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STATISTICAL PARADISES AND PARADOXES IN BIG DATA (I):
LAW OF LARGE POPULATIONS, BIG DATA PARADOX,

AND THE 2016 US PRESIDENTIAL ELECTION1

BY XIAO-LI MENG

Harvard University

Statisticians are increasingly posed with thought-provoking and even
paradoxical questions, challenging our qualifications for entering the statisti-
cal paradises created by Big Data. By developing measures for data quality,
this article suggests a framework to address such a question: “Which one
should I trust more: a 1% survey with 60% response rate or a self-reported
administrative dataset covering 80% of the population?” A 5-element Euler-
formula-like identity shows that for any dataset of size n, probabilistic or
not, the difference between the sample average Xn and the population aver-
age XN is the product of three terms: (1) a data quality measure, ρR,X , the
correlation between Xj and the response/recording indicator Rj ; (2) a data
quantity measure,

√
(N − n)/n, where N is the population size; and (3) a

problem difficulty measure, σX , the standard deviation of X. This decompo-
sition provides multiple insights: (I) Probabilistic sampling ensures high data
quality by controlling ρR,X at the level of N−1/2; (II) When we lose this con-
trol, the impact of N is no longer canceled by ρR,X , leading to a Law of Large
Populations (LLP), that is, our estimation error, relative to the benchmarking
rate 1/

√
n, increases with

√
N ; and (III) the “bigness” of such Big Data (for

population inferences) should be measured by the relative size f = n/N , not
the absolute size n; (IV) When combining data sources for population infer-
ences, those relatively tiny but higher quality ones should be given far more
weights than suggested by their sizes.

Estimates obtained from the Cooperative Congressional Election Study
(CCES) of the 2016 US presidential election suggest a ρR,X ≈ −0.005 for
self-reporting to vote for Donald Trump. Because of LLP, this seemingly mi-
nuscule data defect correlation implies that the simple sample proportion of
the self-reported voting preference for Trump from 1% of the US eligible
voters, that is, n ≈ 2,300,000, has the same mean squared error as the cor-
responding sample proportion from a genuine simple random sample of size
n ≈ 400, a 99.98% reduction of sample size (and hence our confidence). The
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CCES data demonstrate LLP vividly: on average, the larger the state’s voter
populations, the further away the actual Trump vote shares from the usual
95% confidence intervals based on the sample proportions. This should re-
mind us that, without taking data quality into account, population inferences
with Big Data are subject to a Big Data Paradox: the more the data, the surer
we fool ourselves.

1. Prologue: Paradise gained or lost? Big Data, however the term is defined
or (un)appreciated, has posed a paradoxical situation for Statistics and statisti-
cians, in both external perceptions and internal reflections. Almost since the dawn
of statistics, the dominating mathematical tool for justifying statistical methods
has been large-sample asymptotics. Neither the Law of Large Numbers nor the
Central Limit Theorem, two pillars of the vast statistical palace, could be estab-
lished without such asymptotics. Surely then we statisticians must be thrilled by
the explosive growth of data size, justifying all the large-sample asymptotic results
out there. A statistical paradise would seem to have arrived.

The reality appears to be the opposite. The size of our data greatly exceeds the
volume that can be comfortably handled by our laptops or software, and the variety
of the data challenges the most sophisticated models or tools at our disposal. Many
problems demand the type of velocity that would make our head spin for both data
processing and analysis. But the worst of all, it appears that the more we lament
how our nutritious recipes are increasingly being ignored, the more fast food is
being produced, consumed and even celebrated as the cuisine of a coming age.
Indeed, some of our most seasoned chefs are working tirelessly to preserve our
time-honored culinary skills, while others are preparing themselves for the game
of speed cooking. Yet others need a daily nightcap to ease the nightmare of the
forever lost statistical paradise, even before it actually arrives.

Am I too pessimistic or cynical? I’ll let you be the judge, as you know best
to which group you belong. As for my group membership, I share the concern of
paradise lost if too many of us are capable of only reminiscing about our (not too)
good old days. But I see a paradise, or even paradises, gained if there is a sufficient
number of us who can engage in what we have advertised to be the hallmark of our
discipline, that is, principled thinking and methodology development for dealing
with uncertainty. Fast food will always exist because of the demand—how many
of us have repeatedly had those quick bites that our doctors have repeatedly told
us stay away from? But this is the very reason that we need more people to work
on understanding and warning about the ingredients that make fast food (methods)
harmful; to study how to reduce the harm without unduly affecting their appeal;
and to supply healthier and tastier meals (more principled and efficient methods)
that are affordable (applicable) by the general public (users).

This is how I see paradises arising. Big Data have given us many fascinating
and challenging research problems, for which we statisticians have multiple—yet
unique—roles to play. To solve them well, typically a team is needed, consisting
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of computer scientists, domain experts, (applied) mathematicians, statisticians, etc.
Our century-long contemplation of principled assessments of uncertainty should,
at the very least, help the team to greatly reduce unnecessary trials and errors
by avoiding statistical fallacies, unrealistic expectations, misguided intuitions, and
misleading evaluations. Re-inventing the wheel is a well-known phenomenon in
almost any field and it is a common source of unhappiness in academia. But from
a practical and societal point of view, the real damage occurs when the re-invented
wheels are inferior, increasing the frequency of serious or even fatal accidents.
Quality control is thus an important role for statisticians to carry out, as well as a
force for innovation because real advances occur more from the desire to improve
quality than quantity.

Indeed, the current project started when I was asked to help with statistical
quality control by an agency. Among the first questions was “Which one should
we trust more, a 5% survey sample or an 80% administrative dataset?”, which led
to the development of the data defect index, a main subject of this paper. Hence
this paper focuses on population inferences from Big Data. The harder problem
of individualized predictions with Big Data will be treated in the sequel, Meng
(2018). For population inferences, a key “policy proposal” of the current paper is
to shift from our traditional focus on assessing probabilistic uncertainty (e.g., in a
sample mean) in the familiar form of

Standard Error ∝ σ√
n

to the practice of ascertaining systematic error in non-probabilistic Big Data cap-
tured by

Relative Bias ∝ ρ
√

N.

Here “Relative Bias” is the bias in the sample mean relative to a benchmarking
standard error, σ and n are standard deviation and sample size, and N is the long
forgotten population size. The unfamiliar term ρ is a data defect correlation, de-
fined in this paper. We demonstrate via theoretical and empirical evidence that this
shift is necessary if we want our error assessments—and our roles as experts on un-
certainty quantifications—to remain relevant for Big-Data population inferences.

Specifically, Section 2 introduces a fundamental identity that quantifies the
tradeoff between data quantity and data quality for using sample averages to esti-
mate population averages, and correspondingly the concept of data defect index.
Section 3 uses insights generated by the identity to reveal troubling phenomena
arising from low-quality Big Data, especially a Law of Large Populations and a
Big Data Paradox. Section 4 then applies these concepts and results to binary
outcomes and to the 2016 US presidential election, which reveals a plausible ex-
planation for our collective pre-election over-confidence (and hence post-election
surprise). Section 5 makes a pedagogical link to the well-known Euler identity in
mathematics, and discusses the use of the fundamental identity for Monte Carlo
and Quasi Monte Carlo integrations, as well as for improving data confidentiality.
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2. A fundamental identity for data quality-quantity tradeoff.

2.1. Motivating questions. “Which one should I trust more: a 1% survey with
60% response rate or a non-probabilistic dataset covering 80% of the population?”
Such a question was posed, for example, by Professor Thomas Louis in his pre-
sentation of Keiding and Louis (2016) at the Joint Statistical Meetings (JSM) 2015
in Seattle. Raised prior to the arrival of the era of Big Data, this question would
likely be treated as an academic curiosity—how often can we get a hold of 80% of
a population? Isn’t the whole idea of survey sampling to learn about a population
without having to record a large chunk of it?

Indeed, learning reliably about a population via probabilistic sampling a
soupçon of it was a revolutionary idea at the turn of the 19th century, an idea that
took essentially half a century to be (almost) universally accepted; see Bethlehem
(2009) and Fuller (2011), the latter of which is also a rich source of theory and
methods in sampling surveys. A good way to explain this seemingly magical power
is to analogize it to the tasting of soup—as long as the soup is stirred sufficiently
uniformly, a spoonful is all it takes to ascertain the flavor of the soup regardless
of the size of its container. A tiny high quality sample can provide as much in-
formation as many large ones with low quality, and here the quality is measured
by the representativeness, achieved via “uniform stirring.” For most human (and
other) populations, “uniform stirring” is not feasible, but probabilistic sampling
does essentially the same trick.

Therefore, the question raised above is about the tradeoff between data quantity
and quality. This tradeoff is even clearer in a question raised in another presentation
six years earlier: “Integrated and Synthetic Data: Part of Future Statistics?” by Dr.
Jeremy Wu, then the Director of the LED (Local Employment Dynamics) project
at the US Census Bureau. After reviewing the long history of surveys and how the
study of statistics gained its vitality by showing “A 5% random sample is ‘better’
than 5% non-random sample in measurable terms”, Dr. Wu asked, “Is an 80%
non-random sample ‘better’ than a 5% random sample in measurable terms? 90%?
95%? 99%?”

The qualitative answer clearly is “it depends”, on how non-random the larger
sample is. We would imagine that a small departure from being random should not
overwhelm the large gain in sample size. But how small must it be? And indeed
how to quantify “better” or being “non-random”? The question raised by Professor
Louis is even harder, because the quality of the probabilistic survey itself has been
degraded by the non-response mechanism, typically a non-probabilistic process in
itself, creating the well-known problem of a non-ignorable missing-data mecha-
nism [Heitjan and Rubin (1990), Rubin (1976)]. Therefore a key question is how
to compare two datasets with different quantities and different qualities?

Such questions become increasingly relevant as we venture deeper into the Big
Data era, a signature of which is the availability of many datasets covering large
percentages of their respective populations, yet they were never intended to be
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probabilistic samples. For example, the LED project used unemployment insur-
ance wage records, which cover more than 90% of the US workforce, and the
records were kept because of law (but not the law of large numbers), and it is
known to exclude all federal employers. It clearly would be foolish to ignore such
big datasets because they are not probabilistic or representative. But in order to
use them, we minimally need to know how much they can help or whether they
can actually do more harm than help. The following development was built upon
an earlier idea in Meng (2014), where an approximate identity was obtained be-
cause of the use of the propensity instead of the actual data recording indicator, as
defined below.

2.2. An identity linking data quantity, data quality and problem difficulty. Let
us start by considering a finite population, as in virtually all real-life problems,
with individuals (not necessarily human) indexed by j = 1, . . . ,N . Suppose the in-
dividual attributes of interests are coded into a (multi-dimensional) variable X. As
is well known, many population quantities of interest can be expressed as the pop-
ulation average of {Gj ≡ G(Xj), j = 1, . . . ,N}, denoted by GN , by choosing an
appropriate function G, such as polynomial functions for moments and indicator
functions for distributions or quantiles; for simplicity of notation, we will assume
G maps X to the real line. Therefore, when we have a sample, say {Xj, j ∈ In},
where In is a size n subset of {1, . . . ,N}, the most routinely adopted estimator of
GN is the sample average [for good reasons as it is often both design consistent
and model-based consistent; see Firth and Bennett (1998)],

(2.1) Gn = 1

n

∑
j∈In

Gj =
∑N

j=1 RjGj∑N
j=1 Rj

,

where Rj = 1 for j ∈ In and Rj = 0 otherwise. Here the letter “R”, which leads
to the R-mechanism, is used to remind ourselves of many possible ways that a
sample arrived at our desk or disk, most of which are not of a probabilistic sam-
pling nature. For Random sampling, R ≡ {R1, . . . ,RN } has a well-specified joint
distribution, conditioning on the sample size

∑N
j=1 Rj = n. This is the case when

we conduct probabilistic sampling and we are able to record all the intended data,
typically unachievable in practice, other than with Monte Carlo simulations (see
Section 5.3).

For many Big Data out there, however, they are either self-Reported or admin-
istratively Recorded, with no consideration for probabilistic sampling whatsoever.
Even in cases where the data collector started with a probabilistic sampling de-
sign, as in many social science studies or governmental data projects, in the end
we have only observations from those who choose to Respond, a process which
again is outside of the probabilistic sampling framework. These “R-mechanisms”
therefore are crucial in determining the accuracy of Gn as an estimator of GN ; for
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simplicity, hereafter the phrase “recorded” or “recording” will be used to represent
all such R-mechanisms.

It is thus entirely possible that nothing in (2.1) is probabilistic. The Xj ’s and
hence Gj ’s are fixed, as usual with a finite-population framework [see for exam-
ple Royall (1968)]. The Rj ’s can be fixed as well, that is, no matter how often we
repeat the process (as a thought experiment), each individual will either always
choose to report or never report. This, however, does not render our beloved prob-
abilistic approach obsolete. Far from it, a simple probabilistic argument provides a
deep insight into how to quantify the recording mechanism, and how it affects the
accuracy of Gn.

The key here is to express the actual error Gn − GN in statistical terms that can
generate insights. The standard tool of expressing a sample average as an expec-
tation with respect to an empirical distribution comes in handy for this purpose.
Specifically, for any set of numbers {A1, . . . ,AN }, we can view it as the support
of a random variable AJ induced by the random index J defined on {1, . . . ,N}.
When J is uniformly distributed, EJ (AJ ) = ∑N

j=1 Aj/N ≡ AN , the usual average.

Consequently, the difference between Gn and GN can be written as

Gn − GN = EJ (RJ GJ )

EJ (RJ )
− EJ (GJ ) = EJ (RJ GJ ) − EJ (RJ )EJ (GJ )

EJ (RJ )
(2.2)

= CovJ (RJ ,GJ )

EJ (RJ )
,

where EJ and CovJ are all taken with respect to the uniform distribution on J ∈
{1, . . . ,N}. This is a trivial variation of the key identity for bounding the bias of
ratio estimators [see Hartley and Ross (1954), Meng (1993)]. Yet it holds critical
insights we need in order to quantify our estimation error with both probabilistic
and non-probabilistic samples, that is, with any R-mechanism.

To see this, we first let ρR,G = CorrJ (RJ ,GJ ) be the (population) correlation
between RJ and GJ , f = EJ (RJ ) = n/N be the sampling rate, and σG be the
standard deviation of GJ , all defined according to the uniform distribution of J .
Then, using the fact that the variance of the binary RJ is VJ (RJ ) = f (1 − f ), we
have from (2.2) that

(2.3) Gn − GN = ρR,G︸ ︷︷ ︸
Data Quality

×
√

1 − f

f︸ ︷︷ ︸
Data Quantity

× σG︸︷︷︸
Problem Difficulty

.

This identity tells us that there are three—and only three—factors that determine
our estimation error. The obvious factor of data quantity is captured by (1 − f )/f

in the second term on the right-hand side of (2.3), which renders precisely zero
error when we record (accurately) the entire population (f = 1) and infinite error
when we record no data (f = 0). Another obvious factor is the problem difficulty
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captured by σG or equivalently by σ 2
G. If GJ is a constant (i.e., σ 2

G = 0), then it
is the easiest estimation problem, because n = 1 is sufficient to render zero error.
The more variation among Gj ’s, that is, the larger the σG, the more difficult to
estimate GN accurately.

As we shall demonstrate via theoretical and empirical evidence throughout this
paper, the most critical—yet most challenging to assess—among the three is data
quality. Identity (2.3) establishes that for sample averages, the data quality is cap-
tured by the data defect correlation ρR,G because it precisely measures both the
sign and degree of selection bias caused by the R-mechanism. Intuitively, in the
absence of any selection bias, such as under a genuine probabilistic sampling, the
chance that a particular value of G is recorded/reported or not should not depend
on the value itself. Consequently, ρR,G should be zero on average (over the poten-
tial randomness in R). On the other hand, if larger values of G have higher/lower
chances to be recorded, then Gn overestimates/underestimates GN . Such tendency
is indicated by the sign of ρR,G, and the degree of the bias is captured by the
magnitude of ρR,G (for given data quantity and problem difficulty).

It is important to emphasize that the identity (2.3) is exact and truly free of any
mathematical or probabilistic assumption because the right-hand side of (2.3) is
merely an algebraic re-expression of its left-hand side. Statistically, (2.3) is appli-
cable whenever the recorded values of G can be trusted; for example, if a response
is to vote for Clinton, it means that the respondent is sufficiently inclined to vote
for Clinton at the time of response, not anything else. Otherwise we will be deal-
ing with a much harder problem of response bias, which would require strong
substantive knowledge and model assumptions [see, e.g., Liu et al. (2013)]. See
Shirani-Mehr et al. (2018) for a discussion of other types of response bias that
contribute to the so-called Total Error of survey estimates.

Under the assumption of no such response bias, (2.3) allows us to express the
mean-squared error (MSE) of Gn, MSER(Gn) = ER[Gn − GN ]2, over any R-
mechanism,2 as

(2.4) MSER(Gn) = ER
[
ρ2

R,G

] ×
(

1 − f

f

)
× σ 2

G ≡ DI × DO × DU,

where ER denotes the expectation with respect to any chosen distribution of R

but conditioning on the sample size
∑N

j=1 Rj = n, as is typical with finite sam-
ple calculations. Here the notation of Ds—with subscripts “I O U” for easy
memorization—is adopted both for simplicity and for potential generalizability
going beyond estimating population means. For notation simplicity, we have sup-
pressed, but do not forget, the dependence of DI and DU on G. Identity (2.4)
reinforces the three ways of reducing the MSE:

2This includes the trivial case where R is deterministic, by using a singleton-mass probability
distribution.
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(I) Increase the data quality by reducing DI = ER[ρ2
R,G], a data Defect In-

dex3—this is the aim of all probabilistic sampling designs, as we shall discuss in
Section 3.1;

(II) Increase the data quantity by reducing the Dropout Odds:
DO = (1 − f )/f —Big Data promises this, but unfortunately it is far less effective
than reducing DI —see Section 3.2;

(III) Reduce the difficulty of the estimation problem by reducing the Degree of
Uncertainty DU = σ 2

G—this is typically actionable only with additional informa-
tion; see Section 5.1.

It is of critical importance to recognize explicitly that the concept of data quality
must be a relative one, and more precisely it should be termed as data quality for
a particular study. This is because any meaningful quantification of data quality,
such as the data defect index (d.d.i.) DI we just defined, must depend on (1) the
purposes of the analysis—a dataset can be of very high quality for one purpose
but useless for another (e.g., the choice of the G function4); (2) the method of
analysis (e.g., the choice of sample average instead of sample median); and (3)
the actual data the analyst includes in the analysis, which is an integrated part of
the R-mechanism. As a demonstration, Section 3.4 will provide an identity that
generalizes (2.3)–(2.4) to weighted estimators, which illustrates how data quality
is affected by the weights.

We also emphasize that assessing the d.d.i. DI is relevant even if we cannot
determine whether the defects are mostly due to data collection or due to data
analysis. This is because either way it can help inform future studies where a sim-
ilar integrated process of data collection and analysis is repeated. Section 4.2 will
illustrate this point in the context of the 2016 US general election, with the aim of
gaining a 2020 vision for the next US presidential election. In the context of non-
response or more generally missing data, d.d.i. can also be used as a measure of the
degree of “nonignorability”, in the same spirit of index of sensitivity to nonignor-
ability (ISNI) proposed in Troxel, Ma and Heitjan (2004). The main difference is
that DI is defined with respect to sample mean and hence it requires no likelihood
specification, whereas ISNI aims to measure the rate of change of the parametric
likelihood inference as one moves away from the assumption of ignorability.

3In Meng (2014), ER
[
ρR,G

]
was termed as “data defect index”. Whereas this earlier definition has

the virtue of having zero defect for equal-probability sampling, it masks the impact of the population
size N . The updated definition via ER

[
ρ2
R,G

]
resolves this problem, and it connects directly with

MSE.
4An excellent question raised by Dr. Alex Adamou during the 2016 Royal Statistical Society (RSS)

conference is how to define d.d.i. when our estimand is population maximum or minimum. In general,
defining appropriate d.d.i. for estimators and estimands other than sample and population averages
is currently an open problem.
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2.3. Understanding d.d.i.: Data defect index. Among the three terms defined
in (I)–(III), DO = (1 − f )/f and DU = σ 2

G are functions of traditionally famil-
iar measures, and their magnitudes are well understood: both can vary freely on
[0,∞) with no mathematical constraints between them in general. In comparison,
the d.d.i. DI = ER[ρ2

R,G] is new. As such, readers may have (at least) three ques-
tions:

(A) What are the likely magnitudes of DI , when we have probabilistic sam-
ples?

(B) How do we calculate or estimate DI for non-probabilistic data?
(C) Theoretically, can DI take any value in [0,1], for a given DO and DU ?

To address question (A), let us consider the most basic building block in proba-
bilistic sampling, the simple random sampling (SRS). Under SRS, Gn is unbiased
for GN and its mean squared error (MSE) is the same as its variance:

(2.5) VSRS(Gn) = 1 − f

n
S2

G with S2
G = N

N − 1
σ 2

G,

where (1 − f ) is known as the “finite sample correction” [e.g., Kish (1965)]. Sub-
stituting (2.5) to the left-hand side of (2.4) immediately reveals that the d.d.i. for
any SRS is given by

(2.6) DI ≡ ESRS
(
ρ2

R,G

) = 1

N − 1
.

In Section 3, we will show that this DI ∝ N−1 phenomenon holds for probabilistic
sampling in general, and hence DI will be vanishingly small for large populations.
It is this finding, which will be fully explored in later sections, that provides the
critical insight to most troubles for dealing with non-probabilistic Big Data sets
when their DI ’s do not vanish with N−1.

The question (B) has a short answer: we cannot estimate DI from the sample
itself. By definition, everyone in the sample has RJ = 1, and hence there is no
direct5 information in the sample for estimating ρR,G. Logically, this has to be
the case because if there were meaningful ways to estimate ρR,G from the same
sample, identity (2.3) would then immediately permit us to estimate the actual
error Gn − GN , which is impossible without any knowledge/assumption about
the R-mechanism. However, this observation also implies that when we are able
to ascertain the actual error, such as post-elections, we can ascertain ρR,G and
hence DI , as demonstrated in Section 4.2 using a polling dataset from 2016 US
presidential election. The hope here is that because ρR,G and hence DI captures
individual response behaviors, there are patterns and lessons to be learned that
can help to generate more reliable prior information for future elections. More

5Indirect information can exist because of the mathematical constraints imposed by the known
sampling rate f and marginal information about G, as shall be discussed shortly.
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generally, by borrowing information from similar datasets (e.g., from historical or
neighboring studies), we may be able to construct a reasonable prior for ρR,G or
DI , which minimally would permit us to conduct an informative sensitivity study.
For example, the state-wise election data from the 2016 US presidential election
allow us to form histograms of ρR,G (see Section 4.2), which can be used as a
plausible prior distribution of ρR,G for the 2020 US presidential election.

For question (C), the answer is more involved, because ρR,G is determined by
the joint distribution of {RJ ,GJ } induced by the uniform distribution over J , but
DO and DU are characteristics of the marginal distributions of RJ and of GJ ,
respectively. Although marginal means and variances (e.g., f,σ 2

G) are not often
perceived to affect correlations (e.g., ρR,G), in general they do impose restrictions
because of the Hoeffding identity [Höffding (1940)]

(2.7) Cov(X,Y ) =
∫ ∫ [

FX,Y (x, y) − FX(x)FY (y)
]
dx dy

and the Fréchet bounds [Fréchet (1951)]

(2.8) max
{
FX(x) + FY (y) − 1,0

} ≤ FX,Y (x, y) ≤ min
{
FX(x),FY (y)

}
,

where FX,Y is a joint cumulative distribution function (CDF) with FX and FY be-
ing its two marginal CDFs. The restriction can be particularly severe (mathemat-
ically) with discrete variables, especially binary ones. To see this, suppose Gj is
also binary, for example, Gj = 1 if the j th person plans to support Donald Trump
and Gj = 0 otherwise. Let pG = PJ (GJ = 1) and OG = pG/(1 −pG), that is, the
odds for voting for Trump. Then, as a special case of Hoeffding–Fréchet bounds,
we have

(2.9) −min
{√

DO

OG

,

√
OG

DO

}
≤ ρR,G ≤ min

{√
OGDO,

1√
OGDO

}
,

where the upper bound is achieved by RJ = GJ (e.g., a person responds to the
survey if and only if the person plans to vote for Trump), and the lower bound by
RJ = 1 − GJ (e.g., a person responds if and only if the person does not plan to
vote for Trump). Figure 1 helps to visualize (2.9) in terms of the restrictions on
ρR,G as imposed by pG and f , where we see that the restrictions are more severe
when either f or pG becomes extreme, that is, very close to zero or one.

As a numerical illustration, if we take OG = 1, and DO = 99 (e.g., 1% of the
voter population responded), then (2.9) yields |ρR,G| ≤ 0.1005. Whereas such
bounds might seem very restrictive, we will see shortly, both from theory (Sec-
tion 3.1) and from the 2016 US election data (Section 4.2, especially Figure 8),
that they are far looser than likely in practice, as otherwise our sample results
would be essentially useless. Nevertheless, the existence of these bounds suggests
caution when we intuitively consider the “smallness” of ρR,G, or when we set val-
ues of DI for theoretical investigations. We must always check if our choices of



STATISTICAL PARADISES AND PARADOXES IN BIG DATA (I) 695

FIG. 1. The shadowed region in the 3D plot depicts the permissible values of {ρR,G,pG,f } as
determined by (2.9). The restrictions become more severe for ρR,G as {f,pG} moves further away
from the line f = pG for ρR,G > 0 or from the line f = 1 − pG for ρR,G < 0. The 2D plots show
several slices, explicating further how {pG,f } restricts ρR,G.

“I O U” correspond to impossible scenarios, or more importantly, to extreme sce-
narios. For the rest of this article, such a caution is always exercised, and links to
more familiar measures (e.g., underreporting probabilities) are presented whenever
possible.

3. Compensating for quality with quantity is a doomed game.

3.1. A law of large populations? Under a probabilistic sampling, a central
driving force for the stochastic behaviors of the sample mean (and alike) is the
sample size n. This is the case for the Law of Large Numbers (LLN) and for the
Central Limit Theorem (CLT), two pillars of theoretical statistics, and of much of
applied statistics because we rely on LLN and CLT to build intuitions, heuristic
arguments, or even models. However, identity (2.3) implies that once we lose con-
trol of probabilistic sampling, then the driving force behind the estimation error is
no longer the sample size n, but rather the population size N . Specifically, (2.3)
and (2.5) together imply that

(3.1) Zn,N ≡ Gn − GN√
VSRS(Gn)

= ρR,G

√
1−f
f

σG√
1−f

n
S2

G

= √
N − 1ρR,G.

We emphasize that, although the Z notation is used above to highlight its connec-
tion with the usual Z-score, the “Z-score” here is a nominal one because the ac-
tual MSE of Gn can be very different from its benchmark under SRS, VSRS(Gn).
Indeed, identity (3.1) tells us exactly how they differ, a statistical insight which
perhaps deserves to be labeled as a statistical law.
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Law of Large Populations (LLP) Among studies sharing the same (fixed) aver-
age data defect correlation ER(ρR,G) 	= 0, the (stochastic) error of Gn, relative to
its benchmark under SRS, grows with the population size N at the rate of

√
N .

More precisely, (3.1) tells us that the exact error of the sample mean, as an esti-
mator of the population mean, is

√
N − 1ρR,G away from zero in the unit of SRS

standard error.
The LLP can also be expressed in terms of the so-called design effect [Deff; Kish

(1965)], or more appropriately the “lack-of-design effect” for non-probabilistic
Big Data, which is simply ER(Z2

n,N):

(3.2) Deff = ER[Gn − GN ]2

VSRS(Gn)
= (N − 1)ER

(
ρ2

R,G

) = (N − 1)DI .

Therefore, under the mean-squared error (MSE) criterion, the design effect of any
R-mechanism, with or without any deliberate (probabilistic) design, is exactly
(N − 1)DI . It is worth noting that, traditionally, the design effect has been de-
fined in terms of variance. But for Big Data, the variance is typically negligible
(or even exactly zero if we treat the R-mechanism as deterministic), which makes
understanding and assessment of the systematic bias induced by R-mechanism so
critical, because it dominates the MSE. Furthermore, like the concept of d.d.i., in
general, the effect of sampling design is estimator-dependent. Nevertheless, it is a
common practice in the literature to define Deff with respect to sample mean, as
the most basic estimator to benchmark the impact of a probabilistic sample design,
which controls the data quality. It is therefore natural to adopt the same estimator as
we extend the notion of Deff to cover an arbitrary R-mechanism. From a practical
perspective, the great algebraic simplicity of (3.1), that is, Zn,N = √

N − 1ρR,G,
also supports the use of sample mean as the benchmarking estimator for data qual-
ity, as well as the use of its standard error under SRS as the yardstick unit for com-
paring estimation errors. The use of SRS yardstick also has a deeper reason. The
notion of sample size, when used as the sole index of information, is meaningful
only when all samples of the same size (from a common population) are proba-
bilistically indistinguishable, that is, when Pr(R|∑N

j=1 Rj = n) depends only on
n and N , which implies SRS.

To state LLP precisely in terms of Deff, let us imagine that we have a sequence
of populations with increasing sizes {N�, � = 1,2, . . .} such that lim�→∞ N� = ∞,
but with constant sampling rate f > 0 (and problem difficulty DU = σ 2

G). This
induces a sequence of sample sizes n� = f N� → ∞. This setting permits us to use
common notation such as AN = O(BN) and AN = o(BN), which mean, respec-
tively, lim sup�→∞(|AN |/|BN |) < ∞ and lim sup�→∞(|AN |/|BN |) = 0. With this
notation, the identity (3.2) immediately implies that DI = O(N−1) if and only if
Deff = O(1), which is the same as MSER(Gn) = O(n−1) because of (2.5). Con-
sequently, we have
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THEOREM 1. For a fixed sampling rate 0 < f < 1 and problem difficulty
DU = σ 2

G, the following three conditions are equivalent for any R-mechanism:

(1) It has a finite design effect: Deff = O(1);
(2) The MSE of the sample mean decreases at the n−1 rate: MSER(Gn) =

O(n−1);
(3) Its d.d.i. for the sample mean is controlled at the N−1 level: DI = O(N−1).

This result shows explicitly that in order for the sample average to enjoy the
usual n−1 rate for its MSE, we must control its d.d.i. at the rate of N−1, or equiva-
lently the data defect correlation ρR,G at the (stochastic) rate of N−1/2, regardless
of the choice of G (as long as σG is finite and fixed). All known probabilistic
sampling schemes are designed to achieve condition (1) and equivalently (2) [see
Fuller (2011)], and hence the corresponding DI = O(N−1) by Theorem 1, regard-
less of the sampling rate f or the choice of estimand G. This invariance to f or
G is critical for general data quality assurance. It is not difficult to speculate that
few haphazard or individually driven R-mechanism can possess such invariance
properties unless it is effectively equivalent to a probabilistic sampling, for ex-
ample, an individual decides to answer or not by flipping a coin (which does not
need to be fair, as long as the mechanism of choosing the J th coin is independent
of GJ ). For large populations, such as the US eligible voter population, achieving
ρR,G ≈ N−1/2 for arbitrary sampling rate f without probabilistic sampling (equiv-
alent) requires a miracle. For example, for the 2016 US population of actual voters,
N ≈ 1.4×108. To reach ρR,G ≈ N−1/2 then requires ensuring ρR,G ≈ 8.4×10−5,
an extremely small correlation coefficient to be guaranteed from a self-regulated
selection mechanism.

Nevertheless, it is worth pointing out that when f is extremely close to one or
zero, DI = O(N−1) can be achieved without deliberate probabilistic sampling.
For example, for binary G such that pG = PJ (GJ = 1) = 1/2, we see from (2.9)
that for any R-mechanism,

(3.3) DI ≤ min
{

f

1 − f
,

1 − f

f

}
= min

{
n

N − n
,
N − n

n

}
.

Therefore, if n� or N� − n� is bounded by a constant as N� grows to infinity,6 then
DI = O(N−1). Intuitively, when nearly all Rj ’s take the same value, either one or
zero, then its correlation with any other variable that is not controlled by n cannot
be significantly far from zero. But typical situations of Big Data are exactly outside
of that “comfort” zone, that is, the sampling rate f is neither close to zero, as in
traditional surveys, nor close to one, as in a census.

6This phenomenon clearly cannot happen when we assume the sampling rate f = n�/N� is invari-
ant to �.
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Some readers might find the symmetry displayed in (3.3) counterintuitive, be-
cause it seems to suggest that a sample with size n has the same data defect as
a sample with size N − n. Shouldn’t the latter be far more informative than the
former, especially as n is near zero? This symmetry is not a bug, but a feature of
d.d.i., because it separates the issue of data quality from the accumulation of in-
formation due to data quantity. As far as a selection mechanism goes, selecting n

individuals takes the same scheme/effort regardless whether later they are assigned
to be respondents or non-respondents. The difference in the amount of information
in the resulting datasets is an issue of data quantity, captured by DO = (N −n)/n,
no longer symmetric with respect to n and N − n. Recall the identity (2.4) says
that the difficulty-standardized MSE, MSER(Gn)/σ

2
G, is controlled by the product

DIDO . From (3.3), this product is bounded above by (1 − f )2/f 2 when f > 1/2,
but the bound becomes the (rather trivial) constant 1 when f ≤ 1/2. Therefore, for
the case underlying (3.3), the product goes to zero only when f → 1, despite the
fact that DI goes to zero whenever f → 1 or f → 0. In the latter case, f → 0 is
canceled out in the product by DO = (1 − f )/f → ∞. This fact illustrates once
more the importance to consider the tradeoff between data quality and data quan-
tity as captured by the product DIDO , instead of each term on its own.

3.2. A butterfly effect: The return of the long-forgotten monsterN . To quantify
how much damage a seemingly small ρR,G can cause, we use identity (2.4) to
calculate the effective sample size neff of a Big Data set by equating the MSE of
its estimator Gn of (2.1) to the MSE of the SRS estimator with the sample size
neff. By (2.4) and (2.5), this yields

(3.4) DIDO =
(

1

neff
− 1

N

)(
N

N − 1

)
.

Let n∗
eff = (DODI )

−1, then (3.4) implies that

(3.5) neff = n∗
eff

1 + (n∗
eff − 1)N−1 .

Under the (trivial) assumption that n∗
eff ≥ 1, we then have

(3.6) neff ≤ n∗
eff = f

1 − f
× 1

DI

= n

1 − f
× 1

NDI

,

which demonstrates clearly that for probabilistic samples the impact of N on n∗
eff

(and hence on neff) is canceled out by DI because NDI = O(1), a consequence
of Theorem 1. However, once7 DI = O(1), however small, NDI increases with
N quickly, leading to a dramatic reduction of neff.

7Mathematically, we need only DI = O(Nα) with α > −1 in order for NDI to go to infinity
when N → ∞, but whether α can meaningfully take values other than zero (and −1) in practice is
an open problem.
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FIG. 2. Effective sample size n∗
eff as a function of the relative size (sampling rate) f . [I thank Dr.

Jens Mehrhoff for his permission to use this figure from Mehrhoff (2016).]

To illustrate, suppose ER[ρR,G] = 0.05, which seems rather small by con-
ventional standards [e.g., in a similar context of expressing bias, Senn (2007)
considered a correlation −0.05 “extremely modest”]. Then DI = ER(ρ2

R,G) ≥
[ER(ρR,G)]2 = 1/400. Hence by (3.6), we have

(3.7) neff ≤ 400
f

1 − f
.

That is, even if we have data from half of the population, that is, f = 1/2, the effec-
tive sample size, in terms of an equivalent SRS sample, cannot exceed neff = 400.
But half of the population means about 115 million people for the eligible voter
population of US in 2016. Consequently, the “extremely modest” average correla-
tion 0.05 has caused at least a (115,000,000 − 400)/115,000,000 = 99.999965%
reduction of the sample size, or equivalently estimation efficiency. The reduction
would be even more extreme if we considered the Chinese or India population, pre-
cisely because of the impact of the population size. Figure 2, provided by Mehrhoff
(2016), visualizes the difficulty of achieving decent effective sample sizes (e.g.,
between 100–1000) for (average) correlation ρR,G = 0.05,0.1, and 0.5, albeit one
hopes that ρR,G ≥ 0.1 is merely a mathematical possibility, permissible by (2.9).

Such dramatic reductions appear to be too extreme to be believable, a common
reaction from the audiences whenever this result is presented (see Acknowledge-
ments). It is indeed extreme, but what should be unbelievable is the magical power
of probabilistic sampling, which we all have taken for granted for too long. As
seen in (3.5), neff is determined by the product DIDO . Whereas DO = (1 − f )/f

does go to zero when n approaches N , its rate is governed by the relative size f .
Clearly it takes a much larger n for 1 − f to become negligible than for n−1 to
become so, and most troublesome of all is that the former depends on the value of
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N ; n = 115,000,000 makes n−1 practically zero for most inference purposes, but
it does not make 1 −f negligible for almost any problem when N = 230,000,000.

Therefore, the central message here is that once we lose control over the R-
mechanism via probabilistic schemes, we can no longer keep the monster N at
bay, so to speak. Without the magical power of probabilistic sampling, the right-
hand side of (3.2), that is, (N − 1)DI , will explode with N . That is, we have a
“butterfly effect”—a tiny perturbation caused by DI can lead to catastrophic error
in the end for large N , which in turn causes the seemingly incomprehensible loss
of effective sample size. It is therefore essentially wishful thinking to rely on the
“bigness” of Big Data to protect us from its questionable quality, especially for
large populations.

We remark here that mathematically, it is important to carry the N−1 term in
the denominator of (3.5), so neff reaches n for SRS, and neff = N instead of neff =
∞ when DI = 0. For practical purposes, however, it is easier algebraically and
crisper conceptually to use n∗

eff, which also serves as an almost exact upper bound.8

We therefore use n∗
eff in subsequent calculations. Theoretically, it also provides a

simple (almost exact) rule for assessing the impact of the data defect correlation
ρR,G: the effective sample size neff is inverse proportional to ρ2

R,G. For example,
if we can cut down |ρR,G| by 20%, then we will increase neff by a factor of (1 −
0.2)−2 = 1.5625, and hence by more than 50%.

Furthermore, in reaching (3.7), we have used the inequality DI = ER(ρ2
R,G) ≥

[ER(ρR,G)]2. But the difference between the two sides of this inequality is pre-
cisely VR(ρR,G), which is typically negligible for large N . For example, when
the components of R are identically and independently distributed (before condi-
tioning on

∑N
j=1 Rj = n), then VR(ρR,G) = O(N−1) (recall this is a conditional

variance conditioning on
∑N

j=1 Rj = n). Hence the variation in ρR,G caused by
random R is negligible compared to DI precisely when DI matters, that is, when
ER(ρR,G) does not vanish with N , that is, when DI = O(1). Consequently, for
practical purposes, we usually can ignore the uncertainty in ρ2

R,G as an estimator
of its mean, DI , when N is large and DI = O(1), as typical with Big Data.

3.3. A big data paradox? We statisticians certainly are responsible for the
widely held belief that the population size N is not relevant for inference concern-
ing population means and alike, as long as N is sufficiently large. But apparently
we have been much less successful in communicating the “warning label” that
this assertion is valid only if one has strict control of the sampling scheme (via
probabilistic schemes). An effective way to deliver this warning is to observe that
the representation (3.1) implies that any routinely used confidence intervals of the
form

(3.8)
(
Gn − Mσ̂G√

n
,Gn + Mσ̂G√

n

)

8Indeed, it is easy to show that 0 ≤ n∗
eff − neff < 1 whenever (n∗

eff − 1)2 < N .
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will almost surely miss GN for any conventional choice of the multiplier M unless
we adopt a σ̂G that overestimates σG by orders of magnitude to compensate for
the colossal loss of the sample size. Worse, since the interval width in (3.8) shrinks
with the apparent size n, our false confidence may increase with n, despite the fact
that the interval (3.8) has little chance to cover the truth because it is so precisely
centered at a wrong location; its width misses a (huge) factor9 of

√
N − n|ρR,G|.

To see this, consider the case of estimating voting preference during the 2016
US presidential election, which will be treated in detail in Section 4. For the cur-
rent illustration, imagine a researcher has access to self-reported voting prefer-
ence from 1% of US eligible voter population, whose size is N ≈ 231,557,000
[McDonald (2017)]. Let p̂ be the sample average from the n(≈ 2,315,570) obser-
vations. Suppose that the uninformed researcher adopts a normal approximation to
form a confidence interval for the corresponding population p based on the usual
Z-score

(3.9) Zn = p̂ − p√
p̂(1 − p̂)/n

=
√

n
√

DOρR,G√
1 − DOρ2

R,G − √
DOρR,G(

√
p

1−p
−

√
1−p
p

)

,

where the second expression is obtained by applying the identity (2.3) using the
notation DO = (1 − f )/f of (2.4), and with σG = √

p(1 − p). We have changed
the notation from Zn,N of (3.1) to Zn here because, following common practice,
the latter does not use the finite population correction (1 − f ), but it does use an
estimated σ̂ 2

G = p̂(1 − p̂) instead of σ 2
G = p(1 −p). The difference between Zn,N

and Zn is typically inconsequential (as demonstrated below).
Without realizing the self-selected nature of the sample, the uninformed re-

searcher would likely compare Zn to the N(0,1) reference distribution for con-
structing his/her confidence interval. The normality is not much of an issue with
such a large n, but the mean of Zn is far away from 0. Consider the case p = 1/2
with ρR,G = 0.005, which we shall see in Section 4 is a rather realistic magnitude
for Trump supporters’ reporting mechanism. Inserting these values together with
DO = 99 and n ≈ 2,315,570, we obtain

(3.10) Zn = √
2,315,570

√
99 × 0.0052

1 − 99 × 0.0052 = 75.80.

Consequently, unless the researcher uses a normal interval with at least “75 sigma”
as its half width, which must sound ridiculously ridiculous, the researcher’s in-
terval will miss the target. Note that the value of |Zn| can also be obtained (ap-

proximately) as
√

n/n∗
eff, where the effective sample size n∗

eff ≈ [DOρ2
R,G]−1 =

9This factor would be
√

N |ρR,G| if (3.8) includes the finite-sample correction, that is, with σ̂G

replaced by
√

1 − f σ̂G.
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[99 × 0.0052]−1 = 404 by (3.5). Hence
√

n/n∗
eff ≈ 75.70, where the inconsequen-

tial difference with (3.10) is due to the use of an estimated p instead of the theoret-
ical p in forming the denominator in (3.9). Even if we reduce ρR,G to 0.001, and
hence n∗

eff ≈ 404 × 25 = 10,100, |Zn| will still exceed 15, a virtually probability
zero event under Zn ∼ N(0,1).

This seemingly striking phenomenon perhaps deserves the label of paradox.

Big Data Paradox The bigger the data, the surer we fool ourselves.

In Section 3.5, we will provide additional reasons why this phenomenon is partic-
ularly tied to Big Data. The Big Data Paradox is in the same spirit as Simpson’s
Paradox, a topic of the sequel of this paper [Meng (2018)]. That is, these kinds of
statistical phenomena are not paradoxes in mathematical or philosophical senses;
indeed mathematically the probability—however indistinguishable from zero—of
(3.8) covering the truth can be a complicated function of n or N , depending par-
tially on how the estimated σ̂G is constructed. But they appear to be paradoxical
because of our mis-formed or mis-informed intuitions. Here the phrase Big Data
refers to those big datasets with an uncontrolled (or unknown) R-mechanism. If
our big datasets possess the same high quality as those from well designed and
executed probabilistic surveys in terms of ρR,G, then we are indeed in paradise
in terms of information gathering—nothing beats high quality big data (albeit we
may still face the challenges of processing and analyzing large amounts of com-
plex data).

3.4. “Weight, weight, don’t tell me...” Instead of relying on the mercy of any
non-probabilistic process to deliver data quality, whenever we are concerned with
an unacceptably large DI , we should take actions. Reducing bias through weight-
ing is a popular strategy; see Gelman (2007) and many references therein. Unfor-
tunately, whereas weighting often does reduce estimation error, it does not avoid
the curse of large N . To see this, let Wj ≥ 0 be the weight we use for Gj and define
R̃j = RjWj ; to simplify notation here we use Ã to indicate the weighted version
of A. The weighted sample average then is

(3.11) G̃n =
∑N

j=1 RjWjGj∑N
j=1 RjWj

= EJ [R̃J GJ ]
EJ [R̃J ] .

We can then generalize (2.2) by replacing the binary RJ with the more general R̃J ,
which leads to

G̃n − GN = CovJ (R̃J ,GJ )

EJ (R̃J )
= ρR̃,G

√√√√VJ (R̃J )

E2
J (R̃J )

σG

(3.12)

= ρR̃,G ×
√√√√1 − f +CV2

W

f
× σG,
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where CVW is the coefficient of variation (i.e., standard deviation/mean) of WJ

given RJ = 1, that is, among those whose G values are recorded. Historically,
Senn (2007) used (3.12) in the case of f = 1 to express the difference between
weighted individual estimates and their arithmetic mean in the context of meta
analysis.

Comparing (3.12) with (2.3), we see the use of weight W affects the actual
estimation error in two ways. The negative impact is that it introduces an extra
factor

aW =

√
1−f +CV2

W

f√
1−f
f

=
√√√√1 + CV2

W

1 − f
≥ 1.

Hence, when |ρR,G| = |ρR̃,G|, the weighting would necessarily lead to a larger
actual error in magnitude. This negative impact is particularly pronounced when
the (relative) variation in the weights is high, as measured by CV2

W , and the sam-
pling rate f is high. The deterioration of a weighted estimator as CV2

W increases
is a well-known fact, in both the survey and importance sampling literature [e.g.,
see Liu (1996), Owen (2013)], albeit there the increase is generally understood
in terms of variance, not the actual error. The fact that higher CV2

W will cause
relatively more damage to larger datasets can be understood by considering the
extreme case when f = 1. In such a case, the equally weighted estimator is the
population mean and hence it has zero error. Therefore, any error introduced by
unequal weighting will render infinite relative error, which is correctly captured
by aW = ∞. The only time unequal weighting does not introduce error is when
σ 2

G = 0, or when we are extremely lucky to produce exactly zero correlation be-
tween R̃J = RJ WJ and GJ .

This last point also hints at the goal of using weights. Our hope is that by a ju-
dicious choice of WJ , we can reduce the data defect correlation, that is, achieving
|ρR̃,G| < |ρR,G|, to the degree that this positive impact would outweigh the nega-
tive one to ensure that D̃eff < Deff. Here D̃eff is the design effect for G̃n [still with
VSRS(Gn) as the benchmark], which, because of (3.12), is given by

(3.13) D̃eff = ER[G̃n − GN ]2

VSRS(Gn)
= (N − 1)D̃IAW ,

where D̃I = ER(ρ2
R̃,G

), and AW = ER[a2
W ] = 1 + (1 − f )−1ER[CV2

W ] ≥ 1. Note

ER[CV2
W ] is used here instead of CV2

W because in general the weights themselves
may be estimated, and that for G̃n, (3.6) is still applicable as long as we replace
DI by D̃IAW because of (3.13).

The ideal goal, of course, is to bring down D̃IAW to the level of N−1. But it
is rarely possible to do so when the weights themselves are subject to errors, typ-
ically much larger than O(N−1) for large N [see Kim and Kim (2007), Kim and
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Riddles (2012)]. To see this clearly, we write πj = PrR(Rj = 1|X), which cap-
tures the potential bias created by the R-mechanism (recall πj = 1{Rj=1} if Rj is
deterministic). Note here X = {X1, . . . ,XN }, and hence we permit πj to be influ-
enced by Xi, i 	= j , though often such cross-individual influence can be ignored. If
πj is known for those observed Gj , then a well-known weighting scheme is to set
Wj ∝ π−1

j , which leads to the Horvitz–Thompson estimator [Horvitz and Thomp-
son (1952)]. From the perspective of d.d.i., such weighting aims to reduce the
mean of ρR̃,G to zero by ensuring ER[CovJ (R̃J ,GJ )|X] = 0, which holds when

Wj ∝ π−1
j . However, πj is never known exactly or even approximately when the

R-mechanism is at best partially understood, which is the case for virtually all
the observational Big Data sets. Horvitz–Thompson type estimators are known to
be extremely sensitive to the errors in the estimated weights because a small π̂j

can cause a very large and dominating weight Wj ∝ π̂−1
j . Many methods have

been proposed in the literature, such as trimming and power shrinkage [e.g., Chen
et al. (2006), Gelman (2007)]. But none of them suggests the remote possibility of
reducing ρR̃,G to the order of N−1/2, especially for large N .

Indeed, Gelman (2007) emphasizes that many weighting schemes go beyond
the inverse probability weighting, which introduce additional errors and variations,
and hence he opened his article with the line “Survey weighting is a mess”. The
title of this sub-section10 echoes Gelman’s frustration, even without referencing to
the more stringent requirement to deal with the large populations underlying the
messier Big Data. But without bringing the d.d.i. down to the level of N−1, we
will be destined for surprises if we put our confidence on the sheer size of a Big
Data set to compensate for its unknown quality, as illustrated in Section 3.3.

3.5. Answering the motivating question. Having defined the d.d.i. DI , we can
give a quantitative answer to the question: “Which one should I trust more: a 1%
survey with 60% response rate or a self-reported administrative dataset covering
80% of the population?”. Specifically, when we compare MSEs of two sample av-
erages from two datasets for the same variable, identity (2.4) tells us that which
estimator is better would depend on neither the quality index DI nor the quan-
tity index DO alone, but on their product, providing a precise recipe for tradeoff.
To meaningfully answer the motivating question then requires additional informa-
tion on how the two DI ’s compare. To be concrete, suppose our first dataset is a
probabilistic sample with sampling rate fs = ns/N and design effect Deff. With-
out non-response, we know D

(s)
I = Deff/(N − 1) from (3.2). With non-response,

the resulting d.d.i., DI , is likely to be significantly larger than D
(s)
I when there is

non-response bias. Furthermore, the sampling rate is reduced to rfs , where r is the
response rate, hence its DO = (1 − rfs)/(rfs).

10I thank Professor Doug Rivers, Chief Scientist at YouGov, for this most humorous and telling
line, and for email exchanges regarding CCES and elections in general.
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Now suppose our second dataset is a Big Data set with data defect index DBIG
I

and dropout odds DBIG
O = (1 − f )/f . Then by (3.4), its nBIG

eff is larger than the neff
of the first dataset if and only if

(3.14) DBIG
I DBIG

O < DIDO.

To translate this condition into one that can render practical guidelines, we denote
the dropout odds ratio by

(3.15) O = DO

DBIG
O

= 1 − rfs

rfs

× f

1 − f
.

Using the approximation DI ≈ ρ2
R,G (see Section 3.2), inequality (3.14) becomes

(3.16)
∣∣ρBIG

R,G

∣∣ ≤ √
O|ρR,G|.

Condition (3.16) provides us with a practical guideline and a base for sensitive
study, even though we typically do not know ρBIG

R,G or ρR,G. For example, if we
are reasonably sure that the mechanism leading to non-response in our survey is
similar to the mechanism responsible for self-reporting behavior in the Big Data,
then we should be reasonably confident that the Big Data set is more trustworthy
when f � rfs because that implies

√
O � 1, and hence (3.16) is very likely to

hold. For our question, fs = 0.01, r = 0.6, and f = 0.8, and hence
√
O ≈ 26,

which should be large enough for us to be confident that the 80% administrative
data set is more trustworthy.

On the other hand, if we believe that the selection bias caused by the non-
response mechanism in the sample is not nearly as severe as in the Big Data set,
then we need to have a reasonable sense of the magnitude of ρR,G before we
can become confident that (3.16) holds simply because

√
O is large. Our knowl-

edge of the population size is useful for this assessment. Suppose the popula-
tion underlying our question is the US eligible voter population in 2016. Then
N ≈ 231,557,000, and hence for SRS, |ρ(s)

R,G| ≈ √
2/π(N − 1)−1/2 = 5.2 × 10−5

[here we use the fact E|Z| = √
2/π when Z ∼ N(0,1)]. Suppose the non-response

mechanism has increased the data defect correlation 5 times to ρR,G ≈ 2.6×10−4,
and hence 26 × ρR,G ≈ 0.0068. Whereas on its own a correlation of 0.68% seems
so small, in Section 4.2 we will see that it is still larger than all the ρR,G’s observed
there. Hence if the ρR,G’s from Section 4.2 are relevant for the current example,
then we can still put our faith on the large administrative data. However, if the
administrative data in our question covers 50% of the population instead of 80%,
then

√
O ≈ 13. Consequently, we will need |ρBIG

R,G| < 0.0068/2 = 0.0034 in order
to trust the administrative dataset. This bound is now well within the range of the
ρR,G’s observed in Section 4.2, and hence one should no longer be so confident
that the big administrative data set covering 50% the population is more trustwor-
thy than the 1% survey with 60% response rate, even if the latter itself suffers from



706 X.-L. MENG

FIG. 3. Confidence coverage C(b) as a function of the relative bias bn = b/σn.

non-response bias. This example demonstrates again the grave consequences of se-
lection bias, because a seemingly trivial data defect correlation can substantially
reduce the effective sample size.

One then may ask if we have been fooling ourselves most of the time with
survey results (and alike) because almost all of them are subject to non-response
biases. However, the issue of non-coverage is not as extreme with small samples
as with big datasets because when DI = O(1), we miss the width of the correct
interval by a factor of

√
n/neff, which is far more dramatic for Big Data than oth-

erwise. To see this, suppose the mean of Gn differs from the estimand GN by
an amount of b, and the standard error of Gn is σn. Then the actual coverage of
the usual 95% confidence interval based on the normal approximation, namely,
|Gn − GN | < 2σn (we use 2 instead of 1.96 for simplicity), is given (approxi-
mately) by C(bn) = �(2 − bn) − �(−2 − bn), where bn = b/σn, and �(z) is the
CDF for N(0,1). Figure 3 plots C(bn) against bn, which shows that as long as
|bn| < 2, the coverage will still maintain above 50%. But it deteriorates quickly
beyond that, and once |bn| > 5, the coverage becomes essentially zero. Therefore,
ironically, the small-sample variance, which helps to reduce the value of bn be-
cause of larger value of σn, has provided us with some protections against being
completely misled by the selection bias induced by the R-mechanism.

Nevertheless, the concept of d.d.i. and more broadly the issue of data quality
is critical for any kind of data, small or large. Its dramatic effect on Big Data
population inferences should serve as a clear warning of the serious consequences
of ignoring it. The next section demonstrates how to assess d.d.i. in practice, in the
context of the 2016 US presidential election, providing a quantitative measure of
our collective overconfidence, leading to a big surprise on November 8, 2016.

4. Applications to binary outcome and the 2016 US general election.

4.1. A measure of overconfidence in 2016 US presidential election. As dis-
cussed before, the data defect correlation ρR,G is not a quantity that has been well
studied, partly because it is not directly estimable. Here we use the 2016 US pres-
idential election as a background setting to connect it with the bias in reporting
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propensity, a more familiar quantity. We will reveal some simple formulas for as-
sessing how non-response biases affect the effective sample size and hence the
margin of error with binary outcomes.

For the 2016 US presidential election, many (major) polls were conducted and
reported by media, especially in the last several weeks before the election, as many
as about 50 in a single day (see www.realclearpolitics.com/epolls/latest_polls/
president/). By a very rough “guesstimate”, putting all these polls together amounts
to having opinions from up to 1% of the eligible voter population, that is, f = 0.01
or n ≈ 2,315,570. Any reputable statistician likely would agree that it would be too
optimistic to treat the combined poll as a high-quality probabilistic sample with the
same size n. But what would be an appropriate discount factor? Cut it to half? By
a factor of 10?

To answer this question in the cleanest way, let us assume that there are no
complications other than non-response. For example, response bias is negligible,
as is the percentage of voters who changed their minds over the period when these
surveys were taken or the percentage of people appearing in more than one poll. All
these complications can only further reduce our confidence in the polling results.
To calculate DI , we let Xj = 1 if the j th individual plans to vote for Trump and
Xj = 0 otherwise. Let pX be the population vote share for Trump, and recall f is
the percentage of people who (honestly) report their plans. Then it is easy to verify
that the population correlation between XJ and RJ over the uniform distribution
on J is given by

(4.1) ρR,X = PJ (XJ = 1,RJ = 1) − pXf√
pX(1 − pX)

√
f (1 − f )

= �R

√
pX(1 − pX)

f (1 − f )
,

where

(4.2) �R = PJ

(
RJ = 1|XJ = 1

) − PJ

(
RJ = 1|XJ = 0

)
is the reporting bias in absolute terms. Here the notation �R implies that it is de-
termined by the realized R; its expectation, denoted by � = ER(�R), would be
zero for SRS (assuming no non-responses). Also, by (4.1), whenever VR(ρR,X) =
O(N−1), so would VR(�R) (for given pX and f ). Consequently, as before, when
� matters, that is, when it approaches zero no faster than O(N−1/2), typically
O(1), we can ignore the differences between �R and � or between �2

R and
ER(�2

R).
As an illustration, assuming � = −0.001 (for reasons to be given in Sec-

tion 4.2), f = 0.01 and pX = 0.5 [Trump’s vote share was 0.461 in terms of the
popular vote, but

√
pX(1 − pX) is very stable near pX = 0.5:

√
0.461 × 0.539 =

0.4985], ρR,X = −0.001 × 0.5/
√

0.01 × 0.99 = 1/(200
√

0.99) = −0.00502.
Hence the d.d.i. DI = ρ2

R,X = 1/(200
√

0.99)2 = 1/39,600. Consequently, by
(3.5), the effective sample size of the combined dataset with n = 2,315,570 is

http://www.realclearpolitics.com/epolls/latest_polls/president/
http://www.realclearpolitics.com/epolls/latest_polls/president/


708 X.-L. MENG

n∗
eff = 0.01

0.99 × 39,600 = 400. Or we can obtain this directly by

(4.3) n∗
eff = 1

pX(1 − pX)

(
f

�

)2
= 4

(
0.01

0.001

)2
= 400.

This represents an over 99.98% loss of sample size compared to n = 2,315,570,
similar to what we have seen before. We note that because pX(1 − pX) ≤ 1/4 for
any value of pX ∈ [0,1], the convenient expression, which requires no knowledge
of pX:

(4.4) n̂∗
eff = 4

(
f

�

)2

serves as a lower bound, as well as a very good approximation for the type of elec-
tion polls where assessing margins of error is particularly important (because pX’s
are close to 1/2). Historically, the fact pX(1−pX) ≤ 1/4 has led to an exceedingly
simple (and rather accurate) upper bound of the margin of error—denoted by Me—
for SRS11 proportion with size ns (ignoring the finite population correction when
ns � N ). That is, if we adopt the usual multiplier 2 for achieving 95% confidence,
then the half-width of the 95% confidence interval, namely, Me, satisfies

(4.5) Me = 2

√
pX(1 − pX)

ns

≤ 1√
ns

.

Therefore, an effective sample size of 400 implies that Me is about 5%, which is
83 times larger than 1/

√
n ≈ 0.06%, the margin of error from using the apparent

size n ≈ 2,315,570. The latter would lead to gross overconfidence in what the data
would actually tell us.

An astute reader may point out that � = −0.1% is not small relatively, be-
cause f is only 1%. For example, if the actual �R = −0.1% and pX = 50%,
then PJ (XJ = 1|RJ = 1) = 47.5% and PJ (XJ = 0|RJ = 1) = 52.5%. That is,
there are 5% fewer Trump voters in the sample than non-Trump voters, hence a
strong bias (in the sample) against Trump given the actual voting preference is a
tie. However, even if � = −0.01%, that is, on average we only have 0.5% fewer
Trump voters than non-voters in our sample, which would reduce DI by a factor of
100, we would have n∗

eff = 40,000 by (4.3), still a 98.27% reduction in the actual
sample size compared to n = 2,315,570. The margin of error would be reduced
to 0.5%, which still matters for a tight race, unlike when Me = 0.06%, which be-
comes negligible. Recall the actual popular vote difference between Clinton and
Trump is about 0.8% among eligible voters, or 1.5% among actual voters.

It is worth noting that the above calculations were done using the popula-
tion of eligible voters, not of the actual voters, because before an election we

11The 1/
√

ns bound on the margin of error is also very useful for other more sophisticated sampling
methods such as stratified sampling, because these methods use SRS as a benchmark to improve
upon.
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do not know who—or even how many—would actually turn out to vote. But
as a retrospective investigation, we could repeat the same exercise by assuming
our targeted population consists of those who actually turned out to vote, which
for the 2016 presidential race was N(a) ≈ 136,700,730 [McDonald (2017)]. If
we retain the same n based on the (optimistic) assumption that all respondents
to the polls cast their votes, then f (a) ≈ 1.7%. Consequently, by (4.3) or (4.4),
n∗

eff = 4×172 = 1156 when � = −0.001, and n∗
eff = 115,600 when � = −0.0001.

These number represent, respectively, a 99.95% and 95% loss of (effective) sam-
ple size when compared to n = 2,315,570, resulting in corresponding margin of
errors Me = 2.9% and Me = 0.29%, still outside the comfort (confidence) zone
indicated by Me = 0.06%.

4.2. Estimating d.d.i. for Trump’s supporters in CCES surveys. Because ρR,G

is a dimensionless correlation, designed to measure a responding behavior or
recording mechanism, it is not wishful thinking to assume that it can be reasonably
assessed from a similar study for which one ultimately is able to assess the actual
bias. For example, if we let B̃ = G̃n − GN be the actual bias from a weighted
estimator, then from (3.12), we have

(4.6) ρR̃,G = B̃

σG

√
(1 − f +CV2

W)/f
,

which reduces to the simpler expression under equal weighting, that is, when
CVW = 0,

(4.7) ρR,G = Gn − GN

σG

√
(1 − f )/f

≡ B√
DODU

.

We emphasize here that which sample estimator to use depends on which respond-
ing/recording mechanism we want to assess. If our goal is to assess d.d.i. of the
original raw sample, then we must use the unweighed estimator Gn, as in (4.7),
regardless how bad it is as an estimator of GN . On the other hand, if we want to
assess the imperfection in some weights, that is, how much data defect correlation
still remains after applying the weighting, then we should use the corresponding
weighted estimator G̃n, as in (4.6).

To illustrate the utility of (4.6)–(4.7), we use data from the 2016 Cooperative
Congressional Election Study (CCES), a national stratified-sample online survey
administered by YouGov. The CCES is considered to be one of the largest and
most reliable national election surveys, conducted by a team of leading political
scientists [see Ansolabehere, Schaffner and Luks (2017)]. Its individual-level data,
available on-line, go back to 2005. The exact stratification specifications, however,
are currently unavailable in the database we have used. Ideally we want to assess
d.d.i. for all kinds of weighted samples using various survey weights, a task that
will be completed by a subsequent project. Here we focus on using equal weights
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as a starting point (except for a turnout adjustment used for a comparison), assess-
ing the data defects in the raw sample.

Each year the CCES fields two waves of surveys, a pre-election wave in the
weeks before the general election and a post-election wave. Most of its respondents
are recruited from YouGov’s opt-in online panel, as well as panels of other survey
firms. Invitation to respond to the survey originates from a matched sample, which
approximates a sampling frame that is representative of the U.S. adult population.
In addition to voting preference, the survey asks about general political attitudes,
various demographic information, assessment of key policy issues, and political
knowledge.

To use this rich data source to assess the actual bias B or more generally B̃ ,
we need to address the issue of a mis-match between the surveyed population—
which at the best is the eligible voter population—and the actual voter population.
This mis-match is a well-known issue [Burden (2000)], and there are a number
of methods (used by political scientists) to reduce its impact, such as using an
estimated propensity for voting as weight or using a subsample of respondents
who are validated to be actual voters from public record voter files after the election
[Ansolabehere and Hersh (2012)]. No method is fault-proof (e.g., validation via a
matching algorithm is subject to errors), an issue that will be explored in detail in
a subsequent work. But the general patterns of the findings for our purposes here
have been rather robust to the actual method used. The top row of Figure 4 plots
the comparisons of the state-wise actual vote shares by Clinton versus the three
estimates from CCES data. Whereas the specific estimates have some differences,
the overall pattens are very similar: the CCES estimates over-predict in Republican
states, under-predict in Democratic states, and are just about right in swing states.12

The bottom row in Figure 4 provides the counterpart results for Trump, where the
general pattern is uniform under-prediction for all states, with the sole exception
being Washington D.C., an outlier where Clinton won with over 90% of the vote.

Regardless of which method is used to assess the d.d.i., the resulting estimate is
of interest when a similar method would be used in the future for a similar election.
This is because, as emphasized in Section 2, d.d.i. aims to capture defects in both
data collection and data analysis, including the choice of the estimates. Because
the results based on validated voters avoid the issue of weighting, and are likely
more reliable (e.g., predicting voting turnout is known to be difficult), we will use
them as a simple illustration for estimating the d.d.i. DI . The state-level results
from CCES permit an examination of evidence to contradict the hypothesis that
DI = O(N−1), that is, there is no detectable evidence for selective response.

12Following the Cook Political Report, swing states (green) are states whose 2016 presidential
results flipped from 2012 or whose winner won by less than 5 percentage points. Solidly Republican
states (red) are states Romney won in 2012 and which Trump won by more than 5 percentage points.
Solidly Democratic states (blue) are states Obama won in 2012 and which Clinton won by more than
5 percentage points.
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FIG. 4. Comparison of actual vote shares with CCES estimates (and 95% confidence interval)
across 50 states and DC. Top row for Clinton; bottom row for Trump. Color indicates a state’s
partisan leanings in 2016 election: solidly Democratic (blue), solidly Republican (red), or swing state
(green). The left plot uses sample averages of the raw data (n = 64,600) as estimates; the middle plot
uses estimates weighted to likely voters according to turnout intent (estimated turnout n̂ = 48,106);
and the right plot uses sample averages among the subsample of validated voters (subsample size
n = 35,829). Confidence intervals based on unweighted sample proportions are computed following
(3.9), where the use of SRS variances can be conservative given the stratified design of the survey,
and yet they still do not provide any realistic protection against the increased MSE caused by the
non-response bias. For the turnout adjusted estimate, which is in a ratio form, a δ-method is employed
to approximate its variance, which is then used to construct confidence intervals.

Specifically, Figure 5 plots the histograms of the estimated state-level data de-
fect correlation ρ̂N , where we switch the notation from ρR,G to ρ̂N to emphasize
the (potential) strong dependence of ρR,G on the population size N , and we use

FIG. 5. Histograms of state-level data defect correlations assessed by using the validated voter
data: Clinton’s supporters (left) versus Trump’s supporters (right). The numbers in boxes show
“mean ± 2 standard error”.
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FIG. 6. Estimates of log |Zn,N | = α̂ + β̂ logN : The numbers in boxes show the least-squares esti-

mate β̂ and its standard error (in parentheses). States are colored as in Figure 4.

the “hat” notation to highlight the dependence of ρR,G on the particular realization
of R. We will denote ρN = ER(ρ̂N). We see a distinctive pattern between the his-
togram for Clinton’s supporters (left), which centers around zero, and the one for
Trump’s (right), which is almost exclusively below zero, and centers quite close to
−0.005, a strong indication of higher non-response probability for Trump’s sup-
porters. It is important to emphasize that here the response variable is coded as
binary, that is, voting for a candidate or not. Because the CCES surveys have an
“undecided” category (in addition to third parties), not preferring Trump does not
imply voting for Clinton. Otherwise ρ̂N would be of the same value for Clinton’s
and Trump’s supporters, except with opposite signs. (More generally, we can as-
sess d.d.i. with a categorical X.)

Figure 6 provides further—and more visual—evidence for this distinctive pat-
tern, as well as for underreporting from Trump’s supporters. The plot on the log
scale was motivated by (3.1), which implies that the logarithm of the magnitude of
the relative actual error can be written as

(4.8) log |Zn,N | = log |ρ̂N | + 0.5 log(N − 1).

The central idea here is that, if there is a detectable evidence of selective reporting
bias, then the value of ρ̂N should be relatively stable over a set of populations of
different sizes N but sharing the same selective R-mechanism, instead of decreas-
ing with logN−1/2 = −0.5 logN . Consequently, log |Zn,N | should increase with
logN with slope β0 = 0.5, as (4.8) would suggest [replacing log(N − 1) by logN

is inconsequential]. In contrast, when there is no selection bias, log |Zn,N | should
not vary much with logN because the 0.5 logN term would be balanced out by
log |ρ̂N | ∝ −0.5 logN . Therefore, by fitting the regression

(4.9) log |Zn,N | = α + β logN,

we can look for evidence to contradict β = 0 (zero bias induced by R-mechanism)
or β = 0.5 (detectable bias induced by R-mechanism).

Lo and behold, for Clinton’s supporters, the least-squares estimator for β is 0.15
with (estimated) standard error 0.16, so β = 0—but not β = 0.5—is well within
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FIG. 7. Estimates of Zn = p̂−p√
p̂(1−p̂)/n

: The conventional 95% confidence interval region |Zn| ≤ 2

is indicated in gray.

the usual margin of error. In contrast, the estimated slope for Trump’s supporters
is 0.44, quite close to the theoretical value 0.5 in the presence of a biased R-
mechanism. Its estimated standard error is 0.09, and hence the usual z-test13 for
testing β = 0 has a p-value about p = 10−6. Using the simple upper bound on
the Bayes factor (in favor of the alternative) B = [−ep ln(p)]−1 ≈ 26,628 [Bayarri
et al. (2016)], we have very strong odds to reject the null hypothesis of no selective
non-response bias.

Figure 7 demonstrates the Big Data Paradox as well as LLP when DI fails to
cancel N−1. For Clinton’s vote share, the usual 95% interval based on |Zn| ≤ 2,
where Zn is given in (3.9), covers 26 out of 51 actual outcomes. This is of course
far short of the claimed 95%, a situation which can be significantly improved by
using various weights, which we deliberately avoid because we want to assess the
actual R-mechanism, as emphasized earlier. But at least the patten of coverage (or
lack of) does not indicate a clear trend in terms of the state total turnout, N . In con-
trast, for Trump’s share, there is a very visible monotonic trend with the state-level
predictions increasingly moving away from the zone |Zn| ≤ 2 as N increases. In-
deed, Washington DC, Hawaii, and Vermont, the three smallest blue district/states
in terms of 2016 turnout, are the only voting regions where the confidence inter-
vals (barely) cover the actual results. This monotonic trend is precisely anticipated
by LLP because the error in prediction is proportional to

√
N whenever the mean

of ρ̂N , ρN 	= 0. And it should provide a clear warning of the Big Data Paradox: it
is the larger turnouts that lead to more estimation errors because of systemic (hid-
den) bias, contrary to our common wisdom of worrying about increased random
variations by smaller turnouts. Finally, Figure 8 shows that compared to Clinton’s
supporters, the data defect correlation ρ̂N for Trump is closer to its theoretical
lower bound given by (2.9), indicating more significant non-response behavior for
Trump’s voters.

13The use of z-test is reasonable given we have 51 data points, and we can assume that under the
null, the relative errors are mutually independent.
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FIG. 8. Values of ρ̂N with associated theoretical lower and upper bounds from (2.9). The
ρ̂N = −0.005 line approximates the center for Trump’s ρ̂N ’s.

The above analysis was repeated for various sub-samples, such as by each state’s
partisan leaning. Whereas smaller samples naturally led to more variable results,
the general patterns remain. That is, there is a consistent pattern of underreporting
by Trump’s supporters, inducing on average about −0.005 data defect correlation,
and hence DI ≈ 2.5×10−5. This quantitative finding provides numerical evidence
to the general belief that there was serious underreporting by Trump’s supporters
[see e.g., Cohn (2017), Gelman and Azari (2017)]. The quantitative measure of the
bias in terms of the data defect correlation ρ̂N is of value for predicting future elec-
tions, such as the 2020 US presidential election. For instance, if the 2020 election
is no more volatile or polarizing than the 2016 one, we can use 0.005 × √

N as an
upper bound for assessing the increased relative prediction error due to selective
reporting, where N would be the estimated voter turnout for a state. For example,
the turnout in California for 2016 was about 14 million, while for Oklahoma was
about 1.4 million. If these numbers stay the same, then for California the bound on
the “Z-score” of (3.1) can be as high as 0.005 × √

1.4 × 107 ≈ 18, while the same
bound should be about 6 for Oklahoma, roughly 1/3 of the bound for California
because 1/

√
10 ≈ 1/3. That is, in the worst scenario, our estimation error can go

as high as 18 times the benchmarking SRS standard error for California, but only
about 6 times for Oklahoma. Of course these bounds are likely to be too extreme,
but the very fact that they were reached historically should serve as a powerful
reminder that the force of nature is not always within the confidence band of our
mental prowess or heartfelt wishes.

In general, we can build models to link d.d.i. with individual demographics,
voting district characteristics, or any other covariates that may help to predict vot-
ers’ response behaviors. The vast amount of 2016 election surveys out there should
provide a very rich database to study survey response behaviors in volatile political
or social environments. The data from previous elections, such as those collected
by CCES since 2005, can also help to assess time trends, if any, in the data de-
fect correlation. Indeed, one may even wish to examine historical cases such as
the infamous 1936 Literary Digest poll, which had over 2.3 million respondents,
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qualified to be a “Big Data” set [Squire (1988)]. A study of this kind using the
CCES data and alike is therefore planned.

More generally, when it is not possible to directly assess ρN , borrowing infor-
mation from similar studies is a common strategy in practice, and this can be done
using either likelihood methods or Bayesian methods; see Chen et al. (2018) for
a recent example in astrostatistics. In particular, because of (2.3), putting a prior
on ρN amounts to having borrowed prior information on the potential bias. Re-
expressing the relative error Zn,N (3.1) in terms of ρ̂N facilitates this borrowing,
because ρ̂N —more precisely, its mean ρN —should be more stable across similar
studies due to its mean-and-variance standardized nature, just as coefficients of
variation tend to be more stable across studies than means or variances alone. Sub-
stantively, because ρN is intended to capture individual data recording/reporting
behavior, it is possible to take advantage of expert knowledge to justify assump-
tions of homogeneous data defect correlations for similar populations. For exam-
ple, an analyst could choose to assume that the blue states share the same ρN , as do
the red states, but the two may differ significantly. Of course, whenever feasible,
one should conduct direct studies, such as a behavior assessment or a non-response
follow-up survey, to gather data for estimating ρN .

5. Epilogue: From Leonhard Euler to Stephen Fienberg.

5.1. The Euler’s identity: A statistical counterpart? Leonhard Euler was a
polymath. Formulas and concepts that were named after him are too numerous
to list. But none of them is as universally known as Euler’s identity:

(5.1) eiπ + 1 = 0.

It is often considered to be the most beautiful and mysterious mathematical identity
of all time, because it connects the five most fundamental numbers in a deceivingly
simple and intriguing way. Among the five, {0,1, e,π, i}, the most unusual and
unexpected one is the imaginary i = √−1.

Incidentally, the identity (2.3) connects the five most fundamental quanti-
ties/symbols in statistics in an exceedingly simple yet mysterious way (at least
at first sight): mean (μ), standard deviation (σ ), correlation (ρ), sample size (n),
and population size (N ):

(5.2) μ̂ − μ = ρ

√
N − n

n
σ,

where the notation in (2.3) has been rearranged to highlight the five common sym-
bols. Among them, the most unusual and unexpected one is the population size N ,
for reasons discussed previously.

A key hope of paralleling (5.2) with (5.1) is to raise the awareness of the former
for the broader scientific community, because of the pedagogical value it offers
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regarding statistical estimation errors. As seen in (2.3), the identity concisely links
the three—and only three—determining factors to the statistical error in our esti-
mator, namely (I) data quality, (II) data quantity, and (III) problem difficulty. We
can use the identity (5.2) to help our students learn these fundamental factors in
a unified way, especially regarding their tradeoffs. We can categorize our general
strategies for reducing statistical errors by which factors they target. For example,
many probabilistic sampling schemes aim at factor (I), by bringing down the d.d.i.
to the level of N−1, as revealed in Section 3.1. Strategies such as stratifications
and using covariance adjustments, which require additional input, aim at factor
(III), because they reduce the (sub-)population variances, and hence the problem
difficulty [Fuller (2011), Kish (1965)].

5.2. Going beyond a single population. Just as Euler’s identity has various
generalizations [e.g., Argentini (2007)], typically less appealing, (5.2) has varia-
tions and extensions. As an example of extensions of (2.3)–(2.4) beyond using a
single overall sample average, consider the case of stratified sampling/recording
with K strata. Let Gnk

and GNk
be respectively the sample and population means

of G for stratum k, and W(k) be the stratum weight k = 1, . . . ,K . Then the strati-
fied sampling extension of (2.3) for the stratified estimator Gn,K = ∑K

k=1 W(k)Gnk

is

(5.3) Gn,K − GN ≡
K∑

k=1

W(k)(Gnk
− GNk

) =
K∑

k=1

W(k)ρ
(k)
R,G

√
1 − f (k)

f (k)
σ

(k)
G ,

where ρ
(k)
R,G,f (k) and σ

(k)
G are respectively the counterparts of ρR,G,f and σG of

(2.3) for the kth stratum. Assuming the sampling/recording schemes in different
strata are independent [and indeed they can be of different nature, as in Meng
(1993)], the MSE version of (5.3) becomes

MSER(Gn) =
K∑

k=1

[
W(k)]2

D
(k)
I D

(k)
O D

(k)
U

(5.4)
+ ∑

i 	=j

W(i)W(j)ER
(
ρ

(i)
R,G

)
ER

(
ρ

(j)
R,G

)√
D

(i)
O D

(j)
O

√
D

(i)
U D

(j)
U ,

where all D’s are the counterparts in (2.4) for the corresponding strata as indicated
by their superscripts. There are, however, new cross-products ER(ρ

(i)
R,G)ER(ρ

(j)
R,G)

that cannot be ignored precisely because of the (potential) biases in Gni
or Gnj

due to the R-mechanisms in stratum i and j (which can be very different). The
non-vanishing second term on the right-hand side of (5.4) reflects the complicated
nature of how these strata-wise biases can interact with each other with unpre-
dictable patterns, including the possibility of counterbalancing each other. When
the sample average is unbiased within each stratum, (5.4) will resume the simpler
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additive “orthogonal form” without the (mathematically) unpleasant second term.
The practical impact of this second term, and how to deal with it, is a worthwhile
topic for future study particularly because stratified sampling, and more generally
multi-stage sampling, is the backbone of much of sample surveys [Fuller (2011),
Kish (1965), Lohr (2009)], including CCES.

5.3. Applications to Monte Carlo and Quasi Monte Carlo (MCQMC). Given
the intrinsic links between sample survey and Monte Carlo methods [see e.g.,
Meng (2005)], it should come as no surprise that identity (5.2) can be transferred
and generalized to study Monte Carlo and Quasi-Monte Carlo (MCQMC) meth-
ods. Indeed, pioneering work by Hickernell (2018) provides exactly that, and it
generalizes the finite-sample version (5.2) to general (super-population) function
forms. In a nutshell, when we use (almost) any form of MCQMC methods to esti-
mate, say, an integration μ = ∫

g(x)ν(dx), we replace the measure ν by a finitely
supported measure ν̂ to form μ̂ = ∫

g(x)ν̂(dx). [See Kong et al. (2003) and Kong
et al. (2007) for a general likelihood theory about reformulating Monte Carlo inte-
grations as an estimation of measure ν.] Consequently,

μ̂ − μ =
∫

g(x)(ν̂ − ν)(dx) = 〈g, ν̂ − ν〉
‖g‖ × ‖ν̂ − ν‖ × ‖ν̂ − ν‖ × ‖g‖

(5.5)
≡ CNF(g, ν̂ − ν) × DSC(ν̂ − ν) × VAR(g),

where 〈g,h〉 is an inner product on a suitable function space (e.g., a Hilbert space
with reproducing kernel K) containing g, and ‖h‖ = √〈h,h〉 is its induced norm
(e.g., L2 norm).

Here, following the terminology of Hickernell (2018), VAR(g) measures the
variation of g, and it is the counterpart of σG (and hence it is on the standard de-
viation scale, despite the unfortunate clash of abbreviations between variance and
variation). Clearly, the higher the variation of g, the greater the difficulty in esti-
mating its integral. DSC(ν̂ − ν) is the discrepancy between the estimated measure
ν̂ and the original measure ν, and its behavior is controlled by the data quantity in
the case of probabilistic sampling. Therefore, it is a counterpart of

√
(1 − f )/f ,

though more generally it also depends on the data locations (e.g., as with Quasi-
Monte Carlo) and hence also the dimension of x. And finally, CNF(g, ν̂ − ν) mea-
sures the confounding between the integrand g and the error of approximation
ν̂ − ν. Such a measure plays a key role because if the confounding is high, that is,
the error in approximation ν̂ −ν is larger at locations where g tends to be larger (in
magnitude), then we should expect a higher MCQMC error. Hence CNF(g, ν̂ − ν)

plays the same role as the data defect correlation ρR,G. See Hickernell (2018)
for a full exploration of variations of (5.5), including a Bayesian version, many
examples and theory, and lessons learned from examining the “trio” of factors,
especially CNF, which had been largely ignored in the MCQMC literature. For ex-
ample, |CNF | was replaced by its upper bound 1 in arriving at the classic Koksma–
Hlawka inequality [Hickernell (2006)]: |μ̂ − μ| ≤ DSC(ν̂ − ν) × VAR(g), an im-
mediate consequence of (5.5).
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5.4. A Fienberg’s dream: Increasing data quality and privacy simultaneously?
Stephen Fienberg was a polystat. He had over 600 publications in almost every
(reputable) statistical journal, and in many others that usually are not on statisti-
cians’ mind. The titles of these non-statistical journals read almost as an alphabet-
ical showcase: from Accounting Reviews, Behavior Science, Contemporary Jewry,
to Journal of Interdisciplinary History, Jurimetrics, Kybernetik, and to Neurotox-
icology and Teratology, Primates, Journal of Zoology. His research contributions
and interests cover a wide spectrum: classical topics that every student in statistics
should learn [e.g., categorical data analysis, as in Fienberg (2007)]; emerging fields
that even the most knowledgeable statisticians might have trouble describing [e.g.,
algebraic statistics, as in Fienberg, Petrović and Rinaldo (2011)]; long-lasting is-
sues that most people have an opinion on [e.g., US decennial census, as detailed in
Anderson and Fienberg (1999)]; and largely overlooked areas of mostly unrealized
importance [e.g., the use of statistics in academic administration, as articulated in
Fienberg (1996)].

The issue of data quality, the focus of the current paper, is deeply reflected in
many of Steve’s papers, ranging from the quality of the US census, to the qual-
ity of evidence in court, and to ensure both data quality and confidentiality. In
particular, Steve was a co-founder of the Journal of Privacy and Confidentiality
in 2006, and served as its Editor-in-Chief from 2010 to essentially the end of his
life.14 Steve’s writing on data confidentiality started long before it became a hot
research topic, and his first substantial paper on this topic appears to be “Conflicts
between the needs for access to statistical information and demands for confiden-
tiality” [Fienberg (1994)]. Its abstract, quoted below in its entirety, demonstrates
Steve’s anticipation of the arrival of the Big Data era, and how the tradeoff be-
tween data information and confidentiality would become a pressing issue.

“With the growth of computer-based government records and the continued collection of sta-
tistical data for research, especially in the social sciences, there has been a concomitant growth
in the desire to access statistical information by government, industry, and university-based re-
searchers. Moreover, as a result of modern computer technology and ever-expanding computer
networks, the costs of data acquisition and transfer continue to drop, and the desirability of ac-
cess to statistical information collected by others increases. While government statistical agencies
and survey researchers have always been concerned about the need to preserve the confidentiality
of respondents to ensure the quality of statistical data, these concerns have been heightened by the
decline in response rates for censuses and surveys over the past two decades. This paper examines
the seeming conflicts between the two perspectives of data access and confidentiality protection
and briefly outlines some of the issues involved from the perspectives of governments, statistical
agencies, other large-scale gatherers of data, and individual researchers.”

Since then, Steve (co-)authored over 40 papers on data confidentiality and pri-
vacy, and one of the recurrent themes is the emphasis on the tradeoff between sta-

14It is even more remarkable that during this period, Steve also served as a Senior Editor (2010–
2012) and then Editor in Chief (2013–2015) of the Annals of Applied Statistics, and simultaneously
the Editor of the Annual Review of Statistics and its Application (2011–2015).
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tistical information and data privacy, also known as the utility-risk tradeoff [e.g.,
Duncan and Fienberg (1997), Fienberg, Rinaldo and Yang (2010)]. The tradeoff
here concerns two somewhat competing aspects. On one hand, as Steve empha-
sized in the quoted abstract, preserving data confidentiality is about ensuring data
quality, because the risk of disclosure would greatly discourage people from re-
sponding honestly if at all. On the other hand, protecting confidentiality of the
data already collected typically means that we need to mask or even distort vari-
ous information in the data, and hence it would lower the data quality. As with the
rest of us, Steve shared the dream of preserving privacy without sacrificing infor-
mation. But Steve would likely be excited by a larger dream, that is, to increase
the data quality while enhancing their privacy. The identities (2.2)–(2.3) suggest
that might not be a day dream, because we can introduce “noise” to data to both
increase data confidentiality and to decrease the data defect correlation, and hence
the d.d.i. to a level that also compensates for the increase in the variance, that is,
problem difficulty.

5.5. The possibility of reducing d.d.i. while enhancing data privacy. As a
proof of concept, consider the situation explored in Fienberg (2010), entitled
“The relevance or irrelevance of weights for confidentiality and statistical analy-
ses”. Steve’s main concern is that while weights are inevitable in practice, dis-
closing weights themselves could jeopardize data confidentiality, especially when
the variations in the weights are large (see Section 3.4). This is because those in-
dividuals receiving extreme weights, either large or small, may have higher risk
of being identified even if their original data are de-identified. Let us assume that
if we disclose only the original data {Xj, j ∈ In}, the user would have no choice
but to use the sample average Xn for estimating the population mean XN , which
will be a biased estimator because πj = PrR(Rj = 1|Xj), the propensity of re-
sponding/recording, depends on Xj . As we emphasized before, here R captures
the entire “Recording” mechanism, and hence it takes into account non-response
bias, among other possible harmful selection biases. The bottom-line is that if we
have used weight Wj ∝ π−1

j , we will have an (approximately) unbiased estimator

for XN .
Before we proceed, we want to highlight a dual interpretation/representation

of ρR,G that will be useful for the construction below. Specifically, the original
formulation of d.d.i., as given in Meng (2014), was in terms of ρπ,G, the correlation
between πJ and GJ . Whereas with N → ∞, ρR,G and ρπ,G will become the same,
the former enjoys exactness in the sense that (2.3)–(2.4) involve no approximation
when we use ρR,G, and hence the updated version reported in this paper. However,
if we model πj via the logistic regression logit(πj ) = α + βGj , then it is known
that the maximum likelihood estimate θ̂ = {α̂, β̂} based on {Gj,Rj , j = 1, . . . ,N}
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must satisfy
N∑

j=1

Rj =
N∑

j=1

π̂j and

(5.6)
N∑

j=1

RjGj =
N∑

j=1

π̂jGj where π̂j = eα̂+β̂Gj

1 + eα̂+β̂Gj

.

We emphasize here that this fitting process is a thought experiment, because in
reality we do not have access to all {Gj, j = 1, . . . ,N} (though we typically know
all Rj ).15 Identity (5.6) is a case of “internal bias calibration” studied in detail by
Firth and Bennett (1998), which then implies

(5.7) Gn − GN = CovJ (π̂J ,GJ )

EJ (π̂J )
and ρπ̂,G = ρR,G.

Consequently, we do not necessarily need to invoke a large-N approximation
to connect ρπ,G , the expected data defect correlation, with ρR,G, the realized
data defect correlation, but rather through the familiar logistic model for record-
ing/reporting propensity. This resembles the situation of the expected Fisher in-
formation versus the observed Fisher information, which have related but distinc-
tive meanings; which one should be used is not a matter without controversy [see
e.g., Efron and Hinkley (1978)]. The same can be said here because ρR,G cap-
tures the actual estimation error for the data at hand, whereas ρπ,G the expected
error, that is, bias in Gn. Which one should we use would depend on how indi-
vidualized we want our inference to be, as formulated and investigated in Liu and
Meng (2016).16 Nevertheless, (5.7) reminds us that we can de-correlate ρR,G by
de-correlating ρπ̂,G , even for small samples, as long as we can assume the logistic
model is reasonable.

Specifically, as a thought experiment, let us assume that the data collector have
access to π = {πj , j = 1, . . . ,N}, which they do not wish to release. However,
their confidentiality concerns do not rule out the possibility of releasing privacy
enhanced data say in the form of a function of Xj and πj : X∗

j = h(Xj ,πj ), which
would be harder for de-identification, especially when the function h is not dis-
closed. Identity (2.2) together with its dual representation (5.7) suggests that we
should seek a function h such that

(A) EJ

(
X∗

J

) = EJ (XJ ) and
(5.8)

(B)
∣∣CovJ

(
πJ ,X∗

J

)∣∣ <
∣∣CovJ (πJ ,XJ )

∣∣.
15We can also improve the model fitness by extending logit(πj ) = α + βGj to logit(πj ) =

α + βGj + H(Gj ; θ) for a suitable non-linear function of Gj with parameter θ distinct from β .
This extension will not alter (5.6) except for the obvious change to the expression of π̂j to include

H(Gj ; θ̂ ).
16I thank my wonderful (former) student and co-author Keli Liu for reminding me of (5.6)–(5.7).
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Here for simplicity of demonstrating possibilities, we have assumed X is univari-
ate; the mathematical construction for the more realistic multivariate X, where
the risk of breaching confidentiality is typically higher, can be carried out in a
component-wise fashion.

In (5.8), the mean preserving requirement (A) ensures that the simple sample
average will be consistent as n → N , and the covariance reduction requirement
(B) aims to reduce the bias in the sample average caused by the R-mechanism.
Because the two covariances share the same πJ , it is easy to see that (B) is equiva-
lent to |ρπ̂,X∗ σX∗ | ≤ |ρπ̂,XσX|. Requirement (B) thus ensures that when we reduce
the data defect correlation, we do not unduly inflate the difficulty of the problem
introduced by the privacy enhanced variable X∗.

Together, requirements (A) and (B) suggest that we should try a regression-type
adjustment in the form of X∗

j = Xj − β(πj − πN), where πN = EJ (πJ ) and β is
to be determined. The covariance reduction requirement then becomes

(5.9)
∣∣CovJ (πJ ,XJ ) − βVJ (πJ )

∣∣ <
∣∣CovJ (πJ ,XJ )

∣∣.
Denoting βX,π = CovJ (πJ ,XJ )/VJ (πJ ) to be the population regression coeffi-
cient of regressing Xj on πj (as determined by least-squares), we can re-express
(5.9) as

(5.10) |βX,π − β| ≤ |βX,π | ⇐⇒ −|βX,π | + βX,π ≤ β ≤ |βX,π | + βX,π .

The ideal choice β = βX,π is not achievable in practice because βX,π is unknown,
but it can be approximated by the data collector via regressing Xj on πj in the
sample j ∈ In, denoted by β̂X,π . Requirement (5.10) then is a very good piece of
news because it says that as long as we get the sign of βX,π correct, and do not
incur a relative approximation error over 100%, that is, as long as

(5.11)
∣∣∣∣ β̂X,π − βX,π

βX,π

∣∣∣∣ < 1

the user’s sample average based on the privacy enhanced data {X∗
j , j ∈ In} would

have (asymptotically) a smaller MSE than the one based on the original data
{Xj, j ∈ In}. The flexibility provided by (5.11) is the same as that provided by
Lemma 1 of Meng (2005) in the context of covariance adjustment for MCQMC
estimators, where the question was how large the error in estimation of the regres-
sion coefficient needs to be before the covariance (incorrectly) adjusted estimator
incurs larger MCQMC error than the unadjusted one. Indeed, one may argue that
even if we have the optimal β we may still prefer to use a different one from the
permissible range as given in (5.10), because a sub-optimal β in that region may
provide more privacy protection than the optimal β since the former would be
harder to discover.

Of course a fundamental problem of enhancing confidentiality via adding zero-
mean noise is that it preserves population averages only for linear (in data) esti-
mands. How to reliably estimate the weights is another thorny issue as we dis-
cussed in Section 3.4. Nevertheless, the construction above reminds of us that
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when the data quality has room for improvement, with additional confidential in-
formation (such as weights), it is possible to improve the data quality as an inte-
grated part of improving data confidentiality. Such simultaneous improvements are
obviously not possible when the data quality is already at the highest level (which
seldom happens in reality, if ever). For example, the regression adjustment method
above will be of no help when βX,π is already zero, that is, when ρN = 0, as with
SRS or any equal probability sampling. Incidentally, the above derivation provides
another justification of using weights as a covariate [e.g., Gelman (2007)], instead
of using them to form the unstable Horvitz–Thompson estimate, as in Section 3.4.

5.6. A more challenging problem: Individualized predictions. So far we have
focused on the issue of (big) data quality for population inferences. However, much
of the current excitement generated by Big Data is about the pursuit of individu-
alization: from personalized medicine to individualized education to targeted mar-
keting. This desire poses a more challenging problem at the statistical foundational
level. Because each of us is unique, any attempt to “personalize” must be approx-
imative in nature. But this is a very different kind of notion of approximation,
compared to the traditional large-sample asymptotics, where the setup is to use
a sample of individuals to learn about the population they belong to. In contrast,
individualized prediction is about finding a sequence of proxy populations with in-
creased resolutions to learn about an individual. This leads to an ultimate challenge
for Statistics (and statisticians): how to build a meaningful theoretical foundation
for inference and prediction without any direct data?

The sequel of the current paper, Meng (2018), will investigate this issue by using
another idea explored in Meng (2014), the multi-resolution framework borrowed
from the wavelets literature, where we will see again the fundamental tradeoff be-
tween data quantity and data quality. We can increase the amount of indirect data
by matching less on the characteristics that define the target individual, that is, by
decreasing the resolution of matching when formulating its proxy populations. But
this will decrease the data quality because the resulting proxy populations will be
less relevant for the individual and hence their results are likely to be more bi-
ased for the target individualized prediction. On the other hand, we can increase
the matching resolution and hence obtain more relevant proxy data, but that will
necessarily decrease the data quantity and hence increase the variance. Big Data
certainly can help to reduce the problem, but they do not escape from this funda-
mental tradeoff. The paradise for fundamental research is therefore wide open.

Indeed, from a research perspective, what is big about Big Data is the number
of intellectually and technologically challenging problems that keep many of us
sleepless either because we are too excited or too frustrated. Therefore, the sta-
tistical issues touched upon in this article and in the sequel are tiny ice chips at
the tip of an iceberg. The literature on Big Data and more generally data science
is too vast for any single paper to summarize adequately, but Donoho (2017) and
its discussions are definitely a great place to start. A main purpose of this paper
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and its sequel is to encourage more (young) talents to enter the emerging paradises
of foundational research for Big Data and Data Science, where there is so much
learned, being learned, and waiting to be learned.
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