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Abstract

Randomized smoothing has been shown to provide good certified-robustness guar-
antees for high-dimensional classification problems. It uses the probabilities of
predicting the top two most-likely classes around an input point under a smoothing
distribution to generate a certified radius for a classifier’s prediction. However, most
smoothing methods do not give us any information about the confidence with which
the underlying classifier (e.g., deep neural network) makes a prediction. In this
work, we propose a method to generate certified radii for the prediction confidence
of the smoothed classifier. We consider two notions for quantifying confidence:
average prediction score of a class and the margin by which the average prediction
score of one class exceeds that of another. We modify the Neyman-Pearson lemma
(a key theorem in randomized smoothing) to design a procedure for computing the
certified radius where the confidence is guaranteed to stay above a certain threshold.
Our experimental results on CIFAR-10 and ImageNet datasets show that using
information about the distribution of the confidence scores allows us to achieve a
significantly better certified radius than ignoring it. Thus, we demonstrate that extra
information about the base classifier at the input point can help improve certified
guarantees for the smoothed classifier. Code for the experiments is available at
https://github.com/aounon/cdf-smoothing.

1 Introduction

Deep neural networks have been shown to be vulnerable to adversarial attacks, in which a nearly
imperceptible perturbation is added to an input image to completely alter the network’s prediction
[37, 31, 12, 21]. Several empirical defenses have been proposed over the years to produce classifiers
that are robust to such perturbations [20, 4, 16, 8, 30, 14, 11]. However, without robustness guarantees,
it is often the case that these defenses are broken by stronger attacks [5, 1, 40, 39]. Certified
defenses, such as those based on convex-relaxation [41, 33, 35, 6, 36] and interval-bound propagation
[13, 17, 9, 32], address this issue by producing robustness guarantees within a neighborhood of an
input point. However, due to the complexity of present-day neural networks, these methods have seen
limited use in high-dimensional datasets such as ImageNet.

Randomized smoothing has recently emerged as the state-of-the-art technique for certifying adver-
sarial robustness with the scalability to handle datasets as large as ImageNet [22, 28, 7, 34]. This
defense uses a base classifier, e.g. a deep neural network, to make predictions. Given an input
image, a smoothing method queries the top class label at a large number of points in a Gaussian
distribution surrounding the image, and returns the label with the majority vote. If the input image is
perturbed slightly, the new voting population overlaps greatly with the smoothing distribution around
the original image, and so the vote outcome can change only a small amount.
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Conventional smoothing throws away a lot of information about class labels, and has limited ca-
pabilities that make its outputs difficult to use for decision making. Conventional classification
networks with a softmax layer output a confidence score that can be interpreted as the degree of
certainty the network has about the class label [15]. This is a crucial piece of information in real
world decision-making applications such as self-driving cars [3] and disease-diagnosis networks [18],
where safety is paramount.

In contrast, standard Gaussian smoothing methods take binary votes at each randomly sampled point
– i.e., each point votes either for or against the most likely class, without conveying any information
about how confident the network is in the class label. This may lead to scenarios where a point
has a large certified radius but the underlying classifier has a low confidence score. For example,
imagine a 2-way classifier for which a large portion, say 95%, of the sampled points predict the
same class. In this case, the certified radius will be very large (indicating that this image is not an
`2-bounded adversarial example). However, it could be that each point predicts the top class with
very low confidence. In this case, one should have very low confidence in the class label, despite the
strength of the adversarial certificate. A Gaussian smoothing classifier counts a 51% confidence vote
exactly the same way as a 99% confidence vote, and this important information is erased.

In this work, we restore confidence information in certified classifiers by proposing a method that
produces class labels with a certified confidence score. Instead of taking a vote at each Gaussian
sample around the input point, we average the confidence scores from the underlying base classifier
for each class. The prediction of our smoothed classifier is given by the argmax of the expected scores
of all the classes. Using the probability distribution of the confidence scores under the Gaussian, we
produce a lower bound on how much the expected confidence score of the predicted class can be
manipulated by a bounded perturbation to the input image. To do this, we adapt the Neyman-Pearson
lemma, the fundamental theorem that characterizes the worst-case behaviour of the classifier under
regular (binary) voting, to leverage the distributional information about the confidence scores. The
lower bound we obtain is monotonically decreasing with the `2-norm of the perturbation and can be
expressed as a linear combination of the Gaussian CDF at different points. This allows us to design
an efficient binary search based algorithm to compute the radius within which the expected score is
guaranteed to be above a given threshold. Our method endows smoothed classifiers with the new and
important capability of producing confidence scores.

We study two notions of measuring confidence: the average prediction score of a class, and the margin
by which the average prediction score of one class exceeds that of another. The average prediction
score is the expected value of the activations in the final softmax-layer of a neural network under
the smoothing distribution. A class is guaranteed to be the predicted class if its average prediction
score is greater than one half (since softmax values add up to one) or it maintains a positive margin
over all the other classes. For both these measures, along with the bounds described in the previous
paragraph, we also derive naive lower bounds on the expected score at a perturbed input point that do
not use the distribution of the scores. We perform experiments on CIFAR-10 and ImageNet datasets
which show that using information about the distribution of the scores allows us to achieve better
certified guarantees than the naive method.

Related work: Randomized smoothing as a technique to design certifiably robust machine learning
models has been studied amply in recent years. It has been used to produce certified robustness
against additive threat models, such as, `1 [22, 38], `2 [7, 29, 27] and `0-norm [23, 26] bounded
adversaries, as well as non-additive threat models, such as, Wasserstein Adversarial attacks [24].
A derandomized version has been shown to provide robustness guarantees for patch attacks [25].
Smoothed classifiers that use the average confidence scores have been studied in [34] to achieve better
certified robustness through adversarial training. A recent work uses the median score to generated
certified robustness for regression models [43]. Various limitations of randomized smoothing, like its
inapplicability to high-dimensional problems for `∞-robustness, have been studied in [19, 42, 2].

2 Background and Notation

Gaussian smoothing, introduced by Cohen et al. in 2019, relies on a “base classifier,” which is a
mapping f : Rd → Y where Rd is the input space and Y is a set of k classes. It defines a smoothed
classifier f̄ as

f̄(x) = argmax
c∈Y

P(f(x+ δ) = c)
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where δ ∼ N (0, σ2I) is sampled from an isometric Gaussian distribution with variance σ2. It returns
the class that is most likely to be sampled by the Gaussian distribution centered at point x. Let p1
and p2 be the probabilities of sampling the top two most likely classes. Then, f̄ is guaranteed to be
constant within an `2-ball of radius

R =
σ

2

(
Φ−1(p1)− Φ−1(p2)

)
where Φ−1 is the inverse CDF of the standard Gaussian distribution [7]. For a practical certification
algorithm, a lower bound p1 on p1 and an upper bound p2 = 1− p1 on p2, with probability 1− α for
a given α ∈ (0, 1), are obtained and the certified radius is given by R = σΦ−1(p1). This analysis is
tight for `2 perturbations; the bound is achieved by a worst-case classifier in which all the points in
the top-class are restricted to a half-space separated by a hyperplane orthogonal to the direction of
the perturbation.

In our discussion, we diverge from the standard notation described above, and assume that the base
classifier f maps points in Rd to a k-tuple of confidence scores. Thus, f : Rd → (a, b)k for some
a, b ∈ R and a < b1. We define the smoothed version of the classifier as

f̄(x) = E
δ∼N (0,σ2I)

[f(x+ δ)],

which is the expectation of the class scores under the Gaussian distribution centered at x. The final
prediction is made by taking an argmax of the expected scores. This definition has been studied
by Salman et al. in [34] to develop an attack against smoothed classifiers which when used in an
adversarial training setting helps boost the performance of conventional smoothing. The goal of this
work is to identify a radius around an image x within which the expected confidence score of the
predicted class i, i.e. f̄i(x) = E[fi(x+ δ)], remains above a given threshold c ∈ (a, b)2.

We measure confidence using two different notions. The first measure is the average prediction
score of a class as output by the final softmax layer. We denote the prediction score function with
h : Rd → (0, 1)k and define the average for class i as h̄i(x) = E[hi(x + δ)]. The second one is
the margin mi(x) = hi(x)−maxj 6=i hj(x) by which class i beats every other class in the softmax
prediction score. In section 4, we show that the expected margin m̄i(x) = E[mi(x + δ)] for the
predicted class is a lower-bound on the gap in average prediction scores of the top two class labels.
Thus, m̄i(x) > 0 implies that i is the predicted class.

3 Certifying Confidence Scores

Standard Gaussian smoothing for establishing certified class labels essentially works by averaging
binary (0/1) votes from every image in a Gaussian cloud around the input image, x. It then establishes
the worst-case class boundary given the recorded vote, and produces a certificate. The same machinery
can be applied to produce a naive certificate for confidence score; rather than averaging binary votes,
we simply average scores. We then produce the worst-case class distribution, in which each class
lives in a separate half-space, and generate a certificate for this worst case.

However, the naive certificate described above throws away a lot of information. When continuous-
values scores are recorded, we obtain not only the average score, but also the distribution of scores
around the input point. By using this distributional information, we can potentially create a much
stronger certificate.

To see why, consider the extreme case of a “flat” classifier function for which every sample in the
Gaussian cloud around x returns the same top-class prediction score of 0.55. In this case, the average
score is 0.55 as well. For a function where the distribution of score votes is concentrated at 0.55
(or any other value great than 1/2), the average score will always remain at 0.55 for any perturbation
to x, thus yielding an infinite certified radius. However, when using the naive approach that throws
away the distribution, the worst-case class boundary with average vote 0.55 is one with confidence
score 1.0 everywhere in a half-space occupying 0.55 probability, and 0.0 in a half-space with 0.45
probability. This worst-case, which uses only the average vote, produces a very small certified radius,
in contrast to the infinite radius we could obtain from observing the distribution of votes.

1(a, b) denotes the open interval between a and b.
2fi(x) denotes the ith component of f(x)
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Below, we first provide a simple bound that produces a certificate by averaging scores around the
input image, and directly applying the framework from [7]. Then, we describe a more refined method
that uses distributional information to obtain stronger bounds.

3.1 A baseline method using Gaussian means

In this section, we describe a method that uses only the average confidence over the Gaussian
distribution surrounding x, and not the distribution of values, to bound how much the expected score
can change when x is perturbed with an `2 radius of R units. This is a straightforward extension
of Cohen et al.’s [7] work to our framework. It shows that regardless the behaviour of the base
classifier f , its smoothed version f̄ changes slowly which is similar to the observation of bounded
Lipschitz-ness made by Salman et al. in [34] (Lemma 2). The worst-case classifier in this case
assumes value a in one half space and b in other, with a linear boundary between the two as illustrated
in figure 1a. The following theorem formally states the bounds, the proof of which is deferred to the
appendix3.

Theorem 1. Let ei(x) and ei(x) be a lower-bound and an upper-bound respectively on the expected

score f̄i(x) for class i and, let pi(x) =
ei(x)−a
b−a and pi(x) = ei(x)−a

b−a . Then, for a perturbation x′ of
the input x, such that, ‖x′ − x‖2 ≤ R,

f̄i(x
′) ≥ bΦσ(Φ−1σ (pi(x))−R) + a(1− Φσ(Φ−1σ (pi(x))−R)) (1)

and
f̄i(x

′) ≤ bΦσ(Φ−1σ (pi(x)) +R) + a(1− Φσ(Φ−1σ (pi(x)) +R))

where Φσ is the CDF of the univariate Gaussian distribution with σ2 variance, i.e., N (0, σ2).

3.2 Proposed certificate

The bounds in section 3.1 are a simple application of the Neyman-Pearson lemma to our framework.
But this method discards a lot of information about how the class scores are distributed in the Gaussian
around the input point. Rather than consolidating the confidence scores from the samples into an
expectation, we propose a method that uses the cumulative distribution function of the confidence
scores to obtain improved bounds on the expected class scores.

Given an input x, we draw m samples from the Gaussian distribution around x. We use the prediction
of the base classifier f on these points to generate bounds on the distribution function of the scores
for the predicted class. These bounds, in turn, allow us to bound the amount by which the expected
score of the class will decrease under an `2 perturbation. Finally, we apply binary search to compute
the radius for which this lower bound on the expected score remains above c.

Consider the sampling of scores around an image x using a Gaussian distribution. Let the probability
with which the score of class i is above s be

pi,s(x) = P
δ∼N (0,σ2I)

(fi(x+ δ) ≥ s).

For point x and class i, consider the random variable Z = −fi(x + δ) where δ ∼ N (0, σ2I). Let
F (s) = P(Z ≤ s) be the cumulative distribution function of Z and Fm(s) = 1

m

∑m
j=1 1{Zj ≤ s}

be its empirical estimate. For a given α ∈ (0, 1), the Dvoretzky–Kiefer–Wolfowitz inequality [10]
says that, with probability 1− α, the true CDF is bounded by the empirical CDF as follows:

Fm(s)− ε ≤ F (s) ≤ Fm(s) + ε, ∀s,

where ε =
√

ln 2/α
2m . Thus, pi,s(x) is also bounded within±ε of its empirical estimate

∑m
j=1 1{fi(x+

δj) ≥ s}.
The following theorem bounds the expected class score under an `2 perturbation using bounds on the
cumulative distribution of the scores.

3A separate proof, using Lemma 2 from Salman et al. in [34], for this theorem for σ = 1 is also included in
the appendix.

4



(a) Naive classifier (b) CDF-based classifier

Figure 1: Worst case classifier behaviour using (a) naive approach and (b) CDF-based method. As
the center of the distribution moves from x to x′, the probability mass of the higher values of the
score function (indicated in red) decreases and that of the lower values (indicated in blue) increases,
bringing down the value of the expected score.

Theorem 2. Let, for class i, a < s1 ≤ s2 ≤ · · · ≤ sn < b be n real numbers and let
pi,sj (x) and pi,sj (x) be upper and lower bounds on pi,sj (x) respectively derived using the Dvoret-
zky–Kiefer–Wolfowitz inequality, with probability 1 − α, for a given α ∈ (0, 1). Then, for a
perturbation x′ of the input x, such that, ‖x′ − x‖2 ≤ R,

f̄i(x
′) ≥ a+ (s1 − a)Φσ(Φ−1σ (pi,s1(x))−R) +

n∑
j=2

(sj − sj−1)Φσ(Φ−1σ (pi,sj (x))−R) (2)

and

f̄i(x
′) ≤ s1 + (b− sn)Φσ(Φ−1σ (pi,sn(x)) +R) +

n−1∑
j=1

(sj+1 − sj)Φσ(Φ−1σ (pi,sj (x)) +R)

where Φσ is the CDF of the univariate Gaussian distribution with σ2 variance, i.e., N (0, σ2).

The above bounds are tight for `2 perturbations. The worst-case classifier for the lower bound is
one in which the class score decreases from b to a in steps, taking values sn, sn−1, . . . , s1 at each
level. Figure 1b illustrates this case for three intermediate levels. A similar worst-case scenario can
be constructed for the upper bound as well where the class score increases from a to b along the
direction of the perturbation. Even though our theoretical results allow us to derive both upper and
lower bounds for the expected scores, we restrict ourselves to the lower bound in our experimental
results. We provide a proof sketch for this theorem in section 3.3. Our experimental results show that
the CDF-based approach beats the naive bounds in practice by a significant margin, showing that
having more information about the classifier at the input point can help achieve better guarantees.

Computing the certified radius Both the bounds in theorem 2 monotonic in R. So, in order to
find a certified radius, up to a precision τ , such that the lower (upper) bound is above (below) a
certain threshold we can apply binary search which will require at most O(log(1/τ)) evaluations of
the bound.

3.3 Proof of Theorem 2

We present a brief proof for theorem 2. We use a slightly modified version of the Neyman-Pearson
lemma (stated in [7]) which we prove in the appendix.
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Lemma 3 (Neyman & Pearson, 1933). Let X and Y be random variables in Rd with densities µX
and µY . Let h : Rd → (a, b) be a function. Then:

1. If S =
{
z ∈ Rd | µY (z)

µX(z) ≤ t
}

for some t > 0 and P(h(X) ≥ s) ≥ P(X ∈ S), then

P(h(Y ) ≥ s) ≥ P(Y ∈ S).

2. If S =
{
z ∈ Rd | µY (z)

µX(z) ≥ t
}

for some t > 0 and P(h(X) ≥ s) ≤ P(X ∈ S), then

P(h(Y ) ≥ s) ≤ P(Y ∈ S).

SetX to be the smoothing distribution at an input point x and Y to be that at x+ε for some perturbation
vector ε. For a class i, define sets Si,j = {z ∈ Rd | µY (z)/µX(z) ≤ ti,j} for some ti,j > 0, such
that, P(X ∈ Si,j) = pi,sj (x). Similarly, define sets Si,j = {z ∈ Rd | µY (z)/µX(z) ≥ t′i,j} for

some t′i,j > 0, such that, P(X ∈ Si,j) = pi,sj (x). Since, P(fi(X) ≥ sj) ≥ P(X ∈ Si,j), using
lemma 3 we can say that P(fi(Y ) ≥ si) ≥ P(Y ∈ Si,j). Therefore,

E[fi(Y )] ≥ snP(fi(Y ) ≥ sn) + sn−1(P(fi(Y ) ≥ sn−1)− P(fi(Y ) ≥ sn))

+ · · ·+ s1(P(fi(Y ) ≥ s1)− P(fi(Y ) ≥ s2)) + a(1− P(fi(Y ) ≥ s1))

= a+ (s1 − a)P(fi(Y ) ≥ s1) +

n∑
j=2

(sj − sj−1)P(fi(Y ) ≥ sj)

≥ a+ (s1 − a)P(Y ∈ Si,1) +

n∑
j=2

(sj − sj−1)P(Y ∈ Si,j).

Similarly, P(fi(X) ≥ sj) ≤ P(X ∈ Si,j) implies P(fi(Y ) ≥ sj) ≤ P(Y ∈ Si,j) as per lemma 3.
Therefore,

E[fi(Y )] ≤ bP(fi(Y ) ≥ sn) + sn(P(fi(Y ) ≥ sn−1)− P(fi(Y ) ≥ sn))

+ · · ·+ s1(1− P(fi(Y ) ≥ s1))

= (b− sn)P(fi(Y ) ≥ sn) +
n−1∑
j=1

(sj+1 − sj)P(fi(Y ) ≥ sj) + s1

≤ s1 + (b− sn)P(Y ∈ Si,n) +

n−1∑
j=1

(sj+1 − sj)P(Y ∈ Si,j).

Since, we are smoothing using an isometric Gaussian distribution with σ2 variance, µX = N (x, σ2I)
and µY = N (x+ ε, σ2I). Then, for some t and β

µY (z)

µY (z)
≤ t ⇐⇒ εT z ≤ β

µY (z)

µY (z)
≥ t ⇐⇒ εT z ≥ β.

Thus, each of the sets Si,j and Si,j is a half space defined by a hyper-plane orthogonal to the
direction of the perturbation. This simplifies our analysis to one dimension, namely, the one along
the perturbation. For each of the sets Si,j and Si,j , we can find a point on the real number line
Φ−1σ (pi,sj (x)) and Φ−1σ (pi,sj (x)) respectively such that the probability of a Gaussian sample to fall
in that set is equal to the Gaussian CDF at that point. Therefore,

f̄i(x+ ε) ≥ a+ (s1 − a)Φσ(Φ−1σ (pi,s1(x))−R) +
n∑
j=2

(sj − sj−1)Φσ(Φ−1σ (pi,sj (x))−R)

and

f̄i(x+ ε) ≤ s1 + (b− sn)Φσ(Φ−1σ (pi,sn(x)) +R) +
n−1∑
j=1

(sj+1 − sj)Φσ(Φ−1σ (pi,sj (x)) +R)
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which completes the proof of theorem 2. We would like to note here that although we use the Gaussian
distribution for smoothing, the modified Neyman-Pearson lemma does not make any assumptions
on the shape of the distributions which allows for this proof to be adapted for other smoothing
distributions as well.

4 Confidence measures

We study two notions of confidence: average prediction score of a class and the margin of average
prediction score between two classes. Usually, neural networks make their predictions by outputting
a prediction score for each class and then taking the argmax of the scores. Let h : Rd → (0, 1)k be
a classifier mapping input points to prediction scores between 0 and 1 for each class. We assume
that the scores are generated by a softmax-like layer, i.e., 0 < hi(x) < 1, ∀i ∈ {1, . . . , k} and∑
i hi(x) = 1. For δ ∼ N (0, σ2I), we define average prediction score for a class i as

h̄i(x) = E[hi(x+ δ)].

The final prediction for the smoothed classifier is made by taking an argmax over the average
prediction scores of all the classes, i.e., argmaxi h̄i(x). Thus, if for a class j, h̄j(x) ≥ 0.5, then
j = argmaxi h̄i(x).

Now, we define margin m at point x for a class i as
mi(x) = hi(x)−max

j 6=i
hj(x).

Thus, if i is the class with the highest prediction score, mi(x) is the lead it has over the second highest
class (figure 2). And, for any other class mi(x) is the negative of the difference of the scores of that
class with the highest class. We define average margin at point x under smoothing distribution P as

m̄i(x) = E[mi(x+ δ)].

Figure 2: Margin

For a pair of classes i and j, we have,
h̄i(x)− h̄j(x) = E[hi(x+ δ)]− E[hj(x+ δ)]

= E[hi(x+ δ)− hj(x+ δ)]

≥ E[hi(x+ δ)−max
j 6=i

hj(x+ δ)]

= E[mi(x+ δ)] = m̄i(x)

h̄i(x) ≥ h̄j(x) + m̄i(x).

Thus, if m̄i(x) > 0, then class i must have the highest average predic-
tion score making it the predicted class under this notion of confidence
measure.

5 Experiments

We conduct several experiments to motivate the use of certified confidence, and to validate the
effectiveness of our proposed CDF-based certificate.

5.1 Does certified radius correlate with confidence score?

A classifier can fail because of an adversarial attack, or because of epistemic uncertainty – a class label
may be uncertain or wrong because of lack of useful features, or because the model was not trained
on sufficient representative data. The use of certified confidence is motivated by the observation that
the original Gaussian averaging, which certifies the security of class labels, does not convey whether
the user should be confident in the label because it neglects epistemic uncertainty. We demonstrate
this with a simple experiment. In figure 3, we show plots of softmax prediction score vs. certified
radius obtained using smoothed ResNet-110 and ResNet-50 classifiers trained by Cohen et al. in [7]
for CIFAR-10 and ImageNet respectively. The noise level σ used for this experiment was 0.25. For
both models, the certified radii correlate very little with the prediction scores for the input images.
The CIFAR-10 plot has points with high scores but small radii. While, for ImageNet, we see a lot of
points with low scores but high radii. This motivates the need for certifying confidence; high radius
does not imply high confidence of the underlying classifier. This lack of correlation is visualized in
figure 4.
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Radius< 0.2, Confidence Score> 0.7 Radius> 0.5, Confidence Score< 0.4

ImageNet:


radius < 0.4 & conf > 0.6                                                 radius > 0.9 & conf < 0.1


CIFAR-10:


radius < 0.2 & conf > 0.7                                              radius > 0.5 & conf < 0.4


CIFAR-10

Radius< 0.4, Confidence Score> 0.6 Radius> 0.9, Confidence Score< 0.1

ImageNet:


radius < 0.4 & conf > 0.6                                                 radius > 0.9 & conf < 0.1


CIFAR-10:


radius < 0.2 & conf > 0.7                                              radius > 0.5 & conf < 0.4


ImageNet

Figure 4: Certified radius does not correlate well with human visual confidence or network confidence
score. Low radius images on the left have high confidence scores, while the high radius images on
the right all have low confidence scores. There is not a pronounced visual difference between low-
and high-radius images.

Figure 3: Prediction Score vs.
Certified Radius.

In the plots, CIFAR-10 images tend to have a higher prediction score
than ImageNet images which is potentially due to the fact that the
ImageNet dataset has a lot more classes than the CIFAR-10 dataset,
driving the softmax scores down. There is a hard limit (∼ 0.95 for
ImageNet) on the largest radius that can be generated by Cohen
et al.’s certifying algorithm which causes a lot of the ImageNet
points to accumulate at this radius value. This limit comes from the
fact that even if all the samples around an input image vote for the
same class, the lower-bound on the top-class probability is strictly
less than one, which keeps the certified radius within a finite value.

5.2 Evaluating the strength of bounds

We use the ResNet-110 and ResNet-50 models trained by Cohen
et al. in [7] on CIFAR-10 and ImageNet datasets respectively to
generate confidence certificates. These models have been pre-trained
with varying Gaussian noise level σ in the training data. We use the
same σ for certifying confidences as well. We use the same number
of samples m = 100, 000 and value of α = 0.001 as in [7]. We set
s1, s2. . . . , sn in theorem 2 such that the number of confidence score
values falling in each of the intervals (a, s1), (s1, s2), . . . , (sn, b) is
the same. We sort the scores from the m samples in increasing order
and set si to be the element at position 1 + (i − 1)m/n in the order. We chose this method of
splitting the range (a, b), instead of at regular steps, to keep the intervals well-balanced. We present
results for both notions of confidence measure: average prediction score and margin. Figure 5 plots
certified accuracy, using the naive bound and the CDF-based method, for different threshold values
for the top-class average prediction score and the margin at various radii for σ = 0.25. The same
experiments for σ = 0.50 have been included in the appendix.

Each line is for a given threshold for the confidence score. The solid lines represent certificates
derived using the CDF bound and the dashed lines are for ones using the naive bound. For the
baseline certificate (1), we use Hoeffding’s inequality to get a lower-bound on the expected top-class
confidence score ei(x), that holds with probability 1− α, for a given α ∈ (0, 1).

ei(x) =
1

m

m∑
j=1

fi(x+ δj)− (b− a)

√
ln(1/α)

2m

This bound is a reasonable choice because pi(x) differs from the empirical estimate by the same
amount

√
ln(1/α)/2m as pi,s(x) in the proposed CDF-based certificate. In the appendix, we also

show that the baseline certificate, even with the best-possible lower-bound for ei(x), cannot beat our
method for most cases.

We see a significant improvement in certified accuracy (e.g. at radius = 0.25) when certification is
done using the CDF method instead of the naive bound. The confidence measure based on the margin
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between average prediction scores yields slightly better certified accuracy when thresholded at zero
than the other measure.

(a) Average Prediction Score (CIFAR-10) (b) Margin (CIFAR-10)

(c) Average Prediction Score (ImageNet) (d) Margin (ImageNet)

Figure 5: Certified accuracy vs. radius (CIFAR-10 & ImageNet) at different cutoffs for average
confidence score with σ = 0.25. Solid and dashed lines represent certificates computed with and
without CDF bound respectively.

6 Conclusion

While standard certificates can guarantee that a decision is secure, they contain little information
about how confident the user should be in the assigned label. We present a method that certifies the
confidence scores, rather than the labels, of images. By leveraging information about the distribution
of confidence scores around an input image, we produce certificates that beat a naive bound based on
a direct application of the Neyman-Pearson lemma. The results in this work show that certificates can
be strengthened by incorporating more information into the worst-case bound than just the average
vote. We hope this line of research leads to methods for strengthening smoothing certificates based on
other information sources, such as properties of the base classifier or the spatial distribution of votes.

7 Broader Impact

We design procedures that equip randomized smoothing with certified prediction confidence, an
important property for any real-world decision-making system to have. In applications where
robustness is key, like credit scoring and disease diagnosis systems, it is important to know how
certain the prediction model is about the output, so that a human expert can take over if the model’s
confidence is low.

However, this method does not produce any guarantees on the calibration of the underlying model
itself. It could happen that the confidence measure used to determine the degree of certainty of
the model does not actually reflect the probability of the prediction being correct. In other words,
our methods depends on the underlying classifier to have high accuracy to perform reliably. With
certificates, there is always a risk of conveying a false sense of confidence, but hopefully by producing
interpretable risk scores along with certificates our work will help mitigate this problem.

9



8 Acknowledgments

We would like to thank anonymous reviewers for their valuable comments and suggestions. This
work was supported by DARPA GARD, DARPA QED4RML, and the National Science Foundation
Directorate of Mathematical Sciences. This project was supported in part by NSF CAREER AWARD
1942230, grants from NIST 303457-00001, HR001119S0026 and Simons Fellowship on “Foundations
of Deep Learning.”

References
[1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of

security: Circumventing defenses to adversarial examples. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 274–283, Stockholmsmässan, Stockholm
Sweden, 10–15 Jul 2018. PMLR.

[2] Avrim Blum, Travis Dick, Naren Manoj, and Hongyang Zhang. Random smoothing might be
unable to certify `∞ robustness for high-dimensional images, 2020.

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Zieba. End to end learning for self-driving cars, 2016.

[4] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian J. Goodfellow. Thermometer encoding:
One hot way to resist adversarial examples. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

[5] Nicholas Carlini and David A. Wagner. Adversarial examples are not easily detected: Bypassing
ten detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, AISec@CCS 2017, Dallas, TX, USA, November 3, 2017, pages 3–14, 2017.

[6] Ping-yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen Zhu, Christoph Studer, and Tom
Goldstein. Certified defenses for adversarial patches. In 8th International Conference on
Learning Representations, 2020.

[7] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 1310–1320, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[8] Guneet S. Dhillon, Kamyar Azizzadenesheli, Zachary C. Lipton, Jeremy Bernstein, Jean
Kossaifi, Aran Khanna, and Animashree Anandkumar. Stochastic activation pruning for robust
adversarial defense. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[9] Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan
O’Donoghue, Jonathan Uesato, and Pushmeet Kohli. Training verified learners with learned
verifiers, 2018.

[10] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample
distribution function and of the classical multinomial estimator. Ann. Math. Statist., 27(3):
642–669, 09 1956. doi: 10.1214/aoms/1177728174. URL https://doi.org/10.1214/
aoms/1177728174.

[11] Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Adversarial and clean data are not twins. CoRR,
abs/1704.04960, 2017.

[12] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. In 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

10

https://doi.org/10.1214/aoms/1177728174
https://doi.org/10.1214/aoms/1177728174


[13] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of
interval bound propagation for training verifiably robust models, 2018.

[14] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick D. Mc-
Daniel. On the (statistical) detection of adversarial examples. CoRR, abs/1702.06280, 2017.

[15] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1321–1330. JMLR. org, 2017.

[16] Chuan Guo, Mayank Rana, Moustapha Cissé, and Laurens van der Maaten. Countering
adversarial images using input transformations. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

[17] Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris Dyer, Dani Yogatama, Sven Gowal,
Krishnamurthy Dvijotham, and Pushmeet Kohli. Achieving verified robustness to symbol
substitutions via interval bound propagation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7,
2019, pages 4081–4091, 2019. doi: 10.18653/v1/D19-1419. URL https://doi.org/10.
18653/v1/D19-1419.

[18] Xiaoqian Jiang, Melanie Osl, Jihoon Kim, and Lucila Ohno-Machado. Calibrating predictive
model estimates to support personalized medicine. Journal of the American Medical Informatics
Association, 19(2):263–274, 10 2011. ISSN 1067-5027. doi: 10.1136/amiajnl-2011-000291.
URL https://doi.org/10.1136/amiajnl-2011-000291.

[19] Aounon Kumar, Alexander Levine, Tom Goldstein, and Soheil Feizi. Curse of dimensionality
on randomized smoothing for certifiable robustness. CoRR, abs/2002.03239, 2020. URL
https://arxiv.org/abs/2002.03239.

[20] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=BJm4T4Kgx.

[21] Cassidy Laidlaw and Soheil Feizi. Functional adversarial attacks. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Van-
couver, BC, Canada, pages 10408–10418, 2019. URL http://papers.nips.cc/paper/
9228-functional-adversarial-attacks.

[22] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. In 2019 IEEE Symposium on
Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 656–672,
2019.

[23] Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi S. Jaakkola. Tight certificates of
adversarial robustness for randomly smoothed classifiers. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 4911–4922, 2019.

[24] Alexander Levine and Soheil Feizi. Wasserstein smoothing: Certified robustness against
wasserstein adversarial attacks, 2019.

[25] Alexander Levine and Soheil Feizi. (de)randomized smoothing for certifiable defense against
patch attacks. CoRR, abs/2002.10733, 2020. URL https://arxiv.org/abs/2002.10733.

11

https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.18653/v1/D19-1419
https://doi.org/10.1136/amiajnl-2011-000291
https://arxiv.org/abs/2002.03239
https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=BJm4T4Kgx
http://papers.nips.cc/paper/9228-functional-adversarial-attacks
http://papers.nips.cc/paper/9228-functional-adversarial-attacks
https://arxiv.org/abs/2002.10733


[26] Alexander Levine and Soheil Feizi. Robustness certificates for sparse adversarial attacks by
randomized ablation. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages 4585–4593. AAAI Press, 2020. URL
https://aaai.org/ojs/index.php/AAAI/article/view/5888.

[27] Alexander Levine, Aounon Kumar, Thomas Goldstein, and Soheil Feizi. Tight second-order
certificates for randomized smoothing, 2020.

[28] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial robustness
with additive noise. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada, pages 9459–9469, 2019.

[29] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Second-order adversarial attack
and certifiable robustness, 2019. URL https://openreview.net/forum?id=SyxaYsAqY7.

[30] Xin Li and Fuxin Li. Adversarial examples detection in deep networks with convolutional filter
statistics. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017, pages 5775–5783, 2017.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings, 2018.

[32] Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for
provably robust neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3578–3586. PMLR, 10–15 Jul 2018. URL http://proceedings.
mlr.press/v80/mirman18b.html.

[33] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 10900–10910, Red Hook, NY, USA,
2018. Curran Associates Inc.

[34] Hadi Salman, Jerry Li, Ilya P. Razenshteyn, Pengchuan Zhang, Huan Zhang, Sébastien Bubeck,
and Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers.
In Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC,
Canada, pages 11289–11300, 2019.

[35] Sahil Singla and Soheil Feizi. Robustness certificates against adversarial examples for relu
networks. CoRR, abs/1902.01235, 2019.

[36] Sahil Singla and Soheil Feizi. Second-order provable defenses against adversarial attacks, 2020.

[37] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

[38] Jiaye Teng, Guang-He Lee, and Yang Yuan. `1 adversarial robustness certificates: a randomized
smoothing approach, 2020. URL https://openreview.net/forum?id=H1lQIgrFDS.

[39] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks
to adversarial example defenses, 2020.

[40] Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aäron van den Oord. Adversarial
risk and the dangers of evaluating against weak attacks. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, pages 5032–5041, 2018.

12

https://aaai.org/ojs/index.php/AAAI/article/view/5888
https://openreview.net/forum?id=SyxaYsAqY7
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
https://openreview.net/forum?id=H1lQIgrFDS


[41] Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 5283–
5292, 2018.

[42] Greg Yang, Tony Duan, J. Edward Hu, Hadi Salman, Ilya Razenshteyn, and Jerry Li. Random-
ized smoothing of all shapes and sizes, 2020.

[43] Ping yeh Chiang, Michael J. Curry, Ahmed Abdelkader, Aounon Kumar, John Dickerson, and
Tom Goldstein. Detection as regression: Certified object detection by median smoothing, 2020.

13


	Introduction
	Background and Notation
	Certifying Confidence Scores
	A baseline method using Gaussian means
	Proposed certificate
	Proof of Theorem 2

	Confidence measures
	Experiments
	Does certified radius correlate with confidence score?
	Evaluating the strength of bounds

	Conclusion
	Broader Impact
	Acknowledgments

