
Adversarial Robustness of Flow-Based Generative Models

Phillip Pope∗ Yogesh Balaji∗ Soheil Feizi
University of Maryland, College Park

Abstract

Flow-based generative models leverage in-
vertible generator functions to fit a distri-
bution to the training data using maximum
likelihood. Despite their use in several appli-
cation domains, robustness of these models
to adversarial attacks has hardly been ex-
plored. In this paper, we study adversar-
ial robustness of flow-based generative mod-
els both theoretically (for some simple mod-
els) and empirically (for more complex ones).
First, we consider a linear flow-based gen-
erative model and compute optimal sample-
specific and universal adversarial perturba-
tions that maximally decrease the likelihood
scores. Using this result, we study the ro-
bustness of the well-known adversarial train-
ing procedure, where we characterize the fun-
damental trade-off between model robustness
and accuracy. Next, we empirically study
the robustness of two prominent deep, non-
linear, flow-based generative models, namely
GLOW and RealNVP. We design two types
of adversarial attacks; one that minimizes the
likelihood scores of in-distribution samples,
while the other that maximizes the likelihood
scores of out-of-distribution ones. We find
that GLOW and RealNVP are extremely sen-
sitive to both types of attacks. Finally, us-
ing a hybrid adversarial training procedure,
we significantly boost the robustness of these
generative models.

1 Introduction

The promise of modern deep generative models is to
learn data distributions with sufficiently high fidelity,
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allowing simulation of realistic samples. Some appli-
cations include photo-realistic image generation, audio
synthesis, and image to text generation (Reed et al.,
2016; Ledig et al., 2017; van den Oord et al., 2016a).
Generative Adversarial Networks (GANs)(Goodfellow
et al., 2014) have become a popular choice in modern
generative modeling, often obtaining the state-of-the-
art results in image and video synthesis (Karras et al.,
2018). While GANs can synthesize samples from a
data distribution, their inability to compute sample
likelihoods limits their usage in statistical inference
tasks (Balaji et al., 2019).

Likelihood-based models, on the other hand, explicitly
fit a generative model to the data using a maximum
likelihood optimization, enabling exact or approximate
evaluations of sample likelihoods at the test time.
Some popular choices include auto-regressive models
(van den Oord et al., 2016b), (Oord et al., 2016), Vari-
ational Auto-encoders (Kingma & Welling, 2019), and
methods based on normalizing flow (Rezende & Mo-
hamed, 2015). Notably, flow-based models (Kingma &
Dhariwal, 2018; Dinh et al., 2017) leverage invertible
generator functions to learn a bijective mapping be-
tween latent space and the data distribution, enabling
an exact sample likelihood computation.

The focus of this paper is to perform a comprehen-
sive study of robustness of likelihood-based generative
models to adversarial perturbations of their inputs.
While there has been progress on adversarial robust-
ness of classification problems (Madry et al., 2018),
robustness of likelihood models has not been explored
in the literature. Performing such a sensitivity analysis
is crucial for reliable deployment, especially in safety-
critical applications. For instance, one application
where likelihood estimation is crucial is unsupervised
anomaly detection in medical imaging, where out-of-
distribution samples can be detected using likelihood
scores. Adversarial attacks on such systems can lead
to false diagnosis, potentially bearing life-threatening
consequences.

First, we present a theoretical analysis of the sensi-
tivity of linear generative models that fit a Gaussian
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Figure 1: Sensitivity of flow-based generative models to adversarial attacks. A low NLL indicates a high likelihood
score. The figure on the left panel shows in-distribution attacks: a frog image which is assigned a NLL score of
1.6 by GLOW model trained on CIFAR-10 (clean model) gives a high NLL of 150 when perturbed adversarially
(ε = 8 in `∞ norm). Our robust model significantly improves the robustness: NLL does not change much after
the attack, while the score on the unperturbed sample is similar to the one obtained by the clean model. The
panel on the right shows out-of-distribution attacks where a noise image is assigned a low NLL of 4.2.

distribution to the data (since the latent variable is of-
ten a Gaussian distribution itself). Under this setting,
we compute the optimal sample-specific and universal
norm-bounded input perturbations to maximally de-
crease the likelihood scores. We then analyze the ef-
fectiveness of one of the most successful defense mech-
anism against adversarial attacks, namely adversarial
training (Madry et al., 2018) where adversarially per-
turbed samples are recursively used in re-training the
model. We show that adversarial training can prov-
ably defend against norm-bounded adversarial attacks.
However, this comes at a cost of decrease in clean likeli-
hood scores. This naturally gives rise to a fundamental
trade-off between model performance and robustness.

Next, we empirically show the existence of adversar-
ial attacks on two popular deep flow-based genera-
tive models: GLOW (Kingma & Dhariwal, 2018) and
RealNVP (Dinh et al., 2017). A measure of likeli-
hood, by definition, should assign low scores to out-of-
distribution samples and high scores to in-distribution
ones. The existence of adversarial attacks breaks and
contradicts this intuition: We show that we can con-
struct samples that look like normal (in-distribution)
data to a human eye, yet the model assigns to them
low likelihood scores, or equivalently, high negative log
likelihood (NLL) scores. Similarly, we show the exis-
tence of out-of-distribution samples that are assigned
low NLL scores. One such example is shown in Figure

1, where a sample from CIFAR-10 dataset when adver-
sarially perturbed has high NLL score, and a random
adversarially perturbed image (with uniform pixel in-
tensities) has low NLL score. This observation raises
serious doubts about the reliability of likelihood scores
obtained through standard flow-based models.

To make these models robust, we investigate the effect
of the popular adversarial training mechanism. We
show that adversarial training empirically improves ro-
bustness, however, this comes at a cost of decrease
in likelihood scores on unperturbed test samples com-
pared to the baseline model. To mitigate this effect, we
propose a novel variant of adversarial training, called
the hybrid adversarial training, where the negative log
likelihoods of both natural and perturbed samples are
minimized during training. We show that hybrid ad-
versarial training obtains increased robustness on ad-
versarial examples, while simultaneously maintaining
high likelihood scores on clean test samples.

In summary, our contributions are as follows:

• We theoretically analyze the robustness of lin-
ear generative models, and show that adversar-
ial training provably learns robust models. We
also characterize the fundamental trade-off be-
tween model robustness and performance.

• We demonstrate the existence of in-distribution
and out-of-distribution attacks on flow-based like-
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lihood models.

• We propose a novel variant of adversarial training,
called the hybrid adversarial training, that can
learn robust flow-based models while maintaining
high likelihood scores on unperturbed samples.

2 Background

2.1 Flow-based Generative models

Although generative modeling is largely dominated by
generative adversarial networks (GANs), one major
short-coming of GANs is its inability to compute sam-
ple likelihoods. Flow-based generative models solve
this issue by designing an invertible transformation
f : RD → RD between latent distribution pz(z) and
the generated distribution px(x). pz(z) is often as-
sumed to be a normal distribution. Given a random
variable z ∼ pz(z), we can use change of variables to
write the log density of a sample x such that x = f(z)
as (Dinh et al., 2015, 2017; Grathwohl et al., 2019;
Kingma & Dhariwal, 2018):

log px(x) = log pz(z)− log det

∣∣∣∣∂f(z)

∂z

∣∣∣∣
Since f is invertible, inference can be performed as z =
f−1(x). The transformation f is typically modeled
as the composition of K invertible maps, f = f1 ◦
f2 ◦ · · · ◦ fK , also called normalizing flows (Rezende &
Mohamed, 2015). The special structure used in each
fi’s allows an efficient computation of the determinant.

Prominent examples of flow-based generative models
include NICE (Dinh et al., 2015), RealNVP (Dinh
et al., 2017), GLOW (Kingma & Dhariwal, 2018), and
FFJORD (Grathwohl et al., 2019), each using a partic-
ular choice of fk . For instance, RealNVP (Dinh et al.,
2017) is designed with affine coupling layers, essen-
tially an invertible scale transformation, while GLOW
uses invertible 1×1 convolutions (Kingma & Dhariwal,
2018), which utilizes learned permutations.

2.2 Adversarial Attacks and Robustness

In context of classification, adversarial examples are
subtle input perturbations that changes a model pre-
diction. These perturbations are small in the sense of
a suitable norm and imperceptible to humans. The
existence of such examples raises serious concern for
the deployment of machine learning models in safety-
critical applications

Let D = {(x, y)}Ni=1 be a collection of labeled input
instances, θ be the parameters of a classifier with loss
function Lcls (e.g. cross-entropy). For a given x, let
S be the set of all `p norm-bounded perturbations
around x, i.e., ‖δ‖p < ε, where ε is a constant, also

called the perturbation radius. The perturbed sample
is then given by xadv = x + δ. Standard methods of
crafting adversarial examples for classification include
the Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015)

xadv = x + α sign(∇xLcls(θ,x, y))

and its variant Projected Gradient Descent (PGD)
(Kurakin et al., 2017)

x(t+1) = Projx+S

(
x(t) + α sign(∇x(t)Lcls(θ,x

(t), y))
)

xadv = x(m)

which is essentially a recursive application of FGSM
for m steps, while constraining the perturbation to
stay within the feasible region in each step. The
above attacks have been shown effective on a variety
of datasets (Carlini & Wagner, 2017; Xie et al., 2019).
For defense against such attacks, Madry et al. (2018)
proposed adversarial training, a procedure where the
parameters θ of the model is optimized using the fol-
lowing minimax objective

min
θ

E(x,y)∼D

[
max
δ∈S

Lcls(θ,x + δ, y)

]
Intuitively, this amounts to training the model on
adversarial examples instead of the unperturbed
ones. Adversarial training remains to be one of the
successful defense mechanisms to date.

2.3 Robustness of generative models

To the best of our knowledge, no prior work exists on
adversarial robustness of likelihood-based generative
models. In Kos et al. (2018), attacks on encoder-based
generative models (VAEs and VAE-GANs) are con-
structed to adversarially manipulate reconstruction
and latent-space tasks. Adversarial attacks on gen-
erative classifiers are explored in Fetaya et al. (2019),
where they show that even near optimal conditional
generative models are susceptible to adversarial at-
tacks when used for classfication tasks. Nalisnick et al.
(2019) discuss some non-intuitive properties of flow-
based generative models, studying GLOW in partic-
ular. They empirically observe that on a variety of
common datasets, GLOW models assign lower likeli-
hoods to in-distribution data than out-of-distribution.
Diakonikolas et al. (2018) study robust learning of
high dimensional Gaussians under Huber’s strong ε-
contamination model, in which adversary decides what
outliers to place after observing the inlier distribution.
Our work differs in that it considers test time attacks,
where every sample is perturbed under norm bounded
attacks at test-time to maximally decrease likelihood.
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3 Adversarial robustness of linear
flow-based generative models

We begin with an analysis of adversarial robustness of
linear flow-based generative models. Since the latent
variable Z has a normal distribution and the transfor-
mation between Z and X is considered to be affine, X
will have a distribution in the form of X ∼ N (µ,K)
where µ is the mean vector and K is the covari-
ance matrix. Given N samples as the input dataset
D = {xi}Ni=1, we are interested in estimating the mean
and covariance matrices of the generative distribution.
This problem can be solved using maximum-likelihood
estimation, in which we find model parameters that
maximize the likelihood of the input dataset D. We
know that log-likelihood of a test point x under the
Gaussian distribution X can be written as

L(x) = C − 1

2
log(|K|)− (x− µ)TK−1(x− µ)

2

where C = n log(2π)/2. It is a well-known result that
maximizing the log-likelihood of the dataset D results
in the following estimators for mean and covariance:

µ̂ =

∑
i xi
N

K̂ =
1

N

N∑
i=1

(xi − µ̂)(xi − µ̂)T

N
,

referred to as the sample mean and sample covariance,
respectively.

3.1 Adversarial attacks

In this section, we aim to find a norm-bounded ad-
versarial perturbation δ that maximally decreases the
likelihood score of a test point x. We consider ad-
versarial perturbations with a bounded `2 norm (i.e.,
‖δ‖2 < ε). Please note that while we use `2 norm
here, `∞ perturbation norm bounds are used to con-
struct attacks for non-linear flow-models trained on
vision datasets (Section. 5). We would like to point
out that both `2 and `∞ are commonly used settings
to study adversarial robustness (Madry et al., 2018).
The perturbation δ can be found by solving the fol-
lowing optimization problem

min
δ

C − 1

2
log(|K|)− (x− µ+ δ)TK−1(x− µ+ δ)

2
(1)

s.t. ‖δ‖2 < ε

Theorem 3.1 Let L(x) denote the likelihood function
of an input sample x under a Gaussian distribution
N (µ,K). Let K = UΛUT be the eigen-decomposition

of the covariance matrix K. Let c = [c1, c2, . . . , cn] =
UTK, and Λ = diag([λ1, . . . λn]). Let η be a solution
of the set of equations∑

i

c2i
(1− 2ηλi)2

= ε2

2ηλi − 1 ≥ 0 ∀i

Then, the optimal additive perturbation δ with norm
bound ‖δ‖2 < ε that maximally decreases the likelihood
score of sample x is given by

δ∗ = (K−1 − 2ηI)−1K−T (µ− x) (2)

The proof of Theorem 3.1 is given in supplementary
material. The above theorem gives a solution for the
optimal adversarial perturbation with a bounded `2
norm for the linear flow-based generative models (solu-
tion to Eq. (1)). Example optimal adversarial pertur-
bations calculated for a 2-dimensional Gaussian distri-
bution are visualized in Figure 2. Next, we show two
special cases of this result.

Figure 2: Examples of optimal adversarial perturba-
tions with bounded `2 norm for a 2-dimensional Gaus-
sian case.

3.1.1 Special case: Spherical covariance
matrix

In this case, the covariance matrix is K = σ2I. In
this setup, the solution for the adversarial perturba-
tion problem (2) simplifies to:

δ =
1

1− 2ηλ
(µ− x)

Similarly, the condition for η simplifies to:

1− 2ηλ =
‖µ− x‖

ε

Thus, the optimal adversarial perturbation δ in this
case is given by

δ∗ =
ε

‖x− µ‖
(x− µ) (3)
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3.1.2 Special case: x = µ

In this case, the optimization 1 simplifies to:

min
δ

C − 1

2
log(|K|)− δTK−1δ

2

s.t. ‖δ‖2 < ε

This is a Rayleigh quotient problem, the solution for
which is the maximum eigenvalue of K−1. I.e.,

δ∗ = ε umin(K)

where umin is the eigenvector of K corresponding to
the minimum eigenvalue. Intuitively, minimum eigen-
vector of the covariance matrix K is the direction in
which the data varies the least, a perturbation along
this direction induces a maximal drop in likelihood.

3.2 Defense against adversarial attacks

One of the most successful defense strategies against
adversarial attacks is adversarial training (Sec-
tion. 2.2), in which models are recursively trained on
adversarially perturbed samples instead of clean ones.
In this section, we analyze the effect of adversarial
training for the likelihood estimation in the spherical
Gaussian case. For an input sample x under the gen-
erative distribution N (µ, σ2I), the adversarially per-
turbed sample using (3) is given by

xadv = x +
ε

‖x− µ‖
(x− µ)

We consider the population case where x ∼ N (µ, σ2I).
Denote x̃ = (x − µ)/σ ∼ N (0, I). In this case, after
one update of adversarial training, optimal model pa-
rameters will be:

µadv = E[xadv]

= µ+ εE
[ x̃

‖x̃‖

]
= µ

Kadv = E[(xadv − µ)(xadv − µ)T ]

= σ2E
[(

x̃ + ε
x̃

‖x̃‖

)(
x̃ + ε

x̃

‖x̃‖

)T ]
= σ2

(
E[x̃x̃T ] + 2εE

[ x̃x̃T

‖x̃‖

]
+ ε2E

[ x̃x̃T

‖x̃‖2
])

= σ2
(
I +

2
√

2ε

n

Γ((n+ 1)/2)

Γ(n/2)
I +

ε2

n
I
)

= σ2I + σ2αI = σ2(1 + α)I

where α =
2
√

2ε

n

Γ((n+ 1)/2)

Γ(n/2)
+
ε2

n

The above result follows from the fact that sum of di-
agonal terms of x̃x̃T /‖x̃‖ has a Chi distribution with n

degrees of freedom. We observe that adversarial train-
ing preserves the mean vector, but increases the vari-
ance by a multiplicative factor 1 + α.

Performing m steps of adversarial training results in
the following estimate:

µadvk = µ (4)

Kadv
k = σ2(1 + α)mI

Using the above argument, we obtain the following
robustness guarantees for adversarial training:

Theorem 3.2 Let x be an input sample drawn from
N(µ, σ2I). Let L(x) denote the log-likelihood function
of the sample x estimated using an m-step adversar-
ially trained model. Let δ be any perturbation vector
such that ‖δ‖ ≤ ε. For any ∆, when

m ≥ max
[

log
( 1

2σ2∆

(
2σε
√

20 log(1/γ) + ε2
))
,

log
( 1

2σ2∆

[
2σε
√

2n+ ε2
])]

/ log(1 + α)

with probability greater than 1− γ,

L(x)− L(x + δ) < ∆

The proof for this theorem is presented in the ap-
pendix. This theorem states that, with high proba-
bility and for a sufficiently large m, m-step adversar-
ial training learns a generative model whose likelihood
estimates are provably robust within ∆.

3.2.1 Trade-off between robustness and
accuracy

The estimated parameters of our linear model after m
steps of adversarial training is given in Eq. (4). The
average log-likelihood of unperturbed (clean) samples
drawn from N (µ, σ2I) under the adversarially-trained
model can be computed as

Lnat(m) =− n

2
log(2πσ2(1 + α)m)

− Ex∈N (µ,σ2I)
‖x− µ‖2

2σ2(1 + α)m

=− n

2
log(2πσ2(1 + α)m)− n

2(1 + α)m

The drop in the natural likelihood due to adversar-
ial training, which we define as Lnat−dr := Lnat(0) −
Lnat(m), simplifies as

Lnat−dr(m) =
n

2

[
log((1 + α)m) +

1

(1 + α)m
− 1
]

Lnat−dr(m) represents how much the average log like-
lihood scores will be different if we use an m-step
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adversarially-trained model instead of the clean model.
Larger m will lead to a larger drop in the accuracy of
the likelihood computation. However, it will increase
the robustness of likelihood scores against adversarial
perturbations. To characterize this trade-off, note that
the likelihood of perturbed samples under the m-step
adversarially trained model can be computed as

Ladv(m) =− n

2
log(2πσ2(1 + α)m)

− Ex∈N (µ,σ2I)

‖x + ε
‖x−µ‖ (x− µ)− µ‖2

2σ2(1 + α)m

=− n

2
log(2πσ2(1 + α)m)

−
n+ 2ε

√
2Γ((n+1)/2)

Γ(n/2) + ε2

2(1 + α)m

Hence, the adversarial sensitivity, which we define as
Lsen(m) = Lclean(m)− Ladv(m) simplifies to

Lsen(m) =
2ε
√

2Γ((n+1)/2)
Γ(n/2) + ε2

2(1 + α)m
(5)

Adversarial sensitivity indicates the drop in likelihood
scores due to adversarial attacks. Higher the score,
more sensistive is the model to adversarial perturba-
tions. We can see that Lnat−dr is at odds with Lsen.
In Figure 3, we plot the trade-off between natural like-
lihood drop vs. the adversarial sensitivity for different
values of m in the range [0, 10]. In this experiment, we
use n = 10, and generate samples from a Gaussian dis-
tribution with a random mean and covariance matrix.
We observe that the setting that gives low performance
drop incurs high robustness drop, and vice-versa.

Figure 3: Plot showing the trade-off between perfor-
mance and robustness for an example linear generative
model.

3.3 Universal adversarial perturbation

In universal adversarial perturbation, we are interested
in finding a single perturbation vector δ such that the
population likelihood (under the normal distribution)
decreases maximally, i.e., we are interested in finding
a perturbation δ such that

min
δ

C − 1

2
log(|K|)

− Ex∼N (µ,K)

[
(x− µ+ δ)TK−1(x− µ+ δ)

2

]
s.t. δT δ = ε2

Simplifying the objective, we obtain

min
δ

Ex

[
− (x− µ)TK−1(x− µ)

2

+ δTK−1(x− µ) +
δTK−1δ

2

]

The first term is independent of δ, thus can be ignored.
The second term is 0 since the mean of x is µ. Thus,
the optimization simplifies as

max
δ

δTK−1δ

2

s.t. δT δ = ε2

This is the standard Rayleigh quotient problem, the
solution for which is

δ∗ = ελmax(K−1) = εumin(K)

Remark: The adversarial distribution for the uni-
versal case is xadv = x + εumin(K). The perturbation
in this case only shifts the mean of the perturbed dis-
trbution, but the covariance remains the same. Hence,
adversarial training results in the following estimation:
µ̂adv = µ + εumin(K), and Kadv = K. Since only the
mean gets shifted, the resulting adversarially trained
model can again be attacked with the same perturba-
tion, resulting the same sensitivity as the clean model.
Hence, adversarial training is not successful to defend
against universal adversarial attacks.

4 Adversarial attacks and defenses on
non-linear flow-based models

In this section, we empirically study the robustness of
deep flow-based generative models against adversar-
ial attacks. First, we adapt the PGD attack to the
flow-based models by replacing the classification loss
Lcls with the log-likelihood function. For normal (in-
distribution) samples, we seek to compute perturba-
tions with a bounded `∞ norm such that the likeli-
hood of the perturbed sample is decreased maximally.
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This defines our in-distribution attack. We also use
the crafted adversarial examples to recursively re-train
the model to make it more robust against adversarial
attacks, we call this adversarial training.

Next, we explore a new type of adversarial attack on
the flow-based generative models where the goal of the
adversary is to maximize the likelihood score of out-of-
distribution (anomaly) samples to be similar to that
of normal samples. We call this attack the out-of-
distribution adversarial attack. This amounts to as-
cending (rather than descending) on the likelihood of
out-of-distribution samples. We compare these attacks
to random uniform noise, which is used as a baseline.

We empirically observe that adversarially trained
models obtain higher NLL (i.e. lower likelihood) on
clean (un-perturbed) data than models trained on
clean data alone. This is expected as no clean samples
were exposed at the training time. However, this is
undesirable as a good generative model should assign
high likelihoods to in-distribution samples. To miti-
gate this problem, we propose training simultaneously
on both clean and adversarial examples. In each batch
of training, we mix clean and adversarial samples in
1:1 ratio. We call this procedure the hybrid adversarial
training. The analog of this method is known to fail for
classification problems(Szegedy et al., 2014). However,
it succeeds to robustify flow-based generative models,
while preserving likelihood on unperturbed samples.

5 Experiments

We perform experiments on two flow-based genera-
tive models: GLOW and RealNVP, on three datasets:
CIFAR-10, LSUN Bedroom, and CelebA. We evalu-
ate the robustness of the three model varieties: mod-
els trained on clean (unperturbed) data alone, models
trained on adversarially-perturbed data alone (adver-
sarial training), and models trained on clean and ad-
versarial data in 1:1 ratio (hybrid training). Adver-
sarial and hybrid models were trained with ε = 8 and
m = 10 attack iterations. More experimental details
can be found in supplementary material. In all exper-
iments, we report negative log-likelihood values in the
units of bits per dimension (Theis et al., 2016).

Figures 4 and 5 show visualizations of adversar-
ial attacks on a GLOW model trained on unper-
turbed CIFAR-10 and LSUN-bedrooms datasets re-
spectively. In the top row, we show in-distribution
attacks at different attack strengths. We observe that
in-distribution attacks are effective even at low ε val-
ues. The effectiveness of these attacks are evident as
the values are much higher compared to the uniform
noise baseline (shown in middle row). In the last row,
we show out-of-distribution attacks, where a uniform

ε Clean Adv. Hybrid

0 3.4 4.7 3.6
1 6.3 4.9 4.7
2 14 5.0 5.0
4 320 5.3 5.3
8 2.0×106 5.8 5.9

Table 1: Robustness results of GLOW model trained
on CIFAR-10

ε Clean Adv. Hybrid

0 2.4 4.4 2.9
1 5.5 4.5 4.7
2 8.5 4.7 4.6
4 15.2 5.0 5.0
8 27.0 5.5 5.6
16 35.8 6.6 6.6
32 36.4 7.7 8.1

Table 2: Robustness results of GLOW model trained
on LSUN-Bedrooms dataset

Attack Iterations CelebA LSUN

0 2.9 2.7
10 14.3 10.9
20 17.9 14.4
50 24.9 19.8

Uniform noise 5.8 4.8

Table 3: Adversarial attacks on RealNVP models
trained on CelebA and LSUN Bedroom. All models
were attacked with ε = 8.

noise image is perturbed to assign low NLL scores. For
high attack strength (ε = 8), likelihood values are on-
par with values obtained by in-distribution samples.

Next, we present quantitative results, where we report
average sample likelihood scores (in bits/per dimen-
sion), averaged over the test set. Likelihood scores on
adversarial samples over a sweep of attack strength
(attack ε) for a GLOW model trained on CIFAR-
10 and LSUN Bedroom datasets are shown in Tables
1 and 2 respectively. We observe that adversarially
trained models improve robustness, however the NLL
scores on unpertubed samples increase drastically. Hy-
brid adversarial training, on the other hand, achieves
(1) NLL on adversarial samples comparable to adver-
sarially trained model, and (2) likelihood on unper-
turbed samples comparable to clean baseline, i.e., hy-
brid model improves robustness preserving the per-
formance on unperturbed samples, thus achieving the
best of both worlds.
In Table 3, we report robustness results for RealNVP
trained on CelebA and LSUN Bedroom datasets over
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Figure 4: Sample visualizations of in-distribution, out-of-distribution and uniform noise attacks on a GLOW
model trained on CIFAR-10 dataset. Results on clean (unperturbed) data are reported as ε = 0.

Figure 5: Sample visualizations of in-distribution, out-of-distribution and uniform noise attacks on a GLOW
model trained on LSUN-Bedroom dataset. Results on clean (unperturbed) data are reported as ε = 0.

a sweep of attack iterations. Due to computational
constraints, we use a fixed ε = 8. The results show
that RealNVP is also susceptible to adversarial at-
tacks, similar to GLOW models.
In the supplementary, we show further results includ-
ing (1) further attack evaluations showing the distri-
bution of obtained likelihoods (2) applying the linear
Gaussian attack to the non-linear case, (3) evaluating
the adversarial effects of generated samples from an
adversarially trained model.

6 Conclusion

In this paper, we present a comprehensive analysis of
adversarial robustness of flow-based generative mod-

els. First, we a perform a sensitivity analysis of linear
generative models, and show that adversarial training
provably improves robustness. Then, we demonstrate
adversarial attacks on two non-linear flow-based gen-
erative models - GLOW and RealNVP. To improve
the robustness of these models, we investigate the use
of adversarial training, a popular defense mechanism
used in classification. We show that adversarial train-
ing improves robustness at the cost of decrease in like-
lihood on unperturbed data. To remedy this issue, we
propose hybrid adversarial training, a novel defense
mechanism that improves adversarial robustness with
a marginal drop in likelihood on unperturbed data.
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