixed set of indices it results in a
multivariate Gaussian distribution. Let yt (s) ∈ R be an
bservation from a GRF at time t and location s ∈ S ,
here S is a discrete set of spatial locations with |S| = m

(i.e., the index (s, t) ∈ S × R+). Let the data (after the
transformation to the Gaussian field) up to current time
point tc be ytc1 (S) ∈ Rmtc . To make predictions for wf
time points in the future over all sites S , we use the data
of all sites for the wp previous time points to train the
model, i.e., the training data at time tc is ytctc−wp+1(S) ∈
Rmwp . Since any countable collection of observations from
a GRF follows a multivariate normal distribution, the joint
distribution of (ytctc−wp+1(S), y

tc+wf
tc+1 (S))⊤ is given by(

ytctc−wp+1(S)

ytc+wf
tc+1 (S)

)
∼ N

(
0m(wp+wf ), Σ ≜

[
Σpp Σpf
Σ⊤pf Σff

])
.

(1)

where Σpp ∈ Smwp
++ and Σff ∈ S

mwf
++ are the covariance

matrices for the past wp and future wf observations for
all sites, respectively, and Σpf ∈ Rmwp×mwf is the cross-
covariance matrix between the past wp and future wf
observations for all sites. Furthermore, the conditional
probability distribution p(ytc+wf

tc+1 (S)|ytctc−wp+1(S)) is given
by

ytc+wf
tc+1 (S)|ytctc−wp+1(S)

∼ N
(
Σ⊤pf Σ

−1
pp ytctc−wp+1(S), Σff −Σ⊤pf Σ

−1
pp Σpf

)
. (2)

The mean of the conditional distribution (2) is used to
predict the wind speed for future wf time points at all
of the sites in S . If the mean of the joint distribution (1)
is not zero, then the conditional distribution is
tc+wf tc
ytc+1 (S)|ytc−wp+1(S)

3

∼ N
(
µ(S, xtc+wf

tc+1 )

+Σ⊤pf Σ
−1
pp

(
ytctc−wp+1(S)− µ(S, xtctc−wp+1)

)
,

Σff −Σ⊤pf Σ
−1
pp Σpf

)
, (3)

where µ(S, xt2t1 ) is the mean of yt2t1 (S) from t1 to t2 over
spatial locations in S given a set of r covariates xt2t1 ∈
Rr(t2−t1+1). A nonzero mean structure allows for the in-
corporation of covariates x into the prediction model,
potentially increasing the prediction power of the model.

2.3. Contribution of the work

The predictive model in the proposed method is based
on the conditional distributions (2) and (3), which require
estimating the covariance matrix Σ in (1). Our work looks
into estimating Σ through the sparse estimation of its
inverse Σ−1, known as the precision matrix. Such an
approach reduces the number of parameters and, hence,
reduces the prediction variance. Sparse estimation of the
inverse covariance matrix is generally performed by in-
troducing a convex ℓ1-norm regularizer to the negative
log-likelihood loss function, which results in the graphical
lasso estimator (6) (called G-L in this work) (Friedman,
Hastie, & Tibshirani, 2008). The ℓ1-norm does not enforce
particular sparsity structures to the Σ−1 estimate. For
wind data, however, we usually have a priori knowledge
of wind direction (see Fig. 4(a)), which if incorporated,
allows for a better estimate of the inverse covariance ma-
trix. By incorporating a hierarchical sparsity-inducing reg-
ularizer, we introduce another estimator for Σ−1, namely
GLOG-L, that allows a priori knowledge of wind direc-
tion to play a role. We then provide a computationally
efficient algorithm to calculate the GLOG-L estimate, and
demonstrate its performance in a wind prediction case
study.

3. Methodology

To use the conditional distribution (2) for predictions,
we need to estimate its parameters Σ . When GRF mod-
els are used to predict over a continuous index set, the
covariance matrix is generally constructed based on a
parametric covariance function (Rasmussen & Williams,
2006). Hence, there is a need to estimate the parameters
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Fig. 2. Direction of the wind over four spatial locations S = {s1, s2, s3, s4}.
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f the covariance function, and this requires solving a
on-convex optimization problem to minimize the neg-
tive of a log-likelihood. Poor estimation of these co-
ariance function parameters generally results in poor
rediction performance, which is aggravated in extrap-
lation, e.g., forecasting over time (Davanloo Tajbakhsh,
erhat Aybat, & Del Castillo, 2014). In this work, however,
iven the fact that the covariance matrix is estimated over
fixed discrete set, we estimate the inverse of the co-
ariance matrix by solving a convex optimization problem
ith theoretical guarantees for convergence.
To estimate Σ ∈ S

m(wp+wf )
++ , we first construct the data

matrix Y tc
tc−wf−wp−(N−1)δ+1(S) ∈ RN×m(wp+wf ) as

Y tc
tc−wf−wp−(N−1)δ+1(S)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ytc−wf
tc−wf−wp+1(S)

⊤

ytctc−wf+1
(S)
⊤

ytc−wf−δ

tc−wf−wp−δ+1(S)
⊤

ytc−δ
tc−wf−δ+1(S)

⊤

ytc−wf−2δ
tc−wf−wp−2δ+1(S)

⊤

ytc−2δtc−wf−2δ+1
(S)
⊤

...
...

ytc−wf−(N−1)δ
tc−wf−wp−(N−1)δ+1(S)

⊤

ytc−(N−1)δtc−wf−(N−1)δ+1
(S)
⊤

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(4)

where wp ≥ wf , δ ≥ 1 is a parameter that determines
the time shift from one row of Y to the next one. Given
Y tc
tc−wf−wp−(N−1)δ+1(S), the sample covariance is defined as

S̄ =
1
N

N∑
i=1

Y tc
tc−wf−wp−(N−1)δ+1(S)i.

⊤
Y tc
tc−wf−wp−(N−1)δ+1(S)i.

(5)

where Y tc
tc−wf−wp−(N−1)δ+1(S)i. denotes the ith row of the

Y tc
tc−wf−wp−(N−1)δ+1(S) matrix. Given S̄, the maximum like-

lihood (ML) estimate of the inverse covariance matrix
penalized with the ℓ1-norm requires solving

X̂G-L = argmin
X⪰0

⟨
X, S̄

⟩
− log det(X)+ λ∥X∥1 (6)

which is the well-known G-L estimate (Friedman et al.,
2008). The ℓ1-norm induces sparsity that exists in the
inverse of the covariance matrix due to potential condi-
tional independence between the variables—see Davan-
loo Tajbakhsh et al. (2014). Note that λ > 0 is the sparsity
tuning parameter. Wytock and Kolter (2013) use the esti-
ator (6) to build their prediction model for wind power

orecasting. In this paper, however, we use a hierarchical
parsity-inducing penalty as opposed to the unstructured
parsity-inducing penalty ℓ1-norm. This is motivated by
he wind forecasting application, as discussed below.

.1. Hierarchical sparsity structures

In this section, we first discuss the idea behind the hi-
rarchical sparsity structure for estimating Σ−1 for wind
 e

4

orecasting. Subsequently, we discuss the hierarchical
parsity structures and the penalty functions that gener-
te such a structure.
Consider the four locations in the set S = {s1, s2, s3, s4}

epicted in Fig. 2, and assume that we have a priori
nowledge that the wind blows from s1 to s2 to s3 to s4,
s shown in Fig. 2. Let Σ t ′

t (s1, s3) denote the covariance
etween the wind speeds at time t at location s1 and
ime t ′ at location s3. It is well known that each element
f the inverse covariance matrix is proportional to the
onditional covariance between the two points given all
ther points, i.e., Σ−1ij ∝ cov(yi, yj|yk, k ̸= i, j)—see Da-
anloo Tajbakhsh et al. (2014), Whittaker (2009). Hence,
−1t
′

t (s1, s3) is proportional to the conditional covariance
etween the wind speed at time t at location s1 and
ime t ′ at location s3 given the wind speed at other time
oints and locations. The a priori knowledge about the
irection of the wind generates some potential sparsity
n the inverse covariance matrix. For instance, from Fig. 2,
ssuming t ′ > t , we get

f Σ−1
t ′

t (s1, s2) = 0 ⇒ Σ−1
t ′

t (s1, s3) = 0, ∀t, t ′, t ′ > t

f Σ−1
t ′

t (s1, s3) = 0 ⇒ Σ−1
t ′

t (s1, s4) = 0, ∀t, t ′, t ′ > t

f Σ−1
t ′

t (s2, s3) = 0 ⇒ Σ−1
t ′

t (s2, s4) = 0, ∀t, t ′, t ′ > t

ut simply, the first statement means that if wind cannot
ake it from s1 to s2 in time t ′− t , then it cannot make it

rom s1 to s3 in time t ′ − t . That is, yt ′ (s3) is independent
f yt (s1) given yt ′ (s2). Hence, assuming a priori knowledge
egarding the direction of the wind, the sparsity structure
f the estimated inverse covariance matrix cannot solely
e determined by data. Hence, the ℓ1-norm penalty is
eplaced by another penalty that respects the underlying
ierarchical sparsity structures provided by the a priori
nowledge pertaining to the wind direction. This knowl-
dge can be used to achieve a better estimate of the
ovariance matrix, which may result in better prediction
erformance.

.2. Latent overlapping group (LOG) lasso regularizer

First proposed by Jacob, Obozinski, and Vert (2009),
he latent overlapping group lasso (LOG) penalty induces
ierarchical sparsity following a directed acyclic graph
DAG) that represents the hierarchical sparsity structure
f the variables. The DAG corresponding to the example
iscussed above is illustrated in Fig. 3.
Each arrow in the hierarchy above generates a parent–

hild relationship. Given this parent–child relationship, if
he parent variable is zero, then the child variable should
lso be zero. Similarly, if the child variable is nonzero then
he parent variable should also be nonzero. To simplify
he notation, we denote the five variables in the above

5
xample as γ ∈ R .
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Fig. 3. Directed acyclic graph (DAG) for the example in Fig. 2.
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The LOG penalty defines an ascending grouping of vari-
bles based on a given DAG D. The grouping of the vari-
bles is such that each node and all of its ancestors should
e included as a subset into the set. For instance, for the
raph D in Fig. 3, the set that contains all of the groups
s G = {{1}, {1, 2}, {1, 2, 3}, {4}, {4, 5}}, where G contains
ach node and all of its ancestors as a subset. Then, given
he grouping of variables in the set G, the LOG penalty is
efined as

LOG(γ) = inf
ν(g), g∈G

{∑
g∈G

wg∥ν
(g)
∥2

s.t.
∑
g∈G

ν(g)
= γ, ν

(g)
gc = 0

}
(7)

here g denotes the groups inside the set G, ν(g)
∈ Rd

enotes vectors indexed by g (d is equal to 5 in the
above example), and wg > 0 denotes weights. From the
efinition of ΩLOG(γ), γ is written as a summation of |G|
atent variables ν(g). The ℓ2-norms induce block sparsity;
.e., they seek to make the elements of a block simultane-
usly zero or nonzero. Hence, the penalty function indeed
eeks to construct γ with only a few nonzero latent vari-
bles ν(g). The sparsity structure of latent variables based
n their groups are such that the sparsity structure of
heir sum respects the hierarchy of the graph. For more
etails, see Jacob et al. (2009), Yan, Bien, et al. (2017).

.3. GLOG-L estimate of the inverse covariance matrix

Given prior knowledge of the wind direction, a spar-
ity hierarchy for the elements of the inverse covariance
atrix is built as a DAG, D (e.g., similar to Fig. 3). The
et G that contains the groups can then be constructed
rom D. Finally, the ΩLOG(·) penalty is formed based on G.
iven the sparsity-inducing penalty ΩLOG(·), we propose
olving the following convex optimization problem for the
nverse covariance matrix

ˆGLOG-L = argmin
X⪰0

⟨
X, S̄

⟩
− log det(X)+ λΩLOG(X), (8)

here S̄ is the sample covariance matrix defined in (5).
e call the solution to (8) the GLOG-L estimate of the

nverse covariance matrix. We solve (8) using the alter-
ating direction method of multipliers (ADMM) (Boyd,
arikh, Chu, Peleato, & Eckstein, 2011; Eckstein & Bert-
ekas, 1992; Gabay &Mercier, 1976; Glowinski & Marroco,

975). t

5

.4. Finding the GLOG-L estimate

Problem (8) is first written as a problem with an equal-
ty constraint in two blocks as

min
X⪰0

{⟨
X1, S̄

⟩
− log det(X1)+ λΩLOG(X2), s.t. X1

= X2}
here X1 is the block of variables for the smooth part, and
2 is the block of variables for the nonsmooth part. Du-
lizing the equality constraint, the augmented Lagrangian
unction is

ρ(X1, X2,W ) =
⟨
X1, S̄

⟩
− log det(X1)+ λΩLOG(X2)

+
⟨
X1
− X2,W

⟩
+

ρ

2
∥X1
− X2
∥
2
F ,

where W ∈ R(wp+wf )×(wp+wf ) is the matrix of dual vari-
ables, and ρ > 0 is a parameter. Taking U = W/ρ and
following a Gauss–Seidel update, the ADMM subproblems
can then be written as

X1,k+1
= argmin

X⪰0

⟨
X1, S̄

⟩
− log det(X1)

+
ρ

2
∥X1
− X2,k

+ Uk
∥
2
F , (9a)

X2,k+1
= argmin

X2
λΩLOG(vec(X2))

+
ρ

2
∥vec(X2)− vec(X1,k+1

+ Uk)∥22, (9b)

Uk+1
= Uk

+ X1,k+1
− X2,k+1. (9c)

The solution to subproblem (9a) is similar to that of the
graphical lasso. In Appendix A, the solution to subprob-
lem (9a) is discussed; for more detailed discussion, we
refer the reader to Section 6.5 of Boyd et al. (2011).
The solution to subproblem (9b) is equivalent to find-
ing the proximal mapping of the λΩLOG(·) penalty, i.e.,
prox(λ/ρ)ΩLOG

(X1,k+1
+ Uk), where the proximal map of a

generic function f (·) at Q is defined as

proxλf (V ) ≜ argmin
X

f (X)+
1
2
∥X − Q∥2F . (10)

n Section 3.5 below, we propose an algorithm to solve
he proximal map of the ΩLOG(·) penalty.

.5. Finding the proximal map of the ΩLOG(·) penalty

Evaluating the proximal mapping of the ΩLOG(·) penalty
s not straightforward. Recall that inducing the hierar-
hical sparsity structure is performed through utilizing
he overlaps between the groups. These overlaps result in
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onsmooth ℓ2-norms that share variables, complicating
the optimization (9b). Let γ ≜ vec(X2) ∈ R(wp+wf )2 and
q ≜ vec(X1,k+1

+ Uk), and then (9b) can be written as

min
γ∈R(wp+wf )2

λΩLOG(γ)+
ρ

2
∥γ − q∥22, (11)

here the LOG penalty is with respect to a known group-
ng of variables G. Using the definition of the LOG penalty
n (7), (11) is equivalent to

min
∈R(wp+wf )2×|G|

{
λ
∑
g∈G

wg∥Z.g∥2

+
1
2
∥

∑
g∈G

Z.g − q∥22 s.t. (Z.g )gc = 0, ∀g ∈ G

}
, (12)

where Z.g denotes the column of Z indexed by g . We
solve (12) using another ADMM algorithm with a sharing
scheme. Splitting (12) into two blocks, the problem is
equivalent to

min
Z1,Z2∈R(wp+wf )2×|G|

{
λ
∑
g∈G

wg∥Z1
.g∥2 +

1
2
∥

∑
g∈G

Z2
.g − b∥22,

s.t. Z1
= Z2, (Z1

.g )gc = 0 ∀g ∈ G

}
. (13)

he ADMM iterates in scaled form (Boyd et al., 2011) to
olve (13):
1,k+1
.g ← argmin

Z1.g∈R
(wp+wf )2

{
λwg∥Z1

.g∥2

+
ρ

2
∥Z1

.g − Z2,k
.g +W k

.g∥
2
2 s.t. (Z1

.g )gc = 0
}

, ∀g ∈ G,

(14)

Z2,k+1
← argmin

Z2∈R(wp+wf )2×|G|

1
2
∥

∑
g∈G

Z2
.g − q∥22

+
ρ

2

∑
g∈G

∥Z2
.g − Z1,k+1

.g −W k
.g∥

2
2, (15)

W k+1
.g ← W k

.g + α(Z1,k+1
.g − Z2,k+1

.g ), ∀g ∈ G. (16)

he solution to subproblem (14) is provided by the prox-
mal map of the ℓ2-norm (Parikh & Boyd, 2014) and can
e parallelized across groups.
Subproblem (15) is potentially a large-scale problem

ith (wp + wf )2|G| variables; however, it is possible to
ecrease its size to (wp+wf )2 variables. (15) is equivalent
o

min
2∈R(wp+wf )2×|G|, z∈R(wp+wf )2

{
1
2
∥ |G|z− q∥22

+
ρ

2

∑
g∈G

∥Z2
.g − Z1,k+1

.g −W k
.g∥

2
2 s.t. z = (1/|G|)

∑
g∈G

Z2
.g

}
. (17)

inimizing over Z2
.g with z fixed and using first-order

ptimality conditions, we get

2
.g = z+Z1,k+1

.g +W k
.g− (1/|G|)

∑
g∈G

(Z1,k+1
.g +W k

.g ), ∀g ∈ G.
(18)
6

sing (18) in (17), we get

k+1
=

1
|G| + ρ

(
q+

ρ

|G|

∑
g∈G

(Z1,k+1
.g +W k

.g )
)
. (19)

Furthermore, using (18) in (16), we finally get

k+1
.g = (1/|G|)

∑
g∈G

(Z1,k+1
.g +W k

.g )− zk+1, ∀g ∈ G. (20)

ote that the dual variables are independent of g; i.e., dual
ariables are equal for all groups. The sharing implemen-
ation of the proposed ADMM algorithm is illustrated in
lgorithm 1. The convergence properties of the proposed
DMM algorithm on the general class of problems are
iscussed in Zhang, Liu, and Tajbakhsh (2020).

Algorithm 1 ADMM with sharing scheme to solve
proxλΩLOG

(q)
Require: q, λ,wg ∀g ∈ G
1: k = 0, W 0

.g = 0, Z2,0
.g = 0 ∀g ∈ G

2: while stopping criterion not met do
3: k← k+ 1
4: Z1,k+1

gg ← proxλwg∥·∥2
(Z2,k

gg −W k
gg ), ∀g ∈ G

5: Z1,k+1
gcg ← 0, ∀g ∈ G

6: zk+1 ← 1
|G|+ρ

(
q+ ρ

|G|

∑
g∈G(Z

1,k+1
.g +W k

.g )
)

7: Z2,k+1
.g ← zk+1+Z1,k+1

.g +W k
.g−(1/|G|)

∑
g∈G(Z

1,k+1
.g +

W k
.g ), ∀g ∈ G

8: W k+1
.g = (1/|G|)

∑
g∈G(Z

1,k+1
.g +W k

.g )− zk+1, ∀g ∈ G
9: end while
Output:

∑
g∈G Z1,k+1

.g

4. Application

In this section, the proposed methodology is used to
predict wind speed in a case study in Texas. In the follow-
ing numerical experiments, the prediction performance
of the proposed GLOG-L method is compared with the
following methods: (i) ARIMA; (ii) Vector AR (VAR); (iii)
Sparse-VAR (SVAR), see Cavalcante, Bessa, Reis, and Brow-
ell (2017) (where all three methods are implemented
as R packages); (iv) G-L (our implementation by solving
the graphical lasso estimate in (6)); and (v) GLOG-L with
mean structure, namely GLOG-Lµ (using weather-related
covariates to model the mean).

For GLOG-L and G-L, the data are transformed into the
Gaussian field, and the predictions are calculated based
on the mean and variance of the conditional distribu-
tion (2). Then, the results are transformed back to the
non-Gaussian field (see Fig. 1). On the other hand, for
ARIMA, VAR, and SVAR, the predictions are obtained di-
rectly in the original (non-Gaussian) field.

4.1. Data description and corresponding hierarchical struc-
tures

The data for this study pertain to the Wind Integration

National Dataset (Draxl, Clifton, Hodge, & McCaa, 2015)
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btained from the NREL website.1 We used data from June
to August from 2007 to 2012 over m = 8 sites located
along a line that is closely aligned with the summer
prevailing wind direction from southeast to northwest.
The site locations and wind direction are illustrated in
Fig. 4(a). As stated in Sections 3.1 and 3.2, the derived
wind direction pattern is used to generate the hierarchi-
cal sparsity structure over the elements of the inverse
covariance matrix that pertain to the between-site wind
directions. The corresponding hierarchies are presented in
Fig. 4(b), and the site coordinates are provided in Table B.5
in Appendix A.

We used the first five years to build the models and
predict the wind speed in the sixth year. The prediction
horizon was set to wf = 18, which included 18 consec-
utive time points in 20-minute intervals from 12:00 p.m.
to 6:00 p.m.

4.2. Performance measures

The two performance measures based on point pre-
dictions are the root mean square error (RMSE) and the
mean absolute error (MAE). Let ŵT (s) denote the wind
prediction at time T and location s ∈ S by a given model,
and let wT (s) be the corresponding observation. Define
ti ≜ tc + 72(i − 1) + t , where tc = 108, calculated as
108 = (24+12)×3, which corresponds to 11:40 a.m. the
next day. The RMSE at time point t and site s is calculated
as

RMSEt (s) =

(
1
n

n∑
i=1

(
ŵti (s)− wti (s)

)2)1/2

,

t = 1, . . . , wf , s ∈ S,

nd the MAE is calculated as

AEt (s) =
1
n

n∑
i=1

⏐⏐ŵti (s)− wti (s)
⏐⏐ , t = 1, . . . , wf , s ∈ S,

1 https://www.nrel.gov/grid/wind-toolkit.html.
7

where n is the number of prediction days (in the sixth
year) and is equal to 90.

The performance measure based on the prediction in-
terval is the Winkler score (Winkler, 1972). Let [l̂T (s),
ûT (s)] denote the 100(1− α)% prediction interval for site
s at time T . The Winkler score is calculated as

Wt (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

∑n
i=1

(
ûti (s)− l̂ti (s)

)
,

if l̂ti (s) ≤ wti (s) ≤ ûti (s)
1
n

∑n
i=1

(
ûti (s)− l̂ti (s)+

2
α
(l̂ti (s)− wti (s))

)
,

if wti (s) < l̂ti (s)
1
n

∑n
i=1

(
ûti (s)− l̂ti (s)+

2
α
(wti (s)− ûti (s))

)
,

if wti (s) > ûti (s).

ide intervals and non-coverage of the true observa-
ions will increase the value of this performance measure.
ence, lower values indicate better prediction perfor-
ance.

.3. Parameter settings

For each site, the order of ARIMA(P,D,Q) was deter-
ined individually by AIC, as listed in Table C.6 in
ppendix B. The order of the VAR model was also iden-
ified by AIC, where VAR(14) had the lowest AIC among
AR(1) to VAR(15). Accordingly, the highest order for
VAR was set to 15. The tuning parameter λ of SVAR, as
ell as for GLOG-L and G-L, was determined by cross-
alidation. Furthermore, wg in (7) was set to wg =

w0|g|1/k, where w0 and k > 1 were also determined by
cross-validation.

We also implemented GLOG-L with a mean structure,
namely GLOG-Lµ, where a linear regression model was
used to model the mean in (3) with temperature, air pres-
sure, and air density as covariates. To fit GLOG-Lµ, wind
speeds were first transformed to the Gaussian field. A lin-
ear regression model was then fitted to the transformed
data. Finally, the GLOG-L covariance matrix was estimated
from the residual process. Predictions were based on (3),
which were then transformed back to the non-Gaussian
field.

https://www.nrel.gov/grid/wind-toolkit.html
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Fig. 5. Average RMSE for the next wf = 18 time points at eight different sites.
Table 1
Comparison of prediction errors with different wp and δ; boldface numbers show optimal combinations.

wp\δ RMSE MAE

1 6 12 18 1 6 12 18

18 1.7225 1.7326 1.8042 1.7794 1.3746 1.3761 1.4434 1.3811
36 1.6028 1.5995 1.5946 1.6850 1.2711 1.2719 1.2650 1.2941
54 1.4881 1.4836 1.5552 1.5959 1.1848 1.1809 1.2369 1.2296
72 1.4306 1.4238 1.3977 1.5444 1.1277 1.1193 1.0992 1.1837
90 1.4516 1.4584 1.5309 1.5722 1.1537 1.1593 1.2159 1.2290
w
8

d
1
o
δ

4

4
m

d
f
o
a

4.4. Setting wp and δ to construct the data matrix for GLOG-
L

Note that to construct the data matrix for GLOG-L,
there is a trade-off in tuning δ and wp in (4). Increasing δ

results in a data matrix with a smaller N , but it increases
he independence between consecutive data points. In-
reasing wp increases the dimension of the covariance
atrix Σ , which allows longer temporal correlations to
lay a role in predictions, but at the cost of making the
odel more complex. This is the tradeoff between bias
nd variance. Furthermore, we note that increasing wp
nd hence the covariance matrix size, significantly in-
reases the overall computational complexity, as the per-
teration complexity of the algorithm is O((wp+wf )3). The
ffects of wp and δ on prediction errors are illustrated in
able 1.
Additionally, we present the CPU times required for
btaining the GLOG-L estimate in Table 2. Calculations t

8

ere implemented on a MacBook Pro with a 2.40 GHz
-core CPU and 32 GB of RAM.
The parameters were set to wp = 72 (of the previous

ata points, which were in 20-minute resolution) and δ =

2, which were determined by the lowest prediction error
ver all combinations of wp ∈ {18, 36, 54, 72, 90} and
∈ {1, 6, 12, 18}, resulting in N = 2725.

.5. Numerical comparisons

.5.1. Comparison based on point prediction performance
easures
In Table 3, we report the RMSE and MAE of the pre-

ictions for each site (averaged over time). GLOG-L per-
ormed better than all other methods at six sites in terms
f the RMSE and seven sites in terms of the MAE. On
verage over all sites, GLOG-L performed relatively better

han the other methods on both performance measures.
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able 2
LOG-L estimation times in seconds.
wp δ

1 6 12 18

18 77 78 77 79
36 208 206 201 210
54 410 410 411 422
72 736 696 722 764
90 1131 1179 1190 1147

Table 3
Comparison of RMSE (m/s) and MAE (m/s) for different methods.
Boldface numbers indicate the methods with the least prediction errors
Site RMSE (m/s)

GLOG-L G-L GLOG-Lµ VAR SVAR ARIMA

1 1.260 1.289 1.325 1.630 1.629 1.907
2 1.234 1.273 1.354 1.581 1.575 1.853
3 1.265 1.306 1.416 1.569 1.571 1.840
4 1.301 1.337 1.426 1.624 1.631 2.422
5 1.418 1.435 1.509 1.789 1.799 2.621
6 1.566 1.571 1.643 2.012 2.040 3.215
7 1.566 1.561 1.610 2.043 2.079 3.462
8 1.572 1.563 1.588 2.024 2.015 3.197

Mean 1.398 1.417 1.484 1.784 1.792 2.565

MAE (m/s)

1 0.978 0.988 1.048 1.304 1.313 1.553
2 0.976 0.998 1.104 1.264 1.265 1.489
3 1.001 1.026 1.147 1.242 1.252 1.475
4 1.019 1.041 1.126 1.305 1.310 2.022
5 1.116 1.133 1.193 1.435 1.444 2.200
6 1.229 1.239 1.297 1.622 1.641 2.699
7 1.225 1.226 1.272 1.675 1.699 2.962
8 1.249 1.235 1.252 1.627 1.627 2.710

Mean 1.099 1.111 1.180 1.434 1.444 2.139

However, differences among GLOG-L, G-L, and GLOG− Lµ

ere not large on these two measures.
In Fig. 5, we plot the RMSE at each predicted future

ime point for all eight sites to compare the prediction
erformance of GLOG-L, G-L, GLOG-Lµ, VAR, and SVAR.
he ARIMA model is omitted from the plot due to its poor
erformance across the prediction horizon. Furthermore,
AR and SVAR are plotted as one curve, as their values
ere almost identical. At earlier time points, VAR had
lower RMSE, while all other methods performed bet-

er at later time points. GLOG-L, GLOG-Lµ, and G-L had
elatively similar performance, and GLOG-L performed
etter than the other methods, especially at midrange
ime points. Furthermore, GLOG-L performed better than
LOG-Lµ at earlier time points, which shows that the
ean regression model is unhelpful at short time hori-
ons.
To further compare the prediction results, we im-

lemented the Diebold–Mariano (DM) test (Diebold &
ariano, 2002) to identify whether GLOG-L has better
redictive accuracy. Fig. 6 illustrates the DM test statistic
hat compares the performance of G-L, GLOG-Lµ, and
AR relative to the GLOG-L method, along with α =

.1, 0.05, 0.01 significance intervals. Note that a neg-
tive value of the DM statistic means that the prediction
f GLOG-L has a lower error at that time point. Needless
9

Table 4
Winkler score for different methods. Boldface numbers indicate the
methods with the lowest scores.
α Site GLOG-L G-L GLOG-Lµ VAR SVAR ARIMA

0.1

1 5.132 5.166 5.659 5.949 5.505 6.804
2 5.051 5.113 5.586 5.882 5.412 6.732
3 5.051 5.097 5.545 5.887 5.445 6.646
4 5.190 5.270 5.716 5.862 5.458 6.903
5 5.278 5.387 5.772 5.997 5.608 7.012
6 5.872 6.026 6.354 6.631 6.216 7.913
7 5.992 6.157 6.514 6.799 6.381 8.116
8 5.798 5.958 6.335 6.657 6.256 7.749

Mean 5.421 5.522 5.935 6.208 5.785 7.235

0.05

1 5.983 6.016 6.539 6.973 6.442 8.031
2 5.892 5.954 6.448 6.916 6.345 7.959
3 5.890 5.936 6.398 6.923 6.389 7.870
4 6.043 6.126 6.588 6.886 6.389 8.217
5 6.137 6.262 6.652 7.015 6.523 8.361
6 6.843 7.024 7.357 7.732 7.204 9.394
7 7.000 7.193 7.565 7.936 7.398 9.643
8 6.767 6.955 7.361 7.752 7.247 9.210

Mean 6.319 6.433 6.864 7.267 6.742 8.586

0.01

1 7.548 7.583 8.203 8.928 8.270 10.248
2 7.439 7.505 8.098 8.887 8.171 10.200
3 7.455 7.503 8.063 8.908 8.235 10.099
4 7.622 7.721 8.240 8.894 8.238 10.658
5 7.761 7.913 8.356 9.038 8.376 10.924
6 8.709 8.935 9.319 9.935 9.226 12.265
7 8.960 9.211 9.637 10.192 9.481 12.589
8 8.660 8.897 9.399 9.931 9.272 12.025

Mean 8.019 8.158 8.664 9.339 8.659 11.126

to say, the differences are significant if the statistic lies
outside of the insignificance intervals. Except at earlier
time points, GLOG-L performed better than VAR at all
significance levels. Furthermore, at significance levels 0.1
and 0.05, GLOG-L performed better than G-L at midrange
time points, whereas they performed similarly at other
times. GLOG-L and GLOG-Lµ performed similarly in rel-
ative terms except at earlier time points, where GLOG-L
performed better.

4.5.2. Comparison based on prediction interval performance
measure

In addition to the two point prediction performance
measures, we compared different methods based on the
Winkler score prediction interval performance measures.
Table 4 presents the averaged Winkler score for each site
at three different significance levels. As discussed above, a
smaller value of the Winkler score indicates a better cov-
erage of the true observation by the prediction interval or
a tighter interval. At all three significance levels, GLOG-L
had the lowest Winkler scores at all sites, which indicates
that GLOG-L achieves relatively better prediction intervals
compared to the other methods.

4.5.3. Impact of the wind direction on the GLOG-L method
Finally, to check the significance of the considered

wind direction in GLOG-L, we tested a new wind direc-
tion, opposite to the prevailing wind direction, namely
GLOG-L(opp). To compare the prediction accuracy, the DM

test for G-L and GLOG-L(opp) based on GLOG-L is plotted
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Fig. 6. Diebold–Mariano (DM) test for the next wf = 18 time points at eight sites.
n Fig. 7. At significance levels 0.1 and 0.05, the predic-
ion of GLOG-L was better than GLOG-L(opp), whereas at
ome periods, GLOG-L was not significantly better than
-L. Therefore, misidentified wind directions generally
egenerate the performance of the GLOG-L method.
Furthermore, we compared the sparsity pattern of the

stimated inverse covariance matrix by GLOG-L, G-L, and
LOG-L(opp) (see Fig. 8). As expected, different learn-
ng methods (GLOG-L vs. G-L) and different hierarchical
tructures (along with or opposite to the wind direc-
ion) resulted in different sparsity patterns in the inverse
ovariance matrices.

. Conclusions

In the context of wind forecasting by conditional distri-
ution based on spatiotemporal data, we proposed a new
ethod to estimate the inverse covariance matrix of the
aussian distribution for the transformed data, namely,
he GLOG-L estimate. This method requires minimizing
he negative log-likelihood function regularized with the
OG penalty. The LOG penalty forces the sparsity pattern
f the optimal solution to follow a hierarchical struc-

ure, which conforms to wind dynamics known a priori.

10
Further, we proposed an ADMM to efficiently evaluate the
proximal mapping of the LOG penalty.

The proposed methodology was implemented and
tested in a case study pertaining to Texas using data from
eight different sites. Hierarchical sparsity structures were
constructed based on wind direction inferred from wind
roses obtained from these sites.

The prediction performance of the proposed method
was benchmarked against a number of other statistical
methods over different performance measures. In gen-
eral, the results showed the potential of the proposed
methodology as it takes into account wind dynamics.

While the proposed method may improve wind pre-
dictions when reasonably accurate estimates of the wind
directions are available, inconsistent wind directions gen-
erally deteriorate its performance. Hence, a robust exten-
sion of the underlying optimization problem for regions
with unstable wind directions could be a relevant future
research direction.
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Fig. 7. Diebold–Mariano (DM) test for G-L and GLOG-L(opp) based on GLOG-L.
Fig. 8. Sparsity patterns of the inverse covariance matrices estimated by GLOG-L (along with and opposite to the wind direction) and G-L methods.
t

Appendix A. Solution to subproblem (9a) in the GLOG-L
problem

Consider problem (9a) with X instead of X1 as the
variable for simplicity of notation. From the first-order
optimality condition, we have

ρX − X−1 = ρ(X2,k
− Uk)− S̄, (A.1)

with an implicit constraint X ≻ 0. The idea is to find
a solution that satisfies the above optimality condition
and is also positive definite. Calculating the eigenvalue
decomposition of the right-hand side, we get ρ(X2,k

−

Uk) − S̄ = Qdiag(λ)Q⊤, where λ = (λ1, . . . , λwp+wf )
⊤,

and QQ⊤ = Q⊤Q = I. Multiplying (A.1) by Q⊤ from the
 t

11
left and Q from the right, we get

ρX̃ − X̃−1 = diag(λ),

where X̃ = Q⊤XQ . Given that the right-hand side in the
above equation is a diagonal matrix, we need to find X̃ii
that satisfy ρX̃ii − 1/X̃ = λi. The solution is

X̃ii =
λi +

√
λ2
i + 4ρ

2ρ

It follows that X = Q X̃Q⊤ satisfies the optimality condi-
ion (A.1) and is positive definite; hence, it is the solution
o (9a).
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able B.5
ind sites in Texas and their coordinates.
Site number Latitude Longitude

1 32.002563 −99.926147
2 32.055130 −99.972046
3 32.108597 −99.996613
4 32.179260 −100.043732
5 32.249004 −100.112366
6 32.301521 −100.158600
7 32.354027 −100.204895
8 32.388382 −100.250092

Table C.6
Selected orders for ARMA models in the Texas case study.
Site (P,D,Q )

1 (0,1,4)
2 (0,1,5)
3 (1,1,2)
4 (0,1,4)
5 (2,1,0)
6 (3,1,2)
7 (1,1,4)
8 (0,1,5)

Appendix B. Wind sites in Texas

See Table B.5.

Appendix C. Selected ARIMA(P,D,Q) model orders for
the wind sites in Texas

See Table C.6.
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