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A B S T R A C T

This paper presents an integrated framework that combines a community's physical vulnerability to access
disruption to critical facilities and their tolerance for such access disruption to services in order to inform the
targeted communities protection and build an equitable resilience enhancement plan. The first component of the
proposed framework includes a percolation simulation model capable of integrating the road network disruption
probability into the flood propagation and encapsulates the road network's access to critical facilities (i.e.,
healthcare facilities). The discovered spatial reach of an areas' physical vulnerability dependence is 9 miles.
Besides, physical disruptions in road networks and loss of access to emergency services (such as healthcare) have
varying impacts on different sub-populations. To consider this aspect, the second component of the proposed
framework involves a disruption tolerance index (DTI) to examine communities' tolerance towards access dis-
ruption to healthcare facilities in the face of the flooding. The proposed framework recognizes the importance of
both infrastructure and human perspective of the vulnerability assessment and is tested using empirical data
from Harris County, Texas, in the case of road network disruptions due to fluvial flooding. Houston, the fourth-
largest city in the United States, is within Harris County. Integrated spatial analysis result reveals different
spatial clusters of vulnerability across the study region and provides important insights regarding the critical
infrastructure protection prioritization and hazard mitigation planning. The spatial clusters also unveil the ex-
istence of a homogeneous spatial pattern where similar vulnerable areas stay together. The proposed framework
could be adopted by other cities and different critical facilities to enable decision-makers, infrastructure man-
agers, and city planners to better evaluate their community vulnerability.

1. Introduction

Among the most catastrophic disasters, floods have been causing
extensive losses during the past decades. Climate change, extreme
rainfall, and sea-level rise greatly affect the frequency and severity of
flood hazards. Due to the growing urbanization and economic assets
development in flood-prone areas, by 2050, the global exposure to
floods is expected to increase by a factor of three (Aerts et al., 2018).
This growing flood risk presents significant threats to lifeline infra-
structure networks whose functions support community well-being.
Roadways, in particular, have an important role in transporting people
and goods, evacuating people from impacted regions, and providing
access to resources and services for the impacted populations. Disrup-
tions in roadways cut off access to critical facilities such as shelters,
healthcare facilities, and police and fire stations, and hence, endanger
the lives and safety of populations. To better understand the increasing

risks and proactively mitigate impacts on communities, a quantitative
flood-risk assessment that can systematically estimate roadway ro-
bustness, as well as vulnerability of people and assets is needed to in-
form hazard mitigation, investment decisions, and prioritization of
improvement projects.

Roadway network robustness delineates the capability to provide
access to various destinations when the network is subject to disrup-
tions such as flood inundation. If we model a roadway network as a
graph where nodes represent the intersections and links are the roads, a
disruption due to flood inundation can be represented as the removal of
links and nodes. Accordingly, percolation theory allows the analysis of
network robustness under link and node disruption. In the percolation
approach, network robustness is measured by the topological con-
nectivity using the size of largest connected component in the aftermath
of network disruption (Wang, Yang, Stanley, & Gao, 2019). Various
studies (Dong, Mostafizi, Wang, Gao, & Li, 2019; Wang et al., 2019)
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have employed the percolation theory for examination of roadway ro-
bustness. However, the examination of roadway robustness based on
the largest connected component neglects the fact that components in
infrastructure networks can be isolated. A roadway network is robust if
it maintains access to critical facilities to support the healthy func-
tioning of society. For example, if a community's access to a healthcare
facility is disrupted due to road inundation, affected people cannot
receive timely medical treatment and their health and safety will be at
risk. Without inclusion of critical facilities, roadway network robustness
measurement would lead to inaccurate estimation of a community's
vulnerability to network disruptions. In this paper, we use a novel ro-
bust component, which is the integrated size of the clusters connected
to the identified critical facilities (e.g., healthcare facilities), as the
measure of network robustness under flood hazards. The proposed
framework evaluates the extent to which critical facilities remain ac-
cessible under flood-induced disruptions. The underlying premise of
this approach is that if a node is included in the robust component, the
neighborhood can reach the critical facilities. The proposed robust
component approach also captures a community's needs by considering
the access to multiple critical facilities, an extension of the singular
origin-destination pair discussed in existing studies (Chen, Yang,
Kongsomsaksakul, & Lee, 2007; Chen, Yang, Lo, & Tang, 2002;
Poorzahedy & Bushehri, 2005; Sakakibara, Kajitani, & Okada, 2004). In
addition, the proposed framework considers that disruptions in infra-
structure networks are not random (which is an assumption made by
many network robustness studies). For example, roads located in the
floodplain and closer to the flood channels are exposed to higher risks
and have higher disruption probability. Moreover, we employ a prob-
abilistic percolation approach that incorporates the spatial flooding
risks into simulating the likelihood of network disruption. The spatial
probabilistic nature of infrastructure failures is thus captured in the
proposed framework.

While evaluation of road network robustness informs about the
physical vulnerability of communities, the outcomes do not inform
about the societal impacts of flood induced disruptions. Network as-
sessment based purely on physical robustness/vulnerability assumes a
uniform behavior within the communities, which neglects the fact that
different sub-populations of community use and rely on the infra-
structure and respond to disaster impacts in different ways. In fact,
socially vulnerable populations (the poor, racial minorities, and people
with disabilities) are shown to experience disproportionate risk due to
disaster impacts such as infrastructure disruptions (e.g., power outages,
and road closures) (Charles, 2003; Peacock, Dash, & Zhang, 2007;
Zahran, Brody, Peacock, Vedlitz, & Grover, 2008). For example, black
households have constrained access to hurricane preparedness supplies
(Peacock, 2003); socially vulnerable populations have proven to ex-
perience more casualties during flood events in Texas (Zahran et al.,
2008). Recognizing this, we conclude that the current body of knowl-
edge lacks the integration of physical-social aspects in the community
vulnerability assessment. This knowledge gap has inhibited translation
of network disaster resilience research to community actions aimed at
reducing risk disparities in hazard mitigation planning and prioritizing
infrastructure protection. Recent studies (Aerts et al., 2018; Cutter,
Emrich, Morath, & Dunning, 2013) have attempted to integrate general
measures of social vulnerability (such as the social vulnerability index)
along with physical infrastructure vulnerability. Measures of social
vulnerability, however, do not fully capture the extent to which a
certain sub-population group could tolerate disruptions to particular
infrastructure services. In other words, impacts of infrastructure service
disruptions on different vulnerable sub-populations are not homo-
geneous (Esmalian, Dong, Coleman, & Mostafavi, 2019,Esmalian,
Ramaswamy, Rasoulkhani, & Mostafavi, 2019; Coleman, Esmalian, &
Mostafavi, 2019; Dargin & Mostafavi, 2019). To address this limitation,
this paper proposes a new measure, disruption tolerance index (DTI), to
capture the extent to which disruption in a particular infrastructure
influences certain sub-populations. In particular, a healthcare service

DTI is determined to characterize a community's vulnerability to losing
access to healthcare facilities in the face of flooding. To construct the
DTI, various influential factors are identified using a post-Harvey
household survey. These factors are aggregated at the census tract level
to determine a location-specific DTI. The calculated location-specific
DTI values are utilized in conjunction with the simulated road network
robustness results to classify urban areas into different categories of
physical and social vulnerability. This information provides important
insights for prioritization of infrastructure projects and hazard mitiga-
tion actions.

This research is primarily motivated by the fact that either physical
or social vulnerability alone does not offer sufficient information to
characterize communities' risk of disrupted access to critical facilities in
flooding. The proposed framework contributes to the state-of-the-art
research on infrastructure resilience and flood risk reduction by pro-
posing an integrated analysis approach considering both physical vul-
nerabilities due to flood-induced disruptions and people's tolerance of
service disruptions. The employed robust component analysis over-
comes the limitation of previous network percolation models where
only road network topology is considered. In addition, the analysis of
physical vulnerability in this framework involves considering the in-
undation probability of roads based on spatial flood hazards to provide
a more realistic flood disruption scenario. Also, the proposed frame-
work identifies the important socio-demographic factors that influence
people's tolerance to healthcare facilities inaccessibility. These factors
are used to determine the disruption tolerance index at the census tract
level. The proposed integrated framework also provides invaluable
policy implications for hazard risk reduction. First, the proposed fra-
mework is able to identify the critical areas that are physically prone to
access disruption to healthcare facilities due to road inundation. These
areas should be highlighted for transportation planning so that the
critical roads are prioritized for hazard mitigation and protection, such
as retrofitting and road elevation. Second, the identification of com-
munities that are socially intolerant to access loss to healthcare facil-
ities suggests the inclusion of peoples needs in the critical facility sitting
decision-making, such as relocation of existing healthcare facilities or
the development of new healthcare facilities. Third, the detection of the
hot-spots of vulnerable communities can inform the emergency re-
sponse planning by prioritizing those areas for resource allocations in
order to reduce the societal impact of access loss to services in urban
flooding.

The remainder of the paper is organized as follows. Section 2 pre-
sents a review of the existing research related to roadway network ro-
bustness modeling and social vulnerability assessment. Section 3 in-
troduces the elements of the proposed integrated physical-social
analysis framework. The application of the proposed analysis frame-
work is shown in a study of Harris County. Section 4 presents the
percolation analysis on the flood disrupted access to critical facilities,
and the spatial reach of the physical vulnerability dependence of re-
gions is discovered. Section 5 presents an examination of household
tolerance to disrupted access to healthcare services using a survey of
Harris County residents in the aftermath of Hurricane Harvey, and the
spatial clusters of the vulnerable areas are detected. Subsequently, the
identification of important social factors and determination of disrup-
tion tolerance index (for healthcare services) for different areas are
discussed. Section 6 presents the integrated physical-social vulner-
ability assessment through spatial analysis. Finally, section 8 discusses
the significance of the proposed framework and findings.

2. Literature review

2.1. Roadway network robustness modeling

Network robustness analysis is often associated with the investiga-
tion of physical vulnerability, reliability, and accessibility (Jenelius &
Mattsson, 2015; Sullivan, Aultman-Hall, & Novak, 2009). Vulnerability
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describes the degree of network performance decrease due to pertur-
bations (Holme, Kim, Yoon, & Han, 2002; Jenelius, 2009; Sullivan
et al., 2009). Roadway network vulnerability, in particular, refers to the
“susceptibility to incidents that can result in considerable reductions in
roadway network serviceability” (Berdica, 2002). In other words, the
concept of vulnerability can be considered as the reciprocal of robust-
ness (De Oliveira, Da Silva Portugal, & Junior, 2014; Iyer, Killingback,
Sundaram, & Wang, 2013). In this study, since we mainly focus on
investigating disrupted access to critical facilities during flood in-
undation. The network performance reduction is measured by the
number of nodes that lose access to identified critical facilities, such as
healthcare facilities. Reliability refers to the probability that a given
element in the system can maintain satisfactory functionality at any
given time (Mattsson & Jenelius, 2015; Murray & Grubesic, 2007).
Reliability analysis consists of three categories: connectivity reliability
(the probability of a node stays connected), travel time reliability (the
probability that a trip is made within a specified time interval), and
capacity reliability (the probability that a network can successfully
accommodate a given travel demand) (Murray & Grubesic, 2007;
Sakakibara et al., 2004). There are also many studies that use measures
such as response time change (Tamima & Chouinard, 2017), travel cost
(Nagurney & Qiang, 2009), traffic delay (Ganin et al., 2017), vehicle
miles traveled (VMT) increase (Dehghani, Flintsch, & McNeil, 2014),
and operation efficiency loss (Church & Scaparra, 2007). These mea-
sures are closely tied to accessibility analysis, which studies “the re-
lative ease of reaching various services, destinations, and/or activities
from a particular origin” (Kwan & Weber, 2008; Novak & Sullivan,
2014; Vandenbulcke, Steenberghen, & Thomas, 2009). Östh, Reggiani,
and Galiazzo (2015) investigated the municipality's economic func-
tioning combining socio-economic resilience with accessibility mea-
sures. The standard analysis of accessibility based on mobility relies on
empirical traffic data for modeling and calibration (Jenelius, 2009;
Jenelius & Mattsson, 2015; Tahmasbi & Haghshenas, 2019); daily travel
demand is often adopted. Due to the stochastic nature of natural dis-
asters, however, post-disaster travel demand data is different from that
of normal behaviors. Therefore, these mobility-based frameworks have
limitations for assessment in the context of hazards study (Ganin et al.,
2017). In addition, traffic engineering models tend to focus on a single
pair of origin-destinations (Novak & Sullivan, 2014). However, in a
disaster setting when critical services are needed and critical facilities
are sought, we need to consider multiple suitable destinations (i.e.,
critical facilities) instead of individual ones. The robust component
adopted in this paper overcomes these limitations by incorporating all
critical facilities into the search fields and informing on the existence of
access to any suitable facilities. Also, network disruption is a stochastic
event, as opposed to the deterministic failure that often studied in
traffic engineering models. Chang and Nojima (2001) pointed out that
post-disaster studies require performance measures that emphasize
physical conditions and network functionality. Wang et al. (2014)
found that vulnerability estimation that ignores network topological-
related factors and only focuses on traffic-related factors would be
limited in providing true insights regarding vulnerability. Thus, in this
paper, we use a topology-based modeling and simulation method to
investigate the county-wide road network performance under different
scales of flooding. The adopted topology-based modeling examines
physical vulnerability (or robustness) based on percolation theory. The
graph-based network vulnerability analysis approach assumes people's
movement in the post-flood scenario is bounded by the road network,
which to some extent excludes possibilities of off-road navigation in a
flooded landscape (Helderop & Grubesic, 2019). Besides, the vehicle
may be able to navigate through a shallowly inundated road
(Pregnolato, Ford, Wilkinson, & Dawson, 2017; Price & Vojinovic,
2008; Yin, Yu, Yin, Liu, & He, 2016). While the off-road travel and
inundation depth are not considered in the proposed framework, the
network-based road vulnerability analysis is still meaningful and pro-
vides valuable insights because the post-disaster movement is mostly

road-based. Hence, examining disrupted access to critical facilities
based on road network vulnerability enables criticality-prioritized
transportation infrastructure protection and risk-informed emergency
planning and flood risk reduction.

Percolation theory allows examining the robustness of a network or
a network-of-networks (Kulkarni, Stough, & Haynes, 2000; Wang et al.,
2019). The largest connected component, known as the giant compo-
nent, is measured to represent the network robustness under disruption
(Motter & Lai, 2002; Schneider, Moreira, Andrade, Havlin, & Herrmann,
2011). In the context of roadway network study, percolation theory
assumes an individual car can only travel in the giant component. Al-
though this assumption stays valid when the connectivity of the net-
work is the main concern, it is impaired when the functionality of the
network relies on the resources and services that require access to cri-
tical facilities. In this case, we use the robust component, which en-
capsulates a nodes' access to critical facilities to measure that network's
robustness (Dong, Wang, Mostafavi, & Gao, 2019; Dong, Wang,
Mostafizi, & Song, 2020). In addition, the previous percolation research
mainly focused on theoretical networks such as scale-free networks and
Erdös-Rényi networks (Cohen, Havlin, & Ben-Avraham, 2003; Gao,
Buldyrev, Havlin, & Stanley, 2011; Li et al., 2011; Radicchi, 2015) or
distribution approximated infrastructure networks (Buldyrev, Parshani,
Paul, Stanley, & Havlin, 2010; Crucitti, Latora, Marchiori, & Rapisarda,
2004; Radicchi, 2015). Infrastructure networks, however, show very
different characteristics and spatial patterns compared to theoretical
networks. For example, Dong, Mostafizi, Wang, et al. (2019) showed
that degree correlation in road network violates the assumption of
theoretical methods such as generating function method so that they
are not applicable in analyzing the network robustness.

A simulation-based network robustness assessment approach is re-
quired to effectively examine post-disaster road network robustness
performance. The existing simulation-based approaches primarily focus
on analyzing network robustness under theoretical failure schemes such
as random failures (Bashan, Berezin, Buldyrev, & Havlin, 2013; Dong,
Mostafizi, Wang, et al., 2019), localized attacks (Berezin, Bashan,
Danziger, Li, & Havlin, 2015; Shao, Huang, Stanley, & Havlin, 2015;
Zhao, Li, Sanhedrai, Cohen, & Havlin, 2016), and targeted attacks
(Berche, von Ferber, Holovatch, & Holovatch, 2009; Duan & Lu, 2013;
Huang, Gao, Buldyrev, Havlin, & Stanley, 2011; Solé, Rosas-Casals,
Corominas-Murtra, & Valverde, 2008). However, the link/node removal
is often associated with disruption probabilities (Li, Dong, & Mostafavi,
2019a, 2019b). In roadway network robustness analysis, disruption of
roads is not random but rather depends on geographic exposure to
hazards. For example, roads in the vicinity of flood channels are more
likely to flood during an extensive rainfall event. Therefore, probabil-
istic failure propagation (based on spatial characteristics of flood ha-
zards) should be incorporated when assessing road network robustness.
The proposed framework employs a percolation-based modeling and
simulation analysis that examines the robust component as the ro-
bustness metric and models probabilistic link failures caused by flood
propagation.

2.2. Social vulnerability to infrastructure disruption

Public has different expectations for infrastructure services in the
aftermath of a disaster. Merely focusing on the physical vulnerability of
infrastructure systems neglects the fact that the public does not ex-
perience the access disruptions equally (Grinberger & Felsenstein,
2016). Studies show that in case of a service disruption, such as loss of
access to critical facilities, different subgroups of people can have
varying tolerability to disruption (Petersen, Fallou, Reilly, & Serafinelli,
2018). Recent studies have shown that different sub-populations have
distinct needs and expectations of the infrastructure services during and
after the disaster strikes (ATC, 2016). Therefore, recognition of the
tolerance disparity among different sub-populations is imperative for
community-level vulnerability assessment (Martins, e Silva, & Cabral,
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2012). To this end, we first need to identify the societal determinant of
experienced hardship from loss of access to service for the infra-
structure-related service of interest. Then, the identified influential
factors need to be appropriately analyzed and integrated into the vul-
nerability assessment to reflect the spatial disparity of tolerance within
the study area.

To identify societal determinant of tolerance to disrupted access to
service, Murphy and Gardoni (2008) suggest that the tolerance of in-
dividuals is determined by their existing capabilities, a direct predictor
of the functionality that is achievable with available resources. The
investigation of tolerance among sub-populations should focus on
variables that reflect their capability for coping with service disruption.
In an empirical study, Esmalian, Dong, et al., 2019 has investigated the
households experiences with power outages and showed that certain
sub-populations have a lower capacity to tolerate power outages. Stu-
dies on the influence of individuals age and income show that different
sub-populations would experience varying levels of impacts from
transportation service disruption (Coleman et al., 2019; Dargin &
Mostafavi, 2019). Moreover, Petersen et al. (2018) cite the interplay
between socioeconomic characteristics of subpopulations and their in-
frastructure services needs and tolerability.

Many studies have investigated how the sociodemographic char-
acteristics of sub-populations influence their ability to cope with dis-
asters. It is generally agreed that socially vulnerable population are
those with limited resources to cope with the threats of natural disasters
(Paton, McClure, & Bürgelt, 2006). To scrutinize the concept of social
vulnerability, Cutter, Boruff, and Shirley (2003) state that the main
cause of the social vulnerability is inequality that reduces the capacity
of certain sub-populations to respond to and recover from disasters. The
inequality may be in the form of inaccessibility to resources, beliefs,
customs, building stock, physical limitations, and age of individuals
(Cutter et al., 2003; Perry, Lindell, & Tierney, 2001; Tierney, Lindell, &
Perry, 2002). Factors that influence the tolerance to the loss of access to
service include household income, lack of vehicle, disability, and age.
An empirical investigation of the relationship between the perceived
tolerance to loss of service and sociodemographic characteristics of
individuals is needed in helping us understand the influence of different
social factors for specific service disruptions.

An integrated vulnerability index quantifies the tolerance to access
disruption to the service of a community as a whole. Among various
methods in risk and disaster literature for considering the social vul-
nerability of a community, a prevalence approach for social vulner-
ability quantification uses composite indicators and scores to account
for multiple aspects of vulnerability (Beccari, 2016). The generation of
such a composite indicator integrates different social or environmental
factors. For example, Social Vulnerability Index (SoVI) (Cutter et al.,

2003), as a well-known method, uses principal components analysis
(PCA) to create independent factors using a number of socioeconomic
indicators including age, income, race, and education at the census
tract-level. Flanagan, Gregory, Hallisey, Heitgerd, and Lewis (2011)
first categorized the vulnerability variables into four groups: (1) so-
cioeconomic status, (2) racial/ethnic groups, (3) household composi-
tion, and (4) housing style. Flanagan et al. (2011) then calculated
vulnerability index at the census tract level based on the percentile
ranks of the vulnerability variables and counted the number of in-
dividual vulnerability variables for which the percentile rank is 90 or
higher. There are several similar methods (Anderson et al., 2019;
Dwyer, Zoppou, Nielsen, Day, & Roberts, 2004; Hagenlocher, Renaud,
Haas, & Sebesvari, 2018; Khazai, Merz, Schulz, & Borst, 2013) devel-
oped for assessing the risk and vulnerability of the spatial areas and
providing spatially related vulnerability scores of the residents. These
existing approaches studying social vulnerability include multiple so-
cial dimensions that contribute to vulnerability of sub-populations fa-
cing disasters in general. However, these social dimensions are not
necessarily all related to the case of infrastructure service disruptions.
In this study, sociodemographic characteristics of the sub-populations
that contribute to their tolerance to disrupted access to service are
identified and tested through an empirical study. A tolerance index is
then developed specifically for the case of healthcare service disruption.
Furthermore, studies show that households with high social vulner-
ability tend to co-locate in the proximity of each other and form a so-
cially vulnerable community cluster (Cutter & Finch, 2008; Frigerio &
De Amicis, 2016). The same pattern is expected to be observed in the
case of tolerance to infrastructure service disruptions. The existence of
the high/low tolerance clusters in the region highlights the importance
of identifying such vulnerable population for better emergency re-
sponse during disaster events (Adger, Brooks, Bentham, Agnew, &
Eriksen, 2005; Fatemi, Ardalan, Aguirre, Mansouri, & Mohammadfam,
2017). Combining the derived DTI with physical vulnerabilities, the
integrated physical-social vulnerable cluster can provide valuable in-
sight for decision-makers regarding logistics of disaster preparation and
planning for emergency response.

3. Integrated physical-social vulnerability assessment framework

As discussed, the impacts of infrastructure disruptions on commu-
nities are influenced by social and physical vulnerability, both of which
vary spatially. An integrated assessment of vulnerability is needed to
gain a more complete understanding of the relationship between people
and the built environment surrounding them (Bevacqua, Yu, & Zhang,
2018; Mayaud, Tran, Pereira, & Nuttall, 2019) to better inform deci-
sions made by planners, government authorities, infrastructure

Fig. 1. Integrated physical-social vulnerability assessment framework.
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managers and emergency management agencies (Ellingwood et al.,
2016; Fuchs, Kuhlicke, & Meyer, 2011).

Fig. 1 illustrates two major components of the proposed vulner-
ability assessment framework: (1) physical vulnerability analysis that
examines network's access to critical facilities during flooding, and (2)
social vulnerability analysis that characterizes households' tolerance to
service disruptions. In particular, the physical vulnerability analysis
mainly focuses on the roadway network performance, functional status
of critical facilities, and connectivity between critical facilities and
communities in a flood event. Both probabilistic fluvial flooding and
Hurricane Harvey flood scenarios are investigated in this study. The
propagation of flood on the roadway network is modeled and simulated
using a network percolation method in which the aggregated robust
component size characterizes the communities' access to healthcare
facilities in the face of flooding.

The second component of the framework (Fig. 1) determines social
vulnerability to infrastructure disruptions. The social factors affecting
residents ability to tolerate service disruptions (or disrupted access to
facilities) are examined through empirical data collected from a post-
Harvey household survey. Using the survey data, a principal component
analysis is performed to create a disruption tolerance index for different
sub-populations. Finally, an integrated physical-social vulnerability
analysis is conducted to identify areas with the greatest combined social
and physical vulnerability to road inundation and loss of access to
healthcare facilities.

The application of the proposed framework is shown in the context
of Harris County. Harris County has> 2500 miles of flood control
channels and is the third-largest county in the United States. In addi-
tion, Harris County, home to Houston, the fourth-largest city in the
United States, is one of the most flood-prone areas in the country. Out
of 7.9 million people affected by Hurricane Harvey, 4.37 million people
live in Harris County, of which 1.1 million people live in areas of high
social vulnerability (America, 2017). The Hispanic population is the
largest population group in the Harris County Disaster Recovery Service
Area, and over 16% of the service area population has a limited English
proficiency compared to 9.7% of the countys entire population. Harris
County also has high concentrations of residents who are considered
minorities (63.6%) or living in poverty (12.87%). Hence, Harris County
provides an ideal testbed for demonstrating the application of the
proposed framework and its components.

4. Analysis of flood-induced disruptions and network access to
critical facilities

Our analysis examines different scenarios of flood hazards. Fluvial
flooding often occurs in the area where the roads are in the vicinity of
the flood control channels (rivers, bayous, and creeks). The character-
ization of fluvial flood hazards is usually represented by specification of
floodplains. A floodplain is a geographic area along the floodways
subject to flooding. The 100-year (500-year) floodplain is the land that
is predicted to flood during a 100-year (500-year) storm, which has a
1% (0.2%) chance of occurring in any given year. Fig. 2 shows the
roadway network map and floodplains in Harris County. Considering
intersections as nodes and road segments as links, we can represent the
road network of Harris County as a graph. There are in total 148,772
nodes and 203,872 links. There are 98 hospitals in total distributed
across Harris County. Based on the spatial coverage, we conclude that
16.5% (33,681) of the links are within a 10-meter buffer of the 100-year
floodplain, and 30.5% (62,112) of the links are within a 10-meter buffer
of the 500-year floodplain. Evidently, Harris County is very vulnerable
to urban flooding. In addition, the impact of flood inundation is not
limited to roadway network connectivity. Flooding severely impairs
people's access to critical resources and services such as hospitals,
grocery stores, and pharmacies. Hence, the application of our proposed
framework in the context of Harris County is geared towards under-
standing how robust Harris County network is in facing flooding.

4.1. Robust component: network access to critical facilities

The roadway disruptions due to flood inundation are modeled as
link removal from the roadway network. The link removal is based on
the failure probability ϕ that a link will be inundated, which is char-
acterized by its distance to the waterway. To capture the network access
to critical facilities under flood disruptions, we adopted the measure of
robust component (Dong, Wang, Mostafavi, & Gao, 2019,Dong, Wang,
Mostafizi, & Song, 2020) to examine the robustness of the roadway
network of Harris County under different scenarios of flood disruptions.

The steps for determining the robust component measure are as
follows (Dong, Wang, Mostafavi, and Gao (2019). In a graph G, two
vertices u and v are considered connected if there is path from u to v,
which is denoted as ρ(u,v) = 1. Given a network of size N, containing K
critical facilities, the connected component of k can be represented as
Ck = {vi|ρ(k,vi) = 1,∀i = 0,1,…,N}. The robust component of a net-
work with failure probability ϕ can be defined as

= ∪
= …

Cϕ
k K

k
0,1, ,

R
(1)

Fig. 3 shows the flood inundation characterized by network ap-
proach. As the overflow propagates across the network, the nodes and
links will be considered nonfunctional and removed from the network
(as shown in Fig. 3(b)). As the failure scale increases, the network
performance will decrease and show a percolation transition. In this
paper, we focus on analyzing if the nodes have access to any of the
designated critical facilities. Fig. 3(b) and (c) show the change of robust
component size (marked as green) when the flooding scale (marked as
red) increased from ϕ = 0.02 to ϕ = 0.3. Road access is represented as
a binary process during link removal in the percolation modeling. Once
a road is (partially) inundated, we assume that the road is impassable
and thus removed. In other words, even if part of a road is inundated,
once the traffic enters the road, it cannot fully traverse the link. In
addition, the network we investigated in this study includes fine
granular data; each link is a section of a road where no other inter-
sections can be found within a link. Hence, there is no routing diverge
within a link if a road is partially inundated. The robust component is
the union of the nodes with access to at least one critical facility. Re-
gardless of the size of residual components, if they do not contain the
critical facilities, they are nonfunctional and excluded from the ro-
bustness estimation (as suggested in Fig. 3(a)). More importantly,
flooding disconnected communities from accessing the hospitals, de-
spite they are not flooded themselves (as shown in Fig. 3(b) and (c) gray
lines). Comparing the existing network robustness analysis that based
on the centrality measures (Novak & Sullivan, 2014), a robust compo-
nent enables the inclusion of all possible connections to the critical
facilities rather than the shortest distance between an origin-destination
(OD) pair.

4.2. Percolation modeling of near-floodway flood propagation

Extreme rainfall (such as the case of hurricane Harvey) causes flu-
vial flooding when rivers and channels exceed their banks (Ogie,
Holderness, Dunn, & Turpin, 2018). Especially in Harris County, which
encompasses multiple rivers, channels, and bayous, an examination of
flood propagation on roadway networks and its impacts on the net-
works' access to critical facilities is of great importance. Although
pluvial flooding, flood event caused by extreme rainfall is also a sig-
nificant contributing factor of urban flooding, in this paper, we only
focus on the fluvial flooding.

In fluvial flooding scenarios, the likelihood of road inundation is
proportional to the distance to a floodway (i.e., bayou or channel). If a
roadway segment is in proximity to multiple floodways, distance to the
nearest floodway is considered. In total, around 7700 roads are in the
range of 0 to 20 m from floodways. As the fluvial flooding often occurs
in the vicinity of the floodway, this paper assumes that the closer to the
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floodway, the greater the likelihood of road inundation. The elevation
of flood control and road infrastructure can also influence the scale of
the flooding. However, infrastructure elevation is not incorporated in
this study as the goal of the flood percolation study is to reveal the
immediate impact of near-floodway roads' inundation on overall net-
work access to critical facilities. In this case, the infrastructure elevation
will have a minor impact on the results. Many other factors, such as
street network topology, stormwater drainage system, and im-
perviousness can all influence the flood propagation. Future develop-
ment can be built upon the proposed fluvial flood percolation model for
extensive investigation of more scenarios. To devise the flooding sce-
nario, we first convert the distance of roads from floodway (di) to flood
inundation likelihoods (li).

=l
d
1

i
i (2)

=
∑ =

ϕ
l

li
j

j
N

j0 (3)

Here ϕi is the probability that the link will be selected. We then
create a cumulative probability sequence by summing the ϕi.

∑=c ϕi

i

i
0 (4)

To simulate flooded links, we randomly generate a number between
[0, 1] and check into which interval it falls. The larger the ci is, the
greater the likelihood of link inundation (i.e., link removal). Through
multiple runs of simulations, we can obtain a sequence of flooded links

Fig. 2. Harris county floodplain map, Harris County.

Fig. 3. Illustrative example of flood propagation on roadway.
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and investigate the network behavior under the simulated flooding
scenario. Although real-life flooding is determined by other factors such
as location, land cover, and rainfall magnitude, our simplifying as-
sumption (i.e., road inundation risk is a function of distance to flood-
ways) enables us to approximate road inundations and to model flood
propagation across the entire network to inform future infrastructure
development and hazard mitigation actions. To evaluate various
flooding scenarios, we use a Monte Carlo-based approach. In this study,
100 simulation runs representing different flood scenarios are gener-
ated through the aforementioned procedure, and the average network
performance (robust component) is calculated.

4.3. Disrupted network access to healthcare facilities

In this paper, we mainly focus on investigating network robustness
by assessing a community's post-flooding access to the healthcare fa-
cility (hospital). Denoting the flood inundation scale as ϕ (the propor-
tion of the links inundated), Fig. 4 presents the percolation process of
network robustness, measured by robust component, as the flood in-
undation scale increases. In this experiment, ϕ increases by 0.01 at each
step. As shown in the figure, the network robustness shows a sudden
drop (from 1.0 to 0.8) as ϕ increases to 0.02. This suggests that when a
county-wide flooding event occurs, if 2% of the roads (4077 links) are
inundated, this will result in 22% the network losing access to the
healthcare facilities. One plausible explanation is that the near-
floodway roads are normally bridges or ramps that connect the major
arterial to the bridge. They are critical links that connect different
sections of the network together. Once these roadways inundated, the
network becomes fragmented into small isolated components. If the
component does not contain a healthcare facility, the whole neigh-
borhood will lose its access to health care services. This finding urges
the protection of bridges and roads in the vicinity of floodway through
bridge retrofitting or road elevation. As flood propagation progress, the
network's access to healthcare facilities continues to drop. When 80% of
the roads are inundated, robustness will reach a critical threshold of
ϕc = 0.8, and whole network will lose access to healthcare facilities.
Although such large scale flooding is unlikely to happen, the result
allowed us to understand the intrinsic road network robustness based
on its topology and location of healthcare facilities. The critical
threshold ϕc marks the critical fraction of links/nodes whose removal
will result in the complete isolation of network (Iyer et al., 2013;
Vespignani, 2010). However, this measure does not capture the net-
work behavior prior to the total collapse; therefore, inspired by
Schneider et al. (2011), we used the robustness index R as in Eq. (5) to
systematically measure the network robustness throughout the

percolation process.

∑=
=

R rcs ϕ( )
ϕ

N

0 (5)

where N is the number of the incremental steps of ϕ, and rcs(ϕ) is the
fraction of nodes in the robust component after removing a ϕ fraction of
nodes. The percolation process measured by the robust component
showed a total robustness of R = 0.251. Comparing its upper bound
value 0.5, the result indicated that the roadway network is highly
vulnerable in terms of providing access to the healthcare facilities
during flooding events.

Investigating the gradual flooding propagation is critical in pin-
pointing the damages in different scales and to understand the pressing
risk of losing access to healthcare during a flooding event. As vulner-
ability to flooding varies from community to community and is de-
pendent on the availability of healthcare facilities resources and ex-
posure to flood hazards, equally important is to locate vulnerable
communities for which to provide targeted protections. Therefore, in
addition to the simulation of fluvial flooding due to overflow of
floodways, we also examined flooding caused by Harvey. The Hurricane
Harvey flood information is obtained from the Harris County flood
warning system (HCFCD, 2019). The available data did not include
details regarding flood depth on roads. Hence, the analysis did not
consider the depth of the flood. In doing so, we assumed that a road is
impassible once it is flooded (regardless of flood depth). This limitation
could be addressed in future studies when more fine-grained data re-
garding flood depth on roads are available Employing the link removal
based on the floodplain presented in Fig. 2, we first removed the links
based on their likelihood for fluvial flooding based on Eq. (3). Each
node's access to the healthcare facility was then calculated based on the
proposed robust component and finally aggregated based on the census
tract.

As shown in Fig. 2, Hurricane Harvey brought flooding mainly
around the floodways. During Hurricane Harvey, the operator made the
difficult decision to open the spillways of aging Barker and Addicks
Dams in northwest Houston to prevent rising water in the lake from
breaching the dam. Although the release of flood-water to downstream
neighborhoods causing inundation of> 9000 houses (almost all of
which did not have flood insurance) for more than two weeks, the
decision prevented even worse destruction. We can see that Addicks
and Barker Reservoir, west of Addicks, and Memorial & Briar Forest
area are heavily flooded. Comparing Figs. 2 and 5, we can see that
Aldine, Mount Houston, East Houston, and Channelview suffered from
flood inundation. Although these areas did not experience extensive
flooding, they are at very high vulnerability of losing access to
healthcare facilities. This is because the flooding in the region produces
a loop that isolated these communities. This finding implies that the
topology and properties of infrastructure networks cause flood risk to
propagate outside floodplains, a type of vulnerability not well studied
due to location outside the floodplain. The Bellaire area is surrounded
by many healthcare facilities; nevertheless, due to the flooding, it is
vulnerable to disrupted access to the healthcare facilities. Conversely,
Jacinto City, Galena Park, and Harrisburg/Manchester experienced
moderate flooding; however, their vulnerability to losing hospital ac-
cess is low because they are not secluded from the rest of the network.
Although longer travel distance is expected, residents of these areas can
still find a path to access the healthcare facility.

It should be noted that we assumed all residents would seek
healthcare services within Harris County; however, communities lo-
cated on the periphery of the county might have access to healthcare
facilities in the adjacent counties. This could be one reason for ex-
plaining the extent of vulnerability areas, most of which showed sig-
nificant vulnerability to the loss of access to healthcare facilities due to
the flooding disruption. Nevertheless, the results are still valid since the
adjacent counties might also be affected by flooding, and their

Fig. 4. Percolation process of robust component size.
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healthcare facilities may not have the capacity to serve the needs of
affected populations from Harris County, who lost access to local
healthcare facilities.

To identify the spatial correlation of vulnerability at the urban scale,
we used Local Indicators of Spatial Association (LISA) method to
identify the spatial clusters and adopted Global Moran's I test to ex-
amine the similarity and dissimilarity of the neighboring spatial units
(Robinson & Quinn, 2018; Wang & Mu, 2018). Moran's I scatter plot
classifies the spatial association into four quadrants of high-high, low-
low, high-low, and low-high, where high-high cluster indicates a vul-
nerable area is surrounded by similarly high vulnerability areas. A high-
low cluster indicates a vulnerable area is surrounded by low vulner-
ability areas, and vice versa. Fig. 6 presents the identified clusters.
Moran's I test in Fig. 6(a) shows a value of 0.573 with a p-value of

0.001. This statistically significant clustering result suggests the ex-
istence of a homogeneous spatial pattern where regions with similar
vulnerability characteristics cluster together. This spatial pattern is an
emergent property arising from the characteristics of road networks and
healthcare facilities. Fig. 6(b) shows that the distance decay function
indicating the spatial correlation effect diminishes at the radius of
9 miles. This result suggests that the spatial reach of physical vulner-
ability for each area in terms of access to critical health care facilities is
9 miles in the study region. The spatial reach of physical vulnerability
indicates the extent to which access disruption cascades into neigh-
boring areas. Fig. 6(c) also shows the identified hotspots and cold spots
of the physically vulnerable communities. For example, confirming the
results in Fig. 5, we can see vulnerable neighborhoods that are sur-
rounded by similarly highly vulnerable neighborhoods (101 census

Fig. 5. Disrupted access to healthcare facilities in Harris County.

Fig. 6. Spatial cluster of physically vulnerable region facing healthcare service loss during Hurricane Harvey in Harris County.
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tract) in Addicks, Aldine, Mount Houston, Sheldon, and Channelview
areas. Examining low-high clusters where neighborhoods of low phy-
sical vulnerability are surrounded by high physical vulnerability reveals
that these neighbors are farther from floodways; also they are either
adjacent to a healthcare facility or have major transportation routes
such as US-90 and I-45 that connects to a healthcare facility in other
regions. In other words, the low-high areas have a unique redundancy
feature that distinguishes them from their neighboring spatial areas.

5. Tolerance analysis towards disrupted access to healthcare
facilities

The societal dimensions of the disrupted access to healthcare facil-
ities can be examined based on two measures: experienced hardship
and tolerance level. A self-reported level of hardship experienced by a
household due to disrupted access to healthcare facilities provides an
indicator of societal impacts. The level of hardship is a function of the
extent of disruptions (physical infrastructure vulnerability), as well as
the capability of a household to cope with disruptions. In this study, we
characterize the capability to withstand disruptions as a tolerance level.
Households' needs and dependence on infrastructure services vary;
hence, the same level of disrupted service would impact households
differently depending upon their tolerance level. The level of tolerance
is shaped by two service thresholds: (1) acceptable service level, which
is defined by people's need from infrastructure services in their daily
lives, and (2) minimum adequate service level that a household could
tolerate in a disaster setting. Households' level of tolerance is largely
determined by their sociodemographic characteristics and resources
available to cope with the negative impacts of service disruptions
(Esmalian, Dong, et al., 2019).

5.1. Post-hurricane Harvey household survey

To examine the influence of social factors on the level of tolerance
of households, a survey was designed and distributed across Harris
County in the aftermath of Hurricane Harvey. The survey included
questions about household socio-demographic attributes, service dis-
ruptions experienced during Harvey, hardship experienced due to ser-
vice disruptions, and their level of tolerance. Households were surveyed
to determine hardship experienced due to disruptions in access to
healthcare facilities. Answers ranged from none at all (=1) to a great
deal (=5). A households' tolerance level to service disruptions was
determined by asking the respondents how many days they would be
capable of tolerating loss of access to the service in the face of another
natural disaster like Hurricane Harvey. An online survey panel service,
Qualtrics, collected data from a sample population of the public older
than 18 years of age in Harris County. The subjects were recruited by
Qualtrics from different ZIP codes. Qualtrics is a private U.S. company
with expertise in online data collection. Qualtrics data collection ser-
vices are used by academic institutions in the United States. The survey
focused on households which sheltered in place during Harvey. We
included a question about evacuation and excluded responses of those
who evacuated before or during Harvey. The survey was first deployed
for the soft launch with 47 responses before the full data collection to
ensure that the questions were clear and understandable. In total, 2242
responses were collected from all 140 ZIP codes in Harris County. After
removing incomplete responses and those who finished the survey
early, a sample of 1078 responses was obtained. The collected survey
data well represent the demographic information of Harris County
(compared with Census data). In addition, the responses cover every zip
code in Harris County. Lindell and Hwang (2008) showed that using a
diverse sample size for testing relationships in the model is more im-
portant than having a sample exactly representing the population.
Therefore, the 1078 responses collected and the diversity encapsulated
in the demographic information of the respondents are good re-
presentations of Harris County. Table 1 shows the summarized

demographic information in the survey.

5.2. Household's experienced hardship

Responses to the question of whether household members needed
treatment at a healthcare facility during or after Hurricane Harvey
(Yes = 1, No = 2) were used to assess their need for health care ser-
vices. If the answer to the question was yes, respondents were asked if
they had experienced inaccessibility to healthcare services because of
Hurricane Harvey (Yes = 1, No = 2). In addition, households experi-
enced hardship from losing access to healthcare facility was measured
by asking the respondent to select the extent of overall hardship level
that their household had experienced due to disruption of access to
healthcare services, ranging from scale of none at all (=1) to a great
deal (=5). Of 1078 collected responses, 111 responses mentioned that
they needed healthcare services during the disastrous event. The ex-
perienced hardship of the respondents from the disruption of healthcare
services was investigated using the sample data of those who had ex-
perienced the disruption. The main reason for using this subset of data
was that people who did not have a need for the service would not
experience any hardship. Of 111 respondents who needed access to the
healthcare facility, 72 (65%) mentioned that they did not have access to
healthcare due to disrupted access caused by Hurricane Harvey. The
high proportion of the respondents without having access to good-
quality healthcare services reported that they experienced significant
hardship due to disruption. The extent of hardship that households

Table 1
Demographic information of survey respondents.

Variables Categories Frequency Percentage (%)

Agea < 2 years 69 4.13
2–10 years 200 11.97
11–17 years 211 12.63
18–64 years 842 50.39
65 years or older 349 20.88

Education Less than high school 23 2.13
High school graduate or GED 144 13.36
Trade/ technical vocational
training

51 4.73

Some college 191 17.72
2-year degree 96 8.91
4-year degree 332 30.80
Post Graduate level 235 21.80
Other 6 0.56

Income Less than $25,000 160 14.84
$25,000–$49,999 232 21.52
$50,000–$74,999 241 22.36
$75,000–$99,999 145 13.45
$100,000–$124,999 94 8.72
$125,000–$149,999 78 7.24
More than $150,000 128 11.87

Ethnic identity White 641 59.46
Hispanic or Latino 128 11.87
Black or African American 208 19.29
American Indian or Alaska
Native

8 0.74

Asian 40 3.71
Native Hawaiian or Pacific
Islander

3 0.28

Other 50 4.64
Resident type Single family home 796 73.84

Multiple units 236 21.89
Mobile homes 21 1.94
Other 25 2.32

Difficulty in
mobility

Yes 135 12.52
No 943 87.48

Disability Yes 197 18.27
No 881 81.73

No vehicle Yes 37 3.43
No 1041 96.57

a
Number of housesholds with at least one resident in the category.
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experience due to access disruption is a combined result of disrupted
access and lower tolerance to the access disruptions. Physical vulner-
ability and spatial patterns of disrupted access to healthcare facilities
are affected by many factors, such as city planning history and urban
development patterns. In this paper, we mainly focus on creating an
integrated methodology for specifying and analyzing spatial patterns of
risks due to disrupted access to healthcare facilities during a flooding
event.

Hardship from the disruptions in healthcare accessibility was ex-
perienced disproportionately by different sub-populations. Fig. 7 shows
that the experienced hardship was greater for lower-income families,
racial minority groups, households with the highest education level less
than or equal to high school diploma, households with mobility issues,
and households with a child< 10 years of age. t-test analysis for
comparing the mean hardship scores revealed that the scores are not
equal at 5% level of confidence for race, education, mobility, and
age< 10 years. Interestingly, there were no observed differences in the
experienced hardship of older adults from the healthcare service dis-
ruptions. This could be explained by the fact that older adults have
more previous disaster strike experiences and they are more prepared
when a hazard warning is issued. The latent causal relationship be-
tween socio-demographic characteristics and household access to
healthcare facilities (e.g., less developed region has fewer healthcare
facilities, or marginalized households have poor health condition) is not
within the scope of the study presented in this paper.

The variations in the level of hardship experienced were partly due
to a household's levels of tolerance. The disproportionate hardship
highlights that the disrupted access to healthcare services does not af-
fect the households equally. Socially vulnerable populations experience
higher hardship from these disruptions. To capture the variation in the
level of tolerance, we propose an infrastructure disruption tolerance
index. The DTI is a function of socio-demographic attributes of a
household which vary for different infrastructure services. Unlike the
general social vulnerability indices, DTI is infrastructure-specific and
distinguishes the needs and coping capabilities of vulnerable sub-po-
pulations for service disruptions.

5.3. Infrastructure disruption tolerance index

Fig. 8 summarizes the process for developing the DTI related to
disrupted access to healthcare facilities. We first identified the socio-
demographic variables associated with the households ability to tol-
erate the healthcare service disruptions. Based on the survey data, we
conducted a correlation analysis; results are presented in Table 2. In-
come, education, racial minority, family with a child< 10 years old are
all correlated with tolerance to the healthcare service disruption. These

groups of people have significantly lower tolerability to such service
disruptions and are in high need of assistance during a disruptive event.
This study is conducted at the household-level and the specific char-
acteristics of the individuals, such as gender, are not investigated here.
Having elderly in the household is also associated with the zone of
tolerance to healthcare facilities access; however, this group has ex-
pressed having a higher tolerance to service disruptions. Finally, poor
access to healthcare facilities may be related to the inability to afford
transportation. Hence, having no vehicle was added to the influential
factors affecting, although its association with the zone of tolerance was
not statistically significant at 0.01 level. These households would ex-
perience great difficulty when facing inaccessibility to healthcare ser-
vices, as public transportation may be disrupted as well.

5.3.1. Influential social factors identification
In the second step, we used the identified influential factors to

calculate DTI for each census tract. Based on the selected influential
factors, corresponding data were extracted. For each identified influ-
ential social factor, the corresponding data entry containing a 5-year
estimate of American Survey Community was extracted from the US
Census Bureau for 798 census tracts in Harris County.

5.3.2. DTI generation using principal component analysis
Multiple factors affect households' tolerance to disrupted access to

healthcare facilities, as shown in Table 3. Simple aggregation of these
factors would neglect the intercorrelation between them and result in
an unreliable DTI. To avoid this issue, we conducted a PCA to ensure
the variables included are independent of each other (Lloyd, 2010). To
perform PCA, all six variables were normalized to a standard scale to
enable comparison of variables in different scales and different mea-
surement units. Accordingly, variables were transformed into a
common scale with mean equals 0, and standard deviation equals 1.
Then, PCA was implemented, and eigenvalues for principal components
were calculated. Based on the proportion of the variance explained,
three principal components (PC1, PC2, and PC3) with the highest ei-
genvalues were considered for further analysis. These three components
explain 82% of the variance in the data. Therefore, they can properly
encapsulate the effect of social factors affecting the community's tol-
erance to loss of access to healthcare facilities. Scree plot in Fig. 9 shows
the percentage of variance explained by each principal component. The
DTI was then calculated by summing up weighted values of three
principal components for each census tract. The percentage of variance
explained by each principal component was considered as the weight of
the component.

∑= ×
=

DTI λ yk
i

i i
1

3
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where λi is the proportion of variance explained by the components,
and yi is the component scores. To convert the DTI into a comparable
scale, we scale the calculated DTI to the range of [0, 1].
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where DTIk(scaled) is the scaled disruption tolerance index for census
tract k, and DTImin and DTImax are the minimum and maximum dis-
ruption tolerance scores for census tracts in the county calculated, re-
spectively.

Fig. 10 shows the calculated DTI values across Harris County in the
census tract scale. The DTI ranges from 0 to 1 with a mean of 0.504 and
a variance of 0.149. A high DTI value indicates that the community has
high tolerance to healthcare service disruption. The location-based DTI
values show that areas such as Greater Uptown, River Oaks, Upper
Kirby Area, and Bellaire have a greater tolerance, and communities
such as Aldine, Sheldon, and Channelview have a lower tolerance to
losing access to healthcare facilities. For example, the average DTI for

Fig. 7. Hardship disparity in loss of healthcare services.
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River Oaks is 0.899, while Aldine community has an average DTI of
0.132. As we dive into the sociodemographic characteristics, we can see
the average income in the River Oaks community is 149,669 USD, with
only 2% of the population over 25 without school degree while Aldine
has an average income of 12,618 USD with 59% the population over 25
without school degree. As suggested in the survey and literature, high
income and education levels are associated with the high tolerance of
households in facing inaccessibility to healthcare facilities. Therefore,
we can expect that such a significant disparity in income contributes to
the difference in tolerance to disrupted access to healthcare facilities in
these two communities. The other contributing factor of the high tol-
erance to the access disruption to healthcare facilities in River Oaks
community is the low percentage of the minority population. Literature
and survey have been emphasizing that the minority population is more
socially vulnerable and have lower tolerance to access disruption to
services. Therefore, Aldine, with an average of 90.8% minority popu-
lation is more vulnerable to loss of access to healthcare service compare
to the River Oaks, where only 19.2% of minorities. The poor access to
healthcare facilities may be also related to the inability to afford per-
sonal vehicles as wealthier households do. Besides, flooding also im-
pacts the operation of public transportation; this also partially explains
why vulnerable households have trouble accessing healthcare services.

Based on a spatial analysis of the derived DTI map, we unveil the
spatial pattern embedded in the tolerance to disrupted access to
healthcare facilities. Fig. 11(a) shows a highly positive Moran's I value
of 0.725, which indicates there is a strong correlation among spatial
areas in terms of their population's tolerance to healthcare service
disruption. Fig. 11(b) shows a critical threshold of 7 miles for spatial
autocorrelation. This result suggests that when the distance between
two areas exceeds 7 miles, their similarity of DTI decays. In other
words, the spatial dependence of a sub-population's tolerance to access
disruption to healthcare facilities is contained within the region.
Fig. 11(c) also shows the identified spatial clusters of hot−/cold-spots
for DTI. The high-high cluster represents neighborhoods with high DTI
that are surrounded by neighborhoods with similarly high DTI and vice
versa. In areas where both the physical and social vulnerability to the
disruptions are high, there is a spatial mismatch (Kain, 1992). In these
vulnerable areas, the co-existence of the physical and social vulner-
ability signifies the impact on the residents and creates many

difficulties for the affected households. Households with a low ability to
tolerate the disruptions are located in areas with a high vulnerability to
access disruptions to healthcare facilities. From the identified cluster,
we can observe that neighborhoods along the Buffalo Bayou, northwest
and southeast of Harris County have high tolerance to loss of access to
healthcare facilities during flooding, while neighborhoods in Greens
Bayou and along the US-90 corridor have low tolerance. More hospitals
are located in the high-high clusters than in the low-low areas. We also

Fig. 8. Procedure to develop disruption tolerance index.

Table 2
Correlation results for identifying the influential social factors.

Factors Spearman correlation analysis

Income Education Minority Mobility Disability Elderly Age < 10 Mobile home Multiple unit No vehicle

Zone of tolerance
Correlation coefficient 0.169 0.125 −0.149 0.039 0.028 0.095 −0.124 −0.069 −0.065 −0.056
Significance 0.000* 0.000* 0.000* 0.201 0.356 0.002* 0.000** 0.024 0.034 0.065

*, ** Results are significant at 0.01, 0.001 confidence level, respectively.

Table 3
Correlation between selected influential social factors.

Income Education Elderly Minority No vehicle Children

Income 1
Education −0.67** 1
Elderly 0.06 −0.08 1
Minority −0.79** 0.77** −0.13** 1
No Vehicle −0.37** 0.41** 0.00 0.49** 1
Children −0.45** 0.49** −0.18** 0.45** 0.25** 1

*, ** Results are significant at 0.01, 0.001 confidence level, respectively.

Fig. 9. Proportion of the variance explained by each principal component.
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observed that only a few high-low clusters where high tolerance com-
munities are adjacent to low tolerance communities. The results con-
firm the existence of distinct spatial clusters with homogeneous level of
tolerance to disrupted access to healthcare facilities.

6. Integrated physical-social community vulnerability

Community vulnerability to disasters is determined not only by the
physical vulnerability caused by the surrounding infrastructure failure
risk but also the capability of people to cope with infrastructure dis-
ruption. Here, we consider a high tolerance for access disruption to
healthcare facilities as a sign of lower social vulnerability. Therefore,
social vulnerability is represented by the converse of DTI. To provide a
holistic assessment of community vulnerability in facing disrupted

access to healthcare facilities, we link both simulated physical vulner-
ability caused by disrupted access to healthcare facilities during floods
and the corresponding DTI together to enable an integrated vulner-
ability assessment through an integrated spatial analysis. The Bivariate
Local Moran's I method is employed to investigate the spatial correla-
tion where both physical and social vulnerabilities are considered. The
integrated physical-social community vulnerability spatial analysis en-
ables the identification of vulnerability origin in each community,
which provides invaluable insights on devising proper plans and po-
licies in reducing future hazard risks. Not only will the identified causes
of vulnerability prioritize the targeted hazard risk reduction, but they
also inform the decision-makers regarding the proper types of policy for
each community.

Fig. 12 presents the spatial correlation of physical and social

Fig. 10. Disruption tolerance index mapping of Harris County in census tract scale.

Fig. 11. Spatial cluster of DTI to disrupted access to healthcare facilities in Harris County.
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vulnerability. High physical - high social cluster indicates that the
identified areas are not only highly prone to loss of access to healthcare
facilities during flooding but also have a low tolerance to access dis-
ruption to healthcare services. Spatial co-existence of physical vulner-
ability and low tolerance to service disruption (i.e., high social vul-
nerability) was observed by implementing the proposed framework in
Harris County. In these areas, residents with a low tolerance to the
access disruptions to healthcare facilities were located in areas that are
highly physically vulnerable to access disruption to healthcare facil-
ities. Two primary reasons could explain this spatial co-location of
physical vulnerability and low tolerance to disrupted access to health-
care facilities. First, due to the limited political access (Cutter et al.,
2003), these groups live in areas that are exposed to high flood risk with
poor infrastructure conditions. In these areas, the recurring flooding
adds to the impacts on the physical infrastructure and leads to severe
damage when facing flooding. Second, the marginalized groups in these
areas have fewer resources, such as power backups, to withstand the
impacts of the disruptions on their well-being. Moreover, these house-
holds might have a poorer health condition (Aday, 1994; Shinn,
Knickman, & Weitzman, 1991) and, therefore, need more medical at-
tention. The household's greater need for healthcare also decreases
their tolerance to the access disruptions (Esmalian, Dong, et al., 2019).
Thus, in these areas being a marginalized group would indirectly cause
a higher hardship on the households. From the policy-making per-
spective, such vulnerable neighborhood clusters are in the highest
priority for investment in hazard mitigation and emergency response
planning in terms of prioritizing the infrastructure protections and in-
vesting in critical resources to ensure the availability of healthcare
services in these communities. In the case of Harris County (Fig. 12), 72
census tracts in Aldine, Sheldon, and Channelview area are both phy-
sically and socially vulnerable to the disruption of access to healthcare
facilities. These neighborhoods mainly located in the south and center
of the county, where the number of healthcare facilities is relatively
low, but the location is in the vicinity of flood-prone areas. These
neighborhoods require targeted protection on the existing facilities and
consideration of new facility development. The fact that these neigh-
borhoods are both physically and socially vulnerable necessitates open
dialogue and collaborative planning between different actors that are
involved in the policy-making. On the other hand, low physical - low
social clusters, such as east of downtown Houston, northwest and

northeast Harris County show low vulnerability to access disruption to
healthcare services. Looking at the critical facilities distribution and
sociodemographic characteristics, we can see that many healthcare
facilities are densely located in this region and residents are highly
educated with very high income.

High physical - low social clusters such as east (Briar Forest, Addicks
and Barker reservoir), southeast (Galveston Bay), and northeast (San
Jacinto River) Harris County are highly vulnerable to flood disruption
of healthcare access to hospitals since they are closely located to 100-
year and 500-year floodplains. In this case, infrastructure improvement
policies can be devised such as (1) road elevation to minimize the risk
of road inundation and (2) stormwater drainage network enhancement
to increase the discharge capacity of the flood control system, which
reduces the risk of inundation both for facilities and road segments. In
addition, the continuous growth of population and economic assets in
flood-prone areas makes these communities even more vulnerable to
flooding (Aerts et al., 2018; Jongman, Ward, & Aerts, 2012). Although
communities in these affluent developed areas are more resourceful to
cope with the access disruption to healthcare facilities; future infra-
structure developments should be minimized in these areas to avoid
flood risk escalation.

Regarding low physical - high social vulnerability clusters are clo-
sely located along the I-45, I-610, and US-90 corridor, these commu-
nities are at low risk of losing access to the healthcare facilities in the
event of flooding as they either have healthcare facilities within the
community, or they have easier access to the route that connects to
healthcare facilities in other regions. These regions, however, have a
low tolerance to the disruption of access to healthcare facilities.
Although they have a low risk of physical disruption, due to the un-
predictable nature of the flooding events, flood events like Hurricane
Harvey could lead to a catastrophic impact on these communities.
Proper actions for these neighborhoods can focus on implementing
programs to increase the households awareness of flooding risk and
knowledge of proper protective actions to take in case of disruptions. In
addition, emergency response plans could account for the low tolerance
of these areas to disrupted access to healthcare facilities.

7. Discussion

The spatial analysis in this study was conducted at the census tract

Fig. 12. Integrated physical-social communities vulnerability assessment.
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level. Using tract-level data for vulnerability analysis provides great
insights on policy-making as it allows policymakers to identify vul-
nerable hotspots and coldspots and implement policies to mitigate the
impacts of future hazardous events. Moreover, the clustering of the
physical and social vulnerability highlights that the vulnerability of the
areas is not randomly distributed throughout the area, but the neigh-
boring areas which have similar attributes. Using tract data, however,
may influence the results of the spatial analysis due to the data ag-
gregation in geographic boundaries, which is known as the modifiable
areal unit problem (MAUP) (Jelinski & Wu, 1996; Parenteau & Sawada,
2011). However, due to the availability of census data at the tract level,
the spatial analysis is not tested in other spatial scales or zonings.

Planning and urban history can also contribute to the existing vul-
nerability. Houston is the only city without zoning policies in North
America and is well known for its modest land-use regulations. Growing
urbanization with dense development in Houston is, however, not
parallelized with an equivalent focus on hazard mitigation infra-
structure investment. This conflict among the rapid urban development
and poor urban planning, as well as underinvestment in flood control
infrastructure systems, is one of the reasons that Houston remains as
one of the most flood-prone cities in the nation. Understanding the
causal effect between the planning history and the current state of
vulnerability is of great help to identify the planning decisions that have
contributed to the vulnerability of different areas in the city. Different
aspects considered in the proposed integrated physical-social vulner-
ability assessment framework can be a representative of the planning
impacts on the current configuration of vulnerability. For example, the
growth of urban areas is often concentrated in the areas located close to
rivers and waterways (Aerts et al., 2018) and it can make such areas
more vulnerable. This has been considered in the process of physical
vulnerability quantification by modeling road inundation as a function
of closeness to the waterway, which indirectly captures the impact of
the development pattern on the vulnerability of urban areas. Besides,
the emergence of clusters with high physical- high social vulnerability
in the integrated spatial analysis captures whether the existing attempts
for city development and hazard mitigation were able to account for
vulnerable populations and provide them with more robust accessi-
bility. Meanwhile, the formation of urban areas with high physical -
high social vulnerability indicates that the planning practices and cur-
rent policy settings have neglected the urgency of planning for vul-
nerability reduction in socially vulnerable regions, which consequently
led to the clustering of urban areas that are vulnerable both physically
and socially. In contrast, the formation of clusters that are neither
physically nor socially vulnerable shows that the state of planning in
the city is dedicating more resources to the urban areas that are less
socially vulnerable.

The proposed integrated physical-social community vulnerability
framework can be also transferred to other locations and scenarios.
Given the city network topology (e.g., transportation) and critical fa-
cility locations (e.g., fire station, grocery store, gas station), the pro-
posed percolation simulation can assess the network's physical vulner-
ability in terms of accessing different infrastructure services in the face
of various disaster disruptions, such as earthquake (Dong, Mostafizi,
Wang, & Bosa, 2016) and tsunami (Mostafizi, Wang, Cox, Cramer, &
Dong, 2017; Mostafizi, Wang, Cox, & Dong, 2019). In addition,
households' experienced hardship and sociodemographic characteristics
can be collected through a household survey. The proposed framework
enables a better understanding of the network vulnerability and facil-
itates the decision-makers to (1) identify critical communities for road
retrofitting and protection in order to improve their access to critical
facilities during flood, (2) examine the sitting of existing hospital for
relocation and location for future healthcare facilities to reduce the
community vulnerability in flooding events, and (3) prioritize the
emergency response regarding needs of healthcare service in identified
hot-spot areas.

8. Conclusion

This paper contributes to the existing vulnerability assessment
knowledge by presenting an integrated physical-social vulnerability
analysis framework based on an assessment of the disrupted access to
healthcare facilities, as well as a community's tolerance of healthcare
service disruption. The proposed integrated framework enables identi-
fying the spatial clusters and patterns of vulnerable communities to
inform prioritizing the physical and social infrastructure development
activities/policies.

The physical vulnerability assessment employed a probabilistic
percolation approach to investigate the access loss to healthcare facil-
ities facing fluvial flooding in Harris County, Texas. The robust com-
ponent analysis reveals that 2% of near-floodway road disruption will
lead to a 20% drop on network access to healthcare facilities. The ac-
cess loss was then mapped to the census tracts to show the spatial
distribution of physical vulnerability. The identified spatial cluster of
the physical vulnerability highlights the spatial reach of access dis-
ruption to healthcare facilities is 9 miles, indicating the extent of spatial
dependence. Another contribution of the proposed framework is the
characterization of disruption tolerance. Since the general social vul-
nerability measure does not capture a sub-population group's tolerance
to a particular infrastructure service disruption, a new measure, DTI,
was proposed and tested to measure a community's tolerance to
healthcare service disruption. Social factors including income, educa-
tion, racial minority, family with a child< 10 years old, elderly, and
have no vehicle are all correlated with tolerance to the healthcare
service disruption. The spatial analysis of DTI identified spatial clusters
whose populations have low tolerance to disrupted access to healthcare
services. The spatial dependence of vulnerability indicates that there
exists a homogeneous pattern where regions with similar vulnerability
cluster together. Integrating the physical and social vulnerability ele-
ments through a spatial analysis, different categories of vulnerable
communities are unveiled. The integrated physical-social analysis re-
vealed the spatial pattern of vulnerability in the study region to inform
hazard mitigation, emergency response planning, and infrastructure
prioritization processes.

The proposed framework was tested on the publicly available data
set and can thus be adapted to other cities and also different types of
critical facilities such as grocery stores, gas stations, and pharmacies. In
terms of study limitations, we mainly focused on fluvial flooding in
conducting physical network robustness analysis; however, the urban
flooding is particularly challenging due to the complex interactions of
surface and underground flows. Therefore, understanding the interac-
tion of surface flow (bayou, river, and channel) and underground flow
(stormwater drainage system) and their impact on roadways is critical
for accurate assessment of community flood risk. In future research,
dependencies between flood control/stormwater drainage systems and
transportation networks could be analyzed to present a more compre-
hensive characterization of the network vulnerability. Besides, with the
aging of the states infrastructure systems and increasing flooding risks,
the likelihood of infrastructure failure varies across the network.
Therefore, the infrastructure fragility condition could be also in-
corporated into the disruption probability calculation to devise a more
accurate infrastructure failure scheme. Understanding how city struc-
ture, planning decisions, and development patterns in history shaped
the vulnerability of a city is of great importance and should be in-
vestigated in the future. In addition, in order to capture more dynamic
travel behaviors in a post-flooding scenario, landscape variability (i.e.,
elevation) and inundation severity (i.e., inundation depth) should also
be included in future research (upon the availability of data).
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