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ARTICLE INFO ABSTRACT

Given the advances in online data acquisition systems, statistical learning models are
increasingly used to forecast wind speed. In electricity markets, wind farm production
forecasts are needed for the day-ahead, intra-day, and real-time markets. In this work,
we use a spatiotemporal model that leverages wind dynamics to forecast wind speed.
Using a priori knowledge of the wind direction, we propose a maximum likelihood
estimate of the inverse covariance matrix regularized with a hierarchical sparsity-
inducing penalty. The resulting inverse covariance estimate not only exhibits the benefits
of a sparse estimator, but also enables meaningful sparse structures by considering wind
direction. A proximal method is used to solve the underlying optimization problem. The
proposed methodology is used to forecast six-hour-ahead wind speeds in 20-minute
time intervals for a case study in Texas. We compare our method with a number of
other statistical methods. Prediction performance measures and the Diebold-Mariano
test show the potential of the proposed method, specifically when reasonably accurate
estimates of the wind directions are available.
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1. Introduction and atmosphere to predict the future speed and direc-

tion of the wind. For detailed studies on NWP meth-

As weather-dependent stochastic electricity power
sources, such as wind- or solar-based production units,
increasingly penetrate the generation mix, precise fore-
casting techniques for the production of these sources
are needed. There is a range of methods for wind speed
and power prediction. Although predicting wind speed
and generated power are different in nature, with the
goal of predicting power generation, the methods can
be categorized as: physics-based mathematical methods,
data-driven statistical methods, and hybrid methods that
combine techniques from the first two categories.

There are a number of numerical weather predic-
tion (NWP) methods that use physics-based mathemat-
ical models that rely on the current state of the ocean
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ods, see Cassola and Burlando (2012), Lange and Focken
(2006), Richardson (2007) and the references therein.
Advances in remote sensing devices have resulted in
an abundance of weather-related data that are used as
inputs to data-driven prediction methods. The easiest
data-driven method is the persistence method, which is
based on the assumption that wind does not change in
the near future. The persistence method simply sets the
predictions equal to the most current observed value for
any time horizon. Moreover, given the autocorrelation in
wind data, time series methods—e.g., autoregressive in-
tegrated moving average (ARIMA) methods (Box, Jenkins,
Reinsel, & Ljung, 2015)—are common for wind speed or
power output forecasting based on historical data (Erdem
& Shi, 2011; Kavasseri & Seetharaman, 2009; Sanchez,
2006; Torres, Garcia, De Blas, & De Francisco, 2005). Fur-
thermore, advances in machine learning algorithms based
on high-dimensional modeling of wind or wind power
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data indexed by time and space have found applications
in wind speed and power output prediction—see e.g.,
Chitsaz, Amjady, and Zareipour (2015), Damousis, Alex-
iadis, Theocharis, and Dokopoulos (2004), El-Fouly, El-
Saadany, Salama, El-Fouly, El-Saadany, and Salama (2006),
Kusiak, Zheng, and Song (2009), Landry, Erlinger, Patschke,
and Varrichio (2016), Mandic, Javidi, Goh, Kuh, and Aihara
(2009), Mangalova and Agafonov (2014), Mangalova and
Shesterneva (2016), Mohandes, Halawani, Rehman, and
Hussain (2004), Salcedo-Sanz, Ortiz-Garci, Pérez-Bellido,
Portilla-Figueras, and Prieto (2011), Zhang and Wang
(2016), Zhou, Shi, and Li (2011). Spatiotemporal methods
that are related to this research are discussed in more
detail below.

Besides the two conventional categories, there are also
hybrid methods that combine the outputs of NWP with
data-driven methods for better prediction performance—
see e.g., Chen, Qian, Nabney, and Meng (2014), Jursa and
Rohrig (2008), Negnevitsky, Johnson, and Santoso (2007).

Considering a collection of wind farms, spatiotempo-
ral information can be incorporated into a data-driven
model to improve the prediction performance. For in-
stance, Tastu, Pinson, Trombe, and Madsen (2014) in-
clude the spatial correlation information into a vector
autoregressive model for reliable and economic power
systems operations in a smart grid. Morales, Minguez,
and Conejo (2010) propose a multivariate time series
model that quantifies spatial correlations between the
sites. Alexiadis, Dokopoulos, and Sahsamanoglou (1999),
Barbounis and Theocharis (2007) use spatial information
of neighboring sites to train neural network models to
predict wind speed. Gneiting, Larson, Westrick, Genton,
and Aldrich (2006) build regime-switching space-time
models considering all salient features of wind speed
including spatial correlation—see also (Hering & Genton,
2010; Zhu, Genton, Gu, & Xie, 2014). Khalid and Savkin
(2012) predict wind speed and power from the observed
data at nearby sites and use an NWP model for supple-
mentary adjustments. Xie, Gu, Zhu, and Genton (2014)
combine the spatiotemporal correlation of the wind speed
and direction with a statistical model—see also (Dowell,
Weiss, Hill, & Infield, 2014; Messner & Pinson, 2018;
Tastu et al.,, 2014; Zhao, Ye, Pinson, Tang, & Lu, 2018).
Gaussian processes have also been implemented for wind
and power prediction in a number of studies. For instance,
Yu, Chen, Mori, and Rashid (2013) use a localized Gaussian
process model for long-term wind speed prediction based
on a large data set.

The sparsification of the spatiotemporal model has
also been deployed to enhance predictions by reducing
variance. For instance, Dowell and Pinson (2016) repre-
sent spatial information by a sparse vector autoregressive
process. Zhao et al. (2018) build a sparsity-controlled
vector autoregressive model to include spatiotemporal
dependence. Tascikaraoglu, Sanandaji, Poolla, and Varaiya
(2016) exploit the sparsity of interconnections using
wavelet transforms in a spatiotemporal model—see also
(He, Yang, Zhang, & Vittal, 2014). Finally, Wytock and
Kolter (2013) sparsify a high-dimensional conditional
Gaussian process model for spatiotemporal wind power
prediction and extend it to non-Gaussian data using a
copula transform.
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In these works, sparsification is mainly performed for
variance reduction or to attain computational gain. Using
the £;-norm to induce sparsity, the sparsity pattern of
the optimal solution is determined by data. In this work,
however, we want the sparsity pattern of the optimal
solution (i.e., the elements of the inverse covariance ma-
trix) to belong to a predetermined set of hierarchical
structures known a priori from wind direction. Hence, to
estimate the inverse covariance matrix, we incorporate
a specific penalty function that induces such a hierar-
chical structure. Therefore, the optimal solution of the
proposed learning problem is more interpretable and re-
sults in better prediction performance. Specifically, the
paper discusses a new penalty function and how to solve
the underlying learning optimization problem efficiently.
The main idea of this work is described in Sections 3.1 and
3.2. The learning problem and a first-order optimization
algorithm to solve it are discussed in Sections 3.3-3.5. In
Section 4, we apply the proposed methodology to a case
study in Texas. Finally, Section 5 provides our concluding
remarks.

1.1. Notation

The wind speed at spatial location s € S and time t is
denoted by w¢(s), where s € S = {1, ..., m} is the index
set of m wind sites. Furthermore, w!'(S) € RM{~t+D
denotes a collection of wind speeds from time ¢ to t’ for all
spatial sites, written as (w;(S)", w;1(S)T, ..., wy(S)T)T
where w;(S) € R™ denotes the wind speeds at time t at
all S spatial sites. Transforming the non-Gaussian wind
data to a Gaussian field (see the transformation in 2.1),
ye(s), ¥E(S) € R™M~D and y,(S) € R™ are defined
similarly. Here, 1,, denotes the column vector of all ones
of size w. Similarly, 0,, denotes the column vector of all
zeros of size w, and Si+ denotes the cone of d x d positive
definite matrices. The matrix inner product is defined as
(A,B) = Tr(AB"). Let G be a set, and then |G| denotes
the set cardinality. Let g € G be an element of the set,
and then g¢ denotes its complement. Finally, vec(-) takes
a matrix column-by-column and stacks the columns as a
long vector.

’

2. Some preliminaries and contributions of the work

2.1. Transformations between Gaussian and non-Gaussian
fields

Since the predictions are performed in the Gaussian
field based on the conditional Gaussian distribution, there
is a need to transform the non-Gaussian wind data to
the Gaussian field. Similarly, when predictions are ob-
tained, there is a need to transform them back to the
non-Gaussian field. In the forward transformation, given
a wind speed wy(s), the empirical marginal distribution
of wind at each spatial site in some time window is
used to find the corresponding value of the cumulative
distribution function, i.e., Fs(w¢(s)). The transformed data
in the Gaussian field is then obtained by applying the
inverse cumulative distribution function of the standard
normal distribution, i.e., y;(s) = F~'(Fs(w(s))). Similarly,
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Fig. 1. True and normalized distributions of wind speed.

given a prediction in the Gaussian field y,(s), the trans-
formed value in the non-Gaussian field is obtained as
we(s) = F;‘(F(j/t(s))). These transformations are shown in
Fig. 1—see also (Moller, Lenkoski, & Thorarinsdottir, 2013;
Morales et al., 2010).

2.2. Gaussian random field (GRF) model on a discrete set

A Gaussian random field (GRF) is an indexed stochastic
process such that for a fixed set of indices it results in a
multivariate Gaussian distribution. Let y,(s) € R be an
observation from a GRF at time t and location s € S,
where S is a discrete set of spatial locations with |S| = m
(i.e., the index (s,t) € S x R;). Let the data (after the
transformation to the Gaussian field) up to current time
point t. be yﬁ”(s) € R™c. To make predictions for wy
time points in the future over all sites S, we use the data
of all sites for the w, previous time points to train the
model, i.e., the training data at time ¢, is yfszpﬂ(s) €
R™*r, Since any countable collection of observations from
a GRF follows a multivariate normal distribution, the joint
distribution of (y{_,, .(S), (ST is given by

Vit
tc
Yie—wp+1(S) ( o | Zop Zr
th+ ~N 0(w+ ),2: T .
(vml‘f(a e Sy %
(1)

where %, € S}’ and Ty € Ssz are the covariance
matrices for the past w, and future wy observations for
all sites, respectively, and Xy € R™P*™ s the cross-
covariance matrix between the past w, and future wy
observations for all sites. Furthermore, the conditional

probability distribution p(y, ;' (S)Iyg _,,,1(S)) is given
by
tc+wf
1 (S )|er wp+1(3)
te
N():pf): 1th pr( ) T — zpf): 'z, ) (2)

The mean of the conditional distribution (2) is used to
predict the wind speed for future wy time points at all
of the sites in S. If the mean of the joint distribution (1)
is not zero, then the conditional distribution is

te+w
Vi1 SNV ) 41(S)

[c+wf

NN(’L( X1 )
+ET _l (ygprﬂ',‘](s) - I’L(’Sa ngwp+])) )
5 — o Doy Zir) (3)

where u(S, xtl) is the mean of yf1( ) from t; to t; over
spatial locations in S given a set of r covariates xt1 €
R 2=6+1_ A nonzero mean structure allows for the in-
corporation of covariates X into the prediction model,
potentially increasing the prediction power of the model.

2.3. Contribution of the work

The predictive model in the proposed method is based
on the conditional distributions (2) and (3), which require
estimating the covariance matrix X in (1). Our work looks
into estimating X through the sparse estimation of its
inverse X~!, known as the precision matrix. Such an
approach reduces the number of parameters and, hence,
reduces the prediction variance. Sparse estimation of the
inverse covariance matrix is generally performed by in-
troducing a convex {¢{-norm regularizer to the negative
log-likelihood loss function, which results in the graphical
lasso estimator (6) (called G-L in this work) (Friedman,
Hastie, & Tibshirani, 2008). The £;-norm does not enforce
particular sparsity structures to the X~! estimate. For
wind data, however, we usually have a priori knowledge
of wind direction (see Fig. 4(a)), which if incorporated,
allows for a better estimate of the inverse covariance ma-
trix. By incorporating a hierarchical sparsity-inducing reg-
ularizer, we introduce another estimator for X', namely
GLOG-L, that allows a priori knowledge of wind direc-
tion to play a role. We then provide a computationally
efficient algorithm to calculate the GLOG-L estimate, and
demonstrate its performance in a wind prediction case
study.

3. Methodology

To use the conditional distribution (2) for predictions,
we need to estimate its parameters X. When GRF mod-
els are used to predict over a continuous index set, the
covariance matrix is generally constructed based on a
parametric covariance function (Rasmussen & Williams,
2006). Hence, there is a need to estimate the parameters
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Fig. 2. Direction of the wind over four spatial locations S = {s, S2, S3, S4}.

of the covariance function, and this requires solving a
non-convex optimization problem to minimize the neg-
ative of a log-likelihood. Poor estimation of these co-
variance function parameters generally results in poor
prediction performance, which is aggravated in extrap-
olation, e.g., forecasting over time (Davanloo Tajbakhsh,
Serhat Aybat, & Del Castillo, 2014). In this work, however,
given the fact that the covariance matrix is estimated over
a fixed discrete set, we estimate the inverse of the co-
variance matrix by solving a convex optimization problem
with theoretical guarantees for convergence.

+
To estimate X' € Sm vpr) , we first construct the data

Nxm(wp+wr)
matrix th —wf—wp—(N— 1)8+1( )ER P as

t,
Yrccfwfprf(Nfl)&H (S)

te—wy T t T
tc—wf—wp-H(S) ytz wf-H(S)
te—wp—3 T te—8 T
ytcfwfprfﬁwq(s) ytz wf— 6+1(S)
. te—wp—28 T —28 T
- ytE—wf—wp—Z(H—](S) ytc —wf— 25+1(8) ’(4)
te—wp—(N—1)8 T f—(N=1)s T

ytcfwfprf(N71)5+1(S) ytc—wf—(N—1)5+1(S)

where w, > wy, § > 1 is a parameter that determines
the time shift from one row of Y to the next one. Given

thf wp—wp—(N— 1s4+1(S), the sample covariance is defined as

TYtE

N
S== Z te—wp—wp—(N— 1)5+1(S)- tcfwfprf(Nfl)8+1(S)i-

(5)

where Y“ denotes the ith row of the

te—wp—wp—| (N71)6+1(S)i. N
:CE wp—wp—(N— 1s41(S) matrix. Given S, the maximum like-
lihood (ML) estimate of the inverse covariance matrix
penalized with the £;-norm requires solving

X = argmin (X, S) — log det(X) + A[IX||; (6)

X>=0

which is the well-known G-L estimate (Friedman et al.,
2008). The ¢;-norm induces sparsity that exists in the
inverse of the covariance matrix due to potential condi-
tional independence between the variables—see Davan-
loo Tajbakhsh et al. (2014). Note that A > 0 is the sparsity
tuning parameter. Wytock and Kolter (2013) use the esti-
mator (6) to build their prediction model for wind power
forecasting. In this paper, however, we use a hierarchical
sparsity-inducing penalty as opposed to the unstructured
sparsity-inducing penalty £;-norm. This is motivated by
the wind forecasting application, as discussed below.

3.1. Hierarchical sparsity structures

In this section, we first discuss the idea behind the hi-
erarchical sparsity structure for estimating ¥~ for wind

forecasting. Subsequently, we discuss the hierarchical
sparsity structures and the penalty functions that gener-
ate such a structure.

Consider the four locations in the set S = {s1, $3, S3, S4}
depicted in Fig. 2, and assume that we have a priori
knowledge that the wind blows from s; to s, to S3 to Sg4,
as shown in Fig. 2. Let Zt‘/(sh s3) denote the covariance
between the wind speeds at time t at location s; and
time t’ at location ss. It is well known that each element
of the inverse covariance matrix is proportional to the
conditional covariance between the two points given all
other points, i.e., EU’] o cov(yi, Yilyk, k # i,j)—see Da-
vanlqo Tajbakhsh et al. (2014), Whittaker (2009). Hence,
2”; (s1, S3) is proportional to the conditional covariance
between the wind speed at time t at location s; and
time t’ at location s3 given the wind speed at other time
points and locations. The a priori knowledge about the
direction of the wind generates some potential sparsity
in the inverse covariance matrix. For instance, from Fig. 2,
assuming t’ > t, we get

if X1 (s1.5)=0 = X ' (s1,55)=0, V&, 0. t'>t
if Z‘_li(s],s3)=0 = E‘li(s1,s4)=0, Ve, t' >t
if 271 (s2.5) =0 = X ' (55,5)=0, V&, 0. t'>t

Put simply, the first statement means that if wind cannot
make it from s; to s, in time t’ — t, then it cannot make it
from s; to s3 in time t’ — t. That is, yy/(s3) is independent
of y;(s1) given yy(s,). Hence, assuming a priori knowledge
regarding the direction of the wind, the sparsity structure
of the estimated inverse covariance matrix cannot solely
be determined by data. Hence, the ¢;-norm penalty is
replaced by another penalty that respects the underlying
hierarchical sparsity structures provided by the a priori
knowledge pertaining to the wind direction. This knowlI-
edge can be used to achieve a better estimate of the
covariance matrix, which may result in better prediction
performance.

3.2, Latent overlapping group (LOG) lasso regularizer

First proposed by Jacob, Obozinski, and Vert (2009),
the latent overlapping group lasso (LOG) penalty induces
hierarchical sparsity following a directed acyclic graph
(DAG) that represents the hierarchical sparsity structure
of the variables. The DAG corresponding to the example
discussed above is illustrated in Fig. 3.

Each arrow in the hierarchy above generates a parent-
child relationship. Given this parent-child relationship, if
the parent variable is zero, then the child variable should
also be zero. Similarly, if the child variable is nonzero then
the parent variable should also be nonzero. To simplify
the notation, we denote the five variables in the above
example as y € R>.
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Fig. 3. Directed acyclic graph (DAG) for the example in Fig. 2.

The LOG penalty defines an ascending grouping of vari-
ables based on a given DAG D. The grouping of the vari-
ables is such that each node and all of its ancestors should
be included as a subset into the set. For instance, for the
graph D in Fig. 3, the set that contains all of the groups
is g = {{1}, {1, 2}, {1, 2, 3}, {4}, {4, 5}}, where G contains
each node and all of its ancestors as a subset. Then, given
the grouping of variables in the set G, the LOG penalty is
defined as

L1oc(y) = 1nf

St. Z W) =y o8 = o} )

geg

where g denotes the groups inside the set G, v®) € R?
denotes vectors indexed by g (d is equal to 5 in the
above example), and wg > 0 denotes weights. From the
definition of £210c(p), y is written as a summation of |G|
latent variables v®). The £,-norms induce block sparsity;
i.e.,, they seek to make the elements of a block simultane-
ously zero or nonzero. Hence, the penalty function indeed
seeks to construct y with only a few nonzero latent vari-
ables v'€). The sparsity structure of latent variables based
on their groups are such that the sparsity structure of
their sum respects the hierarchy of the graph. For more
details, see Jacob et al. (2009), Yan, Bien, et al. (2017).

3.3. GLOG-L estimate of the inverse covariance matrix

Given prior knowledge of the wind direction, a spar-
sity hierarchy for the elements of the inverse covariance
matrix is built as a DAG, D (e.g., similar to Fig. 3). The
set G that contains the groups can then be constructed
from D. Finally, the £2;0¢(-) penalty is formed based on G.
Given the sparsity-inducing penalty £2;0¢(-), we propose
solving the following convex optimization problem for the
inverse covariance matrix

Xaog = argmin (X, S) — log det(X) + 282i06(X),  (8)

X>0

where S is the sample covariance matrix defined in (5).
We call the solution to (8) the GLOG-L estimate of the
inverse covariance matrix. We solve (8) using the alter-
nating direction method of multipliers (ADMM) (Boyd,
Parikh, Chu, Peleato, & Eckstein, 2011; Eckstein & Bert-
sekas, 1992; Gabay & Mercier, 1976; Glowinski & Marroco,
1975).

3.4. Finding the GLOG-L estimate

Problem (8) is first written as a problem with an equal-
ity constraint in two blocks as
min{(X", ) — log det(X") + Af20c(X?), s.t. X' = X?}
X>0
where X! is the block of variables for the smooth part, and
X? is the block of variables for the nonsmooth part. Du-
alizing the equality constraint, the augmented Lagrangian

function is
L(X'. x> W) = (x',5) - ) + A106(X?)

1
+ (X' = X2 W)+ 5||X1 — X3,

log det(X'

where W e RMp+w)x(wptvs) s the matrix of dual vari-
ables, and p > 0 is a parameter. Taking U = W/p and
following a Gauss-Seidel update, the ADMM subproblems
can then be written as

X' = argmin (X', §) — log det(X ")
X=0
+ ZIXT = X2 UM, (92)
X2 = argr?in A210c(vec(X?))
X
+ §||vec(X2) — vec(X M+ 4 UMy 2, (9b)
UK = gk xR 20 (9¢)

The solution to subproblem (9a) is similar to that of the
graphical lasso. In Appendix A, the solution to subprob-
lem (9a) is discussed; for more detailed discussion, we
refer the reader to Section 6.5 of Boyd et al. (2011).
The solution to subproblem (9b) is equivalent to find-
ing the proximal mapping of the A§2,0c(-) penalty, i.e.,
Prox; ,, o, . (X"**1 + U¥), where the proximal map of a
generic function f(-) at Q is defined as

prox,(v) & argmin f(X)-+ 31X - QI (10)
In Section 3.5 below, we propose an algorithm to solve
the proximal map of the £2,o¢(-) penalty.

3.5. Finding the proximal map of the §2;05(-) penalty

Evaluating the proximal mapping of the §2,0s(-) penalty
is not straightforward. Recall that inducing the hierar-
chical sparsity structure is performed through utilizing
the overlaps between the groups. These overlaps result in
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nonsmooth ¢,-norms that share variables, compllcatmg
the optimization (9b). Let y £ vec(X?) € R@+ur* and
q 2 vec(X"¥+1 1+ U%), and then (9b) can be written as

. 1Y
min _ AQp0c(y) + 5”}’—(1”%, (11)

yeR(qu+wf)2

where the LOG penalty is with respect to a known group-
ing of variables G. Using the definition of the LOG penalty
in (7), (11) is equivalent to

min {A > wgllZg

) V)
zertrur P19l | o3

1
+ 5l D Zg—ql} st (Zg)e =0, Vg e g} . (12)
geg

where Z; denotes the column of Z indexed by g. We
solve (12) using another ADMM algorithm with a sharing
scheme. Splitting (12) into two blocks, the problem is
equivalent to

. 1
min {kaguz‘guz + 512, —bl,

Zl’zzek(u’pﬂuf)zx\g\ geg geg
st.Z' =277 (Zy)y _OVgeg} (13)

The ADMM iterates in scaled form (Boyd et al., 2011) to

solve (13):
Zy —  argmin {AwgllZy |2
Z,lg ER(I:;p+1:)f )2

+§||z_1g -2+ WEIS st (Z?g)gc = 0} , Vg €g,

(14)
72 argmin %H > 7% —al
ZzeR(u'p+u'f)2><\9l geg
+ g S -z - wh (15)
€
WhH V\j’;i Zg ! — 22T, vgeg. (16)

The solution to subproblem (14) is provided by the prox-
imal map of the £,-norm (Parikh & Boyd, 2014) and can
be parallelized across groups.

Subproblem (15) is potentially a large-scale problem
with (w, + wy)?|G| variables; however, it is possible to
decrease its size to (w,+wy )? variables. (15) is equivalent
to

. 1 2
min 15161z —al3

ZZER(M’p+Wf 2xIG| ZeR(prrwf)

”Zuzz 2 wh st z=(1/1g) Y 2% Y. (17)
geg geg

Minimizing over Zé with z fixed and using first-order
optimality conditions, we get

72 = z+ZV T+ Wh —(1/161) Y ZE T + W), Vg e g
geg
(18)
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Using (18) in (17), we get

1
k+1 < E 1,k+1 k
z = + Z + W ) 19

Furthermore, using (18) in (16), we finally get

Wk+1 (1/|g|)2(zl k41 + Wk) k+1 Vg €q. (20)
geg

Note that the dual variables are independent of g; i.e., dual
variables are equal for all groups. The sharing implemen-
tation of the proposed ADMM algorithm is illustrated in
Algorithm 1. The convergence properties of the proposed
ADMM algorithm on the general class of problems are
discussed in Zhang, Liu, and Tajbakhsh (2020).

Algorithm 1 ADMM with sharing scheme to solve
prox; ; .(q)
Require: q, A, wy Vg € G
1: k=0, Wg_O Z3°=0vgeg
2: while stopping crlterlon not met do
3 k<k+1
4 Zg e proXy, 1, (25" —
5

z;g’;“ «0, Vgeg

. k+1 1 1,k+1 k
6 2 e gl (a4 G Dpo@t + W)
7: ZZ k+1 «— z"“+Z}1g’k+l+w"§—(1/|g|) deg(z'lg.k+l+
W") Vg eg
8: Wk-H (1/|g|) deg(z'lg,k-%—] + Wlé) _ Zk+l, Vg €G
9: end whlle

Output: ., Z ;"'

I
ngg), Vg eg

4. Application

In this section, the proposed methodology is used to
predict wind speed in a case study in Texas. In the follow-
ing numerical experiments, the prediction performance
of the proposed GLOG-L method is compared with the
following methods: (i) ARIMA,; (ii) Vector AR (VAR); (iii)
Sparse-VAR (SVAR), see Cavalcante, Bessa, Reis, and Brow-
ell (2017) (where all three methods are implemented
as R packages); (iv) G-L (our implementation by solving
the graphical lasso estimate in (6)); and (v) GLOG-L with
mean structure, namely GLOG-L,, (using weather-related
covariates to model the mean).

For GLOG-L and G-L, the data are transformed into the
Gaussian field, and the predictions are calculated based
on the mean and variance of the conditional distribu-
tion (2). Then, the results are transformed back to the
non-Gaussian field (see Fig. 1). On the other hand, for
ARIMA, VAR, and SVAR, the predictions are obtained di-
rectly in the original (non-Gaussian) field.

4.1. Data description and corresponding hierarchical struc-
tures

The data for this study pertain to the Wind Integration
National Dataset (Draxl, Clifton, Hodge, & McCaa, 2015)
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Fig. 4. (a) Selected site locations and the wind direction. (b) Hierarchical sparsity structures obtained from the site locations and wind direction.

obtained from the NREL website.! We used data from June
to August from 2007 to 2012 over m = 8 sites located
along a line that is closely aligned with the summer
prevailing wind direction from southeast to northwest.
The site locations and wind direction are illustrated in
Fig. 4(a). As stated in Sections 3.1 and 3.2, the derived
wind direction pattern is used to generate the hierarchi-
cal sparsity structure over the elements of the inverse
covariance matrix that pertain to the between-site wind
directions. The corresponding hierarchies are presented in
Fig. 4(b), and the site coordinates are provided in Table B.5
in Appendix A.

We used the first five years to build the models and
predict the wind speed in the sixth year. The prediction
horizon was set to wy = 18, which included 18 consec-
utive time points in 20-minute intervals from 12:00 p.m.
to 6:00 p.m.

4.2. Performance measures

The two performance measures based on point pre-
dictions are the root mean square error (RMSE) and the
mean absolute error (MAE). Let wr(s) denote the wind
prediction at time T and location s € S by a given model,
and let wr(s) be the corresponding observation. Define
t; 2 t. + 72(i — 1) + t, where t, = 108, calculated as
108 = (24 + 12) x 3, which corresponds to 11:40 a.m. the
next day. The RMSE at time point t and site s is calculated
as

n

1/2

1 N

RMSE;(s) = (n Z (tg(s) — wti(s))2> ,

i=1
t=1,...,w, SES,

and the MAE is calculated as

§ |4 (5) — wi (s

MAE,(s) =

t=1,...,ws, SES,

1 https://www.nrel.gov/grid/wind-toolkit.html.

where n is the number of prediction days (in the sixth
year) and is equal to 90.

The performance measure based on the prediction in-
terval is the Winkler score (Winkler, 1972). Let [I1(s),
tir(s)] denote the 100(1 — «)% prediction interval for site
s at time T. The Winkler score is calculated as

F i (89~ 1)

if lt(s)<wt(s)<ut,(5)

10 (i069) — 1)+ 205) — wi(s)))
it wy(9) <1o(s)

13 (09 = Tu(s) + 2gl9) — (5D

if we,(s) > g (s).

Wide intervals and non-coverage of the true observa-
tions will increase the value of this performance measure.
Hence, lower values indicate better prediction perfor-
mance.

4.3. Parameter settings

For each site, the order of ARIMA(P,D,Q) was deter-
mined individually by AIC, as listed in Table C.6 in
Appendix B. The order of the VAR model was also iden-
tified by AIC, where VAR(14) had the lowest AIC among
VAR(1) to VAR(15). Accordingly, the highest order for
SVAR was set to 15. The tuning parameter A of SVAR, as
well as for GLOG-L and G-L, was determined by cross-
validation. Furthermore, wg in (7) was set to w, =
wolg|'’%, where wy and k > 1 were also determined by
cross-validation.

We also implemented GLOG-L with a mean structure,
namely GLOG-L,, where a linear regression model was
used to model the mean in (3) with temperature, air pres-
sure, and air density as covariates. To fit GLOG-L,, wind
speeds were first transformed to the Gaussian field. A lin-
ear regression model was then fitted to the transformed
data. Finally, the GLOG-L covariance matrix was estimated
from the residual process. Predictions were based on (3),
which were then transformed back to the non-Gaussian
field.
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Fig. 5. Average RMSE for the next wy = 18 time points at eight different sites.

Table 1

Comparison of prediction errors with different w;, and §; boldface numbers show optimal combinations.
wp\§ RMSE MAE

1 6 12 18 1 6 12 18

18 1.7225 1.7326 1.8042 1.7794 1.3746 1.3761 1.4434 1.3811
36 1.6028 1.5995 1.5946 1.6850 1.2711 1.2719 1.2650 1.2941
54 1.4881 1.4836 1.5552 1.5959 1.1848 1.1809 1.2369 1.2296
72 1.4306 1.4238 1.3977 1.5444 1.1277 1.1193 1.0992 1.1837
90 1.4516 1.4584 1.5309 1.5722 1.1537 1.1593 1.2159 1.2290

4.4. Setting w, and § to construct the data matrix for GLOG-
L

Note that to construct the data matrix for GLOG-L,
there is a trade-off in tuning § and wj in (4). Increasing &
results in a data matrix with a smaller N, but it increases
the independence between consecutive data points. In-
creasing w, increases the dimension of the covariance
matrix X, which allows longer temporal correlations to
play a role in predictions, but at the cost of making the
model more complex. This is the tradeoff between bias
and variance. Furthermore, we note that increasing w,
and hence the covariance matrix size, significantly in-
creases the overall computational complexity, as the per-
iteration complexity of the algorithm is O((w,+wy)?). The
effects of w, and § on prediction errors are illustrated in
Table 1.

Additionally, we present the CPU times required for
obtaining the GLOG-L estimate in Table 2. Calculations

were implemented on a MacBook Pro with a 2.40 GHz
8-core CPU and 32 GB of RAM.

The parameters were set to w, = 72 (of the previous
data points, which were in 20-minute resolution) and § =
12, which were determined by the lowest prediction error
over all combinations of w, € {18, 36, 54,72, 90} and
6 € {1,6, 12, 18}, resulting in N = 2725.

4.5. Numerical comparisons

4.5.1. Comparison based on point prediction performance
measures

In Table 3, we report the RMSE and MAE of the pre-
dictions for each site (averaged over time). GLOG-L per-
formed better than all other methods at six sites in terms
of the RMSE and seven sites in terms of the MAE. On
average over all sites, GLOG-L performed relatively better
than the other methods on both performance measures.
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Table 2

GLOG-L estimation times in seconds.
wp 8

1 6 12 18

18 77 78 77 79
36 208 206 201 210
54 410 410 411 422
72 736 696 722 764
90 1131 1179 1190 1147

Table 3

Comparison of RMSE (m/s) and MAE (m/s) for different methods.
Boldface numbers indicate the methods with the least prediction errors.

Site RMSE (m/s)

GLOG-L G-L GLOG-L, VAR SVAR ARIMA
1 1.260 1289 1325 1630 1.629 1.907
2 1.234 1273 1354 1581 1.575 1.853
3 1.265 1.306 1416 1.569 1.571 1.840
4 1.301 1.337 1426 1624 1.631 2.422
5 1.418 1435 1509 1789 1.799 2.621
6 1.566 1571 1.643 2.012 2.040 3.215
7 1.566 1.561 1.610 2.043  2.079 3.462
8 1572 1.563 1.588 2.024 2015 3.197
Mean 1.398 1417 1484 1.784 1.792 2.565
MAE (m/s)
1 0.978 0.988 1.048 1.304 1313 1.553
2 0.976 0.998 1.104 1264 1.265 1.489
3 1.001 1.026 1.147 1242 1252 1.475
4 1.019 1.041 1.126 1.305 1.310 2.022
5 1.116 1.133  1.193 1435 1444 2.200
6 1.229 1239 1.297 1.622 1.641 2.699
7 1.225 1.226 1.272 1.675 1.699 2.962
8 1.249 1.235 1.252 1.627 1.627 2.710
Mean 1.099 1.111  1.180 1434 1444 2.139

However, differences among GLOG-L, G-L, and GLOG — L,
were not large on these two measures.

In Fig. 5, we plot the RMSE at each predicted future
time point for all eight sites to compare the prediction
performance of GLOG-L, G-L, GLOG-L,, VAR, and SVAR.
The ARIMA model is omitted from the plot due to its poor
performance across the prediction horizon. Furthermore,
VAR and SVAR are plotted as one curve, as their values
were almost identical. At earlier time points, VAR had
a lower RMSE, while all other methods performed bet-
ter at later time points. GLOG-L, GLOG-L,, and G-L had
relatively similar performance, and GLOG-L performed
better than the other methods, especially at midrange
time points. Furthermore, GLOG-L performed better than
GLOG-L,, at earlier time points, which shows that the
mean regression model is unhelpful at short time hori-
zons.

To further compare the prediction results, we im-
plemented the Diebold-Mariano (DM) test (Diebold &
Mariano, 2002) to identify whether GLOG-L has better
predictive accuracy. Fig. 6 illustrates the DM test statistic
that compares the performance of G-L, GLOG-L,, and
VAR relative to the GLOG-L method, along with @ =
0.1, 0.05, 0.01 significance intervals. Note that a neg-
ative value of the DM statistic means that the prediction
of GLOG-L has a lower error at that time point. Needless

International Journal of Forecasting xxx (xXxx) Xxx

Table 4
Winkler score for different methods. Boldface numbers indicate the
methods with the lowest scores.

[ Site GLOG-L G-L GLOG-L, VAR SVAR ARIMA
1 5.132 5.166 5.659 5949 5.505 6.804
2 5.051 5.113 5.586 5.882 5412 6.732
3 5.051 5.097 5.545 5.887 5.445 6.646
4 5.190 5270 5.716 5.862  5.458 6.903

01 5 5.278 5.387 5.772 5997 5.608 7.012
6 5.872 6.026 6.354 6.631 6.216 7.913
7 5.992 6.157 6.514 6.799 6.381 8.116
8 5.798 5958 6.335 6.657 6.256 7.749

Mean 5.421 5522 5935 6.208 5785 7.235

1 5.983 6.016 6.539 6973 6.442 8.031
2 5.892 5954 6.448 6916 6.345 7.959
3 5.890 5936 6.398 6.923 6.389 7.870
4 6.043 6.126 6.588 6.886  6.389 8.217
5
6
7

0.05 6.137 6.262 6.652 7.015 6.523 8.361
6.843 7.024 7.357 7732  7.204 9.394
7.000 7.193 7.565 7936  7.398 9.643
6.767 6.955 7.361 7.752  7.247 9.210
Mean 6.319 6.433 6.864 7.267 6.742 8.586
1 7.548 7.583 8.203 8.928 8270 10.248
2 7.439 7.505 8.098 8.887 8.171 10.200
3 7.455 7.503 8.063 8.908 8.235 10.099
4 7.622 7.721 8.240 8.894 8238 10.658
0.01 5 7.761 7913 8.356 9.038 8.376 10.924
6 8.709 8935 9.319 9935 9226 12.265
7 8.960 9211 9.637 10.192 9.481 12.589

8.660 8.897 9.399 9931 9272 12.025
Mean 8.019 8.158 8.664 9339 8.659 11.126

to say, the differences are significant if the statistic lies
outside of the insignificance intervals. Except at earlier
time points, GLOG-L performed better than VAR at all
significance levels. Furthermore, at significance levels 0.1
and 0.05, GLOG-L performed better than G-L at midrange
time points, whereas they performed similarly at other
times. GLOG-L and GLOG-L,, performed similarly in rel-
ative terms except at earlier time points, where GLOG-L
performed better.

4.5.2. Comparison based on prediction interval performance
measure

In addition to the two point prediction performance
measures, we compared different methods based on the
Winkler score prediction interval performance measures.
Table 4 presents the averaged Winkler score for each site
at three different significance levels. As discussed above, a
smaller value of the Winkler score indicates a better cov-
erage of the true observation by the prediction interval or
a tighter interval. At all three significance levels, GLOG-L
had the lowest Winkler scores at all sites, which indicates
that GLOG-L achieves relatively better prediction intervals
compared to the other methods.

4.5.3. Impact of the wind direction on the GLOG-L method
Finally, to check the significance of the considered
wind direction in GLOG-L, we tested a new wind direc-
tion, opposite to the prevailing wind direction, namely
GLOG-L(opp). To compare the prediction accuracy, the DM
test for G-L and GLOG-L(opp) based on GLOG-L is plotted
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Fig. 6. Diebold-Mariano (DM) test for the next wy = 18 time points at eight sites.

in Fig. 7. At significance levels 0.1 and 0.05, the predic-
tion of GLOG-L was better than GLOG-L(opp), whereas at
some periods, GLOG-L was not significantly better than
G-L. Therefore, misidentified wind directions generally
degenerate the performance of the GLOG-L method.

Furthermore, we compared the sparsity pattern of the
estimated inverse covariance matrix by GLOG-L, G-L, and
GLOG-L(opp) (see Fig. 8). As expected, different learn-
ing methods (GLOG-L vs. G-L) and different hierarchical
structures (along with or opposite to the wind direc-
tion) resulted in different sparsity patterns in the inverse
covariance matrices.

5. Conclusions

In the context of wind forecasting by conditional distri-
bution based on spatiotemporal data, we proposed a new
method to estimate the inverse covariance matrix of the
Gaussian distribution for the transformed data, namely,
the GLOG-L estimate. This method requires minimizing
the negative log-likelihood function regularized with the
LOG penalty. The LOG penalty forces the sparsity pattern
of the optimal solution to follow a hierarchical struc-
ture, which conforms to wind dynamics known a priori.

Further, we proposed an ADMM to efficiently evaluate the
proximal mapping of the LOG penalty.

The proposed methodology was implemented and
tested in a case study pertaining to Texas using data from
eight different sites. Hierarchical sparsity structures were
constructed based on wind direction inferred from wind
roses obtained from these sites.

The prediction performance of the proposed method
was benchmarked against a number of other statistical
methods over different performance measures. In gen-
eral, the results showed the potential of the proposed
methodology as it takes into account wind dynamics.

While the proposed method may improve wind pre-
dictions when reasonably accurate estimates of the wind
directions are available, inconsistent wind directions gen-
erally deteriorate its performance. Hence, a robust exten-
sion of the underlying optimization problem for regions
with unstable wind directions could be a relevant future
research direction.
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Fig. 8. Sparsity patterns of the inverse covariance matrices estimated by GLOG-L (along with and opposite to the wind direction) and G-L methods.

Appendix A. Solution to subproblem (9a) in the GLOG-L
problem

Consider problem (9a) with X instead of X! as the
variable for simplicity of notation. From the first-order
optimality condition, we have
pX —X 1= p(x>* —Uuky -5, (A1)
with an implicit constraint X > 0. The idea is to find
a solution that satisfies the above optimality condition
and is also positive definite. Calculating the eigenvalue
decomposition of the right-hand side, we get p(X* —
U¥) — S = Qdiag(A)Q", where A = (A4, ...
and QQ T

) )\wlﬁ—wf )T|
Q"Q = I Multiplying (A.1) by QT from the

11

left and Q from the right, we get
pX — X1 = diag(A),

where X = QTXQ. Given that the right-hand side in the
above equation is a diagonal matrix, we need to find Xj;
that satisfy pX;; — 1/X = A;. The solution is

)ui+,/)ul»2+4p

X =

ii 2p
It follows that X = QXQ T satisfies the optimality condi-
tion (A.1) and is positive definite; hence, it is the solution
to (9a).
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Table B.5
Wind sites in Texas and their coordinates.
Site number Latitude Longitude
1 32.002563 —99.926147
2 32.055130 —99.972046
3 32.108597 —99.996613
4 32.179260 —100.043732
5 32.249004 —100.112366
6 32.301521 —100.158600
7 32.354027 —100.204895
8 32.388382 —100.250092
Table C.6
Selected orders for ARMA models in the Texas case study.
Site (P,D,Q)
1 (0,1,4)
2 (0,1,5)
3 (1,1,2)
4 (0,1,4)
5 (2,1,0)
6 (3,1,2)
7 (1,1,4)
8 (0,1,5)

Appendix B. Wind sites in Texas
See Table B.5.

Appendix C. Selected ARIMA(P,D,Q) model orders for
the wind sites in Texas

See Table C.6.
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