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Abstract

Adversarial training is a popular defense strategy against attack threat models
with bounded Lp norms. However, it often degrades the model performance on
normal images and more importantly, the defense does not generalize well to
novel attacks. Given the success of deep generative models such as GANs and
VAEs in characterizing (approximately) the underlying manifold of images, we
investigate whether or not the aforementioned deficiencies of adversarial training
can be remedied by exploiting the underlying manifold information. To partially
answer this question, we consider the scenario when the manifold information of
the underlying data is available. We use a subset of ImageNet natural images where
an approximate underlying manifold is learned using StyleGAN. We also construct
an “On-Manifold ImageNet” (OM-ImageNet) dataset by projecting the ImageNet
samples onto the learned manifold. For this dataset, the underlying manifold
information is exact. Using OM-ImageNet, we first show that adversarial training
in the latent space of images (i.e. on-manifold adversarial training) improves both
standard accuracy and robustness to on-manifold attacks. However, since no out-
of-manifold perturbations are realized, the defense can be broken by Lp adversarial
attacks. We further propose Dual Manifold Adversarial Training (DMAT) where
adversarial perturbations in both latent and image spaces are used in robustifying
the model. Our DMAT improves performance on normal images, and achieves
comparable robustness to the standard adversarial training against Lp attacks. In
addition, we observe that models defended by DMAT achieve improved robustness
against novel attacks which manipulate images by global color shifts or various
types of image filtering. Interestingly, similar improvements are also achieved
when the defended models are tested on (out-of-manifold) natural images. These
results demonstrate the potential benefits of using manifold information (exactly or
approximately) in enhancing robustness of deep learning models against various
types of novel adversarial attacks. Codes and models will be available in this link.

1 Introduction

Deep neural networks have achieved impressive success in several fields including computer vision,
speech, and robot control [1, 2, 3]. However, they are vulnerable against adversarial attacks [4, 5, 6, 7,
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Figure 1: The overall pipeline of the proposed Dual Manifold Adversarial Training (DMAT). In this
paper, we consider the scenario when the information about the image manifold is available. This is
achieved by projecting natural images x onto the range space of a trained generative model G. We
empirically show that either standard adversarial training or on-manifold adversarial training alone
does not provide sufficient robustness, while DMAT achieves improved robustness against unseen
attacks. During test time, images are directly passed to the adversarially trained classifier.

8, 9] which add, often imperceptible, manipulations to inputs to mislead the model. Sensitivity against
adversarial attacks poses a huge challenge in security-critical applications where these networks are
used. To improve the robustness of deep neural networks against different adversarial threat models,
several empirical and certifiable defense methods have been proposed in the past few years including
empirical defenses [10, 11, 12, 13], certifiable defenses [14, 15, 16, 17, 18, 19] and defences that
detect and reject adversarial examples [20, 21, 22].

Among all of these defenses, Adversarial training (AT) [23], which augments the training data
with adversarial examples, is perhaps the most standard one. Most existing AT methods consider
adversarial distortions within a small Lp ball, and demonstrate robustness to the same type of
distortion. However, robustness to Lp distortions often comes with the cost of reduced standard
accuracy [24]. Moreover, models trained solely on Lp attacks are shown to generalize poorly to
unforeseen attacks and are vulnerable to imperceptible color shifts [25], image filtering [26], and
adversarial examples on the data manifold [27, 28]. Being robust against unseen attacks is critical in
practice since adversaries will not follow a particular attack threat model.

Existing defenses consider properties of the trained classifier while ignoring the particular structure of
the underlying image distribution. Recent advances in GANs and VAEs [29, 30, 31] are shown to be
successful in characterizing the underlying image manifold3. This motivates us to study whether or
not leveraging the underlying manifold information can boost robustness of the model, in particular
against unseen and novel adversarial attacks. Our key intuition is that, in many cases, the latent space
of GANs and VAEs represent compressed semantic-level features of images. Thus, robustifying in
the latent space may guide the classification model to use robust features instead of achieving high
accuracy by exploiting non-robust features in the image space [32].

In this paper, we attempt to answer this question by considering the scenario when the manifold
information of the underlying data is available. First, we construct an “On-Manifold ImageNet”
(OM-ImageNet) dataset where all the samples lie exactly on a low-dimensional manifold. This is
achieved by first training a StyleGAN on a subset of ImageNet natural images, and then projecting
the samples onto the learned manifold. With this dataset, we show that an on-manifold adversarial
training (i.e. adversarial training in the latent space) could not defend against standard off-manifold
attacks and vice versa. This motivates us to propose Dual Manifold Adversarial Training (DMAT),
which mixes both off-manifold and on-manifold AT (see Figure 1). AT in the image space (i.e.

3We use the term “manifold” to refer to the existence of lower-dimensional representations for natural images.
This is a commonly used term in the generative model area. However, this definition may not satisfy the exact
condition of manifolds defined in mathematics.
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off-manifold AT) helps improve the robustness of the model against Lp attacks while AT in the latent
space (i.e. on-manifold AT) boosts the robustness of the model against unseen non-Lp attacks.

Over the OM-ImageNet, we empirically show that DMAT leads to comparable robustness with
standard AT against L∞ attacks. Moreover, DMAT significantly outperforms standard AT against
novel Lp and non-Lp attacks. For example, for unseen L2 and Fog attacks, DMAT improves the
accuracy by 10% compared to standard adversarial training. Interestingly, similar improvements are
also achieved when the defended models are evaluated on (out-of-manifold) natural images. These
results shed some light on the use of the underlying manifold information of images to enhance the
intrinsic robustness of the models, specially against novel adversarial attacks.

2 Preliminaries

Setup. We consider the classification task where the image samples x ∈ X := RH×W×C are drawn
from an underlying distribution PX . Let fθ be a parameterized model which maps any image in X to
a discrete label y in Y := {1, · · · , |Y|}. An accurate classifier maps an image x to its corresponding
true label ytrue, i.e. fθ(x) = ytrue. Without loss of generality, we assume PX is supported on a
lower-dimensional manifoldM and can be approximated by PG(Z) where G(·) is a generative model
and Z is distributed according to the normal distribution. Informally, we refer to the support of G(Z)
as the approximate image manifold M̄ forM. We say the manifold information is exact, when there
exists a generative model G such thatM = M̄.

Standard adversarial robustness. We say xadv is an adversarial example of the input image x if
fθ(x) = ytrue, fθ(xadv) 6= ytrue, and the difference between xadv and x are imperceptible4. Most
existing works consider Lp additive attacks where xadv = x+ δ subject to ‖δ‖p < ε. Formally,

max
δ∈∆
L(fθ(x+ δ), ytrue), (1)

where ∆ = {δ : ‖δ‖p < ε} and L is a classification loss function (e.g. the cross-entropy loss). In
this paper, we focus on p =∞, and will explicitly specify the type of norm when p 6=∞ is used. In
(1), since the function is non-convex, the maximization is typically performed using gradient-based
optimization methods. The Fast Gradient Sign Method (FGSM) [5] is an L∞ attack which uses the
sign of the gradient to craft adversarial examples:

δ = ε · sign (∇xL(fθ(x), ytrue)) . (2)

The Projected Gradient Descent (PGD) [23] attack is an iterative version of FGSM, which applies
K steps of gradient descent. In the rest of the paper, we will use the notation PGD-K to represent
K-step PGD attacks with bounded L∞ norm.

To defend against norm-bounded attacks, an established approach by Madry et al. [23] considers the
following min-max formulation:

min
θ

∑
i

max
δ∈∆
L(fθ(xi + δ), ytrue), (3)

where the classification model fθ is trained exclusively on adversarial images by minimizing the
cross-entropy loss. This approach is called adversarial training (AT). Notice that when the manifold
information is exact, we have xi = G(zi) for some zi. Thus, the standard adversarial training can be
expressed as:

min
θ

∑
i

max
δ∈∆
L(fθ(G(zi) + δ), ytrue). (4)

On-manifold adversarial robustness. The concept of on-manifold adversarial examples has been
proposed in prior works [33, 27, 34]. For any image xi ∈M, we can find the corresponding sample
G(zi) on M̄ which best approximate xi, where zi = arg minz‖G(z)− xi‖2. Adversarial examples
that lie on the manifold can then be crafted by manipulating the latent representation zi.

max
λ∈Λ
L(fθ(G(zi + λ)), ytrue), (5)

where Λ = {λ : ‖λ‖∞ < η}. Similar to standard adversarial attacks in the image space, the
maximization in (5) can be performed by FGSM or PGD-K, which we denote as OM-FGSM

4There are some perceptible adversarial attacks such as patch attacks that we do not consider in this paper.
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and OM-PGD-K respectively. In [27], it has been shown that deep learning models trained by
standard AT (3) can be fooled by on-manifold adversarial examples. To defend against on-manifold
attacks, [34] considers a similar mini-max formulation in the latent space:

min
θ

∑
i

max
λ∈Λ
L(fθ(G(zi + λ)), ytrue). (6)

This approach is called the on-manifold adversarial training (OM-AT). In [34], on-manifold ad-
versarial training has been shown to improve generalization on datasets including EMNIST [35],
Fashion-MNIST [36], and CelebA [37]. In [33], the authors finetune an adversarially trained model
with on-manifold adversarial examples and demonstrate improved robustness on MNIST [38]. Results
from these works are restricted to artificial images where only limited textures are present. However,
it has been shown that the vulnerability of deep learning models actually results from the fact that the
models tend to exploit non-robust features in natural images in order to achieve high classification
accuracy [32]. Therefore, whether the manifold information can be used to enhance the robustness of
deep learning models trained on natural images is underexplored.

Notations. To precisely specify adversarial training procedures, in the rest of the paper, we will
add the attack threat model that an adversarial training algorithm uses. For example, “AT [PGD-5]”
refers to the standard adversarial training algorithm (4) with the PGD-5 (L∞) attack used during
training, and “OM-AT [OM-FGSM]” refers to the on-manifold adversarial training algorithm (6)
with OM-FGSM (L∞) as the attack method used during training.

3 On-Manifold ImageNet

One major difficulty of investigating the potential benefit of manifold information in general cases
is the inability to obtain such information exactly. For approximate manifolds, the effect of the
distribution shift betweenM and M̄ is difficult to quantify, leading to inconclusive evaluations. To
address the issue, we propose a novel dataset, called On-Manifold ImageNet (OM-ImageNet), which
consists of images that lie exactly on-manifold.

Our OM-ImageNet is build upon the Mixed-10 dataset introduced in the robustness library [39],
which consists of images from 10 superclasses of ImageNet. We manually select 69,480 image-label
pairs as Dotr = {(xi, yi)}Ni=1 and another disjoint 7,200 image-label pairs as Dote = {(xj , yj)}Mj=1,
both with balanced classes. We first train a StyleGAN [40] to characterize the underlying image
manifold ofDotr. Formally, the StyleGAN consists of a mapping function h : Z → W and a synthesis
network g̃ : W → X . The mapping function takes a latent code z and outputs a style code w in
an intermediate latent spaceW . Then, the synthesis network takes the style code and produces a
natural-looking image g̃(w). We follow [41] and consider the extended latent space of StyleGAN.
In [41], it has been shown that embedding images into the extended latent space is easier than Z or
W space. Therefore, in the following, we consider g : W+ → X as the generator function which
approximates the image manifold for Dotr.
In order to obtain images that are completely on-manifold, for each image xi in Dotr and Dote,
we project onto the learned manifold by solving for its latent representation wi [41]. We use a
weighted combination of the Learned Perceptual Image Patch Similarity (LPIPS) [42] and L1 loss
to measure the closeness between g(w) and xi. LPIPS is shown to be a more suitable measure for
perceptual similarity than conventional metrics, and its combination with L1 or L2 loss has been
shown successful for inferring the latent representation of GANs. We adopt this strategy and solve
for the latent representation by:

wi = arg min
w

LPIPS(g(w), xi) + ‖g(w)− xi‖1. (7)

In summary, the resulting on-manifold training and test sets can be represented by: Dtr =
{(wi, g(wi), xi, yi)}Ni=1, and Dte = {(wj , g(wj), xj , yj)}Mj=1, where N = 69, 480 and M = 7, 200.
The total number of categories is 10. Notice that for OM-ImageNet, the underlying manifold in-
formation is exact, which is given by {g(w), w ∈ W+}. Sample on-manifold images g(wi) from
OM-ImageNet are presented in Figure 2. On-manifold images in OM-ImageNet have diverse textures,
object sizes, lightening, and poses, which is suitable for investigating the potential benefits of using
manifold information in more general scenarios.
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Figure 2: Sample images from the OM-ImageNet dataset. Unlike MNIST-like [38, 35, 36] or
CelebA [37] datasets, images in OM-ImageNet have diverse textures. Moreover, the underlying
manifold information for this dataset is exact.

Figure 3: On-manifold adversarial training does not provide robustness to standard attacks. Standard
adversarial training does not provide robustness to on-manifold attacks. Left: standard accuracy.
Middle: classification accuracy when the trained models are attacked by PGD-50. Right: classification
accuracy when the trained models are attacked by OM-PGD-50.

4 On-Manifold AT Cannot Defend Standard Attacks and Vice Versa

One issue we would like to investigate first is whether the manifold information alone can improve
robustness. We use OM-ImageNet and train several ResNet-50 models to achieve standard L∞
robustness at a radius of ε = 4/255 (according to optimization (8)) or on-manifold robustness at a
radius of η = 0.02 in the latent space (according to optimization (9)).

min
θ

∑
i

max
δ
L(fθ(g(wi) + δ), ytrue), s.t. ‖δ‖∞ < ε. (8)

min
θ

∑
i

max
λ
L(fθ(g(wi + λ)), ytrue), s.t. ‖λ‖∞ < η. (9)

During training, we use the PGD-5 threat model in the image space for (8), whereas for (9) we
consider OM-FGSM and OM-PGD-5 as the threat models. For completeness, we also consider robust
training using TRADES (β = 6) [43] in the image space using the PGD-5 threat model. All the
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Table 1: Classification accuracy for PGD-50 and OM-PGD-50 attacks on OM-ImageNet test set.

Method Standard FGSM PGD-50 MIA Worst Case OM-PGD-50

Normal Training 74.72% 2.59% 0.00% 0.00% 0.00% 0.26%
AT [PGD-5] 73.31% 48.02% 38.88% 39.21% 38.80% 7.23%
OM-AT [OM-FGSM] 80.77% 17.15% 0.03% 0.01% 0.01% 20.19%
OM-AT [OM-PGD-5] 78.10% 21.68% 0.25% 0.12% 0.10% 27.53%
DMAT [PGD-5, OM-PGD-5] 77.96% 49.12% 37.86% 37.65% 36.66% 20.53%

models are trained by the SGD optimizer with the cyclic learning rate scheduling strategy in [44],
momentum 0.9, and weight decay 5× 10−4 for a maximum of 20 epochs.

We evaluate the trained models using the PGD-50 and OM-PGD-50 attacks for multiple snapshots
during training. The results are presented in Figure 3. We observe that (i) standard adversarial training
leads to degraded standard accuracy while on-manifold adversarial training improves it (consistent
with [24, 34]) and (ii) standard adversarial training does not provide robustness to on-manifold
attacks (consistent with [27]). Interestingly, we also observe that (iii) on-manifold adversarial
training does not provide robustness to L∞ attacks since no out-of-manifold samples are realized
during training, and (iv) standard adversarial training does not provide robustness to on-manifold
attacks.

5 Proposed Method: Dual Manifold Adversarial Training

The fact that standard adversarial training and on-manifold adversarial training bring complimentary
benefits to the model robustness motivates us to consider the following dual manifold adversarial
training (DMAT) framework:

min
θ

∑
i

{
max
δ∈∆
L(fθ(g(wi) + δ), ytrue) + max

λ∈Λ
L(fθ(g(wi + λ)), ytrue)

}
, (10)

where we are trying to solve for a classifier fθ that is robust to both off-manifold perturbations
(achieved by the first term) and on-manifold perturbations (achieved by the second term). The
perturbation budgets ∆ and Λ control the strengths of the threat models during training. For
evaluation purposes, we consider PGD-5 and OM-PGD-5 as the standard and on-manifold threat
models during training with the same perturbation budgets used by AT and OM-AT. To optimize (10),
in each iteration, both standard and on-manifold adversarial examples are generated for the classifier
fθ, and fθ is updated by the gradient descent method. The robust model is trained with the identical
optimizer setting as in Section 4.

5.1 DMAT Improves Generalization and Robustness

Table 1 presents classification accuracies for different adversarial training methods against standard
and on-manifold adversarial attacks. For standard adversarial attacks, we consider a set of adaptive
attacks: FGSM, PGD-50 and the Momentum Iterative Attack (MIA) [45]. We also report the per-
sample worst case accuracy, where each test sample will be viewed as mis-classified if one of the
attacks fools the classifier. For on-manifold adversarial attacks, we consider OM-PGD-50. Compared
to standard adversarial training, DMAT achieves improved generalization on normal samples, and
significant boost for on-manifold robustness, with a slightly degraded robustness against PGD-50
attack (with L∞ bound of 4/255). Compared to on-manifold adversarial training (OM-AT [OM-
FGSM] and OM-AT [OM-PGD-5]), since out-of-manifold samples are realized for DMAT, robustness
against the PGD-50 attack is also significantly improved.

In Figure 4, we visualize PGD-50 and OM-PGD-50 adversarial examples crafted for the trained
models. We can see that for the PGD-50 attack, stronger high-frequency perturbations (colored in
red) are crafted for models trained by standard adversarial training and DMAT. For the OM-PGD-50
attack, manipulations in semantic-related regions need to be stronger in order to mislead models
trained by on-manifold adversarial training and DMAT.

6



PG
D

-5
0

O
M

-P
G

D
-5

0

Original Image Normal
Training

AT
[PGD-5]

OM-AT
[OM-FGSM]

OM-AT
[OM-PGD-5]

DMAT

Figure 4: Examples of crafted adversarial examples with the corresponding difference images to
the original images using PGD-50 (top) and OM-PGD-50 (bottom) attacks for different robustified
models. Brighter colors indicate larger distortions. We can observe that the PGD-50 adversary causes
stronger perturbations for classifiers trained with AT and DMAT, and the OM-PGD-50 adversary
causes stronger perturbations for the classifier defended by DMAT. In these cases, the model trained
by DMAT is more robust and requires stronger distortions to break.

5.2 DMAT Improves Robustness to Unseen Attacks

After demonstrating the improved robustness on known attacks brought by DMAT, we investigate
whether DMAT improves robustness against novel attacks. We consider several perceptual attacks
proposed in [26] including Fog, Snow, Gabor, Elastic, JPEG, L2, and L1 attacks, which apply global
color shifts and image filtering to the normal images. Notice that we do not consider the extremely
high attack strengths as in [26] since we focus on untargeted attacks. Results presented in Table 2
demonstrate that compared to standard adversarial training, DMAT is more robust against these
attacks that are not seen during training. In Figure 5, we visualize the Fog, JPEG compression, and
Snow adversarial examples for the trained models. These novel adversaries need to cause stronger
distortions on DMAT than standard adversarial training and on-manifold adversarial training to
mislead the corresponding classifiers.

Table 2: Classification accuracy against unseen attacks applied to OM-ImageNet test set.

Method Fog Snow Elastic Gabor JPEG L2 L1

Normal Training 0.03% 0.06% 1.20% 0.03% 0.00% 1.70% 0.00%
AT [PGD-5] 19.76% 46.39% 50.32% 50.43% 10.23% 41.98% 21.21%
OM-AT [OM-FGSM] 11.12% 13.82% 34.07% 1.50% 0.26% 2.27% 8.59%
OM-AT [OM-PGD-5] 22.39% 28.38% 48.74% 5.19% 0.49% 5.92% 14.67%
DMAT [PGD-5, OM-PGD-5] (Ours) 31.78% 51.19% 56.09% 51.61% 14.31% 51.36% 29.68%

5.3 TRADES for DMAT

The proposed DMAT framework is general and can be extended to other adversarial training ap-
proaches such as TRADES [43]. TRADES is one of the state-of-the-art methods that achieves better
trade-off between standard accuracy and robustness compared to standard AT (3). We adopt TRADES
in DMAT by considering the following loss function:

min
θ

∑
i

L(fθ(xi), ytrue) +βmax
δ
L(fθ(xi), fθ(xi+ δ)) +βmax

λ
L(fθ(xi), fθ(g(wi+λ))), (11)
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Figure 5: Examples of crafted adversarial examples using the Fog attack (top row), the JPEG
compression attack (middle row) and the snow attack (bottom row) for different robustified models.
Brighter colors indicate larger absolute differences. We can observe that the classifier trained with
DMAT is more robust and needs stronger distortions to break.

where xi = g(wi). The first two terms in (11) are the original TRADES in the image space, and the
third term is the counterpart in the latent space. To solve for the two maximization problems in (11),
we use PGD-5 and OM-PGD-5 with the same parameter settings. Results are presented in Table 3.

Table 3: Classification accuracy against known (PGD-50 and OM-PGD-50) and unseen attacks
applied to OM-ImageNet test set. Even for TRADES, the benefit of using manifold information can
also be observed.

Method Standard PGD-50 OM-
PGD-50

Fog Snow Elastic Gabor JPEG L2

Normal Training 74.72% 0.00% 0.26% 0.03% 0.06% 1.20% 0.03% 0.00% 1.70%
TRADES 69.88% 46.06% 8.92% 18.14% 47.63% 53.32% 54.33% 14.06% 46.36%
DMAT + TRADES 73.17% 42.57% 26.82% 30.64% 46.62% 56.38% 53.43% 23.62% 55.09%

5.4 Evaluations on Out-of-Manifold (Natural) Samples

In previous sections, we have considered adversaries crafting adversarial perturbations and applying
them on samples in the On-Manifold ImageNet. However, we would also like to explore the scenario
when the given natural images are out-of-manifold. Specifically, we evaluate the trained models by
using {xj}Mj=1 as normal, and likely out-of-manifold images. Interestingly, from the results presented
in Table 4, we observe that all adversarial training methods generalize well for out-of-manifold
normal images, while normal training leads to degraded performance. Furthermore, consistent with
the findings in previous sections, DMAT leads to comparable robustness with standard adversarial
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training against PGD-50 attacks, and an improved robustness compared to standard adversarial
training against unseen attacks. These results demonstrate a promising direction of using manifold
information (exactly or approximately) to enhance the robustness of deep learning models.

Table 4: Generalization of the defended models to natural (out-of-manifold) images.

Method Standard PGD-50 Fog Snow Elastic Gabor JPEG L2 L1

Normal Training 67.21% 0.00% 0.38% 0.35% 0.69% 0.04% 0.00% 1.26% 0.01%
AT [PGD-5] 71.08% 37.32% 23.28% 45.88% 46.72% 46.17% 9.00% 39.72% 21.21%
OM-AT [OM-FGSM] 79.15% 0.19% 23.41% 24.00% 33.53% 2.53 % 0.41% 3.70% 8.59%
OM-AT [OM-PGD-5] 73.88% 0.35% 32.34% 36.66% 46.50% 7.25% 0.52% 8.38% 14.67%
DMAT (Ours) 74.72% 34.63% 36.25% 50.56% 54.14% 45.39% 13.29% 48.42% 29.68%

6 Conclusion

In this paper, we investigate whether information about the underlying manifold of natural images can
be leveraged to train deep learning models with improved robustness, in particular against unseen and
novel attacks. For this purpose, we create the OM-ImageNet dataset, which consists of images with
rich textures that are completely on-manifold. The manifold information is exact for OM-ImageNet.
Using OM-ImageNet, we show that on-manifold AT cannot defend standard attacks and vice versa.
The complimentary benefits of standard and on-manifold AT inspire us to propose dual manifold
adversarial training (DMAT) where crafted adversarial examples both in image and latent spaces
are used to robustify the underlying model. DMAT improves generalization and robustness to both
Lp and non-Lp adversarial attacks. Also, similar improvements are achieved on (out-of-manifold)
natural images. These results crystallize the use of the underlying manifold information of images to
enhance the intrinsic robustness of the models, specially against novel adversarial attacks.

7 Broader Impact

Deep neural networks have been broadly applied to various fields because of their superior perfor-
mance. However, their vulnerability to adversarial attacks makes general public worry, especially in
some security-critical applications such as autonomous vehicle and medical diagnosis. Therefore,
we need a method that makes neural networks robust to different attacks. In this work, we explore
whether or not leveraging the underlying manifold information could enhance the robustness and
generalization capability of neutral networks. We provide an affirmative answer to this question.
With the proposed novel OM-ImageNet dataset, future works in this direction could be facilitated.
The proposed method DMAT demonstrates a way to enhance both robustness and generalization to
known and novel adversarial attacks.

We note that it is possible that future stronger attacks decrease the performance of the proposed
defenses. This work should therefore be viewed as a necessary but not sufficient step towards
understanding the role of generative image manifolds in the robustness of vision systems against
a wide range of adversarial attacks. We anticipate more works on enhancing both robustness and
generalization of deep neural networks to gain public confidence in deep learning systems.
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