Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SIAM J. COMPUT. © 2020 Society for Industrial and Applied Mathematics
Vol. 49, No. 6, pp. 1232-1248

THE POWER OF THE COMBINED BASIC LINEAR
PROGRAMMING AND AFFINE RELAXATION FOR PROMISE
CONSTRAINT SATISFACTION PROBLEMS*

JOSHUA BRAKENSIEK', VENKATESAN GURUSWAMI}, MARCIN WROCHNAS$, AND
STANISLAV ZIVNYS$

Abstract. In the field of constraint satisfaction problems (CSPs), promise CSPs are an exciting
new direction of study. In a promise CSP, each constraint comes in two forms: “strict” and “weak,”
and in the associated decision problem one must distinguish between being able to satisfy all the
strict constraints versus not being able to satisfy all the weak constraints. The most commonly
cited example of a promise CSP is the approximate graph coloring problem—which has recently
seen exciting progress [Bulin, Krokhin, and OprSal, Proceedings of the Symposium on Theory of
Computing, 2019, pp. 602-613 and Wrochna and Zivny, Proceedings of the Symposium on Discrete
Algorithms, 2020, pp. 1426-1435] benefiting from a systematic algebraic approach to promise CSPs
based on “polymorphisms,” operations that map tuples in the strict form of each constraint to tuples
in the corresponding weak form. In this work, we present a simple algorithm which in polynomial
time solves the decision problem for all promise CSPs that admit infinitely many symmetric polymor-
phisms, which are invariant under arbitrary coordinate permutations. This generalizes previous work
of the first two authors [Brakensiek and Guruswami, Proceedings of the Symposium on Discrete Algo-
rithms, 2019, pp. 436-455]. We also extend this algorithm to a more general class of block-symmetric
polymorphisms. As a corollary, this single algorithm solves all polynomial-time tractable Boolean
CSPs simultaneously. These results give a new perspective on Schaefer’s classic dichotomy theorem
and shed further light on how symmetries of polymorphisms enable algorithms. Finally, we show
that block symmetric polymorphisms are not only sufficient but also necessary for this algorithm to
work, thus establishing its precise power.

Key words. CSP, linear programming, linear equations, polymorphisms, algorithms, promise
CSP

AMS subject classifications. 68Q25, 68W25, 68R01, 08A70, 03B70, 90C05

DOI. 10.1137/20M1312745

1. Introduction. A central challenge in the theory of algorithms is to under-
stand the mathematical structure (or lack thereof) that governs the efficient tractabil-
ity (or intractability) of a computational problem. For the class of constraint satisfac-
tion problems (CSPs), a rich algebraic theory culminating in the recent resolution of
the Feder—Vardi dichotomy conjecture [13] in [10, 24] has established a striking link be-
tween problem structure and its tractability. In particular, a CSP is efficiently solvable

*Received by the editors January 14, 2020; accepted for publication (in revised form) September

17, 2020; published electronically December 1, 2020. An extended abstract of part of this work (by
the first two authors) appeared in the Proceedings of the 31st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’20), SIAM, Philadelphia, 2020, pp. 297-304.

https://doi.org/10.1137/20M1312745

Funding: The first author was supported in part by an REU supplement to NSF CCF-1526092
and a NSF Graduate Research Fellowship. The second author was supported in part by NSF grants
CCF-1814603 and CCF-1908125. The third and fourth authors were supported by funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement 714532). The fourth author was supported by a Royal
Society University Research Fellowship.

fComputer Science, Stanford University, Stanford, CA 94305 USA (jbrakens@cs.stanford.edu).

fComputer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213 USA
(venkatg@cs.cmu.edu).

§Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK (marcin.
wrochna@cs.ox.ac.uk, standa.zivny@cs.ox.ac.uk).

1232

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/20M1312745
mailto:jbrakens@cs.stanford.edu
mailto:venkatg@cs.cmu.edu
mailto:marcin.wrochna@cs.ox.ac.uk
mailto:marcin.wrochna@cs.ox.ac.uk
mailto:standa.zivny@cs.ox.ac.uk

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMBINED BLP AND AFFINE RELAXATION FOR PCSPs 1233

if and only if its defining relations admit an “interesting” polymorphism. Informally,
a polymorphism is a function whose componentwise action preserves membership in
the relations defining the CSP, and “interesting” means that the function obeys some
nontrivial identities. As an example, for the (efficiently solvable) CSP corresponding
to linear equations over a ring R, the 3-ary function f(z,y,z) =2 —y + z is a poly-
morphism (capturing the fact that if v1, vo, v3 are solutions to a linear system, then so
is v1 —v2 +v3), and it obeys the so-called Mal’tsev identity f(z,y,y) = f(y,y,z) = x
for all z,y € R. Indeed, generalizing Gaussian elimination, any CSP with such a
Mal’tsev polymorphism is efficiently tractable [9, 8].

Recently, an exciting new direction of study has emerged in the rich backdrop
of the complexity dichotomy for CSPs. This concerns a vast generalization of the
CSP framework to the class of promise CSPs (PCSPs). In a PCSP, each constraint
comes in two forms: “strict” and “weak.” Given an instance of a PCSP, one must
distinguish between being able to satisfy all the strict constraints versus not being
able to satisfy all the weak constraints. (This is the decision version; in the search
version, given an instance with a promised assignment satisfying the strong form of
the constraints, one seeks an assignment satisfying the weak form of the constraints.)
A prime example of a PCSP is the approximate graph coloring problem, where one
seeks to color a graph using more colors than its chromatic number.

The formal study of PCSPs originated in [1] who classified the complexity of a
PCSP called (2 + €)-SAT. They further defined an extension of polymorphisms to
the promise setting and postulated that the structure of those polymorphisms might
govern the complexity of a PCSP. (This extension of polymorphisms to the promise
setting is quite natural, requiring that the operation map tuples obeying the strict
form of a constraint to a tuple satisfying its weak form.) Building on the impetus of
[1], Brakensiek and Guruswami systematically studied PCSPs under the polymorphic
lens and established promising links to the universal-algebraic framework developed
for CSPs [6, 7]. It emerged from these works that a rich enough family of poly-
morphisms leads to efficient algorithms, whereas severely limited polymorphisms are
a prescription for hardness. However, unlike for CSPs, there is no sharp transition
between these cases—the significant difficulty being that, unlike for CSPs, polymor-
phisms for PCSPs are not closed under composition and lack the rich algebraic struc-
ture of a clone (c.f., [4]). This nascent algebraic theory for PCSPs was lifted to a more
abstract level in [11, 2] and also led to concrete breakthroughs in approximate graph
coloring/homomorphisms [11, 17, 23]. In particular, while previous works [6, 7] fo-
cused on the actual form of the polymorphisms, the results of [11] reveal that it is not
the polymorphisms themselves but rather solely the identities they satisfy that cap-
ture the complexity of the associated PCSP, extending a similar phenomenon known
earlier for CSPs [5].

This work concerns the theme of designing algorithms for PCSPs based on a
rich enough family of polymorphisms. Our main result is that the decision version
of an arbitrary PCSP admitting an infinite family of symmetric polymorphisms—i.e.,
polymorphisms which are invariant under any permutation of inputs—is tractable (see
Theorem 3.2). Our result also extends to the case of block-symmetric polymorphisms
(see Theorem 4.1). That is, the coordinates can be partitioned into “blocks” such that
the function is invariant under permutations within each block. Notably, in the block-
symmetric case the algorithm is identical—only the analysis changes. Furthermore,
the number of blocks is irrelevant; the only assumption we need is that the minimum
block size can be made arbitrarily large. Our final result (Theorem 5.1) shows that
block-symmetry is not only sufficient but also necessary for our algorithm to work.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1234 BRAKENSIEK, GURUSWAMI, WROCHNA, AND ZIVNY

In fact, Theorem 5.1 also establishes that without loss of generality one can assume
that there are only two blocks of symmetric coordinates.

Further our algorithm is very simple—it checks if the canonical linear program-
ming (LP) relaxation of the PCSP is feasible, and if so, it further checks if a slight
adaptation of a canonical affine relazation is feasible. The algorithm outputs “sat-
isfiable” if both these relaxations are feasible. The polymorphisms are not used in
the algorithm itself and only enter the analysis. The analysis is short but subtle—if
we had symmetric polymorphisms of all arities then it is known that the basic LP
relaxation itself correctly decides satisfiability, as one can round the fractional solu-
tion to a satisfying assignment using the polymorphism after clearing denominators
of the fractional solution [18, 4]. If polymorphisms only exist of certain arities (e.g.,
all odd majorities), then the LP alone doesn’t suffice (e.g., [18]). We solve a linear
system over the integers corresponding to the affine relaxation which lets us adjust
the LP solution to match the arity at which a polymorphism exists. As a subtle twist,
the affine relaxation is not of the original PCSP, but rather a refinement of the CSP
which results from throwing out assignments to constraints which were ruled out by
the basic LP.

It should be pointed out that we only solve the decision version of the PCSP
and mot the search version. Unlike CSPs, for PCSP there is no known reduction
from search to decision, even for special cases like approximate graph coloring. Our
work might be indicative of the subtle relationship between the search and decision
problems for PCSPs.

We now compare our result here with the previous work [7] where an algorithm
was given to solve (the search version of) any PCSP that admits an infinite family
of structured symmetric polymorphisms. Examples of such structured families include
threshold and threshold-periodic polymorphisms. The value of a threshold polymor-
phism (for a Boolean PCSP) depends on whether the fraction of 1s in the input belongs
in a finite number of intervals. (A basic example consists of majority functions of odd
arities, which are polymorphisms for 2-SAT.) A threshold-periodic polymorphism can
have a periodic behavior depending on which interval the Hamming weight belongs
to—for example, it can be majority for relative weights in (1/3,2/3) and parity out-
side this interval. More generally, one can generalize to the non-Boolean case, as well
as for the block-symmetric case, via regional polymorphisms whose value depends
on the geometric region in which the vector of frequencies of the inputs to the poly-
morphisms lies. Due to this geometric interpretation, [7] assumes a fixed number of
blocks (corresponding to a fixed dimension), whereas our new algorithm and analysis
is independent of the number of blocks. The algorithm was a combination of solving
the LP relaxation (albeit over a special ring like Z[v/2] rather than the rationals)
and the affine relaxation over a large enough finite ring. The analysis relied on the
special structure of the polymorphisms (beyond their full symmetry). In contrast,
our result here is more general and only requires the polymorphism to be a symmet-
ric function—its exact specifics or structure do not matter. It is encouraging that
our methodology is consistent with the algebraic result in [11] that the symmetries
possessed by the polymorphisms capture the complexity of the PCSP.

Our result and methods have significance even for normal (nonpromise) CSPs.
For instance, we get a single unified algorithm to solve all nontrivial tractable cases of
Boolean CSPs in Schaefer’s classic dichotomy theorem [21], namely, 2-SAT, Horn-SAT
(or its dual), and Mod-2 Linear Equations. The two main techniques to solve CSPs
are local propagation based algorithms (which work for the so-called bounded-width
CSPs [3, 18], etc.) and Gaussian elimination (which is a global algorithm that works

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMBINED BLP AND AFFINE RELAXATION FOR PCSPs 1235

for linear equations). The major difficulty in proving the full CSP dichotomy was tack-
ling the complicated ways in which these two very different algorithms might need to
be interlaced to solve a general CSP. It is our hope that this work serves as an impetus
toward the potential discovery of a more modular CSP algorithm that incorporates
together LP or its extensions (like Sherali-Adams, or semidefinite programming) and
linear equation solving. In this light, it is encouraging that full symmetry of the poly-
morphisms, which is indeed a strong assumption, is not the limit of our techniques,
which also extend to the block-symmetric case.

To put this work in further context, except for [7] as mentioned previously, nearly
all works in the PCSP literature [1, 6, 14] focus primarily on the structure of the
relations. In particular, [6, 14] characterized the complexity of all Boolean symmet-
ric relations (rather than symmetric polymorphisms) which encompass many of the
known tractable cases of Boolean PCSP. As classified by [14], all the relevant tractable
polymorphisms are either symmetric functions or one special case of block-symmetric
known as alternative threshold (and variants). Thus, in the context of PCSPs, the
algorithm in this paper supersedes these previous works. See section 4 for further
discussion.

2. Notation. We let any finite set A or B denote a domain. A relation is a subset
R C AF for any positive integer k; we denote ar(R) := k. We define a signature T to
be a set of symbols such that each R € 7 has a positive integer arity ar(R).

A relational structure with signature 7, denoted by A := {R* C A*(®) : R € 7},
is an indexed set of relations over A. A homomorphism between structures A = {R* :
R e 7} and B = {RB: R € 7} with the same signature is a map o : A — B such
that o(RA) C RB for all R € 7 (where o is applied to a tuple componentwise).

Two relational structures for which there exists a homomorphism from the first
to the second is called a promise template and is denoted as (A, B).

2.1. PCSP: Decision and search. Consider a promise template (A, B) with
signature 7. An instance X of the PCSP(A,B) consists of a set of variables X :=
{x1,...,z,}, and a set of constraints ci,...,cp, where ¢; := (R;,27), where R; is a
symbol in 7 and Z7 is a tuple of arity ar(R;). We say that X is satisfiable in A if one
can assign to every variable x; (i € [n]) a value o(z;) in the domain A so that for every
constraint ¢; = (Rj,27) (j € [m]), the tuple o(z?) (with o applied componentwise) is
in Rf‘. Equivalently, X can be described as a relational structure with domain X and
relations RX = {z € X*(®): 3,1, ¢; = (R, 7)}; a satisfying assignment is then the
same as a homomorphism from X to A. If X is satisfiable in A, then it is satisfiable
in B (because the satisfying assignment can be composed with the homomorphism
from A to B).

We let PCSP-Decision(A, B) denote the decision problem of distinguishing in-
stances satisfiable in A from those unsatisfiable in B (with the promise that the
input instance falls into one of these two disjoint cases). We let PCSP-Search(A, B)
denote the search problem of finding an explicit homomorphism from X to B, with
the promise that a homomorphism from X to A exists.

2.2. Polymorphisms. A polymorphism of (A,B) of arity L € N is a map f :
ALY — B such that for all R € 7, R®B D f(R”,..., R?) where we define the latter

to be {(f(:cgl),...,ac(lL)),...,f(xizR),...,:Eéf()R))) sz 2 € RAY. In other

words, consider any AX*2" () matrix M, where each row is a satisfying assignment in
RA. Let y € B () be the result of applying f to each column of M. Then, y € RP.
We let Pol(A, B) denote the set of polymorphisms of (A, B) (of all arities).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1236 BRAKENSIEK, GURUSWAMI, WROCHNA, AND ZIVNY

A map f: A¥ — B is said to be symmetric if for all 7 € Sy, (the symmetric group
on L elements), f(z1,...,20) = f(Zr@)s - Tr(r))-

2.3. Basic LP and affine relaxation. As is well studied in the CSP literature
(e.g., [19, 22]), we consider the canonical LP relaxation of a CSP instance, often
referred to as the “Basic LP” or “BLP.” For our CSP instance X, we represent the
assignment X — A of a variable by a (rational) probability distribution of weights
{w;(a)}aeca summing to 1. We also have a probability distribution over the satisfying
assignments to each constraint, which we denote as p;(y), where j € [m] is the index
of the constraint and y € R}A is the potential assignment. Finally, the marginal
distribution of a variable z; in any constraint has to equal w;. Explicitly, the linear
constraints are as follows:

(2.1) w;(a) >0 for all ¢ € [n] and a € A,
(2.2) pi(y) >0 for all j € [m] and y € RJA,
(2.3) > wifa) =1 for all i € [n],
acA

(2.4) Z pi(y) =1 for all j € [m],

yeRA

N for all i € [n],a € A,j € [m]

(2.5) ZRA pi(y) = wia) with ; in 7.

yelt;

yli=a

Here y|; = a denotes that setting 27 = y sets x; = a (that is, if z; is the kth variable
of the tuple z7, then a = y;). We let LPg(X, A) denote the rational polytope of
solutions. By a theorem of [15] (c.f., [7]), we can efficiently find a relative interior
point in this polytope. In particular, at such a point, each coordinate is positive if
and only if it is positive at some point in the polytope.

In addition to the BLP, we also consider the affine relaxation of a PCSP. In
essence we solve the same linear system, but instead of enforcing each variable to be
a nonnegative rational, we enforce that it is an integer (possibly negative). This can
be solved in polynomial time via [16] (see also [7] for a more detailed discussion of
this approach). We let r;(a) € Z replace w;(a) for all a € A and ¢;(y) € Z replace
pi(y) € Q for all y € R;-X. Explicitly,

(2.6) Z ri(a) =1 for all ¢ € [n],
acA

(2.7) Z gi(y)=1 for all j € [m],
yER?

N for all i € [n],a € A,j € [m]

(2.8) Z 4;(y) =ri(a) with 2; in Z7.
yGR?
yli=a

We let Aff7(X, A) denote the integral lattice of solutions.

LFor our specialized LP, we do not need such a hammer. We can instead solve the LP repeatedly,
each time maximizing a different variable as the objective function—a similar idea appears in [6].
Averaging the results would then yield a solution such that each variable is positive if and only if it
is positive in some LP solution.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMBINED BLP AND AFFINE RELAXATION FOR PCSPs 1237

3. BLP+Affine algorithm and analysis for symmetric polymorphisms.
In the BLP+Affine algorithm, given an instance X of PCSP-Decision(A, B), we seek
to throw out any assignment to a constraint for which the LP determines to have
weight 0. That is, given a relative interior point (w,p) of LPg(X, A), we refine
Aff7(X, A) to Aff7,(X, A) by requiring r;(a) to be zero whenever w; (a) is and requiring
qi(y) to be zero whenever p;(y) is (by adding equations or just removing those variables
from equations defining Aff7(X, A)).

The algorithm is presented in Figure 1. Note it does not depend on B; it is only
relevant for the correctness proof.

DEFINITION 3.1. We say the BLP+Affine algorithm correctly solves PCSP-
Decision(A, B) if it accepts any instance X satisfiable in A and rejects any instance
unsatisfiable in B.

As stated in the introduction, both the algorithm and the proof are structured
similarly to those of [18] and [7]. Like in those works, the weights of the LP solution
and affine relaxation are used to construct a list of assignments which are plugged into
the relevant polymorphism. The novel contribution here is that a single argument can
cover any infinite symmetric family of polymorphisms.

THEOREM 3.2. Let (A, B) be a promise template (over any finite domain) such
that Pol(A,B) has symmetric polymorphisms of arbitrarily large arities. Then, the
BLP+Affine algorithm correctly solves PCSP-Decision(A, B).

Proof. If an instance X is satisfiable in A, then the BLP relaxation has a solution.
The refinement Aff/,(X, A) includes every possible assignment which is in the support
of some LP solution, including integral solutions. Thus it is nonempty, and therefore
the algorithm accepts.

Conversely, suppose the algorithm accepts, meaning both LPg(X,A) and
Aff;,(X, A) have solutions (w,p) over Q>o and (r,q) over Z. The latter is a solu-
tion of Affz(X, A) such that

wi(a) =0 = r;(a) for i € [n],a € A and

=0
pi(y) =0 = ¢q;(y) =0 forje [m},yeRﬁ.

We claim X is satisfiable in B. Among all the coordinates in the LP solution—the
w’s and p’s—Ilet £ be the least common denominator of these rational numbers. Let
M be the maximum absolute value of any integer which appears in the affine solution
(both the variable weights r and the constraint weights ¢). Let f : AY — B be a
symmetric polymorphism of arity L > M¢?. Now write L = uf + v where u € Z>g
and v € {0,...,¢ —1}. Note that u > M.

For each i € [n] and a € A, let

Wi(a) := wlw;(a) 4+ vr;(a).

1. Find a relative interior point in LPg(X, A). If no solution exists, Reject.
2. Refine Affz(X,A) to Aff7,(X, A) by throwing out assignments to con-
straints which have weight 0 according to the relative interior point.

3. If Aff;,(X, A) is empty, Reject. Else, Accept.

Fic. 1. BLP+Affine algorithm.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1238 BRAKENSIEK, GURUSWAMI, WROCHNA, AND ZIVNY

This is an integer by choice of £. For a fixed ¢ € [n], note that by (2.3) and (2.6)

Z W;(a) = Z wlw;(a) +vri(a) =ul +v = L.

a€A a€A

Also, for fixed i € [n] and a € A, either w;(a) = 0, which implies that r;(a) = 0 by
the refinement, so W;(a) = 0. Otherwise, w;(a) > 1/¢, so

Wi(a) > wl(1/) + v(—M) > Mt — (M = 0.

That is, W;(a) for a € A are nonnegative integers which sum to L. We claim that the
assignment

Xi=f(.., Ay.o.ya ...)

Wi (a) times Va€A

to x; defines a satisfying assignment of X in B. (Since f is symmetric, only the
quantity of each a € A in the input matters.) To verify it is indeed satisfying,
consider a constraint in (R;,z7) (with j € [m]) and assume without loss of generality
it is on variables 27 = (z1,...,z;). We claim (Xi,..., X}) € R?.

For every valid assignment y € Rf to that constraint in A, define

P;(y) == ulp;(y) + vq;(y)-

By similar logic as before, these are nonnegative integers that sum to 1. Indeed, by
(2.4) and (2.7),

Y Py =ul Y pily)+v Y, gy =L

yeRA yERA yERD
Moreover, either p;(y) = ¢;(y) = 0, implying P;(y) =0, or
P;(y) > ub(1/€) + v(—M) > M{ — (M = 0.
Further note that by (2.5) and (2.8),

Wi(a) = wbw;(a) + vri(a)

=ul Z pi(y) +v Z ¢ (y)

yGRJA yeRf
yli=a yli=a
(3.1) = > Py
yERf
yli=a

For each j € [m] consider a matrix M (j) € AX** where exactly P;(y) of the rows
are equal to y. For all i € [k] and a € A, the number of times that a appears in column
i is precisely W;(a) by (3.1). Thus, f applied to the columns is precisely (X7, ..., Xg).
Since f is a polymorphism, this implies (X1,...,X}) € R;-?’. This concludes the proof
that assigning the value X; to each variable x; (for i € [n]) satisfies X in B and hence
that the algorithm is correct. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMBINED BLP AND AFFINE RELAXATION FOR PCSPs 1239

Remark. Another algorithm which works is to solve LP; s, (X, A) (that is, the

constrained variables are over nonnegative elements of the ring Z[v/2]) using the al-
gorithm from [7], instead of LPg(X, A). In this case, steps 2 and 3 can be omitted.
To sketch why this works, it suffices to justify why solving LPZ[NG (X, A) also solves

LPg(X,A) and Aff},(X, A). For each assigned value of the form a4 bv/2 in a relative
interior solution to LPZ[\@] (X, A), consider changing this variable to a+bn, where 7 is

a sufficiently good rational approximation of v/2. Such an assignment is in the relative
interior of LPg(X, A) as any inequality nontrivially involving 7, in particular (2.1),
(2.2), is not tight due to v/2 being irrational. To see why Affz(X, A) is also satisfied,
replace each assigned value of a + bv/2 with a. By inspection, this assignment (when
changing w;’s to r;’s and p;’s to g;’s) satisfies Affz(X, A). It also satisfies Aff7(X, A)
because a + bv/2 = 0 with a and b integral implies a = 0.

4. Extension of analysis to block symmetric polymorphisms. We say
that amap f : AY — B is block-symmetric if there exists a partition of the coordinates
of f into blocks By U---U By, = [L] such that f is permutation-invariant within
each coordinate block B;. We define the width of f to be the minimum size of any
block.? A natural example of a block symmetric polymorphism with nontrivial width
is alternating threshold first studied in [6]

AT (21, ..., o) = 1xy —x2 + 23 — - £ ap > 1].

In this case, the blocks are the odd and even coordinates. This polymorphism arises
in the context of A corresponding to 1-in-3 SAT and B corresponding to NAE-SAT.
Recent work shows that this PCSP, although tractable and simple to state, is not
algebraically reducible (via so-called pp-constructions) to any tractable finite-domain
CSP [2].

We now show an analogue of Theorem 3.2 for block-symmetric polymorphisms.
Remarkably, the algorithm is identical to the one for ordinary symmetric polymor-
phisms and is independent of the number of blocks. In particular, it could be that
the PCSP has finitely many polymorphisms for any particular number of blocks, yet
has infinitely many block-symmetric polymorphisms of increasing width.

As discussed in [7, 14], nearly all known tractable Boolean PCSPs have polymor-
phisms which are either symmetric (such as threshold functions) or block-symmetric
(such as alternating threshold). Thus, except for those PCSPs which are “homomor-
phic relaxations”® of a tractable (P)CSP (c.f., [7, 2]), the algorithm presented here
supersedes those works in the context of decision PCSP.

THEOREM 4.1. Let (A, B) be a promise template (over any finite domain) such
that Pol(A,B) has block-symmetric polymorphisms of arbitrarily large width. Then,
the BLP+Affine algorithm correctly solves PCSP-Decision(A, B).

2Note that a function f might have different partitions into symmetric blocks; we define the

width to be the maximum width over all such partitions. In particular, every f : AY — B is
block-symmetric with width at least 1. Finding the exact width or an appropriate partition into
blocks is nontrivial. However, we avoid computing or evaluating f altogether by only considering
decision problems; see section 6 for a discussion of search problems.

3 A homomorphic relaxation of a PCSP(A, B) is another PCSP(C, D) such that C has a homo-
morphism to A and B to D. In this case, PCSP(C, D) trivially reduces to PCSP(A,B). In general,
if (C, D) is a Boolean template that is a homomorphic relaxation of a tractable non-Boolean (P)CSP
template, then this is the only algorithm we know for PCSP(C, D). We leave as an open question
finding an explicit Boolean PCSP which is a homomorphic relaxation of a non-Boolean CSP but not
correctly solvable by our BLP+Affine algorithm.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1240 BRAKENSIEK, GURUSWAMI, WROCHNA, AND ZIVNY

Proof. The proof proceeds much like that of Theorem 3.2. As before, we know
that if X is satisfiable in A, then the algorithm rejects. We seek to show that if the
algorithm accepts, then X is satisfiable in B.

Again, let £ be the least common denominator of all coordinates in the LP solution.
Let M be the maximum absolute value of any integer which appears in the affine
solution. Let f : AP1YUBx 5 B be a block-symmetric polymorphism such that each
block By, with b € [k], has size at least M¢?. Let L, = |B,|. Similar to before, for
all b € [k], write Ly = upl + vp where up € Z>o and v € {0,...,¢ — 1}. Note that

We seek to show there exists a homomorphism from X to B. For each b € [k],
i €[n], and a € A, let

Wy.i(a) == uplw;(a) + vpri(a).

For a fixed b € [k] and i € [n], by similar logic to the proof of Theorem 3.2, we
have that W}, ;(a) are nonnegative integers for all a € A and

Z vai (a) = Z (ubgwi (a) + vpT; (a)) =upl + vy = Ly.

acA acA

We now claim that the assignment

Xii=f(ory Qyeeiy@ yuiiyiinyii, Qyeoya ..l)
——— ———
Wi,i(a) times W.,i(a) times
L4 total L, total

to x; defines a satifying assigment of X in B. To verify this, consider a constraint
in (R;,z7) (with j € [m]) and assume without loss of generality it is on variables
T/ = (x1,...,21). We claim (Xi,...,X;) € RP. For all b € [x] and assignments
Yy € Rf‘ define

Py j(y) == uplp;(y) + vbq;(y)-

By similar logic as previously, P, ;(y) are nonnegative integers and by (2.4) and (2.7),

Z Py j(y) = upl Z pi(y) + vp Z qj(y) = Ly.

yERM yERM yeERM
Further note that by (2.5) and (2.8) for i € [n],a € A, and j € [m]

Wyi(a) =wl > pi(y) +v Y a;(y)

yeR} yeRM
y\i:a yli:a
(4.1) =Y Py
yERf
yli=a

For each j € [m] consider a matrix M(j) € AX** where exactly P, ;(y) of the
rows are equal to y in the rows indexed by block By. For all ¢ € [k] and a € A, the
number of times that a appears in column ¢ and row-block B, is precisely Wy ;(a)
by (4.1). Thus, f applied to the columns is precisely (Xi,...,Xx). Since f is a
polymorphism, this implies (X1,...,X;) € RP. This concludes the proof that the
algorithm is correct. 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMBINED BLP AND AFFINE RELAXATION FOR PCSPs 1241

5. Characterizing the algorithm’s power. In this section, we characterize
the power of the BLP+Affine algorithm from Figure 1 exactly. Recall, we denote the
domains of relational structures A, B, X as A, B, X.

THEOREM 5.1. Let (A,B) be a promise template. The following are equivalent:
e BLP+Affine algorithm correctly solves PCSP-Decision(A, B).
e Pol(A,B) has block-symmetric polymorphisms of arbitrarily high width.
e For every L € N, Pol(A,B) has a block-symmetric polymorphism of arity
2L +1 with two symmetric blocks of variables of size L and L+1, respectively.

We need a few definitions and fundamental facts from [11, 2]. For an L-ary function
f: A — B and a function 7: [L] — [L'], the minor of f obtained from 7 is the
function ¢g: AY — B defined as

(5.1) g(ml,...,xy) = f(xw(l),...,xw(L)).

We write g = f/r. Thus sets of polymorphisms Pol(A,B) are equipped with an
operation (-)/r which maps L-ary polymorphisms to L’-ary polymorphisms (for every
7: [L] — [L']). We consider such a structure more abstractly, allowing any objects to
play the role of polymorphisms.

DEFINITION 5.2. A minion M consists of sets M) for L € N and functions
() jm: MEB) — MED) for all functions w: [L] — [L'], such that compositions agree:
(f/x)jr = frrom for m: [L] — [L'], 7: [L'] — [L"], and f;iqa = f. We write M for the
disjoint union of M"), L € N, and ar(f) = L for f € M), A minion homomor-
phism &: M — N s a function which preserves arity and minors: ar(£(f)) = ar(f)
and §(f/x) = &(f) /= for all functions 7 [L] — [L'].

Note that the objects in a minion do not have to be functions, and the set M%)
does not have to be finite, though this is true for minions Pol(A, B) with finite A, B.
Similarly the operations (-),. are not necessarily defined by (5.1), though this will
always be the case when elements of a minion f € M) are L-ary function. As an
important example, consider the minion Q.,,, of convex combination functions, i.e.,
functions QF — Q of the form wix; + --- + wrzy for ZlL w; = 1, w; € Q>p, with
(+) /= defined by (5.1). We can describe the same minion more concisely by identifying
a convex L-ary function with its L-tuple of coefficients (wi,...,wr). That is, the
“L-ary objects” of the minion Q.,,, can be equivalently defined as distributions on
1z,

Q) ={w: [L] = Qx0 | Yieqpwli) =1},

and for 7: [L] — [L'] and w € ol5), one can define W/r as

W (i) == w(n (i) = Yjen1pyw(i) forie[L].

This minion characterizes the power of the BLP relaxation in the sense that BLP
correctly solves PCSP-Decision(A, B) (i.e., feasibility of LPg(X, A) implies X is sat-
isfiable in B for all instances X) if and only if Q.opn, admits a minion homomorphism
to Pol(A,B). This was shown by Barto et al. [2, Theorem 7.9]. Our proof straight-
forwardly extends this part of the argument.

We first define the minion that plays the role of Q.o for the BLP+Affine relax-
ation. It assigns two coefficients to every coordinate i € [L].

DEFINITION 5.3. The minion Mprpiag is defined as follows: for L € N, its
“L-ary objects” are

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1242 BRAKENSIEK, GURUSWAMI, WROCHNA, AND ZIVNY

MG ag = {(w,7) | w: [L] = Qso, Yiem wli) =1,
r: [L] = Z, e (i) =1
vie[L} w(z) =0 = 7”(7,) =0 }

Equivalently, these could be seen as a function from [L] to {(a,b) € Q¢ X Z : a =
0 = b=0}.

For 7. [L] — [L'] and (w,r) € M](3LL?P+AH, we define the minor (w,r)/r as (w',r'),
where

w' (i) = w(r @) = X ey w(),
(i) = r(r (i), forie[L].

It is easy to check this indeed defines a minion (the w(i) = 0 = r(i) =
0 condition is preserved when taking a minor and composition of minors works as

expected). One could also think of a pair (w,r) € M](?,LL)P +ag as an L-ary function on
Q% F((5) o (52)) = (R10m).
The minion Mprpsag characterizes the BLP+Affine relaxation as follows.
LEMMA 5.4. Let (A, B) be a promise template. The following are equivalent:

e BLP+Affine correctly solves PCSP-Decision(A, B) (Definition 3.1).
o Mprpiag admits a minion homomorphism to Pol(A,B).

As the proof of this lemma directly extends the arguments by Barto et al. [2], we
refer the reader to Appendix A for an exposition of it.

We now reinterpret this last condition in terms of concrete polymorphisms. One
direction is simple.

LEMMA 5.5. Suppose Mprpiag has a minion homomorphism to some minion
N =Pol(A,B). Then for every L € N, N contains a block-symmetric polymorphism
of arity 2L + 1 with two blocks of size L and L + 1.

(2L+1)

Proof. Given L € N, consider the following object (w,7) € Mpp, g take
w(i) = 57 and r(i) == (=1)""! for i = 1,...,2L + 1. For every permutation

m: [2L + 1] — [2L + 1] which maps odd coordinates to odd coordinates (and even
to even), (w,r)/r = (w,r). Thus the image of (w,r) in N has the same property;
i.e., it has arity 2L + 1, and it is symmetric on odd coordinates as well as on even
coordinates. |

We remark the above lemma in fact applies to any minion A/, not only those
of the form Pol(A,B); one can define f € N) to be block-symmetric with blocks
By U---UBy, = [L] if f/r = f holds for all permutations 7 of [L] that preserve the
blocks; the proof then applies without change.

The idea for the other direction is essentially the same as in the proof of Theo-
rem 3.2 and 4.1. We apply it to construct a minion homomorphism from every finite
subset of Mprpyag and use a compactness argument.

LEMMA 5.6. Suppose the minion N' = Pol(A,B) (for A,B finite) contains block-
symmetric polymorphisms of arbitrarily high width. Then Mprpiag admits a minion
homomorphism to N.

Proof. To avoid cumbersome notation we present the proof only for the case of
one block; i.e., we assume that A contains symmetric polymorphisms of arbitrarily
high arity. This extends to more blocks just as Theorem 4.1 extends Theorem 3.2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMBINED BLP AND AFFINE RELAXATION FOR PCSPs 1243

We define finite subsets of Mprpyag as follows. For L, ¢, M € N, let M&LJ&[be the
subset of those (w,r) € M](3LL)P+AH such that fw(i) € Z for i € [L] and)", |r(i)| < M.

Observe that MéL]\)/[is a finite set (since the numbers fw(i) are L nonnegative integers
summing to ¢ and the numbers r(i) are L integers between —M and M). Denote
Mo i=Upen MéL]\)/I

For fixed ¢, M, we define a minion homomorphism from My s to N as follows.
Let f € N be a function of some arity L* > M/¢?. Let u,v € N be numbers such that
L*=wl+v,ve{0,...,£—1}. Then u > M.

Take L € N and (w,r) € Mgia[. For i € [L], the number W; := wlw(i) + vr(i) is
a nonnegative integer. Since), W; = wl +v = L*, we can map (w,r) to the L-ary
minor g := f(x1,x1,21,...,2,2r) of the L*-ary function f where z; is repeated W;
times, for ¢ € [L]. We claim that this map is a minion homomorphism from M, s to
N (in fact to the subminion of minors of f). Indeed, for : [L] — [L'], consider the
minor g, of g identifying x; for j € 7~!(i) into a single variable z; (for i € [L']). We
have that g/, is also a minor of f where z; is repeated Zjer—l(i) W; times. That is,
z; is repeated wlw(r~1(i)) + vr(m~1(i)) times. By symmetry of f the ordering does
not matter; thus g/, (the minor of the image of f) is the same as the image of the
minor f.

We conclude with a compactness argument similar to that of Remark 7.13 in
[2]. For k € N, let My == U, M,(C,L)k Then My is finite, My C My41 (because
k! w(i) € Z implies (k +1)!-w(i) € Z) and Uyey Mr = Mprpsag. Consider the
possible minion homomorphisms from M, to A/, or more precisely, restrictions of
homomorphisms obtained above to My, (since My, itself is technically not a minion).
There are only finitely many possible such restrictions M; — N, because M, is
finite, the arities of images in A/ are bounded, and hence the number of possible
images in NV is also finite. Consider an infinite tree with restrictions from any My
to A as nodes, the trivial map from M, = () being the root, and the parent of a
function Myi1 — N being its restriction to My. This is an infinite tree (because
for each k we have some minion homomorphism from a superset of My, to N') that
is connected (because everyone is connected through its ancestors to the root) and
finitely branching (because there are only finitely many restrictions My — A/, for any
fixed k). Therefore, by Kénig’s lemma, the tree contains an infinite path (x: My —
N of homomorphisms that are restrictions of each other. Their union is then a
homomorphism from (J, .y Mk = MsLpiag to N. O

(We remark the above proof in fact applies to any minion N, assuming N (%) is
finite for every L.) Lemmas 5.4, 5.5, and 5.6 conclude the proof of Theorem 5.1.

6. Concluding thoughts. We conclude with a few natural directions of future
inquiry raised by this work.

Inspecting the proofs of Theorems 3.2 and 4.1, in order to yield a search algorithm
(and not just a decision algorithm), it would suffice to compute

Xi=f(.., ay...,a ,...)
———
Wi(a) times

for some block-symmetric polymorphism f and a fixed partition into blocks of size
at least L, for an integer L which depends polynomially on the least common de-
nominator of rational numbers in the LP solution and the maximum absolute value
of integers in the affine solution. In previous work [7], Brakensiek and Guruswami

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1244 BRAKENSIEK, GURUSWAMI, WROCHNA, AND ZIVNY

circumvented this problem by assuming that f has special structure (such as being
a threshold function, etc.). Even then, we often only assumed that you had oracle
access to the structure of f. Thus, except for some simple cases studied in the paper,
truly polynomial-time search algorithms remain elusive. Perhaps one could hope for a
search algorithm like the decision algorithm presented in this paper which is oblivious
to the underlying polymorphisms (as long as they are symmetric/block-symmetric).

Question. Is there an “oblivious” polynomial-time algorithm for the search
version of PCSPs with infinitely many symmetric polymorphisms?

We note that an oblivious polynomial-time algorithm is also not known for the
search version of PCSPs with symmetric polymorphisms of all arities (which cap-
ture the power of BLP [2, Theorem 7.9]) and for the search version of PCSPs with
alternating polymorphisms of all odd arities (which capture the power of the affine
relaxation [2, Theorem 7.19]).

Otherwise, one could hope to prove a “structure theorem” that every PCSP with
infinitely many symmetric polymorphisms also has an infinite threshold-periodic fam-
ily. As [7] shows, such polymorphisms can get exceedingly complicated, suggesting
that such a characterization may only be possible in the Boolean case.

Question. Does every Boolean PCSP with infinitely many symmetric polymor-
phisms have an infinite threshold-periodic family?

Even without a structure theorem, one could perhaps hope to compute the per-
tinent values of f “on the fly,” but this seems difficult in our current formulation as
the arity of f could be exponentially large in the input size!

While Theorem 5.1 characterizes the power of the BLP+Affine algorithm, it is
still worthwhile to ask how this compares to other classes of templates, in particular
those studied for nonpromise CSPs. The following example of a simple template not
solved by the BLP+Affine relaxation was communicated to us by Jakub Oprsal.

Ezample 6.1. Let A be the disjoint union of a directed 2-cycle {0,1} and a di-
rected 3-cycle {0’,1’,2'}. Then A is tractable template (i.e., PCSP(A, A) is solvable
in polynomial time, in fact Pol(A, A) has cyclic polymorphisms of every prime arity
p > 3) but has no nontrivial block-symmetric polymorphisms.

Proof. To see it admits no block-symmetric polymorphisms f of width greater
than one, observe that every such width can be represented as 2n + 3n’ for some
n,n’ € N, hence every block can be filled with n copies of values 0,1 and n’ copies of
0’,1,2', giving some input v to f. But f should give the same output on the input
%1 consisting of n copies of 1,0 and n’ copies of 1/,2/,0’. Since (v;, fu?l) is an arc of
A for every i and since f is a polymorphism, (f(v), f(9®!)) would be a loop in A, a
contradiction.

We now observe that PCSP(A, A) has a straightforward polynomial time algo-
rithm. For each connected component of constraints, the variables must map to either
{0,1} or {0/,1’,2'}. The first case is equivalent to testing if the graph of constraints
is bipartite. The latter can be done by a breath-first search which checks that all
directed cycles have a length that is a multiple of 3.]

Thus the condition of having block-symmetric polymorphisms of high width is not
preserved under disjoint union, even though tractability is. We also know that since
Pol(A, A) has a majority polymorphism (simply let f(z,y, z) output z if x = y and z
otherwise), PCSP(A, A) can be solved in polynomial time via the (2, 3)-consistency
algorithm, 3-rounds of Sherali-Adams, or the canonical SDP relaxation (see also [3, 22,
4]). Informally, these relaxations ensure that there are locally consistent assignments
to every (constant-sized) subset of variables. This consistency is quite powerful. For

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMBINED BLP AND AFFINE RELAXATION FOR PCSPs 1245

instance, 2-SAT can be solved by the BLP+Affine relaxation or 3 rounds of Sherali—
Adams but not the BLP by itself. This suggests the tantalizing possibility that an
analogous hierarchy could provide a uniform algorithm for all tractable nonpromise
CSPs.

Question. Which (decision) PCSPs can be solved via constantly many rounds
of the Sherali-Adams hierarchy for the BLP+Affine relaxation? Does this capture all
tractable nonpromise CSPs?

Appendix A. From relaxations to minion homomorphisms. In this
appendix, we recall the definition of the minion Q.,,, and prove Lemma 5.4 from sec-
tion 5. We do this by explaining how free structures relate BLP and Affine relaxations
to minions. We carry over the notation from section 5.

DEFINITION A.1. The minion Qcony 1$ defined as follows: for L € N, the “L-ary
object” of the minion is

QEIoJr)w = { w: [L} - QZO | ZiE[L] w(z) =1 }7
form: [L] = [L'] and w € O, we define the minor w/ of w as

wyr (i) = w(r™ (i) = X jen—1(s) w()-

Let us describe how Q.,n, characterizes the power of the BLP relaxation; the
case of BLP+Affine will be entirely analogous. Recall that for an instance X of
PCSP(A,B), a solution to the BLP relaxation assigns to each variable ¢ € X a
distribution w;: A — Qx¢ with), w;(a) = 1. It also assigns to each constraint j
of X a distribution over satisfying assignments p; : R* — Qx>0 with sum 1. Finally,
the relaxation requires that for a variable ¢ in a constraint j of X, the assignment
of a € A to i has value w;(a) = >_, p;(y), where the sum runs over all satisfying
assignments y € R of the constraint where the variable i takes value a.

In other words, w;(a) = p;(7~!(a)), where 7 = 7;_,;: R* — A maps a satisfying
assignment y to the value of variable ¢ in constraint j. That is, w;, as an object of
QL‘;‘LM is required to be the minor of p; € Qlcf:i obtained from w. Thus the BLP

relaxation of X is satisfiable if and only if one can assign some w; € Q‘c’;‘,lw to each

variable ¢ € X so that the following holds for every constraint j of X: there is a
A

p; € QLI(?”J such that for all variables ¢ in j, w; = p;/mj—;. This can be phrased

as the existence of a homomorphism from X to the free structure Fg_,,,, defined as

follows.

DEFINITION A.2. For a relational structure A and a minion M, the free struc-
ture Fo((A) is a template with domain MIA! (potentially infinite) and with the same
signature as A. For each relation R of arity k in A, there is a relation RF of the
same arity in Fa(A) defined as follows: wy, ..., w, € MUAD are in the relation R¥
if there is some p € MUBAD such that for each i € [k], w; = p;r,. Here m;: RA - A
maps y € RA C A* to its ith coordinate.

The above discussion shows the following.

Observation A.3. The BLP relaxation of (X, A) has a solution if and only if X
is satisfiable in Fg_,, (A).

Just as in Definition 3.1, we say that BLP correctly solves PCSP-Decision(A, B)
if for every instance X, feasibility of the LPg(X, A) implies satisfiability of X in B.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1246 BRAKENSIEK, GURUSWAMI, WROCHNA, AND ZIVNY

(Note the other direction is always trivially true: if X is satisfiable in A, then the
relaxation LPg(X, A) has a solution). Let us write X — A if there exists a ho-
momorphism from X to A (i.e., a satisfying assignment); we can now restate the
definition.

Observation A.4. Let (A, B) be a promise template. The following are equivalent;:
e BLP correctly solves PCSP-Decision(A, B);
e for every instance X, X — Fg_ (A) implies X — B.

Entirely analogously, we can restate what it means for BLP+Affine to solve a PCSP
(Definition 3.1) by using the minion Mprpag (Definition 5.3).

PROPOSITION A.5. Let (A,B) be a promise template. The following are equiva-
lent:
e BLP+Affine correctly solves PCSP-Decision(A, B);
o for every instance X, X = F gy p, 4 (A) implies X — B.

The resulting condition can be simplified by a standard compactness argument.
That is, we use the following straightforward generalization of the de Bruijn—Erddés
theorem (see, e.g., [12, Theorem 8.1.3] for a discussion and short proofs, [20] for
general relational structures).

LEMMA A.6 (compactness for structures). Let F, B be relational structures with
F infinite and B finite. If every finite induced substructure of F admits a homomor-
phism to B, then so does F.

That is, for a promise template (A,B) and any minion M, the following are
equivalent:
e for every instance X, X — F((A) implies X — B;
A fundamental property of free structures is that the latter condition is equivalent
to the existence of a minion homomorphism, as proved by Barto et al. [2, Lemma 4.4].

LEMMA A.7 ([2]). Let (A,B) be a promise template, and let M be any minion.
The following are equivalent:
o [y, (A) — B;
e there exists a minion homomorphism from M to Pol(A,B).

Altogether, this shows that BLP+Affine solves PCSP(A,B) if and only if
Mprpiag admits a minion homomorphism to Pol(A,B). This concludes the proof
of Lemma 5.4 in section 5.

We remark that Barto et al. [2, Theorem 7.9] used the same argument to charac-
terize the power of BLP for PCSPs.

THEOREM A.8 ([2]). Let (A,B) be a promise template. The following are equiv-
alent:
BLP solves PCSP(A,B) (as in Definition 3.1),
forallX, X —=Fgq,. . (A) = X—B,
Fo.,..(A) = B,
Qconv admits a minion homomorphism to Pol(A,B),
Pol(A,B) contains symmetric polymorphisms of every arity.

Our argument thus only differs in the equivalence of the last two bullets, an
analogue of which is proved in section 5. Finally, let us note that in [2, Theorem 7.19],
the power of the Affine relaxation alone was similarly characterized by the minion

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

COMBINED BLP AND AFFINE RELAXATION FOR PCSPs 1247

Zat, defined analogously to Qeony, except with integer coefficients (not necessarily
nonnegative): the L-ary objects are r: [L] — Z such that >, 7(i) = 1.
Acknowledgments. We thank Libor Barto, Andrei Krokhin, and Jakub Oprsal

for useful comments and encouragement. We also thank anonymous reviewers for
many helpful comments.

M.

M.

R.

A.

REFERENCES

. AUSTRIN, V. GURUSWAMI, AND J. HASTAD, (2+(€))-Sat Is NP-hard, SIAM J. Comput., 46

(2017), pp. 1554-1573, https://doi.org/10.1137/15M1006507.

. BARTO, J. BULIN, A. KROKHIN, AND J. OPRSAL, Algebraic Approach to Promise Constraint

Satisfaction, preprint, arXiv:1811.00970 [cs, math], 2019.

. BARTO AND M. Ko0zIK, Constraint satisfaction problems solvable by local consistency meth-

ods, J. ACM, 61 (2014), pp. 3:1-3:19, https://doi.org/10.1145/2556646.

. BArRTO, A. KROKHIN, AND R. WILLARD, Polymorphisms, and How to Use Them, Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany,
2017, https://doi.org/10.4230/dfu.vol7.15301.1.

. BARTO, J. OPRSAL, AND M. PINSKER, The wonderland of reflections, Israel J. Math., 223

(2018), pp. 363-398, https://doi.org/10.1007/s11856-017-1621-9.

. BRAKENSIEK AND V. GURUSWAMI, Promise constraint satisfaction: Structure theory and a

symmetric boolean dichotomy, in Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, A. Czumaj, ed., STAM, Philadelphia, 2018, pp. 1782-1801, https://doi.org/10.1137/
1.9781611975031.117.

. BRAKENSIEK AND V. GURUSWAMI, An algorithmic blend of LPs and ring equations for prom-

ise CSPs, in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’19, STAM, Philadelphia, 2019, pp. 436-455.

. BurLaTov AND V. DALMAU, A Simple Algorithm for Mal’tsev Constraints, STAM J. Comput.,

36 (2006), pp. 1627, https://doi.org/10.1137/050628957.

A. BurATOov, Mal’tsev Constraints are Tractable, in Proceedings of the Electronic Collo-
quium on Computational Complexity (ECCC), 2002.

A. Buratov, A Dichotomy Theorem for Nonuniform CSPs, in Proceedings of the 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, C. Umans, ed., IEEE Computer Society, 2017, pp. 319—
330, https://doi.org/10.1109/FOCS.2017.37.

. BuriN, A. KROKHIN, AND J. OPRSAL, Algebraic Approach to Promise Constraint Satisfac-

tion, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2019, ACM, New York, 2019, pp. 602-613, https://doi.org/10.1145/3313276.
3316300.

DiIESTEL, Graph Theory, Springer-Verlag, New York, 2016.

FEDER AND M. Y. VARDI, The Computational Structure of Monotone Monadic SNP and
Constraint Satisfaction: A Study through Datalog and Group Theory, STAM J. Comput.,
28 (1998), pp. 57-104, https://doi.org/10.1137/S0097539794266766.

Ficak, M. Kozik, M. OLSAK, AND S. STANKIEWICZ, Dichotomy for Symmetric Bool-
ean PCSPs, in 46th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2019), C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, eds.,
Leibniz International Proceedings in Informatics (LIPIcs 132), Dagstuhl, Germany, 2019,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, pp. 57:1-57:12, https://doi.org/10.
4230/LIPIcs.ICALP.2019.57.

GROTSCHEL, L. LOVASz, AND A. SCHRIJVER, Geometric Algorithms and Combinatorial
Optimization, vol. 2, Springer Science & Business Media, New York, 1993.

KANNAN AND A. BACHEM, Polynomial Algorithms for Computing the Smith and Hermite
Normal Forms of an Integer Matriz, SIAM J. Comput., 8 (1979), pp. 499-507, https:
//doi.org/10.1137/0208040.

KROKHIN AND J. OPRSAL, The complexity of 3-colouring H-colourable graphs, in Proceedings
of the 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS’19),
IEEE, 2019.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1137/15M1006507
https://arxiv.org/abs/1811.00970
https://doi.org/10.1145/2556646
https://doi.org/10.4230/dfu.vol7.15301.1
https://doi.org/10.1007/s11856-017-1621-9
https://doi.org/10.1137/1.9781611975031.117
https://doi.org/10.1137/1.9781611975031.117
https://doi.org/10.1137/050628957
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1145/3313276.3316300
https://doi.org/10.1145/3313276.3316300
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://doi.org/10.1137/0208040
https://doi.org/10.1137/0208040

Downloaded 12/28/20 to 128.2.27.86. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1248 BRAKENSIEK, GURUSWAMI, WROCHNA, AND ZIVNY

(18]

(21]

(22]

23]

24]

G. Kun, R. O’DONNELL, S. TAMAKI, Y. YOSHIDA, AND Y. ZHOU, Linear programming, width-
1 CSPs, and robust satisfaction, in Innovations in Theoretical Computer Science 2012,
January, 8-10, 2012, S. Goldwasser, ed., ACM, Cambridge, 2012, pp. 484-495, https://doi.
org/10.1145/2090236.2090274.

P. RAGHAVENDRA AND D. STEURER, How to Round Any CSP, in Proceedings of the 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, Oct. 2009, pp. 586—594,
https://doi.org/10.1109/FOCS.2009.74.

D. RORABAUGH, C. TARDIF, AND D. L. WEHLAU, Logical compactness and constraint sat-
isfaction problems, Log. Methods Comput. Sci., 13 (2017), https://doi.org/10.23638/
LMCS-13(1:1)2017.

T. J. SCHAEFER, The complexity of satisfiability problems, in Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing, STOC ’78, ACM, 1978, pp. 216-226, https:
//doi.org/10.1145/800133.804350.

J. THAPPER AND S. ZIVNY, The power of Sherali-Adams relazations for general-valued CSPs,
SIAM J. Comput., 46 (2017), pp. 1241-1279, https://doi.org/10.1137/16M1079245.

M. WROCHNA AND S. ZIVNY, Improved hardness for H-colourings of G-colourable graphs,
in Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’20), SIAM, Philadelphia, 2020, pp. 1426-1435, https://doi.org/10.1137/1.
9781611975994.86.

D. ZHuk, A proof of CSP dichotomy conjecture, in 58th IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2017, October 15-17, 2017, C. Umans, ed., IEEE Com-
puter Society, Berkeley, CA, 2017, pp. 331-342, https://doi.org/10.1109/FOCS.2017.38.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.1145/2090236.2090274
https://doi.org/10.1145/2090236.2090274
https://doi.org/10.1109/FOCS.2009.74
https://doi.org/10.23638/LMCS-13(1:1)2017
https://doi.org/10.23638/LMCS-13(1:1)2017
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://doi.org/10.1137/16M1079245
https://doi.org/10.1137/1.9781611975994.86
https://doi.org/10.1137/1.9781611975994.86
https://doi.org/10.1109/FOCS.2017.38

	Introduction
	Notation
	PCSP: Decision and search
	Polymorphisms
	Basic LP and affine relaxation

	BLP+Affine algorithm and analysis for symmetric polymorphisms
	Extension of analysis to block symmetric polymorphisms
	Characterizing the algorithm's power
	Concluding thoughts
	Appendix A. From relaxations to minion homomorphisms
	Acknowledgments
	References

