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A B S T R A C T

This paper presents a probabilistic model for assessing risk of cascading failures in co-located road and channel
networks. The proposed Bayesian network analysis framework integrates network structural properties and
empirical flood propagation data to model the spread of flooding. The model was tested in a multiple watershed
scenario in Harris County, Texas (USA), using historical flood data from past events. The results show the
capability of the proposed Bayesian network model to quantitatively characterize the failure (i.e., inundation) of
road network considering the cascading failure (i.e., overflow) from the channel network. The proposed model
also enables simulating the risk of flood cascades (i.e., flood propagation) on the road network with high ac-
curacy. The generic design of the algorithm also enables the adaptation of the proposed framework in other cities
and regions. Accordingly, the proposed model provides a new tool to help decision-makers prioritize infra-
structure protection plans and emergency response actions.

1. Introduction

Road networks serve as the backbone of the modern city to trans-
port people and goods, disruption of which will severely impact the
well-being of our urban system, e.g., access to medical care (Dong,
Esmalian, Farahmand, & Mostafavi, 2020; Dong, Wang, Mostafavi, &
Gao, 2019), road transport (Yang, Ng, Zhou, Xu, & Li, 2019a), social
cohesion, and economic development (Taylor, 2012). Road disruptions
can result from both internal dynamics (e.g., road closure, traffic ac-
cidents, infrastructure aging, and traffic congestion) and external
stressors (e.g., floods, landslides, wildfires, heavy snowfall, hurricane,
storms, earthquakes, etc.). Disruptions caused by natural disasters
presents a larger scale of damage on road networks (Jenelius &
Mattsson, 2015). Not only have our urban infrastructure system became
more complex but also the intensity and frequency of natural disasters
have increased over the past decade. This makes road network ex-
tremely susceptible to disruptions that can result in considerable ser-
viceability reduction (Batouli & Mostafavi, 2018; Berdica, 2002;
Rasoulkhani & Mostafavi, 2018). Understanding the risk that road
networks face in natural disasters can significantly help decision-ma-
kers to derive critical infrastructure protection strategies to support
rescue strategy prioritization and emergency management (Jenelius,

Petersen, & Mattsson, 2006).
Among the catastrophic natural disasters, flooding, in particular,

cause extensive economic losses and posed a great threat to the well-
being of communities. For example, Hurricane Harvey made landfall in
Harris County, Texas in 2017 and resulted in $125 billion losses and
4.37 million people were affected (HCFCD, 2019). With the growing
urbanization and climate change, global exposure to floods is expected
to increase threefold (Aerts et al., 2018). Floods cause significant dis-
ruptions in road networks. The co-location dependencies between
channels and road networks make road networks particularly vulner-
able to cascading failures in flood channels. Channels refer to the rivers,
creeks, and bayous that discharge the rainfall runoff. Here, co-location
dependency is defined as the closeness in distance between channel and
road intersections (Goldbeck, Angeloudis, & Ochieng, 2019; González,
Sánchez-Silva, Due nas-Osorio, & Medaglia, 2014; Thacker, Barr, Pant,
Hall, & Alderson, 2017). Cascading failure refers to the failure of flood
control network when water level exceeds the bank of the channel and
then leads to the water flowing and spreading on the road network.
While the co-location dependencies between channel and road net-
works have been recognized in the existing literature (Klinkhamer
et al., 2017), there is a lack of models to analyze failure cascade risk in
co-located road and channel networks. In order to address this gap, this
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paper proposed a new Bayesian Network analysis methodology to
analyze cascading failure risks in road networks facing urban flooding.
The application of the proposed method is demonstrated in Harris
County (Texas, USA) as a test-bed.

1.1. Current approaches to roads flood risk assessment

The standard approach for assessing road network flood risk is using
hydraulic and hydrologic (H&H) models (Al-Sabhan, Mulligan, &
Blackburn, 2003; Itoh, Ikeda, Nagayama, & Mizuyama, 2018). Over-
laying the generated flood map on road networks, vulnerable roads can
be identified. Fig. 1 shows the identified vulnerable roads obtained by
overlaying Federal Emergency Management Agency (FEMA) 100-year
and 500-year floodplain maps. There are in total of 733 roads are in the
vicinity of floodplains and can be deemed as vulnerable roads as they
are exposed to high risk of flooding. This static approach is commonly
used in making land-use plans and assessing the plan integration
(Berke, Malecha, Yu, Lee, & Masterson, 2019) as it directly identifies
vulnerable infrastructures. However, flood plains do not fully capture
risk exposure of road networks since flood risk can extend beyond the
standard boundaries of flood zones (plains) (Aerts et al., 2018). During
Hurricane Harvey, for example, almost three-quarters of the homes
damaged in Harris County were situated outside the federally regulated
100-year floodplain. During Tax Day floods in 2016 (in Harris County),
more than 55 percent of the homes damaged were located outside of the
500-year floodplain. In the Memorial Day floods in 2015 (in Harris
County), more than one-third of the homes damaged were outside of
the 500-year floodplain (HCFCD, 2019). These flooding events caused
road inundations and disrupted access in areas outside flood plains.
Hence, despite the practical value and convenient employment of
floodplain maps, overlaying floodplains on road networks provides
limited insight into failure cascade risk to inform emergency response
prioritization and infrastructure failure early warning.

1.2. Co-location dependencies between channel and road networks

Infrastructure systems are becoming increasingly interdependent,
small failure in one system can propagate to its dependent counterpart
and results in cascading failure (Dong, Wang, Mostafizi, & Song, 2020;
Saidi, Kattan, Jayasinghe, Hettiaratchi, & Taron, 2018; Zhu et al.,
2017). In an urban system, different infrastructures are built sur-
rounding the roads to take advantage of service transport (e.g., ware-
house), access to resources (e.g., gas, water, food, etc.) and also to
protect infrastructure from damage (Rahimi, Dehghani, &
Shafieezadeh, 2019). In flood-prone areas, road and channel networks

are highly interdependent due to their co-location (Saidi et al., 2018).
Channel networks protect urban areas (and roads) from flooding by
draining stormwater, and roads become part of channel networks when
flood water spreads in urban areas. Such co-location dependency has
exposed road networks to high risk of cascading failure (road inunda-
tions caused by water overflow from channel networks). Such increased
flood risk due to co-location of channel and road networks is, however,
rarely examined in the road network vulnerability assessments. In
particular, depending on the geographic location and topological
property of flood control network, the likelihood of flooding in different
regions varies (Dong, Wang, et al., 2020). For example, certain flood
control infrastructure shows larger probability of failure during
flooding due to its topological location in the network. The co-location
dependency would further affect the likelihood of flooding in roads
located in the proximity of channel networks. However, the existing
road network vulnerability assessment methods do not capture this co-
location dependency and the resulting spatial-temporal cascading
failure risks. To address this gap, this study presents a probabilistic
approach to capture the failure cascade dynamics in co-located channel-
road networks.

1.3. Point of departure

Road network analysis models examine the roadway infrastructure
as a network of nodes (i.e., intersections) and links (i.e., roads) (Dong,
Mostafizi, Wang, Gao, & Li, 2020; Jenelius & Mattsson, 2015). Road
network vulnerability has been studied from many different perspec-
tives. For example, using topological measures of the network, Jenelius
et al. (2006) introduced link importance and site exposure to measure
the vulnerability of road network of northern Sweden. Considering the
socio-economic impacts of network, Taylor (2012), Taylor, Sekhar, and
D’Este (2006) incorporated accessibility and remoteness in examining
the vulnerability of the regional road network. Concerning the trans-
port-related and direct financial consequences of road failures, Erath,
Birdsall, Axhausen, and Hajdin (2009) examined the vulnerability of
Swiss road network. Furthermore, as the complex infrastructure inter-
action is becoming increasingly important in the healthy functioning of
urban systems, recent studies are also including the interdependency
component in the vulnerability assessment of technical infrastructures.
Dong, Wang et al. (2020) modeled the interdependency between sewer
and road network and examined the road network vulnerability/ro-
bustness in facing large-scale earthquake disruptions. Johansson and
Hassel (2010) employed both graph theory-inspired geographical and
functional interdependency to model a fictional electrified railway
network that comprises five interdependent systems and assess the

Fig. 1. Floodplain-identified vulnerable roads in risk of flooding.
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vulnerability of the interdependent systems. However, these road vul-
nerability assessment methods are mainly the topology-based models
and use fictional disruption scenarios. In addition, road network vul-
nerability assessments in face of the natural hazards (e.g., urban flood)
normally use simulated scenarios such as 1-in-year rainfall event. De-
spite the valuable vulnerable asset identification, they do not explicitly
consider the co-location interdependency between road and channel
network and incapable of incorporating empirical data to validate the
proposed model (Singh, Sinha, Vijhani, & Pahuja, 2018). This research
is primarily motivated by the fact that standard network-based road
flood risk analysis considers neither the historical flood data in different
regions nor the influence of the structure of co-located channel and
road networks, while H&H models provide limited insights about the
spatial-temporal failure cascade of the interdependent networks. Hence,
the existing methods have major limitations to inform response strategy
prioritization, emergency management, and hazard mitigation deci-
sions.

To address this important gap, this study proposes a probabilistic
graphical model, Bayesian network model, to capture the interaction
between channel and road networks and their co-location dependency.
To test the proposed method, data from three empirical flood events in
Harris County (2016 Tax Day Flood, 2016 Memorial Day Flood, and
2017 Hurricane Harvey Flood) were utilized to train and test the model.
The trained Bayesian network is capable of characterizing the spatial-
temporal failure cascade (i.e., flood propagation) in the road network
with high accuracy. In addition, compared to the standard binary ap-
proach for vulnerable roads identification, the derived cascading failure
risk of road network in urban flooding employs a system perspective by
considering co-location interdependencies (Little et al., 2019;
Mostafavi, 2017, 2018) and provides a quantitative measure, which
informs emergency response decisions. The proposed Bayesian network
model complements H&H models and topological-based vulnerability
analysis by providing more data-driven and real-time prediction cap-
abilities. In particular, the proposed Bayesian network-based modeling
of interdependent channel-road networks is able to dynamically capture
the inundation propagation and provide predictive early flood warning
to communities in near real-time.

The remainder of the paper is organized as follows. Section 2 re-
views the related literature on road network risk and vulnerability as-
sessment and the application of Bayesian network modeling. Section 3
presents the framework of the proposed methodology and the detailed
execution procedure. Section 4 shows the application of proposed fra-
mework through a case study in Harris County. Finally, Section 5
concludes the paper with significant findings and future research di-
rections to improve the analysis.

2. Review of road network vulnerability assessment methods

Road network vulnerability has been extensively examined in the
existing research. This section provides a review of the existing methods
and their limitations. First, Studies focusing on investigating road net-
work vulnerability in other contexts (e.g., travel reliability, mobility,
accessibility, etc.) are discussed. Then, we discuss the studies that have
used Bayesian network modeling for network vulnerability analysis in
other infrastructure and hazards. Based on these discussions, we de-
monstrate the need for the proposed Bayesian network modeling of co-
located channel-road network for cascading failure risk characteriza-
tion in urban flooding.

2.1. Road network risk and vulnerability assessment

Risk is often considered as a product of the vulnerability of the
system, severity or frequency of the hazards, and exposure to hazards
(Birkmann, 2007; Joyce, Chang, Harji, & Ruppert, 2018). Accordingly,
flood risk assessment in road networks should consider the vulner-
ability of infrastructure networks, severity or frequency of flood

scenarios, as well as the exposure of the infrastructure segments to
inundation (Lyu, Shen, Zhou, & Zhou, 2019). Although in the context of
risk assessment, vulnerability is often evaluated based on economic
consequences and losses of the hazard, there are other indicators that
can properly capture the vulnerability of road networks from a system-
level perspective (Yin, Yu, Yin, Liu, & He, 2016). System-level road
network vulnerability assessment has been a major focus in both
transportation engineering and disaster science research (Mostafavi &
Ganapati, 2019). The definition of vulnerability, however, varies in
different contexts. For example, Taylor et al. (2006) argue that the
network weakness and consequences of failure determine the network
vulnerability. Nevertheless, road network vulnerability is often attrib-
uted to the reduced accessibility (Berdica, 2002), which is measured by
connectivity loss, travel delay, and network flow capacity drop (Chang,
Peng, Ouyang, Elnashai, & Spencer, 2012; Dong, Wang et al., 2019;
Sullivan, Novak, Aultman-Hall, & Scott, 2010). Many studies have been
focusing on analyzing the network vulnerability through network to-
pological properties (Dey, Gel, & Poor, 2019; Dong, Esmalian et al.,
2020; Dong, Wang et al., 2020). A network's response to a disruption in
the form of activity-travel behavior changes or (and) simulating the
impacts of disruptions (Dong, Wang et al., 2020; Erath et al., 2009;
Konduri et al., 2013) are used to represent the network vulnerability. In
both cases, a proper network disruption (e.g., disaster-induced failure
propagation) model is required.

There are various hazard models developed to simulate the failure
propagation and measure network vulnerability. These models consider
the severity and frequency of the hazard and characterize the spatio-
temporal propagation of failures. For example, Mostafizi, Wang, Cox,
Cramer, and Dong (2017) modeled road network disruption using an
agent-based tsunami inundation model that determines time-dependent
water depth and flow speed in the hazard zones. Wang, Yang, Stanley,
and Gao (2019) introduced a flood-induced road network failure per-
colation framework using a flood simulator that employs a global river
model to generate floods with different intensities to study the ro-
bustness phase transition in road networks. Dong, Esmalian et al.
(2020) modeled the network failure by removing nodes and links (i.e.,
intersections and roads) that are potentially impacted by the flooding in
which the distance to the flood control network is converted to re-
present the hazards exposure of road infrastructure. Yang et al. (2019b)
used existing intensity-duration-frequency (IDF) rainfall curves to
model inundation propagation in an interdependent stormwater drai-
nage-road network model.

In the context of urban flooding, the standard approach for failure
propagation and risk assessment is using H&H models (Al-Sabhan et al.,
2003; Itoh et al., 2018). In these models, flow rates are often estimated
using rainfall-runoff and streamflow projecting models (Gori, Blessing,
Juan, Brody, & Bedient, 2019; Lü et al., 2013). Using H&H models, the
risk of road segments to flood inundation is often measured by over-
lying flood inundation maps on the road networks. This approach,
however, has several limitations. First, creating a site-specific H&H
model requires collecting data such as the topography of the study area,
soil characteristics, land use, hydrologic variables, which can be pro-
hibitive due to the extensive data collection effort. Second, running
these models can be computationally demanding and time-consuming
since they require multiple tests to provide a comprehensive vulner-
ability assessment. Third, despite the accurate flood depth and area
estimation, H&H models do not provide spatial-temporal dynamics of
the flood cascading. All these limit the use of these models as a real-
time decision-support tool for emergency response.

In the case of urban fluvial flooding, the main contributor to road
network failure (i.e., inundation) is the propagation of the overflow
from channels and rivers to road. This cascading failure is further ex-
acerbated when urbanization increased transportation infrastructure
development in the vicinity of the flood control network. Different
studies have employed H&H models to investigate urban flooding. For
example, Seyoum, Vojinovic, Price, and Weesakul (2012) presented a

S. Dong, et al. Sustainable Cities and Society 62 (2020) 102398

3



two-dimensional model that coupled with a one-dimensional sewer
network model (SWMM5) and it was tested on one hypothetical case
study and one real-life case study of Bangkok. Chang, Wang, and Chen
(2015) integrated the one-dimensional sewer flow model and two-di-
mensional overland flow model considering different types of land
cover of the study areas. Both of these studies present promising results
in predicting the inundation depth and area. The insights obtained from
H&H models could be complemented using data-driven models. In
particular, data-driven models could provide better insights regarding
failure cascade risks in road networks as a flood event unfolds. In ad-
dition, with the advancement of sensor technology and computing
power and constant change in the built-environment, empirical data
encapsulates the most up-to-date information regarding a region. The
proposed Bayesian network-based modeling of interdependent channel-
road networks is able to dynamically capture the inundation propaga-
tion and provide the early flood warning to communities in danger in
near real-time. To the best of the authors’ knowledge, there is no ex-
isting network-based model in the literature that considers the road-
channel co-location interdependence to characterize vulnerability and
spatial-temporal failure cascade risk in road networks.

2.2. Bayesian network modeling for vulnerability assessment

Amongst the most popular methods for probabilistic modeling of
interdependent networks (Rahnamay-Naeini & Hayat, 2016), Bayesian
network model is one of the powerful probabilistic graphical models
that enable the integration of both dependencies and uncertainties in
network vulnerability assessment (Di Giorgio & Liberati, 2012). Baye-
sian network models consist of nodes and edges, where nodes generally
represent variables and edges show the conditional dependence be-
tween variables (Špačková & Straub, 2013; Scutari & Nagarajan, 2013).
In a Bayesian network model, the state of a subset of variables can be
updated when the status of other observed variables (evidence) are
known using Bayes’ theorem (Grande, Castillo, Mora, & Lo, 2017;
Saliminejad & Gharaibeh, 2012). In Bayesian network modeling, the
posterior distribution of investigating variables given evidence is cal-
culated in the process of probabilistic inference, which can be solved by
different algorithms such as variational message passing, and unscented
message passing (Winn & Bishop, 2005).

Bayesian network models have been used for infrastructure vul-
nerability assessment (Hosseini & Barker, 2016; Khakzad, 2015; Oh,
Deshmukh, & Hastak, 2010). For example, Bayesian network modeling
has been used to detect common damage configurations in a road
network (Gehl, Cavalieri, Franchin, & Negulescu, 2017) and multi-ha-
zard vulnerability assessment in bridge systems (Gehl & D’Ayala, 2016).
Applegate and Tien (2018) employed Bayesian network modeling to
conduct probabilistic vulnerability analysis in coupled power-water
networks. Bayesian network has also been used for flood risk assess-
ment (Joo et al., 2019). For example, Li, Wang, Leung, and Jiang (2010)

developed a Bayesian network-based risk assessment framework for
flood control infrastructure. Abebe, Kabir, and Tesfamariam (2018)
constructed a Bayesian belief network model by identifying different
factors that impact the risk of pluvial flood in urban areas and devel-
oped a spatial measure to help compare flood risk in different areas.
Chen, Zhong, An, Zhu, and Xu (2019) also adopted Bayesian network
model to analyze the risk in real-time operation of reservoir systems
contributing to flooding protection. Dong, Yu, Farahmand, and
Mostafavi (2019) used the Bayesian network model to characterize the
failure cascade and assess the vulnerability flood control network.
Narayan, Simmonds, Nicholls, and Clarke (2018) used the Bayesian
network model to assess the risk of inundation in different paths in
coastal areas under different probabilities. While these studies have
shown the capability of Bayesian network modeling in the context of
flood risk assessment, their focus has not been on examining vulner-
ability and failure cascade risk in co-located channel and road net-
works.

In the case of road network vulnerability assessment facing urban
fluvial flooding, Bayesian network modeling offer two important cap-
abilities. First, Bayesian network enable capturing associated un-
certainties (Tasdighi, Arabi, Harmel, & Line, 2018) and infrastructure
risk in different sub-models to consider the impact of hazards on in-
frastructures (Bensi, Der Kiureghian, & Straub, 2011), which provides a
great risk-informed decision-making tool (Chen et al., 2019). Second,
various forms of infrastructure dependencies and interdependencies can
be properly integrated using Bayesian network (Haraguchi & Kim,
2016). Especially, Bayesian models enable modeling propagation of
failure within an infrastructure system as well as propagation of failure
across interdependent infrastructure systems (Hossain, Jaradat,
Hosseini, Marufuzzaman, & Buchanan, 2019). Recognizing these cap-
abilities, this study proposes a Bayesian network model that in-
corporates the topology of the co-located flood control and road net-
work, along with the associated causal and influential relationships. In
the proposed framework, the effects of the network topology, hydro-
logical parameters, such as rainfall and stream elevation, and their re-
lationship with inundation status can be captured using probabilistic
inference. This modeling framework enables a system-level vulner-
ability assessment and accurate characterization of failure cascade in
the road networks in the face of urban fluvial flooding.

3. Methodology

The proposed model incorporates the topology of channel and road
networks, along with their co-location dependency, to map and build
the Bayesian network structure. The Bayesian network model also takes
advantage of historical sensor data to characterize failure cascades (i.e.,
inundation) on a road network facing urban fluvial flooding. The pro-
posed model is elaborated through the use of a case study in Harris
County, Texas (USA). Fig. 2 shows the overview of Bayesian network

Fig. 2. Framework of Bayesian network modeling of co-located channel-road network.
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modeling framework for co-located channel-road network cascading
failure risk characterization during urban flooding. Empowered by
modern sensor technology, Harris County deployed over 150 sensors
across the network to monitor the flooding status of major channels.
This study used the sensor data to train and validate the model using
historical flood sensor data. The proposed framework mainly consists of
three steps: (1) mapping and enriching the channel network and in-
terpolating the flooding status of the intermediate channel components
based on the existing sensors; (2) constructing the co-location de-
pendency relationship between the channel network and road network;
and (3) predicting road failure (inundation) probability based on the
sensor-collected inundation information from the channel network to
assess the road network cascading failure probability.

3.1. Channel network mapping

Knowing flood information for all the channels is ideal for better
assessment of failure cascade (i.e., overflow) in the channel network.
Due to the high maintenance and cost of the sensors, it is likely that not
all channels are monitored with flood gauge sensors. Harris County
Flood Control District (HCFCD), for instance, only deployed 175 sensors
across the network to monitor the flooding status of major channels.
The number of sensors in the network is far from adequate. In the
northwest region of Harris County (shown in Fig. 3), a combined wa-
tershed (i.e., Cypress Creek, Little Cypress Creek, Willow Creek, and
Spring Creek) comprises 583 km of channels with only 28 sensors in-
stalled. Due to the limited number of sensors and large spans between
two sensors, only using the channel components with flood sensors
would lead to losing the topology integrity of the channel network and
it would further lead to a very sparse dependent channel-road network
structure which makes it hard to accurately predict the flooding status
of the road intersections between two flood sensors. Therefore, to en-
rich the resolution of flood status information in the channel network
based on existing sensors, we selected qualified intermediate channel
components between two existing sensors as a hypothetical sensor to
monitor the flooding status during different flood events. Fig. 5 shows
an illustrative example of the intermediate channel component con-
struction process.

Due to the limited sensors on the channel network, not every flood

control infrastructure is monitored. The core channel network is first
constructed by mapping sensors to its nearest channel component
(shown in Fig. 5(a)). Essentially, the core channel network is a network
of sensors that are connected by the channels. Next, a qualified channel
component is selected when the distance between the component of
interest and all the sensors and already-selected components is larger
than a certain defined threshold. A small distance threshold can result
in excessive component density, which could lead to a significant in-
crease in both the time and space complexity of the Bayesian network
model. On the other hand, a large distance threshold would lead to a
sparse core flood control network, which can affect the accuracy of
failure cascade characterization. Fig. 4 shows the relationship between
distance threshold and the number of selected intermediate sensors.

As the distance threshold increases, the number of the intermediate
sensors selected decreases. On one hand, with shorter distance, there
will be a larger number of intermediate sensors selected, which will
further increase the link number in the interdependent networks. As
Bayesian network suffers from scaling problem, extensive number of

Fig. 3. Sensor distribution in combined watersheds (Cypress Creek, Little Cypress Creek, Willow Creek, and Spring Creek).

Fig. 4. Relationship between distance threshold setting and selected number of
intermediate sensors.
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network links are not efficient in terms of model computation. On the
other hand, high distance thresholds would lead to fewer number of
sensors selected than we need to well represent the channel network
and provide a good estimation on the channel flow. Therefore, a
threshold of 5 km is selected and corresponding 127 sensors are se-
lected to construct the core of the channel network since it achieves a
balance between modeling complexity and accuracy in the experiments.

To select the intermediate channel component, we first start at each
sensor and move to its downstream components. When the sum of the
distance between a channel component and the starting sensor is equal
or larger than the threshold (i.e., 5 km), this component is selected and
the sum is reset to zero. This iterative process continues until a sensor or
a selected component is met in the downstream. Since an intermediate
channel component is selected only if there are sensors on both ends, if
the sensor is already the last one in the downstream, we restart the
searching from another sensor. These selected intermediate channel
components are treated equivalent to the existing sensors. Using
Fig. 5(b) and (c) as an example. We first start with sensor 1 and com-
ponent c is the only one that satisfies the threshold criteria. Then, we
start from sensor 2 and the selection process is terminated by the se-
lected component c. When we start from sensor 3, no component is
selected due to the absence of sensors or selected components in the
downstream. Finally, the only channel component c is selected as an
intermediate component. Fig. 5(d) shows the obtained final core
channel network for constructing the co-located channel-road network.
With the intermediate channel component selected in the network,
their status are also interpolated using their adjacent sensors based on
the assumption that both the rainfall and water level have a linear re-
lationship with distance. The equation for calculating the channel water
level is presented in Eq. (1). We tested the interpolation equation by

estimating the sensor's water and rainfall level for a point using its
upstream and downstream sensors along the same stream and the em-
pirical and estimated results are very similar. Although the linear as-
sumption is not an ideal estimation, we show that it provides a rea-
sonable estimation of water level and rainfall in this case and it could be
further improved in the future with more hydrological parameters ob-
tained and incorporated in analyses (Fig. 6).

=
+

+ ×
+

h h h d
d d

water level
water level  top of channel – bank nearest channel

( ) Intermediate channel1 2 1
1

1 2

(1)

3.2. Channel-road co-location dependency construction

Flood control infrastructure is closely built around the road network
to protect transportation infrastructure and developed urban areas from
inundation. This development philosophy and pattern creates a co-lo-
cation dependency between channel and road networks. Using the
combined watersheds in the northwest of Harris County as an example,
8.3% of the roads have a channel within a distance of 30 feet (30.48m).
With the sensor-interpolated channel network, we can construct the co-
located channel-road network. The co-location dependency link from
channels to roads is based on the rule of vicinity: the roads and inter-
sections are affected by their nearest channel (shown in Fig. 7). Fol-
lowing Algorithm (1), the analysis iteratively creates the dependency
relationship between road intersections and the sensor-interpolated
channel network until all the road intersections are included in the co-
location model (as in Fig. 8).

Fig. 5. Intermediate channel component construction process illustration.
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Algorithm 1. Co-located channel-road network construction 3.3. Road failure probability prediction and cascading failure risk
assessment

The proposed Bayesian network model of co-located channel-road
network enables predicting the failure cascades (i.e., flood propagation

Fig. 6. Intermediate channel component flood information interpolation.

Fig. 7. Co-located channel-road network dependency construction.
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and inundation) in the road network based on the topological re-
lationship and observed evidence (i.e., rainfall, channel water level, and
inundation status of nearby sensors and roads). Fig. 9 shows an illus-
tration of the Bayesian network construction of the co-located channel-
road networks. Ri is a road intersection of the road network, Ci re-
presents the flooding status of the corresponding channel component,
and Fi,Wi are the rainfall and channel water level information observed
by Ci, respectively. Essentially, the goal of the model is to calculate the
failure probability (i.e., inundation probability) of road intersection,
such as Ri and Rt, given flood evidence in a nearby channel and nodal
influence.

According to Markov assumption, each node is conditionally in-
dependent of its non-descendants if its parents are known. Using the
case of Fig. 9 For example, given evidence Cj, Fj andWj are independent
of Ri and they are not considered in the computation of posterior
probabilities of Ri. Accordingly, only those variables that are dependent
on Ri are involved in the computation of posterior probability and are
marginalized out of the conditional probability if they are unknown.
Similarly, based on the Markov assumption, if Ri and Rk are known, all
other nodes are independent of Rt. Eq. (2) is used to calculates the
failure probability of sensor-matched road intersection Ri,

= = = = = = =

= = = = = =

= =

P R E e P R C c F f W w F f W w

P R C c C c F f W w P C c F

f W w

( ) ( , , , , )

[ ( , , , )* (

, )]

i i j j i i i i k k k k

c
i j j k k i i i i k k k

k k k

k

(2)

where the dependent evidence set =E C F W F W{ , , , , }j i i k k has observed
value =e c f w f w{ , , , , }j i i k k . Eq. (3) is used for calculating the failure
probability of non-directly matched road intersection Rt,

=

=

=

=

= = =
= = =
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i k

i k i k

i k i k
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(3)

The above conditional probability can be computed by Bayes’ rule
and the failure probability of roads Rt can then be inferred. At each time
step, the Bayesian network model calculates the failure probability
values for the nodes that have not failed already. Repeating this pro-
cedure for each road intersection based on the collected evidence of
rainfall, the road failure cascade process can be obtained. The para-
meters of the Bayesian network model are calculated using maximum
likelihood estimation (MLE), which is the default method of the python
library pgmpy. MLE estimates the parameters by maximizing the like-
lihood function. In this case, the condition probabilities are the para-
meters to be estimated. For example, given a sensor S connected to a
road intersection R (S→ R), in order to estimate the parameter θ= P
(R ∣ S), we have = ˆL ythetaˆ argmax ( , )n , where y is the observed data
sample to train the model y=(S1, R1), (S2, R2), …, (Sn, Rn). With the
trained Bayesian network model, we can also evaluate the cascading
failure risk of the road network. The risk of each road intersection is
calculated based on the flooding probability difference between when
its matched sensor is inundated and when its matched sensor is not
inundated. This calculation enables us to capture the risk of cascading
failure from flood control network to road network. Once the cascading

Fig. 8. Co-located channel-road network.

Fig. 9. Bayesian network model structure of co-located channel-road network.
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failure risk of flooding for an intersection is obtained, the risk of a road
is calculated by averaging the risk value of intersections at both ends of
the road. The cascading failure risk derivation procedure is presented in
Algorithm (2).

Algorithm 2. Road network cascading failure risk calculation

4. Road network cascading failure risk assessment in Harris
County

Harris County, home to Houston, is the third most populous county
in the United States and also one of the most flood-prone areas in the
country. It has more than 4023 km of channel networks and en-
compasses 22 watersheds that drain the rainfall-runoff and stormwater
to a channel and eventually drains into Galveston Bay. Some water-
sheds are, however, exposed to higher flood risks and suffered an ex-
tensive loss during past flood events. For example, of the 154,170 home
flooded during Hurricane Harvey, 8750 houses were from Cypress
creek watershed and 4540 houses were from Little Cypress Creek wa-
tershed (HCFCD, 2019). Considering its flood risk exposure, we used a

combined watershed (as shown in Fig. 3, including Cypress Creek, Little
Cypress Creek, Willow Creek, and Spring Creek) in the Northwest re-
gion of Harris County as our test-bed for the proposed co-located
channel-road Bayesian network model. In total, there are 6353 links
and 4061 intersections in the studied road network.

The sensors on the Harris County's flood control network are gra-

dually installed over time. Although the flood record in the Harris
County flood warning system can date back to 1989, not enough sensors
installed at that time. Therefore, there is a tradeoff between training
dataset size and number of the flood sensors. As the distribution of the
flood sensors is sparse already, to provide a more accurate flood pre-
diction, we selected 2016 Tax Day Flood (4/16/2016–4/17/2016,
31–41 cm in 12 h), 2016 Memorial Day Flood (5/27/2016–5/28/2016,
20–33 cm in 1 day), and 2017 Hurricane Harvey Flood (8/25/2017–8/
31/2017, 71–112 cm in 4 days) as the study flood events to train the
Bayesian network model. In addition, of the 28 sensors in the studied
watersheds, only data from 20 sensors were utilized in this paper, as
some sensors were newly installed after these three flooding events. If
all sensors’ data are used, some sensors will be fill with empty flooding
record, which can severely affect the model's flood prediction accuracy.

Four types of information were obtained and utilized in the model

Fig. 10. Temporal road failure cascade illustration. (For interpretation of the references to color in the text, the reader is referred to the web version of this article.)
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training, rainfall, channel water level, and channel and road inundation
status. The first three data are collected at 30min interval directly from
Harris County Flood Warning System (HCFWS) (HCFWS, 2019). The
rainfall is represented as categorical data, classified based on whether
the rainfall amount in the next 12 h would exceed 6.35 cm, which is

considered as moderate rainfall (NMLA, 2019). In addition, the channel
water level is also transformed into a categorical format based on
whether the residual height between channel water level and the top of
a channel exceeds 13 cm within 6 h before overflow. Road inundation
data requires additional processing. First, to determine the flood status

Fig. 11. Temporal failure cascade probability prediction at different road intersections.

Fig. 12. Failure cascade prediction performance of Bayesian network model.

Fig. 13. Characterization of road network risk of cascading failure in flooding.

Table 1
Roads’ cascading failure risk statistics.

Cascading failure risk

Category 0.0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1.0
Number 4703 682 288 323 359 236 215 135 70 24
Percentage 74% 10.7% 4.5% 5.1% 5.7% 3.7% 3.4% 2.1% 1.1% 0.4%
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of each road link, we extracted a series of inundation maps from
HCFWS through scripting and slicing the flooding warning system. The
maps are in binary format (inundated or not) with a size of
1792×1536 pixels. Second, the inundation maps are projected to the
road network to identify the inundated roads. The inundation data for
every 30min were retrieved and processed. Finally, we used data from
the Tax Day flood and Hurricane Harvey flood as the training set and
Memorial Day flood as the test set. The training step estimates the
conditional probability distribution for each variable based on the given
data set, and the prediction step uses the variable elimination algorithm
to compute the probability given evidence. Our Bayesian network
model has 127 sensors and 4061 road intersections. We used an AWS
t2.2xlarge instance (8 cores and 32 GB memory with up to 3.0 GHz Intel
scalable processor) and it took about 3min for the training process and
5 s for the prediction of each intersection.

4.1. Road network failure cascade probability prediction

Using the 2016 Tax Day flood and 2016 Hurricane Harvey flood
trained Bayesian network model, we predicted the 2016 Memorial Day
flood cascade and compared with the empirical flood propagation.
Fig. 10(a) shows the predicted flooding probability at each intersection,
with the darker shades of blue indicating the value of the probability
(only nodes with probability large than 0.5 are plotted). Fig. 10(b)
shows the empirical flood in a four-hour interval, with green nodes
indicating the non-flooded road intersections. In both figures, red nodes
represent the flooded road intersections. Comparing the failure cascade
forecast and empirical flood inundation (focusing on the blue markers
highlighted with orange box), we can see that predicted high failure
probability nodes are flooded in the following time stamps. The results
show the capability of the proposed Bayesian network model in pre-
dicting the failure cascade dynamics in a co-located flood control-road
network.

Zooming into different road intersections, Fig. 11 shows the time
series of the predicted failure probability during the course of the flood
event. The endpoint of the probability curve marks the inundation of
the road intersection. The probability information enables us to de-
termine the likelihood of flooding in a road intersection. This in-
formation is critical for emergency response teams during the unfolding
of a flood event.

4.2. Failure cascade characterization performance

To devise the predicted failure set, we adopted a threshold-based
technique (Eq. (4)) to determine the failure nodes set. pc is the prob-
ability threshold. When the predicted flooding probability p exceeds the
threshold, the road intersection is predicted to be flooded in the future.

=
<

p
p p
p p

0 (Not failed)
1 (Failed)f

c

c (4)

The selection of threshold pc influences the model prediction per-
formance, such as the true positive rate (TPR) and true negative rate
(TNR). Fig. 12 shows the failure (i.e., flooding) prediction performance
at different values of pc. There exists a trade-off point in which the
model achieves both good TPR and TNR (shown in Fig. 12(a)). In this
case, 0.3 is selected as the threshold for the combined watershed. The
threshold can, however, be adjusted based on a decision-maker's tol-
erance for uncertainty. A higher threshold can be chosen to ensure a
greater correct prediction rate. Fig. 12(b) presents the failure prediction
performance at different time steps with a flooding probability
threshold of 0.3. The accuracy of the prediction is measured by Eq. (5).
Fig. 12(b) shows that the proposed model can achieve very good results
in terms of characterizing and predicting the road failure cascade pro-
cess.

=
+

Accuracy
True positive True negative

Total population (5)

4.3. Road network cascading failure risk assessment

Based on the trained co-located channel-road Bayesian network
model, we can derive the risk of road network to cascading failure
(Algorithm (2)). Essentially, a road's cascading failure risk is measured
based on the marginal flooding probability difference of its nearby
channel being flooded and not flooded. This flooding probability dif-
ference captured the influence of co-location dependency between
channel and road networks. Fig. 13 shows the cascading failure risk
map of the road network with the colors representing the magnitude of
inundation risks.

According to the distribution of road cascading failure risk pre-
sented in Table 1, 16.4% of the links exhibit very high risk values
(greater than 0.4), which suggests that they are highly exposed to
cascading failure due to the overflow in flood control network. The road
network cascading failure risk map in Fig. 13 illustrates these roads
with high cascading failure risk which are located near the critical in-
tersections of the network. The derived road cascading failure risk map
could provide the decision-makers with a risk-informed tool to prior-
itize the emergency response in disaster management and infrastructure
protection in the hazard mitigation plan.

5. Concluding remarks

This proposed road network cascading failure risk assessment in
urban flooding compliments the existing approaches by considering the
failure influence from its co-located flood control infrastructures. The
proposed Bayesian network model of co-located channel-road network
enables the integration of both static features such as topology of both
networks and the dynamic features such as empirical flooding propa-
gation to derive the cascading failure risk of road network. Departing
from the standard risk exposure assessment in Fig. 1 where road only
has a binary status of in flood-prone area or not, our proposed cas-
cading failure risk assessment in Fig. 13 provides a tiered representa-
tion of risks in road networks. A link's flood risk is obtained based on its
location in the network, the influence of its co-located channel network,
as well as historical flooding evidence. The improved quantitative
measure of the flood risk allows decision-makers to prioritize the in-
frastructure protections, which can help optimize the allocation of the
limited resources for flood risk reduction and hazard mitigation plan-
ning. In addition, the high accuracy prediction (around 90%) for road
failures obtained by the proposed Bayesian network model can provide
early warning information regarding the potential flooding of roads to
help communities and emergency responders to better respond to floods
and the resulting road inundations.

Although this paper used Harris County as the test-bed, the pro-
posed framework can be adapted to other regions. To further improve
the model performance, the results can benefit from adding extra sen-
sors to the flood control network. So far, there are 28 sensors in the
studied watershed installed to date. However, back to the time when
Memorial Day and Tax Day floods occurred, some of the sensors had not
been installed. Therefore, we do not have the flooding history related to
those newly installed sensors, which is the reason why we only used
data from 20 sensors instead of all the 28 sensors. We have experi-
mented with 12 sensors and 5 flood events, but the model performance
deteriorated and was incapable of detecting the initial flood occurring
with low true positive rates, which shows the importance of having
more sensors to have better model performance. In fact, after the dis-
astrous impact of Hurricane Harvey, Harris County Flood Control
District installed several more sensors to have a better monitoring of the
flood risk. However, due to the installation and maintenance cost, they
did not install as many sensors as need. The number of sensors (i.e., 20)
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does not provide the required observability for monitoring the status of
the channel network, however, for this study, we could only use these
data to learn from the past events and predict the future flood risks.
Despite the limited number of sensors, we were able to achieve decent
results from the proposed Bayesian model. In order to better inform
future sensor installation, an ongoing work by the authors is analyzing
the network observability of installed 20 sensors using network control
theory to derive a more effective sensor network configuration. (e.g.,
number of sensors, location). The current study provides a base model
for flood prediction in co-located road and channel networks and could
be improved and updated once more sensors are installed and more
data of the flood events are collected.

Additionally, due to the data limitation (e.g., channel slope, eleva-
tion, material friction, etc.) to calculate the intermediate node water
depth, an interpolation method is employed in this paper using a linear
relationship assumption which cannot fully capture the flow dynamics
of the channel. Despite the simplification on the water depth approx-
imation, the proposed Bayesian network modeling framework effec-
tively captures the co-location interdependency between channel net-
work and road network and shows good performance in characterizing
the flood cascading on the road network and predicting future flooding.
Through the use the proposed framework, future studies could further
improve the performance of the model with more data from flood
events and more accurate water depth calculation in the future. More
features, such as land use, can also be incorporated to accurately
characterize the flow dynamics of the study area in the future. Besides,
several parameters were categorized during the Bayesian modeling
approach. This approach sacrificed data resolution that can potentially
impact the prediction results. Therefore, future studies could examine
other modeling techniques such as deep learning and spatial-temporal
neural network to improve cascading failure prediction. Moreover, the
proposed cascading failure analysis can be integrated with other mea-
sures in the future, such as criticality in providing access to critical
facilities (hospitals) and the social vulnerability of the region to further
specify flood risk cascade in urban areas.
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