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RAINBOW COLORING HARDNESS VIA LOW SENSITIVITY
POLYMORPHISMS\ast 

VENKATESAN GURUSWAMI\dagger AND SAI SANDEEP\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . A k-uniform hypergraph is said to be r-rainbow colorable if there is an r-coloring of
its vertices such that every hyperedge intersects all r color classes. Given as input such a hypergraph,
finding a r-rainbow coloring of it is NP-hard for all k \geq 3 and r \geq 2. Therefore, one settles for finding
a rainbow coloring with fewer colors (which is an easier task). When r = k (the maximum possible
value), i.e., the hypergraph is k-partite, one can efficiently 2-rainbow color the hypergraph, i.e.,
2-color its vertices so that there are no monochromatic edges. In this work, we consider the next
smaller value of r = k - 1 and prove that in this case it is NP-hard to rainbow color the hypergraph
with q := \lceil k - 2

2
\rceil colors. In particular, for k \leq 6, it is NP-hard to 2-color (k  - 1)-rainbow colorable

k-uniform hypergraphs. Our proof follows the algebraic approach to promise constraint satisfaction
problems. It proceeds by characterizing the polymorphisms associated with the approximate rainbow
coloring problem, which are rainbow colorings of some product hypergraphs on vertex set [r]n. We
prove that any such polymorphism f : [r]n \rightarrow [q] must be C-fixing, i.e., there are a small subset S
of C coordinates and a setting a \in [q]S such that fixing x| S = a determines the value of f(x). The
key step in our proof is bounding the sensitivity of certain rainbow colorings, thereby arguing that
they must be juntas. Armed with the C-fixing characterization, our NP-hardness is obtained via a
reduction from smooth Label Cover.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . rainbow coloring, hardness of approximation, polymorphisms

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 68Q17, 68W25

\bfD \bfO \bfI . 10.1137/19M127731X

1. Introduction. Graph and hypergraph coloring are among the most well stud-
ied problems in graph theory and theoretical computer science. Even though there is a
simple algorithm to check whether a given graph is 2-colorable, checking whether a 3-
uniform hypergraph can be colored with two colors so that no hyperedge is monochro-
matic is one of the classic NP-hard problems. This raises the question of identifying
whether 2-coloring is easy on special hypergraphs of interest.

For example, if a k-uniform hypergraph is k-partite, i.e., the vertices can be
partitioned into k parts so that every hyperedge intersects each part, then there are
simple algorithms to properly color the hypergraph with two colors. One big hammer
approach for this is to use semidefinite programming and find a unit vector for each
vertex such that the sum of the vectors in each edge sum to zero, and then use
random hyperplane rounding. But the 2-coloring can also be performed by a simple
random walk algorithm---start with an arbitrary coloring, and as long as there is a
monochromatic edge, pick an arbitrary one and flip the color of a random vertex in
it. This process will converge to a 2-coloring in a quadratic number of iterations with
high probability [McD93]. However, supposing we know that a k-uniform hypergraph
is promised to be k  - 1-partite, can we color it with two colors?

An equivalent way to formulate this question is in terms of rainbow coloring.
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RAINBOW COLORING HARDNESS 521

A k-uniform hypergraph is said to be r-rainbow colorable if there is a coloring of
vertices with r colors such that all the r colors appear in every edge. Unlike usual
coloring, rainbow coloring becomes harder as we have more colors. Note that r-
partiteness is the same thing as r-rainbow colorability. Coming back to our question,
if we relax the k-rainbow colorability assumption slightly to that of (k  - 1)-rainbow
colorability, there are no known efficient algorithms for 2-coloring. It is tempting
to conjecture that this task is hard (in fact, even if we are allowed c colors for any
constant c; this was shown assuming the V Label Cover conjecture in [BG17]). If we
relax the rainbow colorability assumption further, Austrin, Bhangale, and Potukuchi
proved that it is NP-hard to 2-color a k-uniform hypergraph when it is promised to
be (k  - 2

\surd 
k)-rainbow colorable [ABP18]. They also showed that it is NP-hard to

2-color a 4-uniform hypergraph even if it is 3-rainbow colorable. In this work, we
focus on hardness results for the (k - 1)-rainbow colorable case, as this promise is the
closest to k-partiteness which makes 2-coloring easy. While we can't show hardness
of 2-coloring, we show that rainbow coloring with \lceil k - 2

2 \rceil colors is hard. Formally, our
main result is the following.

Theorem 1.1. Fix an integer k \geq 4. Given a k-uniform hypergraph that is
promised to be (k - 1)-rainbow colorable, it is NP-hard to rainbow color it with \lceil k - 2

2 \rceil 
colors.

As a corollary, we also get the following, which extends the similar result of
[ABP18] for the k = 4 case (their techniques did not generalize beyond the 4-uniform
case).

Theorem 1.2. For k \leq 6, given a k-uniform hypergraph that is promised to be
(k  - 1)-rainbow colorable, it is NP-hard to 2-color it.

1.1. Techniques. There have been broadly three lines of attack on proving hard-
ness for graph and hypergraph coloring problems.

1. The first line of work gives reductions from Label Cover analyzed using
Fourier-analytic techniques of the sort originally pioneered by H\r astad [H\r as01].
Early applications of this method showed strong hardness results for col-
oring 2-colorable hypergraphs of low uniformity with any constant num-
ber of colors [GHS02, Hol02, Kho02, Sak14]. This approach, augmented
with the invariance principle of [MOO10] and some of its extensions, such
as [DMR09, Mos10, Wen13], was used to prove further hardness results for
hypergraph coloring [BK10, GL18] and strong conditional hardness results for
graph coloring [DMR09]. These methods usually also prove a stronger state-
ment about finding independent sets in the graphs or hypergraphs. For rain-
bow coloring, it is proved in [GL18] by combining many of these techniques
that a (k/2)-rainbow colorable k-uniform hypergraph cannot be colored with
any constant number of colors in polynomial time unless P = NP.

2. A less extensive line of work proceeds via combinatorial gadgets that are
analyzed using ideas based on the chromatic number of Kneser graphs and
similar results. The first exemplar of this approach was the hardness of O(1)-
coloring 2-colorable 3-uniform hypergraphs shown in [DRS05]. Unlike the
analytic results for 4-uniform hypergraphs mentioned above, this result does
not show hardness of finding large independent sets. (This was later shown
in [KS14] using the analytic approach, albeit under the d-to-1 conjecture.)
A few recent results have revived this combinatorial approach, by rederiving
and improving some previous hardness results for hypergraph coloring using
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522 VENKATESAN GURUSWAMI AND SAI SANDEEP

simpler proofs [Bha18, ABP19].
3. The third and most recent line of work adapts the universal algebraic method

behind the complexity classification of constraint satisfaction problems that
culminated in the resolution of the Feder--Vardi CSP dichotomy conjecture
[Bul17, Zhu17]. Here, the coloring problem is viewed as a promise constraint
satisfaction problem (PCSP), and its associated ``polymorphisms"" are then
analyzed.1 In the cases when the polymorphisms are severely limited, one can
show hardness via a reduction from Label Cover. The approach to studying
PCSP using polymorphisms originated in [AGH17] and was used to show
hardness results for graph and hypergraph coloring in [BG16]. The algebraic
theory was further developed significantly in [BKO19], leading among other
results to a proof of NP-hardness of 5-coloring 3-colorable graphs. Recently,
[KO19, WZ19] used topological ideas to make further progress.

In this work, we follow the algebraic approach to prove Theorem 1.1. In fact,
our main motivation is to understand PCSPs better. A PCSP (defined formally
in section 2) is a relaxation of the traditional CSP where one is allowed to find
an assignment that satisfies a relaxed version of the predicates underlying the CSP.
Approximate graph coloring with more colors than the promised chromatic number is
a quintessential example of a PCSP. Rainbow coloring with fewer colors also naturally
falls in this framework. As proved in [BKO19, BG18], as with normal CSP, the
complexity of a PCSP is captured by its associated polymorphisms. Polymorphisms
(defined formally in section 2) of a PCSP are ways to combine multiple solutions of an
instance satisfying the stronger predicate to obtain a solution to the instance satisfying
the weaker predicate. The high-level principle behind the algebraic approach is that
the problem should be easy when it has a rich enough set of polymorphisms that
include functions with strong symmetries, and hard when all its polymorphisms are
somehow skewed and lack symmetries. This has been fully established for CSPs---
when there are polymorphisms which obey weak near-unanimity, the CSP is polytime
solvable, and otherwise NP-complete.2 The hardness part of this dichotomy is easier
and was known for a while [BJK05]; the much harder algorithmic part was established
only recently in [Bul17, Zhu17].

For PCSPs, which form a much richer class, our current understanding is rather
limited for both the algorithmic and the hardness sides. It is not clear (to even
conjecture) what kind of lack in symmetries in the polymorphisms might dictate
hardness and how one might show the corresponding hardness. A simple (but rather
limited) sufficient condition for hardness is when all the polymorphisms are dictators
that depend on a single coordinate. In [AGH17], it has been proved that if all the
polymorphisms of a PCSP are juntas,3 then the PCSP is NP-hard. This is the basis
of the hardness results for (2 + \epsilon )-SAT [AGH17] and 3-coloring graphs that admit
a homomorphism to Ck for any fixed odd integer k [KO19]. The recent hardness of
5-coloring 3-colorable graphs in [BKO19] proceeds by showing that the absence of
arity 6 polymorphisms with the so-called Ol\v s\'ak symmetry implies NP-hardness and
then verifying that 3- vs. 5-coloring lacks such polymorphisms.

1The proof in [DMR09] also implicitly studies polymorphisms and proves that they must have a
small number of coordinates with sizeable influence and thus are not too symmetric. This influence-
type characterization interfaces better with Unique Games or other highly structured forms of Label
Cover.

2For the case of Boolean CSPs, the CSP is hard if and only if all polymorphisms are essentially
unary, i.e., either the dictator function or its complement.

3A C-junta is a function that depends on at most C inputs.
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RAINBOW COLORING HARDNESS 523

It turns out that the polymorphisms of rainbow coloring can have Ol\v s\'ak symme-
tries and be nonjuntas. We will get around this by proving that these polymorphisms
are C-fixing in the sense that there exist a constant number of coordinates and an as-
signment to them such that if we fix these coordinates to the assignment, the value of
the function is fixed. This is also studied as certificate complexity in Boolean function
analysis [APV16]. We then prove that if the polymorphisms of a PCSP are C-fixing,
then the PCSP is NP-hard.

In order to prove that the polymorphisms have low certificate complexity, we use
the connection between sensitivity and certificate complexity of functions. These two
ways of characterizing the complexity of functions are well studied in the context
of Boolean functions. It is worth emphasizing that for our purposes, all we need is
to show that low sensitivity (even sensitivity 2 suffices) implies constant certificate
complexity, and thus we are not interested in optimal gaps between sensitivity and
certificate complexity. The famous sensitivity vs. block sensitivity conjecture [Nis89]
states that these two parameters are in fact polynomially related. In one of the earliest
works related to this problem, Simon [Sim83] proved that certificate complexity is at
most exponential in sensitivity. We extend this to larger domains and then use it
to prove that the polymorphisms that we study have low certificate complexity. We
remark that in a striking breakthrough, Huang [Hua19] recently proved the sensitivity
vs. block sensitivity conjecture for Boolean domains.

The second step is to then use the C-fixing property to show NP-hardness of
the PCSP. This is done by the usual paradigm of reducing from Label Cover using
polymorphism tests (better known as long code tests) of functions associated with
vertices of the Label Cover instance. A more structured form of the C-fixing property
where the C variables are fixed to the same value is used in [BG18] to show NP-
hardness of certain Boolean PCSPs. However, in order to prove NP-hardness using
our more general notion of C-fixing, we end up needing stronger properties of the
Label Cover instance. As a result, our reduction is from the smooth Label Cover
problem that was introduced and shown to be NP-hard in [Kho02], and has since
found many applications in inapproximability.

A natural question is to understand how far we can push these techniques. Our
NP-hardness reduction from smooth Label Cover works when the polymorphisms of
the PCSP in hand are C-fixing for some constant C. As k increases, the polymor-
phisms of the PCSP of 2-coloring a k-uniform hypergraph that is promised to be
(k  - 1)-rainbow colorable get richer. When k is at most 6, the polymorphisms are
C-fixing. At k = 7, we show that there is a polymorphism that is not C-fixing for any
constant C. In fact, one would need C to be linear in the arity of polymorphisms,
which also rules out using smooth Label Cover with very strong soundness.

1.2. Prior work on rainbow coloring and related problems. Various no-
tions of approximate coloring with rainbow colorability guarantees have been studied
in the literature. Bansal and Khot [BK10] prove that when the input hypergraph
is promised to be almost k-rainbow colorable, it is Unique Games hard to color it
with O(1) colors. Sachdeva and Saket [SS13] establish NP-hardness of O(1) coloring
a k-uniform hypergraph when it is promised to be almost (k/2)-rainbow colorable.
This was extended by Guruswami and Lee [GL18] to perfectly (k/2)-rainbow col-
orable hypergraphs. Guruswami and Saket [GS17] prove similar results, assuming
stronger forms of rainbow colorability in the completeness case. In [ABP18], Austrin,
Bhangale, and Potukuchi proved that it is NP-hard to 2-color a k-uniform hypergraph
when it is promised to be (k - 2

\surd 
k)-rainbow colorable. On the other hand, when the
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524 VENKATESAN GURUSWAMI AND SAI SANDEEP

hypergraph is promised to be (k  - 
\surd 
k)-rainbow colorable, Bhattiprolu, Guruswami,

and Lee [BGL15] give an algorithm to color the hypergraph with two colors that mis-
colors at most a k - \Omega (k) fraction of edges; this beats the 2 - (k+1) fraction achieved by
random coloring that is the best possible for general 2-colorable hypergraphs [H\r as01].
Brakensiek and Guruswami [BG17] put forth a problem called V Label Cover (to
possibly serve as a perfect completeness variant surrogate for Unique Games), and
under its conjectured inapproximability proved that it is hard to color a k-uniform
(k  - 1)-rainbow colorable hypergraph with O(1) colors.

A related notion of hypergraph coloring is strong coloring where we color a k-
uniform hypergraph with s > k colors such that in any edge, all the k vertices are
colored with distinct colors. Brakensiek and Guruswami [BG16] prove that it is NP-
hard to 2-color a k-uniform hypergraph that is promised to be strongly colorable
with \lceil 3k2 \rceil colors. Assuming the V Label Cover conjecture, it is hard to O(1)-color

k-uniform hypergraphs with strong chromatic number at most k +
\surd 
k [BG17].

1.3. Outline. We start with a few notations and definitions in section 2. In sec-
tion 3, we study polymorphisms of rainbow coloring. We first prove a result on sen-
sitivity and certificate complexity and use it to prove properties of polymorphisms of
the PCSP that we are studying. Then, we use these in section 4 to prove NP-hardness.
Finally, we conclude in section 5 by mentioning some open questions.

2. Preliminaries.

2.1. Notations. We use [n] to denote the set \{ 1, 2, . . . , n\} . Vectors are repre-
sented using boldface letters. We abuse the notation of a k-ary relation A to use it
both as a set A \subseteq [q]k and indicator function A : [q]k \rightarrow \{ 0, 1\} .

2.2. PCSP and polymorphisms. We will now formally define CSP, PCSP,
and polymorphisms.

Definition 2.1 (CSP). Given a k-ary relation A : [q]k \rightarrow \{ 0, 1\} over [q], the con-
straint satisfaction problem (CSP) associated with A takes as input a set of variables
V = \{ a1, a2, . . . , an\} which are to be assigned values from [q]. There are m constraints
(e1, e2, . . . , em) each consisting of ei = ((ei)1, (ei)2, . . . , (ei)k) \subseteq V k that indicate that
the corresponding assignment should belong to A. The problem is to check whether we
can satisfy all the constraints or not.

In general, we can have multiple relations A1, A2, . . . , Am, and different con-
straints can use different relations. We denote such a CSP by CSP(A1, A2, . . . , Am).

Promise CSP (PCSP) is a gap or promise version of CSP. Here, we have a pair
of relations such that one relation is a relaxed form of the other relation; given a
CSP instance where the objective is given an input as a CSP instance, decide whether
there is a satisfying assignment from the stronger relation or there is no satisfying
assignment using the weaker relation. One canonical example of PCSP is the promise
graph coloring: Given a graph G, distinguish between the case when G can be 3-
colored vs. the one when G cannot even be colored with five colors. We can formally
define PCSP as below.

Definition 2.2 (PCSP). In the PCSP problem, we have a set of pairs of relations
(A1, B1), (A2, B2), . . . , (Am, Bm) such that for every i, Ai is a subset of [q1]

ki and Bi

is a subset of [q2]
ki . Furthermore, there is a homomorphism h : [q1]\rightarrow [q2] such that,

for all i, x \in Ai implies h(x) \in Bi for all x \in [q1]
ki . Given a CSP(A1, A2, . . . , Am)

instance, the goal is to distinguish between the two cases:
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RAINBOW COLORING HARDNESS 525

1. There is a solution to the instance assigning values from [q1] that satisfies
every constraint when viewed as CSP(A1, A2, . . . , Am).

2. There is no solution to the instance assigning values from [q2] that satisfies
every constraint when viewed as CSP(B1, B2, . . . , Bm).

We now turn our attention towards rainbow coloring, which is the PCSP that
we study in this paper. In the RAINBOW(k, r, q) problem, the input is a k-uniform
hypergraph. The goal is to distinguish between the cases when the hypergraph is
rainbow colorable with r colors and when it is not rainbow colorable with q colors.
More formally, we can define the problem as below.

Definition 2.3 (RAINBOW(k, r, q)). In the RAINBOW(k, r, q) PCSP, q \leq r \leq k,
we have the relation pair (A,B) defined as follows:

\bullet A : [r]k \rightarrow \{ 0, 1\} : A(x1, x2, . . . , xk) = 1 if and only if \{ x1, x2, . . . , xk\} = [r].
\bullet B : [q]k \rightarrow \{ 0, 1\} : B(y1, y2, . . . , yk) = 1 if and only if \{ y1, y2, . . . , yk\} = [q].

Note that we need q, r to be at most k since we cannot rainbow color a k-uniform
hypergraph with more than k colors. We also need the condition that q \leq r for the
promise problem to make sense: If the hypergraph is r-rainbow colorable, we can
infer that it is already q < r rainbow colorable too. Thus, the promise problem is
to identify whether the hypergraph is r rainbow colorable or it is not even rainbow
colorable with q colors. Furthermore, in this paper we will be dealing with only the
near-perfect completeness case when the hypergraph is (k - 1)-partite, i.e., r = k - 1.

Associated with every PCSP, there are polymorphisms. Polymorphisms capture
the symmetries in the PCSP. They are ways in which we combine solutions to obtain
new solutions that are still valid.

Definition 2.4 (polymorphisms). For a PCSP(A,B), A : [q1]
k \rightarrow \{ 0, 1\} , B :

[q2]
k \rightarrow \{ 0, 1\} , a polymorphism is a function f : [q1]

n \rightarrow [q2], where n is the arity
of the polymorphism that satisfies the property (f(v1), f(v2), . . . , f(vk)) \in B for all
(v1, v2, . . . , vk) such that for all i \in [n], ((v1)i, (v2)i, . . . , (vk)i) \in A.

In the above, we defined polymorphisms for a PCSP over a single pair of relations.
When the PCSP has multiple relations, the polymorphism should satisfy the above
property for all the relations. Informally, the arity n polymorphisms are precisely the
functions f : [q1]

n \rightarrow [q2] such that for every k \times n matrix M with elements from
[q1] whose columns are satisfying tuples of A, the k tuple obtained by applying f to
the rows of M should be in B. We refer the reader to [BG18, BKO19] for a detailed
introduction to PCSPs and various examples of polymorphisms.

We now direct our attention to polymorphisms of RAINBOW(k, r, q). By defini-
tion, the polymorphisms of hypergraph coloring PCSPs turn out to be colorings of
certain tensor product hypergraphs. Fix n to be the arity of the polymorphisms. We
can infer that the polymorphisms of RAINBOW(k, r, q) are proper q-rainbow colorings
of the following k-uniform hypergraph \ttR \ttH n(k, r):

\bullet The vertex set of the hypergraph is the set V = [r]n.
\bullet There exists a k element set \{ v1,v2, . . . ,vk\} , where each vi \in [r]n is an edge

if and only if for every j \in [n], the set \{ (v1)j , (v2)j , . . . , (vk)j\} is equal to [r].
That is, a set of k vectors from [r]n forms an edge if in the matrix with these vectors
as rows all the elements from [r] occur in every column.

2.3. Complexity measures of functions. Finally, we define the notions of
sensitivity and C-fixing of functions.

Definition 2.5 (sensitivity at x). For a function f : [r]n \rightarrow [q] and an input
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526 VENKATESAN GURUSWAMI AND SAI SANDEEP

x \in [r]n, the sensitivity of f at x, denoted by S(f,x), is defined as the number of
coordinates i such that changing x at i can change the value of f , i.e., S(f,x) =

\bigm| \bigm| \{ i \in 
[n]| \exists a : f(x) \not = f(x : xi \leftarrow a)\} 

\bigm| \bigm| .
Definition 2.6 (sensitivity). The sensitivity of a function f : [r]n \rightarrow [q], denoted

by S(f), is defined as the maximum sensitivity of f over all x in [r]n, i.e., S(f) =
maxx S(f,x).

Definition 2.7 (C-fixing). A function f : [r]n \rightarrow [q] is said to be C-fixing for
some integer C if there exist a set S = \{ s1, s2, . . . , sC\} \subseteq [n] and a vector \bfitalpha \in [r]n

such that f(x) = c whenever xsi = \bfitalpha si for all integers 1 \leq i \leq C, for some fixed
c \in [q].

3. Polymorphisms. In this section, we will analyze the properties of polymor-
phisms of rainbow coloring. In order to do so, we will prove that low sensitivity im-
plies low certificate complexity. Using this, we will establish that the polymorphisms
for RAINBOW(k, k  - 1, \lceil k - 2

2 \rceil ) are C-fixing. Along the way, we will study rainbow
colorings of various hypergraphs related to \ttR \ttH n(k, r). Finally, we will show that our
techniques cannot prove hardness of RAINBOW(7, 6, 2) by presenting a polymorphism
that is not C-fixing for any constant C.

3.1. Sensitivity vs. certificate complexity. We extend to larger domains a
lemma of Simon [Sim83] that proves that if a function has low sensitivity, then the
function is C-fixing. The proof is along the same lines as the original proof.

Lemma 3.1. Let f : [r]n \rightarrow [q] be a function with sensitivity s, and let b \in [q] be
such that f - 1(b) is nonempty. Then,

\bigm| \bigm| f - 1(b)
\bigm| \bigm| \geq rn - s.

Proof. Fix s, and induct on n. The case n = s is trivial. Let x \in [r]n be such that
f(x) = b. Since s < n, there is a coordinate in x that is not sensitive. Without loss
of generality, let it be 1, and let x = (x1,y). As the first coordinate is not sensitive
for x, we can conclude that f(\alpha ,y) = b for all \alpha \in [r].

Consider the set of functions gi : [r]
n - 1 \rightarrow [q], gi(u) = f(i,u), i \in [r]. Note that

for each such gi, the set g - 1
i (b) is nonempty. In addition, for every i \in [r], sensitivity

of gi is at most the sensitivity of f . Thus, by induction, we know that each such gi
has at least rn - 1 - s elements u in [r]n - 1 such that gi(u) = b. Note that every such
u gives f(i,u) = b. By combining over all is, we can conclude that there are at least
r \cdot rn - 1 - s = rn - s elements x \in [r]n such that f(x) = b.

Lemma 3.2. Let f : [r]n \rightarrow [q] be a function with sensitivity s < n/2. Then, it is
a C-junta for C = s(r  - 1)r2s+1.

Proof. Let A denote the set of coordinates with nonzero influence in f , i.e., the co-
ordinates that are sensitive for some input. Our goal is to upper bound the cardinality
of A.

For a function f : [r]n \rightarrow [q], let the set of sensitive edges E(f) be defined as the
set of pairs of elements x,y \in [r]n such that f(x) \not = f(y), and x,y differ on exactly
one coordinate. From the sensitivity bound on f , we can deduce that

(3.1) | E(f)| \leq s(r  - 1)rn.

Fix an arbitrary coordinate i \in A. There are elements x,y \in [r]n such that xi =
\alpha , yi = \beta , \alpha \not = \beta , f(x) \not = f(y), and x,y differ only in the ith coordinate. Define a
function g : [r]n - 1 \rightarrow \{ 0, 1\} as g(z) is 1 if and only if f(\alpha , z) = f(x) and f(\beta , z) =
f(y), where we use the notation (\alpha , z) to denote the vector in [r]n obtained by inserting
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RAINBOW COLORING HARDNESS 527

\alpha in the ith position into z \in [r]n - 1. Now, since f(\alpha , z) and f(\beta , z) are both sensitive
to at most s coordinates, g(z) is sensitive to at most 2s coordinates. Also note that
g - 1(1) is nonempty. Thus, by Lemma 3.1, we can conclude that | g - 1(1)| is at least
rn - 1 - 2s. In other words, each sensitive coordinate contributes at least rn - 2s - 1 edges
to E(f). Thus, we can conclude that

(3.2) | E(f)| \geq | A| rn - 2s - 1.

Combining (3.1) and (3.2), we get

(3.3) | A| \leq s(r  - 1)r2s+1,

which proves the required claim.

We get the following corollary from Lemma 3.2.

Corollary 3.3. Let f : [r]n \rightarrow [q] be a function with sensitivity s < n/2. Then,
it is C-fixing for C = s(r  - 1)r2s+1.

3.2. Low sensitivity polymorphisms of rainbow coloring. We now turn
our attention towards our main goal in this section: to show that polymorphisms
of RAINBOW(k, k  - 1, q) are C-fixing for q = \lceil k - 2

2 \rceil . As we have already men-
tioned earlier, the polymorphisms of rainbow coloring are themselves rainbow color-
ings of certain tensor product hypergraphs. To be precise, the n-ary polymorphisms of
RAINBOW(k, r, q) are precisely q-rainbow colorings of \ttR \ttH n(k, r). Thus, our new goal
is to prove that for any integer q \geq 2, any q-rainbow coloring of \ttR \ttH n(2q+2, 2q+1) is
a C-fixing function.

In order to achieve this, we will first define certain hypergraphs similar to \ttR \ttH n(k, r).

Definition 3.4. \ttH n(r, s) = (V,E) is an r-uniform hypergraph where the vertex
set V is equal to [r]n. A set of vectors (u1,u2, . . . ,ur) is an edge if and only if the
following hold:

1. In every coordinate i \in [n], at least r - 1 elements occur, i.e.,
\bigm| \bigm| \bigcup 

j(uj)i
\bigm| \bigm| \geq r - 1

for all i \in [n].
2. All the r elements occur in at least n - s coordinates, i.e.,

\bigm| \bigm| \bigcup 
j(uj)i

\bigm| \bigm| = r for
at least n - s choices of i in [n].

The reason behind studying these hypergraphs is that the q-rainbow colorings of
\ttR \ttH n(2q + 2, 2q + 1) are very closely related to the q-rainbow colorings of \ttH n(2q + 1, c)
for any absolute constant c. In fact, if we can prove that q-rainbow colorings of
\ttH n(2q+1, c) are C-fixing, it implies that q-rainbow colorings of \ttR \ttH n(2q+2, 2q+1) are
max(C, c)-fixing. This is formally proved in Lemma 3.8. Thus, our modified objective
is to argue that q-rainbow colorings of \ttH n(2q + 1, c) are C-fixing. In order to do so,
we inductively relate q-rainbow colorings of \ttH n(t, c) and \ttH n(t  - 1, c  - 1). As a base
case, we have the following lemma.

Lemma 3.5. For all integers q \geq 2 and n \geq 1, the hypergraph \ttH n(2q - 1, 1) cannot
be rainbow colored with q colors.

Proof. We will use induction on q. For the case q = 2, rainbow coloring with two
colors is the same as proper coloring the hypergraph with two colors. The fact that
\ttH n(3, 1) cannot be 2-colored follows from [ABP18] (Lemma 3.2 with d = 3).

Suppose for contradiction that f is a valid q-rainbow coloring of \ttH n(2q  - 1, 1).
Let r = 2q  - 1 denote the uniformity of the hypergraphs. Consider the set of r
vectors in [r]n : \{ 

\bigcup 
i\in [r](i, i, . . . , i)\} . As there are at most q < r colors, some two
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528 VENKATESAN GURUSWAMI AND SAI SANDEEP

elements of this set should have the same value under f . Without loss of generality,
let f(r  - 1, r  - 1, . . . , r  - 1) = f(r, r, . . . , r) = c for some c \in [q]. Consider the
(r  - 2)-uniform hypergraph H = \ttH n(r  - 2, 1). Note that every edge in H together
with u = (r - 1, r - 1, . . . , r - 1) and v = (r, r, . . . , r) forms an edge in \ttH n(r, 1). Thus,
all the q - 1 colors in [q] \setminus \{ c\} occur in every edge of \ttH n(r - 2, 1) using f . This implies
that we can get a valid (q  - 1)-rainbow coloring of \ttH n(r  - 2 = 2(q  - 1)  - 1, 1) by
restricting f to [r  - 2]n and replacing the color c using arbitrary color from [q] \setminus \{ c\} .
However, by the induction hypothesis, such a coloring cannot exist, and thus we have
arrived at a contradiction.

Now, we will use this to argue about q-rainbow colorings of \ttH n(2q + 1, 3) via
q-rainbow colorings of \ttH n(2q, 2). Consider the hypergraph \ttH n(2q, 2). A trivial way
to q-rainbow color this hypergraph is to pick a coordinate i \in [n], and partition the
set [2q] into q disjoint sets of size two, let's say A1, A2, . . . , Aq, and assign the value
p \in [q] to f(x) for x = (x1, x2, . . . , xn) if and only if xi \in Ap. It turns out that this
is the only way to q-rainbow color \ttH n(2q, 2). We prove it in the lemma below.

Lemma 3.6. Let f be a q-rainbow coloring of \ttH n(r = 2q, 2). Then, there exists an
index i \in [n], sets A1, A2, . . . , Aq \subseteq [r] mutually disjoint and each of size 2, such that
f(x) = j if and only if xi \in Aj.

Proof. First, we will prove that the sensitivity of f is at most 1. Let x =
(x1, x2, . . . , xn) be an arbitrary vector in [r]n. Consider an (r  - 1)-uniform hyper-
graph H(x) defined on ([r] \setminus \{ x1\} )\times ([r] \setminus \{ x2\} )\times \cdot \cdot \cdot \times ([r] \setminus \{ xn\} ). We add an r - 1
vector set as an edge of H(x) if and only if it has at most one coordinate where there
are missing elements, i.e., all the [r] \setminus \{ xi\} occur in all but one coordinate i, and in
that coordinate, at most one value is missing.

Note that H(x) is isomorphic to \ttH n(2q  - 1, 1). From Lemma 3.5, we know that
H(x) cannot be rainbow colored with q colors. Thus, when we view f as a col-
oring of H(x), there is an edge that has a color missing. Let it be denoted by
e = (y1,y2, . . . ,yr - 1). Let j be the coordinate where there is a missing element in e.
If there is no coordinate with a missing element, j can be arbitrary. Without loss of
generality, let color 1 \in [q] be missing in e. Note that \{ x\} \cup e is an edge of \ttH n(r, 1), and
thus an edge of \ttH n(r, 2) as well. Since f is a proper q-rainbow coloring of \ttH n(2q, 2),
we can conclude that f(x) = 1. In fact, we can actually deduce something stronger.
Let y \in [r]n such that x and y differ on exactly one coordinate j\prime \in [n], j\prime \not = j. Note
that \{ y\} \cup e is also a valid edge of \ttH n(2q, 2) since it has at most two coordinates where
there are missing elements, i.e., j\prime and j. Thus, f(y) = 1 = f(x). Thus, for every x,
in all but one coordinate, changing the value of the coordinate preserves the value of
f(x). In other words, the sensitivity of f is at most 1.

Using this, we will now prove that f is a dictator. Let i be an influential coordinate
of f ; i.e., there exist x,y \in [r]n differing only in the ith coordinate such that f(x) \not =
f(y). We claim that f(u) = f(x) for all u = (u1, u2, . . . , un) \in [r]n such that
ui = xi, and f(u) = f(y) if ui = yi. We will prove this by induction on the number
of coordinates in which x and u differ, excluding the coordinate i. Since f has
sensitivity at most 1, the only sensitive coordinate of x and y is i. Thus, any u
differing in only one coordinate from x (other than i) such that ui = xi or yi will have
the corresponding f value. Suppose that the statement holds for all u differing from
x in t coordinates, excluding i.

Now, let u differ from x in t+1 coordinates, excluding i, and let ui = xi. Choose
one of these t+1 coordinates j arbitrarily, and let v be obtained from u by changing
uj to xj . Let w be obtained from v by changing vi to yi. By the inductive hypothesis,
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f(v) = f(x) and f(w) = f(y). Since i is the only sensitive coordinate of v, f(u) is
equal to f(v) = f(x). Let u\prime be obtained from u by changing ui to yi. Since i is
the only influential coordinate of w, we can infer that f(u\prime ) = f(w), which in turn is
equal to f(y). This completes the inductive proof.

To complete the proof that f is a dictator, we will use this to show that there
cannot be two influential coordinates. Suppose that there are two influential coordi-
nates i and j. From the previous argument, we can infer that there are assignments
i1, i2, j1, j2 \in [r] such that assigning these to corresponding coordinates fixes the value
of f . Also note that assigning i as i1 and i2 fixes f to different values. Similarly, as-
signing j as j1 and j2 fixes f to different values. This gives rise to a contradiction
since if we set coordinate i to i1, f should be fixed irrespective of whether j is equal to
j1 or j2. Thus, there can be only one influential coordinate for f , or, in other words,
f is a dictator.

Let p be the dictator coordinate of f ; i.e., there exists a function g : [r]\rightarrow [q] such
that f(x) = g(xp). From the definition of the hypergraph \ttH n(r, 2), for every j \in [r],
the set \{ 

\bigcup 
i g(i)\} \setminus \{ g(j)\} should be equal to [q]. This proves that there exist sets

A1, A2, . . . , Aq \subseteq [r], each of size two, and mutually disjoint such that g(\alpha ) = j if and
only if \alpha \in Aj , which proves the required claim.

We finish the chain of inductive arguments by proving a key property of q-rainbow
colorings of \ttH n(2q + 1, 3).

Lemma 3.7. Let f : [2q + 1]n \rightarrow [q] be a q-rainbow coloring of \ttH n(r = 2q + 1, 3).
Then, there exists an index i \in [n], and \alpha \in [r] such that S(f,x) \leq 2 for all x \in [r]n

such that xi = \alpha .

Proof. Let x = (x1, x2, . . . , xn) \in [r]n be an arbitrary vector in [r]n. Similar to the
previous lemma, we define the complement hypergraph associated with x. Consider an
(r - 1)-uniform hypergraph H(x) defined on ([r]\setminus \{ x1\} )\times ([r]\setminus \{ x2\} )\times \cdot \cdot \cdot \times ([r]\setminus \{ xn\} ).
We add an r  - 1 vector set as an edge of H(x) if and only if it has at most two
coordinates where there are missing elements; i.e., all the [r] \setminus \{ xi\} occur in all but
two coordinates i, and in these two coordinates, at least r - 2 values occur. Note that
H(x) is isomorphic to \ttH n(r  - 1, 2).

We can view f : [2q + 1]n \rightarrow [q] as a q-coloring of H(x). If f is not a valid
q-rainbow coloring of H(x), by the same argument as in Lemma 3.6, we can deduce
that S(f,x) \leq 2. If f is a valid q-rainbow coloring of H(x), we will use the properties
proved in Lemma 3.6. Let us define a function g : [r]n \rightarrow [n] \cup \{ \bot \} such that for a
vector x \in [r]n, the following hold:

1. If f is a valid q-rainbow coloring of H(x), then Lemma 3.6 implies that there
exists a coordinate i \in [n] such that f is a dictator in the ith coordinate in
H(x). In this case, set g(x) = i.

2. If f is not a valid q-rainbow coloring of H(x), then let g(x) = \bot .
First, we will prove that there exists an index i \in [n] such that g(x) \in \{ i,\bot \} for

all x \in [r]n. Suppose g(x) = i \in [n] and g(y) = j \in [n], where x,y \in [r]n and i \not = j.
Since g(x) = i, there exist sets S1, S2, . . . , Sn \subseteq [r] such that f is a dictator on the ith
coordinate in S = S1 \times S2 \times \cdot \cdot \cdot \times Sn \subseteq [r]n. In particular, there is a subset A \subseteq Si

such that | A| = 2, and f(x), x \in S, is equal to 1 if and only if xi \in A. Similarly,
there exist sets T1, T2, . . . , Tn \subseteq [r] such that f is a dictator on the jth coordinate in
T = T1 \times T2 \times \cdot \cdot \cdot \times Tn \subseteq [r]n. There exists a subset B \subseteq Tj such that | B| = 2, and
x \in T, f(x) is equal to c \not = 1 if and only if xj \in B for some c \in [q]. Combining both,
let Ui = Si \cap Ti, | Ui| \geq r  - 2 for all i \in [n]. We can deduce that f is a dictator in
both i and j coordinates in U = U1\times U2\times \cdot \cdot \cdot \times Un. This implies that f is a constant
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530 VENKATESAN GURUSWAMI AND SAI SANDEEP

function in U . Recall that there are two assignments in Si that make f equal to 1
and two assignments in Tj that make f equal to c \not = 1. Thus, f(x\prime ) is equal to 1 for
some x\prime \in U and f(y\prime ) = c \not = 1 for some y\prime \in U . This contradicts the fact that f is
a constant function in U . Thus, there exists an index i \in [n] such that g(x) is either
equal to i or is equal to \bot for all x \in [r]n. Without loss of generality, let that be the
first coordinate, i.e., for all x \in [r]n, g(x) \in \{ 1,\bot \} .

Consider the case when g(x) = \bot for every x \in [r]n. In this case, we know
that S(f,x) \leq 2 for all x \in [r]n. In particular, we can set \alpha arbitrary and say that
S(f,x) \leq 2 whenever x1 = \alpha . So we are only left with the case when there exists an
x \in [r]n such that g(x) = 1. We will now prove that there exists \alpha \in [r] such that
g(x) = \bot whenever x1 = \alpha , thus proving the required sensitivity bound.

Suppose for contradiction that for every \alpha \in [r], there exists x \in [r]n such that
x1 = \alpha , and g(x) = 1. Consider a pair u,v \in [r]n such that u1 = \alpha , v1 = \beta , u \not = v,
and g(u) = g(v) = 1. Let u = (u1, u2, . . . , un) and Si = [r] \setminus \{ ui\} , and let f be
a dictator on the first coordinate in S = S1 \times S2 \times \cdot \cdot \cdot \times Sn. There is a function
h1 : S1 \rightarrow [q] such that f(x) = h1(x1) if x \in S and | h - 1

1 (c)| = 2 for all c \in [q].
Similarly, let v = (v1, v2, . . . , vn) and Ti = [r] \setminus \{ vi\} , and let f be the dictator on the
first coordinate in T = T1\times T2\times \cdot \cdot \cdot \times Tn. There is a function h2 : T1 \rightarrow [q] such that
f(x) = h2(x1) if x \in T and | h - 1

2 (c)| = 2 for all c \in [q]. Let Ui = Si \cap Ti. Note that
U = U1 \times U2 \times \cdot \cdot \cdot \times Un is nonempty and f is a dictator on the first coordinate in U
as well. Note that | Ui| \geq r  - 2 for all i \in [n]. Thus, we can conclude that if \gamma \in U1,
then h1(\gamma ) = h2(\gamma ).

Applying this to all pairs u,v such that g(u) = g(v) = 1, we can infer that there
exists a function h : [r] \rightarrow [q] that satisfies the property that for all x \in [r]n such
that g(x) = 1, if x = (x1, x2, . . . , xn), Si = [r] \setminus \{ xi\} , and S = S1 \times S2 \times \cdot \cdot \cdot \times Sn,
then f(y) = h(y1) for all y \in S. As r = 2q + 1 > 2q, there exists b \in [q] such that
| h - 1(b)| \geq 3. Let \gamma \in [r] be such that h(\gamma ) \not = b. From our assumption that for every
\alpha \in [r] there exists x \in [r]n such that g(x) = 1 and x1 = \alpha , there exists u \in [r]n

such that u1 = \gamma and g(u) = 1. Now, let u = (u1, u2, . . . , un), Si = [r] \setminus \{ ui\} , and
S = S1\times S2\times \cdot \cdot \cdot \times Sn. We know that f(x) = h(x1) if x \in S, and

\bigm| \bigm| h - 1(c)\cap S1

\bigm| \bigm| = 2 for
all c \in [q]. However, this contradicts the fact that h(u1) = h(\gamma ) \not = b, and | h - 1(b)| = 3.
Thus, there exists \alpha \in [r] such that g(x) = \bot for all x \in [r]n such that x1 = \alpha .

Finally, we will use the previous hypergraph coloring properties to argue about
polymorphisms of rainbow coloring.

Lemma 3.8. There exists a constant C = C(q) independent of n such that every
f : [2q+1]n \rightarrow [q] that is an n-ary polymorphism of RAINBOW(2q+2, 2q+1, q), i.e.,
every f that is a proper q-rainbow coloring of \ttR \ttH n(2q + 2, 2q + 1), is C-fixing.

Proof. Let r = 2q + 1. Let f : [r]n \rightarrow [q] be a polymorphism of RAINBOW(2q +
2, 2q + 1, q). We can view f as a q-rainbow coloring of \ttH n(r, 3) as the vertex set of
\ttR \ttH n(r+1, r) and of \ttH n(r, 3) being equal to [r]n. If it is not a valid q-rainbow coloring,
there is an edge in which not all q colors appear. Let that edge be e = (v1,v2, . . . ,vr),
and let c \in [q] be a missing color in \{ f(v1), f(v2), . . . , f(vr)\} . Since this edge is part
of Hn(r, 3), except for three values of i, for all other i, the set \{ (v1)i, (v2)i, . . . , (vr)i\} 
is equal to [r]. Let the missing coordinates be the set S = \{ i1, i2, i3\} . Now, consider
an element u of [r]n that has the missing values of e in S. From the definition of
\ttR \ttH n(r + 1, r), we can deduce that the set e \cup u is an edge of \ttR \ttH n(r + 1, r). Since f is
a valid q-rainbow coloring of \ttR \ttH n(r + 1, r), f(u) is equal to c. Note that this should
hold irrespective of what values u has in coordinates outside S. This proves that f is
C-fixing with C = 3.
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On the other hand, if f is a valid q-rainbow coloring of \ttH n(r, 3), using Lemma 3.7,
we can deduce that there exists an index i \in [n], and \alpha \in [r] such that S(f,x) \leq 2
whenever xi = \alpha . Now, we can consider a function g : [r]n - 1 \rightarrow [q] which on an
input y \in [r]n - 1 is equal to f(x),x = y, xi \leftarrow \alpha \in [r]n; i.e., we first insert \alpha 
in the ith position to y and then apply f . Note that g has sensitivity at most 2.
From Corollary 3.3, we can conclude that g is C-fixing for C = 2(r - 1) \cdot r5. In other
words, g is fixed by assigning values to a set of C indices. This implies that f is also
C \prime = C + 1-fixing since we can first set the ith index to \alpha and then use the C-fixing
property of g.

3.3. High sensitivity polymorphism of RAINBOW(7,6,2). We show that
there exists a function f : [6]n \rightarrow \{ 0, 1\} that is a polymorphism of RAINBOW(7, 6, 2)
that is not C-fixing for any constant C. We start with a dictator but add just enough
noise so that the function still remains a polymorphism, but is no longer C-fixing.
Let wt(x) denote the number of i \in [n], i > 1, such that xi = 1. Let S \subseteq [6]n denote
the set of x \in [6]n such that wt(x) > 2n

3 . Let h : [6]n \rightarrow \{ 0, 1\} be the noise function
defined below. For a given x \in [6]n, we define f(x) as follows:

1. If x /\in S:
(a) If x1 \leq 3, f(x) = 0.
(b) Else, f(x) = 1.

2. Else f(x) = h(x).
A choice of noise function that works is inverting the original function: h(x) is defined
as 1 if and only if x1 \leq 3.

Proposition 3.9. The function f : [6]n \rightarrow \{ 0, 1\} defined above is a polymorphism
of RAINBOW(7, 6, 2), and it is not C-fixing for any C < n

3 .

Proof. Any polymorphism of RAINBOW(7, 6, 2) is a proper 2-rainbow coloring
of \ttR \ttH n(7, 6). Recall that rainbow coloring with two colors is the same as standard
hypergraph coloring with two colors.

Polymorphism. In any set of seven vectors E in [6]n such that all six elements
occur in all the coordinates, at most two vectors can be in S. This is because, in any
set of three vectors in S, there exists a coordinate in which all three values are equal
to 1. Thus, there are vectors x /\in S with x1 \leq 3 and vector y /\in S such that y1 \geq 3 in
E, which together ensure that E is not monochromatic.

\bfitC -fixing. Suppose there is a set T = \{ t1, t2, . . . , tm\} \subseteq [n] and (\alpha 1, \alpha 2, . . . , \alpha m) \in 
[6]m such that f(x) = b for all x such that xi = \alpha i for all 1 \leq i \leq m, for some fixed
b \in \{ 0, 1\} . We will prove that | T | \geq n

3 . Suppose for contradiction that | T | < n
3 . First,

if 1 /\in T , we can set all coordinates outside T to be equal to \beta \not = 1, and in this case
f(x) depends on x1, which cannot be fixed if 1 /\in T . Thus, 1 \in T . Next, if all the
coordinates outside T are all equal to 1, then f(x) is equal to noise function, which
is different from the case when the rest are equal to \beta \not = 1. Thus, if f is indeed a
C-fixing function, for the C-fixing assignment, the value of f should be independent
of the assignment to the coordinates outside T . However, that is not the case as the
value of f changes when we set all the coordinates outside T to be 1 or \beta \not = 1.

4. NP-hardness. In this section, we will use the properties of polymorphisms
proved so far to argue about NP-hardness of rainbow coloring PCSP. We will prove
the theorem below.

Theorem 4.1. Suppose that there exists a constant C such that for all integers
n \geq 1, every n-ary polymorphism of RAINBOW(k, k  - 1, q) is C-fixing. Then, the
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corresponding decision problem RAINBOW(k, k  - 1, q) is NP-hard.

Before delving into the proof of Theorem 4.1, we first mention that this theorem
together with Lemma 3.8 implies Theorem 1.1. In Lemma 3.8, we have proved that
for every q \geq 2, the polymorphisms of RAINBOW(2q+2, 2q+1, q) are C-fixing. This
fact combined with Theorem 4.1 implies that RAINBOW(2q+2, 2q+1, q) is NP-hard
for every q \geq 2. This already proves Theorem 1.1 when k is even. When k is odd, we
can use Lemma 3.6 instead of Lemma 3.7 in the proof of Lemma 3.8 to deduce that
the polymorphisms of RAINBOW(k = 2q+1, 2q, q) are C-fixing. We can combine this
with Theorem 4.1 to prove Theorem 1.1 when k is odd.

The rest of this section is dedicated to proving Theorem 4.1. Like various other
hardness of approximation results, we will use the standard Label Cover with a long
code framework. We reduce the smooth Label Cover introduced in [Kho02] to the
rainbow coloring PCSP. First, we define the Label Cover problem below.

Definition 4.2 (Label Cover). In an instance of the Label Cover problem, we
are given a tuple (G = (L,R,E),\Sigma ,\Pi ), where the following hold:

1. G is a bipartite multigraph between vertex sets L and R.
2. Each vertex in G has to be assigned a label from \Sigma .
3. For each edge e = (u, v) \in E, there is a projection constraint \Pi e from u to v

that is a function from \Sigma to itself. This corresponds to a constraint between
u and v.

A graph labelling is a function \sigma : L\cup R\rightarrow \Sigma that assigns a label to each vertex of G.
A labelling \sigma is said to satisfy the constraint \Pi e if and only if \Pi e(\sigma (u)) = \sigma (v).

We refer to L and R as left and right vertices, respectively. We are now ready to
define Gap Label Cover.

Definition 4.3 ((1, \epsilon LC) Gap Label Cover). In (1, \epsilon LC) Gap Label Cover, we
are given a Label Cover instance (G = (L,R,E),\Sigma ,\Pi ), and the goal is to distinguish
between the following two cases:

1. There is a labelling \sigma : G\rightarrow \Sigma that satisfies all the constraints.
2. No labelling can satisfy an \epsilon LC fraction of constraints.

As mentioned earlier, we need stronger properties of the Label Cover instance
that we are starting with. One such property is smoothness.

Definition 4.4 (smoothness). A Label Cover instance (G = (L,R,E),\Sigma ,\Pi ) is
said to be (J, \epsilon )-smooth if for any vertex u \in L and a set of labels S \subseteq \Sigma , | S| \leq J ,
over a uniformly random neighbor v \in R, Pr(

\bigm| \bigm| \bigcup 
s\in S \Pi u,v(s)

\bigm| \bigm| < | S| ) \leq \epsilon .

The following is a special case of Theorem 1.17 in [Wen13].

Theorem 4.5. For every \epsilon , \epsilon LC > 0 and J \in \BbbZ +, there exists n = n(\epsilon , \epsilon LC , J)
such that (1, \epsilon LC) Gap Label Cover with | \Sigma | = n that is promised to be (J, \epsilon )-smooth
is NP-hard.

We now prove Theorem 4.1.

Reduction. We have a (1, \epsilon LC) Gap Label Cover instance (G = (L,R,E),\Sigma ,\Pi )
that is promised to be (C, \epsilon )-smooth, for \epsilon and \epsilon LC to be set later, and output a
PCSP instance. The reduction described here is the same as the general one from
Label Cover to PCSP in, e.g., [BKO19]. Let n denote the label size n = | \Sigma | . For each
vertex w \in L \cup R, we add a set of nodes Kw of size [k  - 1]n, indexed by vectors of
length n. We add two types of constraints:

1. Coloring constraints: Inside every vertex of the Label Cover instance, we add
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the following constraints among the [k - 1]n nodes. We add the constraint that
the promise relation should be satisfied in the set of k nodes \{ x1,x2, . . . ,xk\} 
in [k  - 1]n if for every i \in [n], the set \{ 

\bigcup 
j(xj)i\} has cardinality k  - 1.

2. Equality constraints: For every constraint \Pi e : u \rightarrow v of the Label Cover,
we add a set of equality constraints between nodes x \in Ku, y \in Kv if for all
i \in [n], xi = y\Pi e(i).

Note that the coloring constraints give rise to rainbow colorings of k-uniform hyper-
graphs. It is yet unclear how we can justify adding equality constraints. One way
to handle the equality constraints is to have a single node for all the vertices corre-
sponding to an equality constraint. However, this fails if we want to add a coloring
constraint that involves two copies of the same vertex. A direct way to get around
this is to argue that adding equality constraints does not change the set of polymor-
phisms, and thus the hardness of the predicate remains the same with or without
equality constraints. We provide a proof of this simple fact in Appendix A for the
sake of completeness.

Completeness. If the Label Cover instance is satisfiable, then the PCSP instance
that is being output can be satisfied by an assignment from [k - 1]. Suppose \sigma : L\cup R\rightarrow 
\Sigma is a labelling that satisfies all the constraints of the Label Cover. For every vertex
x \in Kw corresponding to the vertex w \in L \cup R, we can assign the value x\sigma (w). In
other words, in every long code, we are assigning the corresponding dictator function.
The coloring constraints are defined precisely such that this assignment satisfies the
constraints. The equality constraints also follow since the labelling \sigma satisfies all the
constraints of the Label Cover.

Soundness. If the Label Cover is not \epsilon LC satisfiable, we need to show that there
is no assignment of the PCSP instance in [q] that satisfies all the constraints. Taking
the contrapositive, if there is an assignment in [q] to the PCSP instance that satisfies
all the constraints, then we will prove that there is an assignment to the Label Cover
instance that can satisfy a c fraction of constraints for an absolute constant c. Taking
\epsilon LC < c, we can arrive at a contradiction, thus proving that there is no assignment
in [q] to the PCSP that satisfies all the constraints.

Let fw : [k - 1]n \rightarrow [q] denote the assignment to the PCSP instance that satisfies
all the constraints for w \in L\cup R. From the coloring constraints, we can infer that fw
is an n-ary polymorphism of RAINBOW(k, k - 1, q). Thus, it is C-fixing for a constant
C independent of n.

For every vertex w \in L \cup R of the Label Cover instance, we will assign a set of
labels A(w) \subseteq [n]. For vertices u in L, A(u) is the C-fixing set. Since the Label
Cover instance is smooth, we will only consider the constraints where all these labels
go to distinct labels on the right under projections. We can set the smoothness
parameter \epsilon to be 0.1, for example, and we will be left with a 9

10 fraction of the
original constraints. We will prove that there is an assignment that satisfies a c
fraction of these constraints, for an absolute constant c, which will prove the original
soundness claim. Thus, in all the remaining constraints, the set of labels in the set
A(u) go to distinct labels on the right. Thus, for a vertex v \in R, each constraint
(u, v) gives rise to C coordinates \Pi u,v(A(u)). Note that these C coordinates are in
fact C-fixing for v for every constraint (u, v). For a given v \in R, there are several such
C-fixing sets. Let the set of these C-fixing sets be denoted by B(v) = \{ S1, S2, . . .\} ,
where each Si \subseteq [n] is a C-fixing set of fv. Now, we define A(v) for v \in R to be the
union over an arbitrary fixed maximal disjoint sets in B(v).

In order to prove that there is a good labelling to the Label Cover, we assign a
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label to every vertex v from A(v) uniformly at random and prove that it satisfies a
constant fraction of constraints with nonzero probability. We will, in fact, show that
the random assignment satisfies a constant fraction of constraints in expectation. We
prove this in two steps. First, we show that for every constraint (u, v) of the Label
Cover, there exists x \in A(u), y \in A(v) such that \Pi u,v(x) = y. This follows from the
definitions of A(u), A(v): suppose the projection of A(u) is disjoint from A(v). In
that case, we can add the projection of A(u) to A(v) to get a larger set in v, which
contradicts the fact that A(v) is the maximal such union of disjoint projections. This
implies that the uniformly random labelling satisfies each constraint (u, v) of Label
Cover with probability at least 1

| A(u)| | A(v)| .

To complete the proof, we need to bound the sizes of A(u), A(v). As we have
already mentioned, for u \in L, | A(u)| \leq C. We bound the size of A(v) for vertices v
in R using the lemma below.

Lemma 4.6. Suppose f : [k - 1]n \rightarrow q is a polymorphism of RAINBOW(k, k - 1, q).
Let A1, A2, . . . , At be mutually disjoint subsets of [n] such that each of them is a C-
fixing set of f . Then, t < k.

Proof. First, note that all the Ais should fix f to the same value in [q] since
otherwise the vector u \in [k  - 1]n that has all the fixing sets in Ais forces f(u) to
be equal to multiple colors in [q] at the same time. Let all the Ais be C-fixing with
respect to value b \in [q]; i.e., for each i \in [t], there exists an assignment to Ai such
that if the value of x in Ai is equal to the assignment, then the value of f(x) is equal
to b irrespective of the values of the coordinates outside Ai. If t \geq k, we can find
y1,y2, . . .yk \in [k  - 1]n such that every element of [k  - 1] occurs in every coordinate,
and yi has the fixing assignment of Ai. This implies that f(yi) = b for all i. However,
note that \{ y1,y2, . . . ,yk\} is an edge of \ttR \ttH n(k, k - 1), and thus if f is a polymorphism of
RAINBOW(k, k  - 1, q), all the [q] elements should occur in \{ f(y1), f(y2), . . . , f(yk)\} .
This is a contradiction since for all i, f(yi) = b.

From the lemma, we can infer that the cardinality of A(v) for v \in R is at most
kC. Combining this with the above, we can deduce that there is an assignment that
satisfies a 1

kC2 fraction of constraints, which is a constant fraction of constraints,
independent of n.

5. Conclusion. In this paper, we have proved that given a k-uniform hyper-
graph that is promised to be (k - 1)-rainbow colorable, it is NP-hard to rainbow color
it with \lceil k - 2

2 \rceil colors. As a corollary, we can deduce that for k \leq 6, it is NP-hard
to 2-color a k-uniform hypergraph that is promised to be (k  - 1)-rainbow colorable.
An immediate question is whether RAINBOW(7, 6, 2) is NP-hard. It would be inter-
esting to get an efficient algorithm, though we believe it is unlikely. In subsection
3.3, we have provided a polymorphism of RAINBOW(7, 6, 2) that is not C-fixing. The
polymorphisms for this PCSP also have other symmetries (in the form of identities)
discussed in [BKO19].

However, it should be noted that the polymorphism we have given in subsection
3.3 is very far from symmetric; it seems that we should decode to the unique special
coordinate. What we are missing here is a characterization of lack of symmetries
that works well with Label Cover to give NP-hardness. We believe that resolving
the hardness of this particular PCSP can shed light on identifying criteria for lack
of symmetries that imply hardness, beyond C-fixing. Another direction to explore is
whether we can further strengthen the completeness in our result. More concretely,
given a k-rainbow colorable k-uniform hypergraph, can we efficiently rainbow color it
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with three colors?

Appendix A. Adding equality constraints. We will prove that adding
the equality pair of relations does not affect the polymorphisms. By equality pair of
relations we mean (=,=) := (A \subseteq [q1]

2, B \subseteq [q2]
2), where q1 \leq q2 and A = \{ (x, x) :

x \in [q1]\} , B = \{ (y, y) : y \in [q2]\} .

Lemma A.1. Suppose P = (A1, B1), (A2, B2), . . . , (Am, Bm) is a PCSP template.
Let the template Q be obtained by adding the pair of relations (A\prime , B\prime ) := (=,=) to
P . Then, under log-space reductions, P is equivalent to Q.

Proof. We will show that P and Q have identical sets of polymorphisms. Note
that asQ contains all the relations in P , polymorphisms ofQ are a subset of those of P .
The reverse direction also holds because every function is a polymorphism of (=,=).
Let f : [q1]

n \rightarrow [q2] be an n-ary polymorphism of P . Consider n vectors v1,v2, . . . ,vn

such that for all i \in [n],
\bigl( 
(vi)1, (vi)2

\bigr) 
\in A\prime . Note that this implies that for all i, (vi)1 =

(vi)2. Consider the tuple
\bigl( 
f((v1)1, (v2)1, . . . , (vn)1), f((v1)2, (v2)2, . . . , (vn)2)

\bigr) 
=\bigl( 

f((v1)1, (v2)1, . . . , (vn)1), f((v1)1, (v2)1, . . . , (vn)1)
\bigr) 
\in B\prime . Thus, f is a polymor-

phism of (=,=) as well, which implies that f is a polymorphism of Q. It has already
been shown [Pip02, BG16, BKO19] that if polymorphisms of a PCSP P are a sub-
set of polymorphisms of Q, then Q is log-space reducible to P . Thus, P and Q are
equivalent under log-space reductions.
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