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Clustering and α-capture reaction rate from ab initio symmetry-adapted descriptions of 20Ne
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We introduce a new framework for studying clustering and for calculating α partial widths using ab initio
wave functions. We demonstrate the formalism for 20Ne, by calculating the overlap between the 16O + α cluster
configuration and states in 20Ne computed in the ab initio symmetry-adapted no-core shell model. We present
spectroscopic amplitudes and spectroscopic factors, and compare those to no-core symplectic shell-model results
in larger model spaces, to gain insight into the underlying physics that drives α clustering. Specifically, we
report on the α partial width of the lowest 1− resonance in 20Ne, which is found to be in good agreement with
experiment. We also present first no-core shell-model estimates for asymptotic normalization coefficients for the
ground state, as well as for the first excited 4+ state in 20Ne that lies in a close proximity to the α + 16O threshold.
This outcome highlights the importance of correlations for developing cluster structures and for describing α

widths. The widths can then be used to calculate α-capture reaction rates for narrow resonances of interest to
astrophysics. We explore the reaction rate for the α-capture reaction 16O(α, γ )20Ne at astrophysically relevant
temperatures and determine its impact on simulated x-ray burst abundances.
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I. INTRODUCTION

Modeling nuclear systems with cluster substructure rep-
resents a major challenge for many-particle approaches that
build on realistic interactions, such as those derived in the
chiral effective field theory (χEFT) framework [1,2]. The
earliest techniques for describing clustering use an underlying
assumption of clusters in a few-body framework with micro-
scopic interactions. For example, microscopic cluster models
(MCMs), such as the resonating group method (RGM) [3,4]
and the related generator coordinate method (GCM) [5], treat
all particles within localized clusters. These MCM approaches
have been used to study various reactions of astrophysical
importance, including the first studies of α-α scattering within
the RGM framework [6]. Studies of the Hoyle state in 12C
and α conjugate nuclei (that is, nuclei with multiples of two
protons and two neutrons) have been of a special interest. For
example, the antisymmetrized molecular dynamics (AMD)
[7] and fermionic molecular dynamics (FMD) [8] methods
have been used to study the 12C Hoyle state and its rotational
band, and both saw evidence of these states as an extended 3-α
cluster system. The THSR model [9] describes α conjugate
nuclei as condensates of α particles, and was used to describe
states in 12C, 16O, and 20Ne (for a review of cluster models,
see Ref. [10]).

The microscopic cluster basis used in the RGM has a com-
plementary nature [11,12] to the Sp(3, R) symplectic basis,
with Sp(3, R) the underpinning symmetry of the microscopic
symplectic model [13,14], the no-core symplectic shell model
(NCSpM) [15–17], and the symmetry-adapted no-core shell

model (SA-NCSM) [18,19]. A number of studies have taken
advantage of that relationship using a single SU(3) irreducible
representation (irrep) for the clusters1. In particular, this ap-
proach was used to describe the sub-Coulomb 12C + 12C
resonances of 24Mg [21] of particular interest in astrophysics
[22], and overlaps between symplectic and cluster states for
α conjugate nuclei [23,24] which have been used to compute
spectroscopic amplitudes [25–27]. These studies have shown
that some of the most important shell-model configurations
can be expressed by exciting the relative-motion degree of
freedom of the clusters. Further, they have indicated that
an approach that utilizes both the cluster and symplectic
bases proves to be advantageous [28], especially because the
model based on the cluster basis only, for clusters without
excitations, tends to overestimate cluster decay widths and
underestimates E2 transition rates [29].

In this paper, we outline a new many-body technique
for determining challenging α widths and asymptotic nor-
malization coefficients (ANCs), with applications to 20Ne,
by using ab initio SA-NCSM wave functions. The formal-
ism builds on the complementary nature of the symplectic
basis and the cluster basis. The SA-NCSM is ideal for ad-
dressing cluster substructures, as it enables the reach of
intermediate-mass nuclei and large model spaces by ex-
ploiting the symmetry-adapted basis [19]. We compare the

1The deformation-related SU(3) group is a subgroup of the sym-
plectic Sp(3, R) group, which preserves an equilibrium shape and its
rotations and vibrations [19,20].
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outcome to results from the NCSpM with an effective many-
nucleon interaction, which can reach ultralarge model spaces,
and has achieved successful no-core shell-model descriptions
of low-lying states in deformed A = 8 − 24 nuclei [16,30],
and in particular, the Hoyle state in 12C and its first 2+
and 4+ excitations [15,17,18]. There was recent progress in
ab initio descriptions of α-cluster systems, e.g., Green’s func-
tion Monte Carlo (GFMC) method with applications to the
α-cluster structure of 8Be and 12C, along with electromag-
netic (EM) transitions [31,32]; the nuclear lattice effective
field theory (NLEFT) with applications to the Hoyle state
energy and the astrophysically relevant α-α scattering prob-
lem [33–35]; and the hyperspherical harmonics (HH) method,
with applications to giant resonance modes in 4He [36]. Of
particular note are recent developments that combine RGM
with configuration-interaction methods [37,38], as well as
with ab initio no-core shell model and SA-NCSM [39–42].

Specifically, we provide first results of the α partial width
of the first excited 1− state in the well-studied, highly clus-
tered 20Ne system, starting from ab initio calculations of
the A-body system. While the present framework is gen-
eral, as a first step, we assume here that each of the two
clusters, α and 16O, has a single equilibrium shape with
suppressed vibrations. We focus on the 5.79-MeV 1− ex-
cited state in 20Ne, which dominates the α-capture reaction
rate for the 16O(α, γ )20Ne reaction at astrophysical tem-
peratures. The natural width of the 1− resonance is known
[43], and because the state decays entirely through α emis-
sion, the natural width is the α partial width. We note that
partial widths are not directly measurable, and extraction
is (to larger or smaller extent) model dependent. The α-
cluster structure (through the α + 16O partitioning) of 20Ne is
very well studied. From a theoretical perspective, particular
attention was paid to whether the low-lying positive- and
negative-parity rotational bands in 20Ne are a pair of inversion
doublet rotational bands of α + 16O [44,45]. Early experi-
ments have determined spectroscopic factors through fitting
data from transfer reactions, specifically, 16O(6Li, d )20Ne and
its inverse reaction 20Ne(d, 6Li)16O, to distorted wave Born
approximation (DWBA) calculations [46–49]. A more recent
study re-analyzed this data within a coupled-channel Born
approximation framework to reduce ambiguity in the fitting
procedure because of uncertainty in the 6Li optical model
potential [50]. Experimental methods are moving away from
the use of spectroscopic factors to extract information about
clustering and the α partial widths; some instead use a method
that extracts α partial widths through the ANCs, a technique
that was first formulated for and applied to single-particle pro-
jectiles [51,52]. It has since been applied to both the α + 12C
cluster structure of 16O [53,54] as well as to the α + 16O clus-
ter structure of 20Ne [55], to achieve exceptional agreement
with the accepted value of the width.

The present outcomes indicate pronounced clustering as-
sociated with an excited 1− state in 20Ne, as well as less
pronounced clusters in the ground state, in agreement with
previous results [56,57]. The calculated 1− α partial width,
with its uncertainties, is found to be in good agreement with
the experiment [58], given that no parameters have been
adjusted in this study. The resulting deviation between the

FIG. 1. Illustration of the coordinates used in the formalism: �ri

are the particle coordinates in the laboratory frame; �R′ and �R′′ are
the center-of-mass coordinates of the individual clusters, �R is the
center-of-mass coordinate of the A-body system; �ζi are the relative
coordinates with respect to �R. The relative separation of the clusters
is �r(A−a),a.

theoretical and experimental values is examined in x-ray burst
(XRB) simulations. For this, we use the width to estimate
the largest direct contribution to the 16O(α, γ )20Ne reaction
rate at the astrophysically relevant energy regime. Indeed,
we find almost no difference in the XRB abundance pattern
when one uses the experimental width or the calculated width.
Hence, this method is important to estimate reaction rates
for reactions of astrophysical significance that are difficult
or impossible to measure. For example, a work in progress
focuses on the 15O(α, γ )19Ne reaction, which was suggested
to have the highest impact on XRB nucleosynthesis [59].

II. MANY-BODY THEORETICAL FRAMEWORK

For a system of A particles, the set of laboratory coor-
dinates is denoted as �r1, . . . , �rA. A two-cluster system, with
an (A − a)-particle cluster and an a-particle cluster separated
by �rA−a,a, can be divided into two distinct sets of laboratory
coordinates, �r1, . . . , �rA−a and �rA−a+1, . . . , �rA (see Fig. 1). The
centers of mass of the two clusters ( �R′ and �R′′) and the com-
posite system �R, along with the distance between the clusters
�rA−a,a are given as

�R′ = 1

A − a

A−a∑
i=1

�ri, �R′′ = 1

a

A∑
i=A−a+1

�ri, (1)

�R = 1

A

A∑
i=1

�ri = (A − a) �R′ + a �R′′

A
, (2)

�rA−a,a = �R′′ − �R′. (3)

The derivations in this work are based on relative coordinates
with respect to the center-of-mass (c.m.) of the A-particle
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system,

�ζi = �ri − �R. (4)

The two clusters can be written in terms of relative coor-
dinates �ζ′ ≡ �ζ1, . . . , �ζA−a and �ζ′′ ≡ �ζA−a+1, . . . , �ζA, respec-
tively. Note, from Eqs. (2) and (4), that

∑A
i=1

�ζi = 0, so that
there are only A − 1 independent relative coordinates. The
translationally invariant two-cluster system is fully described
by the relative coordinates,

�ζ = {�ζ1, . . . , �ζA−a, �ζA−a+1, . . . , �ζA−1}. (5)

The cluster system is defined for a channel ν, which is
given by the spin and parity of each of the clusters ν =
{a, a′, Iπ ′

, a′′, I ′′π ′′ } (the labels a, a′, and a′′ denote all other
quantum numbers needed to fully characterize their respective
states), and a partial wave l , or the orbital momentum of the
relative motion of the clusters, and has a good total angular
momentum and parity Jπ , given by the coupling of the total
angular momentum I of the clusters to l .

A. Resonances

The partial width of a resonance state corresponding to
the emission of an a-particle cluster with relative angular
momentum l is given by [60,61]

�a(rc) = 2Pl (rc)
h̄2

2μA−a,arc

[
ruJπ

νIl (r)
]2

r=rc
, (6)

where

μA−a,a = mA−ama

mA−a + ma
(7)

is the reduced mass of the system with ma being the mass
of the a-particle cluster, and mA−a being the mass of the
(A − a)-particle cluster. Pl (r) is the Coulomb penetrability,
ruJπ

νIl (r) is the spectroscopic amplitude (sometimes called the
“formation amplitude” [60]), and the separation distance rc

between the two clusters is the channel radius. Equation (6) is
based on a well-established R-matrix theory [62], where the
channel radius rc is the separation distance, at which the inte-
rior nuclear wave function and exterior, Coulomb-dominated,
wave function are matched. The new feature in this study is
a novel approach to calculating the spectroscopic amplitude
ruJπ

νIl (r) within a many-body no-core shell-model framework
(Sec. II C).

The partial width can also be written through the reduced
width,

γ 2
νl (rc) = h̄2

2μA−a,arc

[
ruJπ

νIl (r)
]2

r=rc
, (8)

as �a(rc) = 2Pl (rc)γ 2
νl (rc), where the penetrability is driven

by the Coulomb force at large distances, while the reduced
width γ 2

νl (rc) contains information about the wave function
at small distances. Experimental studies often report a unit-
less reduced width, relative to the Wigner limit γ 2

W (rc) =
3h̄2/2μr2

c [63]:

θ2
νl (rc) = γ 2

νl (rc)/γ 2
W (rc). (9)

The norm of the spectroscopic amplitude,

SF =
∫ ∞

0

∣∣ruJπ

νIl (r)
∣∣2

dr, (10)

is called the spectroscopic factor.
The Coulomb penetrability Pl (r) is determined by

H+
l (ηR, kr), the outgoing spherical Hankel function solution

to the Coulomb equation defined by the Sommerfeld parame-

ter ηR = ZA−aZaμA−a,ae2

h̄2k
for two clusters of charge ZA−a and Za,

Pl (r) = kr

|H+
l (ηR, kr)|2 , (11)

where the momentum k corresponds to the positive energy in
the center-of-mass frame E = h̄2k2

2μA−a,a
.

B. Bound states

For bound states, the exterior wave function is given by an
asymptotically decaying Whittaker function:

W−ηB,l+ 1
2
(2κBr) −−−−→r → ∞ (2κBr)−ηB e−κBr . (12)

Here, κB = √−2μA−a,aE/h̄, for a negative energy E , and

ηB = ZA−aZaμA−a,ae2

h̄2κB
is the associated Sommerfeld parameter.

The observable ANC (Cl ) determines the amplitude of the
exterior wave function at large distances r, so that the exterior
bound state wave function is written as [64]

φJπ , ext
νIl (r) = CJπ

νIlW−ηB,l+ 1
2
(2κBr). (13)

The ANC can be determined through matching the exterior
wave function with the interior bound state wave function,

φJπ , int
νIl (r) = CintruJπ

νIl (r), (14)

where Cint is the norm of the interior wave function, and in
R-matrix theory,

∫ rc

0 |ruJπ

νIl (r)|2dr = 1. Because the complete
(interior + exterior) wave function must be normalized to
unity, the norm of the interior contribution is given as

C2
int = 1 − (

CJπ

νIl

)2
∫ ∞

rc

∣∣W−ηB,l+ 1
2
(2κBr)

∣∣2
dr. (15)

Matching the interior and exterior solutions at the channel
radius rc yields the following expression for the ANC:

(
CJπ

νIl

)−2 =
∣∣W−ηB,l+ 1

2
(2κBr)

∣∣2

∣∣ruJπ

νIl (r)
∣∣2

∣∣∣∣∣
rc

+
∫ ∞

rc

∣∣W−ηB,l+ 1
2
(2κBr)

∣∣2
dr. (16)

We emphasize that determining accurate ANCs with this
equation often requires a large rc to ensure the accurate treat-
ment of the interior wave function, which may be impractical
for ab initio or microscopic models. Alternative ways to calcu-
late ANCs based on a method with a faster ANC convergence
are discussed in Refs. [65,66].
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C. Spectroscopic amplitudes

As discussed above, determining either the resonance par-
tial width (6) or the ANC of a bound state (16) requires a
calculation of the spectroscopic amplitude. The spectroscopic
amplitude is given through the overlap of the composite A-
particle state (A) and the cluster state. For the partition into
a- and (A − a)-particle clusters, with intrinsic wave functions
ψ(a) and ψ(A−a), the spectroscopic amplitude ruJπ

νIl (r) is given
by (see, e.g., [60,65])

uJπ

νIl (r) =
∑
MI m

CJM
IMI lm

∫
dr̂Y ∗

lm(r̂)uIMI
ν (�r), (17)

where CJM
IMI lm are Clebsch-Gordan coefficients and

uIMI
ν (�r) =

∫
d3�ζ [

aJπ M
(A) (�ζ)

]†

× A[{
ψa′I ′π ′

(A−a)( �ζ′) × ψa′′I ′′π ′′

(a) ( �ζ′′)
}IMI

δ(�r − �rA−a,a)
]
.

(18)

In the cluster wave function, the operator A ensures that par-
ticles are properly antisymmetrized among the two clusters.

The δ function depends on the relative distance between
the clusters and can be expanded in HO wave functions (with
HO frequency h̄�) for the relative motion of an effective
single particle with a reduced mass (7), which implies the
use of a HO constant brel = √

h̄/μA−a,a�. The expansion is
given in the HO radial functions Rηlm(r) (with ηlm denoting
the HO shell number, orbital momentum, and its projection,
respectively):

δ(�r − �rA−a,a) =
∑
ηl ′m′

Rηl ′ (r)Yl ′m′ (r̂)Rηl ′ (rA−a,a)Yl ′m′ (r̂A−a,a).

(19)

Using this and inserting
∫

φ∗
000( �R)φ000( �R)d3R = 1 for the

center-of-mass wave function φηc.m.=0 lc.m.=0 mc.m.=0( �R) that is in
the lowest-energy HO configuration, Eq. (17) becomes

uJπ

νIl (r) =
∑

η

Rηl (r)
∫

d3�ζd3R
[
aJπ M

(A) (�ζ)φ000( �R)
]†

× A[{
ψa′I ′π ′

(A−a)( �ζ′) × ψa′′I ′′π ′′

(a) ( �ζ′′)
}I

× χηl (�rA−a,a)φ000( �R)
]Jπ M

=
∑

η

Rηl (r)〈(A)aJπM|(a′I ′π ′
, a′′I ′′π ′′

)I, ηl; JπM〉,

(20)

where χηlm(�rA−a,a) = Rηl (rA−a,a)Ylm(r̂A−a,a) is the relative
motion of the two many-body clusters at a separation dis-
tance defined by the particle coordinates �ζ (3). The wave
functions of the composite A-particle system and the cluster
system are given with an explicitly separable center-of-mass
contribution φ000( �R). This is important because the wave func-
tion of the A-particle system is solved here in the no-core
shell model, where spurious center-of-mass excitations are
removed through a Lawson procedure. The resulting final

eigenfunctions are each exactly factorized to a c.m. contribu-
tion, which is in the lowest HO energy, and an intrinsic wave
function.

Equation (20) provides a transition from the many-body
framework to a few-body description, that is, ruJπ

νIl (r) now
describes the relative motion wave function for a two-body
system. It is determined through a many-body overlap that
contains all the information about the nucleon-nucleon in-
teraction and the dynamics of the A-particle system. The
procedure to calculate this overlap within a symmetry-adapted
framework is discussed next.

D. Spectroscopic amplitudes with a
symmetry-adapted (SA) basis

We use a composite A-body state, calculated in the
symmetry-adapted (SA) basis based on the SU(3) symmetry
[67,68] and Sp(3, R) symmetry [13,14] (we leave out specific
details to Ref. [18] and references therein; see also [69,70]).
The advantage is that using symmetries simplifies the calcula-
tion of the overlap without any loss of generality. In addition,
we show that, if each of the clusters is described by a single
equilibrium shape with suppressed vibrations, the calculations
greatly simplify to a simple recursive procedure.

We can further refine the channels, by specifying the addi-
tional quantum numbers for the clusters as a′ = α′ω′κ ′(L′S′)
and a′′ = α′′ω′′κ ′′(L′′S′′), where ω′ = N ′

ω(λ′
ωμ′

ω ) are the U(3)
quantum numbers with total HO excitations N ′

ω and SU(3)
deformation-related (λ′

ωμ′
ω ) (for notations, see [18]). The

quantity κ ′ is a multiplicity in angular momentum L′ for
a given (λ′ μ′), S′ denotes intrinsic spin, and α′ is the set
of the remaining additional quantum numbers (likewise for
a′′). For a single channel, the A-body state is projected onto
two localized clusters given by a single SU(3) configuration
(equilibrium shape) and a relative motion that is allowed
any excitations; for systems that require clusters with mixed
shapes, multiple channels need to be considered. For com-
pleteness, we note that the relative motion wave function
respects the U(3) symmetry and is described by a single U(3)
irrep η(η 0), that is, χηl ≡ χη(η 0)l .

The composite A-particle wave function in Eq. (20) is
expanded in the symplectic basis. For example, for a single
symplectic irrep, with a = ασ (LS) and coefficients c calcu-
lated in the no-core shell model:

|(A)ασ (LS)Jπ M〉 =
∑
nρωκ

cnρωκL|ασnρωκ (LS)Jπ M〉, (21)

where σ = Nσ (λσμσ ) denotes the bandhead (equilibrium
shape) for this irrep; ω = Nω(λωμω ) is given by the coupling
of the bandhead σ to a number of symplectic raising operators
A(20), symmetrically coupled to n = Nn(λn μn). The ρ and κ

are multiplicity labels [we have dropped the label “(A)” on
the right-hand side for brevity of notations]. This is general-
izable to a number of symplectic irreps, however, typically a
single symplectic irrep accounts for a significant portion of the
wave function, often as much as 70%–80% [19,71]. The wave
function for the A-particle system can be computed using any
many-body formalism, as long as it is ultimately expanded in
symplectic basis states |ασnρωκ (LS)Jπ M〉.
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Using Eq. (21) and through coupling of the clusters to good
quantum numbers ωcκc(LcSc)I (with αc ≡ α′ω′S′α′′ω′′S′′ρc),
followed by coupling to the relative motion quantum numbers,

the expression for the spectroscopic amplitude in Eq. (20) can
be rewritten:

uJπ

νIl (r) = δSSc

∑
η

Rηl (r)
∑

ρcωcκcLc

�LcScI ′I ′′I

{L′ S′ I ′
L′′ S′′ I ′′
Lc Sc I

}
〈ω′κ ′L′; ω′′κ ′′L′′‖ωcκcLc〉ρc

∑
ρωκL

�L

{Sc Lc I
l J L

}

× (−)l+I+L+Sc〈ωcκcLc; (η0)l‖ωκL〉ρ
∑

n=Nn(λn μn )

cnρωκL 〈ασnρωκLML|(αcωc; η(η 0))ρωκLML〉, (22)

where the channel ν, for a single symplectic irrep is now identified by

ν = {ασS; α′ω′κ ′L′S′I ′π ′
; α′′ω′′κ ′′L′′S′′I ′′π ′′ }, (23)

�X = √
2X + 1, and the double-bar coefficients are SU(3) reduced Clebsch-Gordan coefficients [72]. Note that the overlap

〈ασnρωκLML|(αcωc; η(η 0))ρωκLML〉 does not depend on ML and that both cluster and symplectic states are normalized
(normalization coefficients are discussed below). Calculating this overlap within a microscopic framework is nontrivial. In this
study, we use a recursive procedure, as discussed next.

We assume that the SU(3) configuration of each of the two clusters is the bandhead of a symplectic irrep, that is, the B(0 2)

symplectic lowering operator annihilates it, B(0 2)|α′ω′κ ′(L′S′)I ′π ′
MI ′ 〉 = 0 (and similarly for the second cluster). While this

condition can be relaxed if necessary (Appendix B), it implies that 2h̄� excitations within the σ symplectic irrep (Nn → Nn + 2)
are equivalent to exciting the cluster relative motion by 2h̄� (η → η + 2), without having any effect on the clusters. Hence, if
the overlap in Eq. (22) is known, the overlap for the η + 2 relative motion can then be calculated, as prescribed in Ref. [23],
through the relation,∑

n0

(−)ω−ω0U [σn0ω(0 2); ω0ρ01; n1ρ](n‖B(0 2)‖n0)[��K (n0, ω0; n, ω)]1/2 〈ασn0ρ0ω0�0|(αcωc; η0(η0 0))ρ0ω0�0〉

=
√

dim(η0 0)U [ωc(η0 0)ω(0 2); ω0ρ01; (η 0)1ρ] 〈ασnρω�|(αcωc; η(η 0))ρω�〉(
with n0 = Nn0

(
λn0 μn0

)
, Nn0 = Nn + 2, and η0 = η + 2

)
, (24)

for each ρ0ω0�0 (using � ≡ κLML). Note that all ρ0ω0�0

configurations are known for a given Nn0 within the σ sym-
plectic irrep. This recursion is defined for a base case n =
0(0 0) (implying Nn = 0, ρ = 1, and ω = σ ),

〈ασn = 0(0 0)ρω�|(αcωc; ηmin(ηmin 0))ρω�〉 = 1, (25)

with ηmin = Nσ − (N ′
ω + N ′′

ω − 3/2), where N ′
ω and N ′′

ω are
the total HO quanta for the clusters, and Nσ is defined as
the total HO quanta minus 3/2 to remove the spurious c.m.
motion in the symplectic state [16]. In Eq. (24), the U [. . . ]
symbol is an SU(3) Racah coefficient [73], analogous to the
6- j symbol for SU(2). The dimension of (λ μ) is denoted
with dim(λ μ) = 1

2 (λ + 1)(μ + 1)(λ + μ + 2). Although we
retain �0 and � in the overlaps, it should be noted that the
overlaps are independent of these labels.

Note that for given Nn0ρ0ω0�0, there could be
several configurations that differ by (λn0 μn0 ), that is,
|σNn0 (λ(1)

n0
μ(1)

n0
)ρ0ω0�0〉, |σNn0 (λ(2)

n0
μ(2)

n0
)ρ0ω0�0〉, . . . ,

while in some cases there is a single (λn0 μn0 ) and Eq. (24)
becomes a simple recursive formula. These cases are of
special interest, and will be the ones considered in this study.

Both symplectic and cluster states in Eq. (24) are nor-
malized. The symplectic states are normalized through the
use of the K matrix [14,74,75]. Although the K matrix is
not diagonal in general, in the limit of large σ , it reduces to
diagonal [74,76]. For the diagonal matrix element, we adopt

the notation,

��K (n0, ω0; n, ω) = �K (n0, ω0) − �K (n, ω), (26)

with K-matrix coefficients given by [14]

�K (n, ω) = 1

4

3∑
j=1

[
2ω2

j − n2
j + 8(w j − n j ) − 2 j(2w j − n j )

]
,

(27)

where n1 = Nn+2λn+μn

3 , n2 = Nn−λn+μn

3 , and Nn−λn−2μn

3 (the ω j

are similarly defined for Nω, λω, μω). The normalization for
the cluster states was previously derived. For cluster systems
comprising an α particle and a heavy fragment, with total
particle number 12 � A � 24, the normalization is available
in Ref. [77]. Other selected cases are available in [26].

The antisymmetrization of the cluster wave function can
be straightforwardly calculated in the overlap in Eq. (20)
because the A-particle wave function is already antisym-
metrized, yielding a factor that depends only on A − a and
a. Because this factor remains the same for each Nn0 , it prop-
agates through the recursive procedure down to the base case
and is absorbed in the overlap (25).
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III. RESULTS

The formalism is demonstrated for 20Ne, which is a well-
known cluster system. In particular, the excited 1− state,
5.79 MeV above the ground state, is understood to be close to
a pure α-cluster state. This level is at energy E = 1.06 MeV
above the α + 16O threshold, which corresponds to the energy
in the c.m. frame of the cluster system, or 1.33-MeV labora-
tory kinetic energy of α, given by Elab = ( m16O+mα

m16O
)E .

In this study, the A-particle wave function is calculated
using two many-body frameworks: (1) the microscopic NC-
SpM that uses the symplectic Sp(3, R) basis [15], and (2)
the ab initio SA-NCSM [18]. The ab initio SA-NCSM is
a no-core shell model using realistic nucleon-nucleon (NN)
interactions within either the SU(3) symmetry-adapted basis
[78] or the Sp(3, R) symmetry-adapted basis [18,19].

The NCSpM and SA-NCSM models have yielded energy
spectra and observables (radii, quadrupole moments, and E2
transitions) for light- and intermediate-mass nuclei in close
agreement with experiment [16–19]. Both models differ in
the interactions they use. The NCSpM uses a many-nucleon
schematic interaction, expressed in terms of the Q · Q inter-
action, that is long range in nature and preserves the Sp(3, R)
symmetry. When this interaction is used in the Sp(3, R)-based
SA-NCSM, it yields results identical to the ones of the NC-
SpM. However, the symmetry properties of the NCSpM allow
for calculations within a single Sp(3, R) irrep that can be
further expanded to very large Nmax. In this way, it can accom-
modate corresponding ultralarge model spaces beyond what
can be achieved by no-core shell-model calculations. For ex-
ample, for Nmax = 8 and Jπ = 0+, 2+, and 4+, the 20Ne model
space has 3.8 × 1010 basis states and is currently inaccessi-
ble. The SA-NCSM with the SU(3) basis provides solutions
in a selected model space with dimensionality of 1.1 × 108,
while the SA-NCSM (or the NCSpM) for the leading (8 0)
symplectic irrep uses only 219 basis states. For the ground
state, the NCSpM utilizes 527 basis states in Nmax = 22. The
NCSpM model spaces that extend to high Nmax ensure that
collective and spatially expanded clustering modes are fully
developed and associated observables converged, whereas in
SA-NCSM calculations, these modes are often well but not
fully developed and, importantly, related observables are on a
good converging trend that, in turn, allows for extrapolations
(as shown below). In addition, the SA-NCSM can utilize
any interaction, including those derived in the chiral effective
field theory. These interactions include both short-range and
long-range physics, and are often fitted only to the nucleon-
nucleon (NN) or three-nucleon systems. While they include
richer physics and allow for mixing of symplectic irreps, it is
remarkable that, in many nuclei, only a single symplectic irrep
was found to dominate [19].

For SA-NCSM calculations, we use the NNLOopt chiral
potential [79]. To distinguish between the two bases, the re-
sults presented here are denoted as “SA-NCSM/SU(3)” and
“SA-NCSM/Sp(3, R),” respectively. For the SU(3) basis, we
make the approximation that a given SU(3) basis state belongs
to only a single symplectic irrep, ignoring a small mixing
of additional symplectic irreps. For example, we have shown
that for the 20Ne ground state, calculated in the ab initio

SA-NCSM with Nmax = 8 and h̄� = 15 MeV, 70% of
the wave function is described with just the leading σ =
Nσ (λσμσ ) = 48.5(8 0) symplectic irrep [19].

In addition, the wave functions show that there are a
few states within the irrep that typically contribute the
most (see also [16]), so that we can consider only the
stretched-coupled states, which are the most deformed states
and the next most deformed states in the irrep. Namely,
for a given Nn, the most deformed states are (λn, μn) =
(Nn, 0) and (λω, μω ) = (λσ + Nn, μσ ), and the next most
deformed states are (λn, μn) = (Nn − 4, 2) and (λω, μω ) =
(λσ + Nn − 4, μσ + 2). By keeping only the most deformed
and second most-deformed contributions to the wave function,
we retain 99% of that irrep (the wave functions can be easily
renormalized to ensure a norm of 1). In the present study,
this set of contributions is used for all 20Ne wave functions,
properly normalized to 1, which, in turn, simplifies the overlap
calculations (24) to a recursive procedure.

From these many-body calculations, we determine the
coefficients cnρωκL in Eq. (22), whereas the overlap is calcu-
lated using Eq. (24). This yields the spectroscopic amplitudes
uJπ

νIl (r), which determine ANCs and α widths. The norm of
the cluster state is taken from Ref. [77]. The channels ν are
defined for ω′ = 36(0 0) and I ′π ′ = 0+ for 16O, and ω′′ =
6(0 0) and I ′′π ′′ = 0+ for 4He, implying that ωc = 40.5(0 0)
and ηmin = 8 for the 0+

gs, 2+
1 , and 4+

1 states in 20Ne (or ηmin = 9
for the 1−

1 state). The use of these cluster states recognizes that
the (0 0) state (closed-shell configuration) contributes about
90% to the 4He wave function, and about 60% (SA-NCSM)
to 90% (NCSpM) for 16O (see also Ref. [80] using a different
interaction).

Although α partial widths for states close to the threshold
are not generally directly measurable in experiment because
of very low cross sections at astrophysically relevant energies,
the natural width of the 20Ne 1− state is known to be 28(3)
eV [43,58]. There is a nearby 3− state at 5.62 MeV above
the ground state (0.89 MeV above the α + 16O threshold)
that should typically be treated in a coupled-channels frame-
work with the 1− state. However, both states are very narrow,
especially the 3− state, and, as their coupling is negligible,
they can be treated in separate single-channel calculations.
Calculations for the 3− state are left for another study.

In all calculations shown here, we take the experimen-
tal energy for the threshold, resonance, and bound states. A
self-consistent calculation of the energy requires a number of
large-scale calculations of all three systems (the composite
system, the A − a cluster, and the a cluster) to determine
converged thresholds and energy differences for each of the
two clusters, which is outside the scope of this work.

A. Bound state wave functions and resonance
spectroscopic amplitudes

We study the cluster structure of the 20Ne ground state,
using the R-matrix theory, that is, Eqs. (13) and (14) and
matching near the effective range of the interaction (Fig. 2).
For these figures, rc is chosen so that the calculated ANC
is maximized, which coincides with convergent results for
the SA-NCSM, discussed in Sec. III B. As mentioned above,

044608-6



CLUSTERING AND α-CAPTURE … PHYSICAL REVIEW C 102, 044608 (2020)

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 2 4 6 r (fm) 

 ϕ
νI
l (

fm
–1

/2
) 

Jπ

SA-NCSM/Sp(3,R) 
SA-NCSM/SU(3) 

NCSpM 

interior exterior 

SA-NCSM/Sp(3,R) 

FIG. 2. Wave function of the l = 0 α + 16O for the 20Ne
ground state (h̄� = 15 MeV), calculated in the ab initio Nmax =
8 SA-NCSM using an Sp(3, R) basis [red, labeled as “SA-
NCSM/Sp(3, R)”] and an SU(3) basis [gray, labeled as “SA-
NCSM/SU(3)”], and in the Nmax = 22 NCSpM (dotted black).
Results are reported for a single symplectic irrep, σ = 48.5(8 0) (see
text for details). The interior and exterior contributions to the wave
function are indicated with solid and dashed lines, respectively. (In-
set) The same “SA-NCSM/Sp(3, R)” wave function but compared to
its spectroscopic amplitude ruJπ

νIl , prior to matching to the Whittaker
function and normalizing to one (dotted red).

the ANCs (16) ensure that after matching, the entire wave
function is normalized to 1. In addition, they require that the
spectroscopic amplitude is normalized to 1 in [0, rc), which
we impose on the uJπ

νIl (r) that is calculated using Eq. (22)
and is shown in Fig. 2 (inset, dotted curve). While match-
ing improves the wave-function tail, the overall changes are
not large. Further, the results obtained using the SU(3) basis
to compute the 20Ne ground state are nearly indistinguish-
able from the results using the Sp(3, R) basis with a single
symplectic irrep for the same Nmax = 8 and h̄� = 15 MeV.
This implies that the predominant contribution to each SU(3)
state is indeed coming from the leading symplectic irrep,
hence, this assumption used in the SU(3)-based calculations

is reasonable. To guide the eye, we compare to the NCSpM
wave function in larger model spaces Nmax = 22 and with
h̄� = 15 MeV (Fig. 2). The result is very similar to the SA-
NCSM calculations, suggesting that the bound-state physics
is reasonably described already within Nmax = 8 model
spaces.

In a similar fashion, we study the 1− resonance in 20Ne
near the α + 16O threshold [Fig. 3(a)]. Again, matching is
done for a value of rc that yields a maximum partial width
�α , which coincides with convergent results for the SA-
NCSM, as discussed in Sec. III B. To illustrate the matching
formalism, we show results for the 20Ne 1− SA-NCSM
wave function calculated in a comparatively small Nmax =
5 model space, where the symplectic-based results use the
leading σ = 49.5(9 0) irrep. The close agreement between
the “SA-NCSM/SU(3)” and “SA-NCSM/Sp(3, R)” spectro-
scopic amplitudes further confirms that the assumption used
in the SU(3)-based calculations is reasonable.

We note that, because the 1− state in 20Ne is a resonance,
the wave function is not expected to decay in the asymptotic
regime as it does in the ground state case; rather, the exterior
resonance wave function has oscillatory behavior, as shown
in the inset in Fig. 3(a). In this exterior regime, the form of
the spectroscopic amplitude is determined by the spherical
Coulomb-Hankel functions H+

l (η, kr). Without matching to
the Coulomb-Hankel functions, the spectroscopic amplitude
is significantly changed [see Fig. 3(a), red dotted curve].
Matching, therefore, is of integral importance to obtaining the
correct asymptotic behavior, whereas many-body descriptions
that properly account for spatially extended configurations
are key to obtaining the interior behavior, which, in turn,
determines widths.

Further, we study the dependence on the model parameters,
Nmax and h̄� [Fig. 3(b)]. For example, for h̄� = 15 MeV,
the spectroscopic amplitudes for Nmax = 7 and Nmax = 9 are
nearly indistinguishable [see the solid gray and dashed green
curves in Fig. 3(b)]. In addition, while the results for the
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FIG. 3. Spectroscopic amplitudes for the l = 1 α + 16O at energy E = 1.06 MeV, calculated from the lowest 1− state in 20Ne. Results
are reported for a single symplectic irrep, σ = 49.5(9 0) (see text for details). (a) The 20Ne wave functions are calculated using the ab initio
SA-NCSM [with SU(3) basis (gray) and Sp(3, R) basis (red)] with Nmax = 5 and h̄� = 15 MeV. Interior and exterior (real part) components
are shown with solid and dashed lines, respectively. For the Sp(3, R) case, we show the spectroscopic amplitude without matching to the
Coulomb-Hankel functions (dotted red), and the asymptotic oscillatory behavior of the real part of the wave functions (inset). (b) The composite
20Ne wave functions are calculated using the SA-NCSM/SU(3) with Nmax = 9 [h̄� = 13 MeV (dash-dotted blue) and 15 MeV (solid gray)],
Nmax = 7 [h̄� = 15 MeV (small-dash green) and 17 MeV (large-dash red)], and NCSpM with Nmax = 23, h̄� = 15 MeV (dotted black).
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largest model space under consideration exhibit some h̄� de-
pendence, the spread is not significant. The main effect is that
the surface peaks are slightly shifted toward larger separation
distances for smaller h̄� values. To guide the eye, we again
include the spectroscopic amplitude computed using the 20Ne
NCSpM 1− wave function in larger model spaces Nmax = 23
and with h̄� = 15 MeV [Fig. 3(b), black dotted curve]. The
NCSpM spectroscopic amplitude is matched at a larger radius
(meaning the associated �α is maximized for a larger radius),
compared to the ab initio SA-NCSM/SU(3) h̄� = 15 MeV
spectroscopic amplitudes. Nonetheless, it is interesting that
the NCSpM tail coincides with the one obtained from the
h̄� = 13 MeV SA-NCSM. All of the spectroscopic ampli-
tudes in Fig. 3(b) have small inner peaks, compared to a
relative large and broad surface peak (the largest peak on
the right), and these features are slightly more exaggerated
in the NCSpM spectroscopic amplitude. In comparison to the
20Ne ground state (Fig. 2) for the same h̄�, the 1− resonance
exhibits slightly smaller inner peaks and wider surface peak
associated with surface clustering, in agreement with cluster
model outcomes [27,57].

The shapes of the cluster wave functions for the ground
state and 1− state [Figs. 2 and 3(b)], including the asymp-
totics, agree reasonably well with GCM cluster wave func-
tions [57], and even models that have been specifically
tailored to describe cluster states [56]. For example, in com-
parison to the results in Ref. [57], the h̄� = 13 MeV results
exhibit only slight differences that consist of larger inner
probabilities and peaks shifted to larger separation distances,
as well as a longer tail of the 1− resonance. This suggests
that the shell-model wave functions are able to describe the
spatially extended clusters, while providing a slightly larger
spatial overlap of the two clusters because of shell-model
configuration mixing.

Although a large spectroscopic factor cannot be used as
the sole indicator of clustering [27], for completeness we
report spectroscopic factors for the 1− resonance of 20Ne,
using Eq. (10), for each of the spectroscopic amplitudes in
the largest SA-NCSM model spaces shown in Fig. 3(b). We
calculate spectroscopic factors of SF = 0.73, 0.76, and 0.80
for h̄� = 13, 15, and 17, MeV, respectively; the SA-NCSM
estimate for h̄� = 13 MeV also agrees with the NCSpM
spectroscopic factor. These values are larger than a spectro-
scopic factor of SF < 0.344, calculated using a simple cluster
wave function [81].

B. α partial widths and ANCs

The α partial widths �α are determined using Eqs. (6) and
(22). In general, the partial widths depend on the model space
parameters (Nmax and h̄�) through the use of the ab initio
SA-NCSM 20Ne wave functions in Eq. (22), while the match-
ing to the exterior wave function introduces a dependence
on the channel radius rc. For the 1.06-MeV 1− resonance,
we find that the partial width strongly depends on h̄� and
the channel radius in small model spaces, whereas the de-
pendence tends to decrease for increasing Nmax (Fig. 4). In
particular, the h̄� = 13 MeV results in Fig. 4(a) show a clear
pattern toward convergence, and for Nmax = 7 and Nmax = 9,
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FIG. 4. α partial width �α as a function of the channel radius rc

for the 1− resonance at 1.06 MeV (relative to the 16O + α threshold)
in 20Ne. The 20Ne wave functions are calculated using the ab initio
SA-NCSM [with SU(3) basis] (blue) and NCSpM (gray ×) for in-
creasing Nmax model spaces and with (a) h̄� = 13 MeV, (b) h̄� = 15
MeV, and (c) h̄� = 17 MeV. The extrapolation (black) is determined
with Shanks transformation on the Nmax = 5, 7, and 9 data.

the partial width is nearly independent of both Nmax and
the channel radius for rc = 4.6–5 fm. Similarly, the h̄� =
15 MeV results [Fig. 4(b)] are on a convergence trend but
indicate that larger model spaces are needed. In contrast, the
h̄� = 17 MeV results in Fig. 4(c) are clearly not converged
yet. This suggests that the case of h̄� = 17 MeV requires
much larger model spaces to account for the physics that is
already present at h̄� = 13 MeV and 15 MeV for the same
Nmax. For these reasons, the h̄� = 17 MeV case is excluded
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from the Nmax = 9 analysis and from the extrapolation pro-
cedure described below. Note that for the same Nmax, smaller
h̄� values imply smaller ultraviolet (UV) cutoff (that resolves
the high-momentum components of the interaction) and larger
infrared (IR) cutoffs (the size of the coordinate space in which
the nucleus resides) [82]. Hence, the convergent results at
h̄� = 13 MeV suggest that to account for the physics of the
resonance, spatially extended model spaces are imperative,
which tracks with the nature of a cluster system.

In addition, ultralarge model spaces are accessible in the
NCSpM. The NCSpM results for Nmax = 23 [Fig. 4(b)] may
serve as a guidance for the convergence of the ab initio SA-
NCSM results for h̄� = 15 MeV. We note that the NCSpM is
an effective approach and the value of h̄� is fixed based on
self-consistent arguments, which, in turn, was shown to yield
a close agreement to experimental observables, such as ener-
gies, quadrupole moments, E2 transitions, and radii in 20Ne
[16]. The present results reveal another remarkable outcome,
namely, the maximum of the NCSpM width coincides with the
extrapolated SA-NCSM width [Fig. 4(a)], as discussed next.

To report a parameter-independent width, we use the
Shanks transformation [83,84] on the Nmax = 5, 7, and 9
data for both the h̄� = 13 MeV and h̄� = 15 MeV results
that are on a converging trend. With increasing Nmax, the
fastest convergence is observed for h̄� = 13 MeV, for which
the width flattens around rc = 4.6–5 fm (the fastest conver-
gence indicates that there is an optimal h̄� value, where
the convergence of results—and the associated extrapolated
estimate—is achieved at comparatively lower Nmax, whereas
lower or higher h̄� values require larger model spaces to
yield the same estimate). Hence, this is the rc region where
we perform extrapolation for both values of h̄�. While the
extrapolation for h̄� = 13 MeV is essentially independent of
the channel radius (see black data in Fig. 4), the one for
h̄� = 15 MeV becomes unstable for larger rc, indicating that
larger model spaces are needed to attain the level of conver-
gence necessary for the extrapolation. In such cases, as a result
of the missing correlations in the model spaces considered,
the extrapolation may yield lower estimates, as in Fig. 4(b).
Using the rc-independent part of these extrapolations, we
report a value of �α = 10(3) eV for the α partial width of
the 1− resonance, with uncertainty given by the variation
in h̄�. Given that no parameters are fitted to nuclear data
in this study, this estimate agrees reasonably well with the
�α = 28(3) eV width determined from experiment [43]. We
note the importance of collective correlations, as evident in
Fig. 4(a) for the rc-independent region, namely, there is a large
increase in the α width as one goes from the Nmax = 3 model
space with suppressed correlations to Nmax = 9.

The calculated α partial width is associated with a unitless
reduced width of θ2

1 = 0.61(6). This compares reasonably
well with previous GCM estimates of θ2

1 > 0.54 [81] and 0.54
at a channel radius of 5 fm [85], although a number of previ-
ous MCM results report a smaller reduced width θ2

1 < 0.45
[86].

For the ground state of 20Ne, the ANC (16) characterizes
the overall scale of the long-range A-particle wave function
in the l = 0 16O + α channel. The 20Ne ground state is cal-
culated in the ab initio SA-NCSM [with SU(3) basis] with
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FIG. 5. ANC (C0) for the 20Ne ground statein the l = 0 16O + α

channel as a function of the channel radius rc. The 20Ne ground state
is calculated using the ab initio SA-NCSM [with SU(3) basis] (blue)
and NCSpM (gray ×) for increasing Nmax model spaces and with
(a) h̄� = 13 MeV, (b) h̄� = 15 MeV, and (c) h̄� = 17 MeV. The
extrapolations (black) are determined with the Shanks transformation
on the Nmax = 6, 8, and 10 data.

different values of h̄�. The ANC shows similar dependence
on the parameter h̄�, as in the case of the α partial width,
although the ANC results for all three h̄� values are clearly
either converged or nearly converged with respect to Nmax

(Fig. 5). As the Nmax = 8 and 10 data are nearly indistinguish-
able, we use the Shanks transformation on the Nmax = 4, 6,

and 8 data for h̄� = 13 MeV and h̄� = 15 MeV and for
rc = 4.3–4.8 fm, to report a parameter-independent value for
the ANC, as well as to provide confirmation of convergence
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FIG. 6. 16O(α, γ )20Ne reaction rate (in cm3mol−1s−1) through
the 1.06-MeV 1− resonance in 20Ne determined with Eq. (28) as a
function of the temperature (in GK). The reaction rate determined
with the extrapolated α partial width �α = 10(3) eV derived from
ab initio SA-NCSM wave functions [red, labeled as “SA-NCSM
/SU(3)”] is compared to the database reaction rate (blue). The error
in the database rate is given by the thickness in the curve.

with Nmax. The range of channel radii considered provides a
channel-independent region for the fastest convergence of the
ANC with Nmax [Fig. 5(a)]. This yields an extrapolated ANC
of C0 = 3.4 ± 1.2 × 103 fm−1/2 for the 20Ne ground state in
the l = 0 16O + α channel, with uncertainty given by the
variation in h̄�.

Similar to the 1− width, it is interesting to note the agree-
ment between the NCSpM and SA-NCSM results for C0. In
particular, the Nmax = 22 NCSpM results for h̄� = 15 MeV
yields an ANC of C0 = 3.3(1) × 103 fm−1/2, with uncertainty
given by the ∼6% variation in rc [Fig. 5(b)]. In the Nmax = 14
NCSpM, we also compute the ANC for the excited 4.25-MeV
4+ state in 20Ne to be C4 = 34(1) × 103 fm−1/2. We find C4 to
be much larger than C0, but we note that the 4+ state is only
0.48 MeV below the α + 16O threshold.

C. Reaction rate and XRB abundances

Using the narrow resonance approximation, reaction rates
are given by

NA〈σv〉r = 1.539 × 1011

(μA−a,aT9)3/2
e−11.605Er/T9 (ωγ )r, (28)

with the resonance strength defined as

(ωγ )r = 2Jr + 1

(2JA−α + 1)(2Jα + 1)

�α�γ

�
. (29)

We compute the temperature-dependent (T9 in GK) contribu-
tion to the 16O(α, γ )20Ne reaction rate through the 1.06-MeV
1− resonance in 20Ne (Fig. 6). The reaction rate takes as input
the reduced mass μA−a,a (7), resonance strength (ωγ )r and
resonance energy Er in MeV. Note that the resonance strength
(ωγ )r is dependent on the spins of the two clusters, Jα = 0
and J16O = 0 (or JA−α), as well as the spin of the narrow
resonance, Jr = 1. In addition, the resonance strength requires
the α partial width �α , which we compute here, and the γ

decay branching ratio �γ /�. This branching ratio is presently
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FIG. 7. The difference between the initial mass fractions of the
neutron star and the mass fractions 24 h after the burst begins, based
on the MESA XRB simulation that uses the database reaction rate
(blue circles) and the reaction rate derived from ab initio SA-NCSM
wave functions, shown in Fig. 6 (red ×). All isotopes in the network
with mass differences greater than 10−10 are shown, and we label
some isotopes of interest. The inset shows a detailed look at the
abundance pattern for isotopes of H, He, Mn, and Fe.

extracted from experiment [58], namely, we adopt �γ /� =
1.9 × 10−4, but can be determined within this framework
through SA-NCSM (or NCSpM) electromagnetic strengths.
Because the branching ratio �γ /� and the resonance energy
Er are kept constant for the two calculations, the differences
in the reaction rates shown in Fig. 6 reflect the differences
between the experimental and calculated α partial widths.

Using this reaction rate as input to the Modules for Exper-
iments in Stellar Astrophysics (MESA) code suite [87–91],
we are able to determine the impact on the abundance pattern
produced during an x-ray burst (XRB) event using reaction
data determined from ab initio wave functions (Fig. 7). The
MESA release [89] includes a model for an XRB with a
constant accretion rate and consistent burning across the entire
surface of the neutron star, based on GS 1826-24 [92], also
known as the “clocked burster” [93]. This model is designed
for a nuclear network of 305 isotopes, including proton-rich
isotopes up to 107Te, but is also stable for a nuclear network
of 153 isotopes. We use the 153-isotope nuclear network,
which includes isotopes up to 56Fe. MESA includes all known
reactions involving these nuclei, with reaction data taken from
the Joint Institute for Nuclear Astrophysics (JINA) REACLIB
database [94].

We examine the mass fractional abundances (i.e., masses
given as a fraction of the total mass of the star) for a 24-h
period after the burst begins, for the theoretical rate (Fig. 6),
as compared to the database reaction rate. In this time frame,
the system undergoes a number of bursts, but is sampled in a
quiescent phase after a burst. The overall abundance pattern is
relatively unchanged, except for a slight decrease in burning
of the 1H and 4He fuels, which translates directly to a decrease
in production of iron and manganese isotopes. This does not
appear to be related to an overall change in the production
of 16O or 20Ne, but does appear to slightly change the abun-
dances of some other intermediate-mass nuclei, particularly
30Si, 34S, and 38Ar, all of which have increased production
with the change in the 16O(α, γ )20Ne rate. Because of the

044608-10



CLUSTERING AND α-CAPTURE … PHYSICAL REVIEW C 102, 044608 (2020)

slight reduction in the calculated reaction rate, α particles
are apparently not burning as efficiently. As a result, some
intermediate-mass nuclei are more abundant, while the pro-
duction of Fe and Mn is reduced, but the overall pattern is only
slightly affected. This means that theoretical predications that
use ab initio wave functions are now possible and could pro-
vide reasonable estimates for astrophysically relevant reaction
rates that cannot be measured.

IV. CONCLUSION

In summary, we have outlined a new formalism for es-
timating α partial widths and ANCs from ab initio wave
functions. We demonstrate the formalism in a study of the
16O + α cluster structure of 20Ne, through inspection of the
relative motion wave functions of the clusters within the 20Ne
ground state and the 1−

1 resonance. For the first time within a
no-core shell model framework, we determine the α partial
width for the 1.06-MeV 1− resonance of α + 16O from ab
initio SA-NCSM calculations of the 20Ne states, and show it is
in good agreement with experiment. We predict the ANC for
the 20Ne ground state as well as for the 4.25-MeV 4+

1 state. We
highlight the importance of correlations in developing cluster
structures.

Although the results presented here focus only on the
16O(α, γ )20Ne α-capture reaction, the theory is not limited
to spherical clusters as 16O and to α clusters. Indeed, the theo-
retical framework is fully applicable to single-particle clusters
(e.g., for studies of radiative proton capture), deuterons, and
heavier clusters (the 12C + 12C cluster system). The formal-
ism is readily extensible to a number of generalizations, such
as (1) including vibrations in addition to the equilibrium shape
to describe each of the clusters, (2) introducing more than one
symplectic irrep, or several equilibrium shapes and their rota-
tions and vibrations, to describe the composite system, and (3)
including multiple channels with different orbital momenta
and spins of the clusters.

To illustrate the direct value of these calculations in as-
trophysics simulations, the calculated partial width is used
in an initial exploration of XRB nucleosynthesis. Because
the 16O(α, γ )20Ne reaction rate is dominated by the contri-
bution through the 1− resonance at XRB temperatures, the
calculated width is used to characterize this contribution. In
a MESA simulation of XRB nucleosynthesis, we find almost
no difference on nuclear abundances as compared to the XRB
simulation results when the experimental rate is used. This
means that the present method, starting with ab initio wave
functions and without any parameter adjustments, enables rea-
sonable predictions for astrophysically relevant reaction rates
that cannot be measured. In some cases, these estimates may
represent a large improvement over existing database entries.
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APPENDIX A: SYMPLECTIC LOWERING OPERATOR

The symplectic lowering operator B(0 2)
�B

can be written in
terms of the dimensionless HO raising and lowering operators,
b†(1 0)

x j = 1√
2
(rx j − ipx j ) and b(0 1)

x j , respectively (similarly for y
and z), for each particle j in an A-particle system. The position
and momentum coordinates of the jth particle in the laboratory
frame are �r j and �p j , respectively (see Fig. 1).

The lowering operator is written for the relative coordinates
�ζ (see, e.g., Refs. [16,18])

B(0 2)
�B

(�ζ) = 1√
2

A∑
j=1

{b j × b j}(0 2)
�B

− 1√
2A

A∑
s,t=1

{bs × bt }(0 2)
�B

= B(0 2)
�B

(�r) − B(0 2)
�B

( �R). (A1)

It is obvious that the first sum can be divided into two sums,
based on the particles in each cluster, and hence, B(0 2)

�B
(�r) =

B(0 2)
�B

(�r′) + B(0 2)
�B

(�r′′).
We intend to show that B(0 2)

�B
can be written as B(0 2)

�B
=

B(0 2)
�B,c + B(0 2)

�B,rel, or,

B(0 2)
�B

(�ζ) = B(0 2)
�B

( �ζ′) + B(0 2)
�B

( �ζ′′) + B(0 2)
�B

(�rA−a,a), (A2)

that is, a term that acts on the two clusters, and a second term
that acts only on the relative motion between the two.

The coordinates �r′ = {�r1, . . . , �rA−a} and �r′′ =
{�rA−a+1, . . . , �rA} are the laboratory frame coordinates for
the particles in each of the two clusters. Applying Eq. (A1)
to each individual cluster, the A-particle lowering operator in
Eq. (A1) becomes

B(0 2)
�B

(�ζ) = B(0 2)
�B

( �ζ′) + B(0 2)
�B

( �ζ′′)

+ B(0 2)
�B

( �R′) + B(0 2)
�B

( �R′′) − B(0 2)
�B

( �R). (A3)

With B(0 2)
�B

( �ζ′) and B(0 2)
�B

( �ζ′′) that act on the clusters, and using

B(0 2)
�B

(�rA−a,a) = B(0 2)
�B

( �R′) + B(0 2)
�B

( �R′′) − B(2 0)
�B

( �R), (A4)

which utilizes Eq. (A1) for two effective particles with lab-
oratory frame coordinates �R′ and �R′′, we obtain Eq. (A2) for
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the lowering operator in relative coordinates for the A-particle
system.

APPENDIX B: OVERLAP OF CLUSTER AND
SYMPLECTIC STATES

The spectroscopic amplitude in Eq. (22) is dependent on
the overlap,

O = 〈σnρω�|(ωc; η(η 0))ρω�〉, (B1)

(with � = κLML) between a symplectic wave function for
the A-particle system and a cluster wave function for the
two-cluster system comprising an a-particle cluster and an
(A − a)-particle cluster (we omitted the dependence on the
additional quantum numbers α and αc, because the derivation
is independent of them). Our aim is to determine a recur-
sive expression for the overlap, so that, e.g., the term with
η HO total excitations in the relative motion is determined
directly from the overlap for η − 2 excitations, as prescribed
in Ref. [23]. To achieve this, we use the symplectic lowering
operator B(0 2)

�B
(�ζ), which lowers a symplectic state by two HO

excitations, acting on the cluster state:

B(0 2)
�B

|(ωc0; η0(η0 0))ρ0ω0�0〉 =
∑

ωcωηρω�

|(ωc; ωη )ρω�〉, 〈(ωc; ωη )ρω�|B(0 2)
�B

|(ωc0; η0(η0 0))ρ0ω0�0〉, (B2)

where we have introduced the completeness relation for the cluster basis on the right-hand side. Projecting this onto a symplectic
state and inserting the symplectic basis completeness on the left-hand side, we obtain the desired overlap relation between states
with Nω0 and Nω = Nω0 − 2:∑

n0

〈σnρω�|B(0 2)
�B

|σn0ρ0ω0�0〉〈σn0ρ0ω0�0|(ωc0; η0(η0 0))ρ0ω0�0〉

=
∑
ωcωη

〈(ωc; ωη )ρω�|B(0 2)
�B

|(ωc0; η0(η0 0))ρ0ω0�0〉〈σnρω�|(ωc; ωη )ρω�〉, (B3)

where we have used that the overlap is nonzero only when the {ρω�} labels on both sides of the overlap are equal. Hence,
we have an expression that relates the matrix element of the symplectic lowering operator in the symplectic basis to the matrix
element of the same operator in the cluster basis. To use the overlap relation, these matrix elements need to be derived, as
discussed next.

To determine the matrix element of the symplectic lowering operator in a cluster state, we need to consider the coordinates in
which the lowering operator is written. In the relative coordinates used by the NCSpM, the lowering operator can be separated
into two pieces: a lowering operator that acts only on the clusters B(0 2)

�B,c and a lowering operator that acts only on the relative

motion coordinate B(0 2)
�B,rel (see Appendix A). Using this, we can rewrite the matrix element of the lowering operator in the cluster

basis into two terms,

〈(ωc; ωη )ρω�|B(0 2)
�B

|(ωc0; η0(η0 0))ρ0ω0�0〉 =
∑

�c�η�η0 �c0

〈ωc�c; ωη�η|ω�〉〈ωc0�c0; (η0 0)�η0 |ω0�0〉

× [〈ωc�c|B(0 2)
�B, c|ωc0�c0〉δωη,(η0 0)δ�η�η0

+ 〈ωη�η|B(0 2)
�B,rel|η0(η0 0)�η0〉δωcωc0δ�c�c0 ]. (B4)

For clusters with suppressed vibrations, described by the bandhead of a symplectic irrep, B(0 2)
�B, c|ωc�c〉 = 0, and so only the

second term is nonzero. While this is the case we consider here, the present formalism can be generalized by using both terms in
Eq. (B4). The second term represents the action of the symplectic lowering operator on the relative motion. After reducing the
matrix element on the left-hand side using the SU(3) Wigner-Eckart theorem [72], and collecting reduced Wigner coefficients
into an SU(3) Racah coefficient U [72], Eq. (B4) is expressed simply as〈

(ωc; ωη )ρω
∥∥B(0 2)

∥∥(
ωc0 ; η0(η0 0)

)
ρ0ω0

〉 = 〈ωη‖B(0 2)‖η0(η0 0)〉δωcωc0U [ωc(η00)ω(0 2); ω0ρ01; ωη1ρ]. (B5)

This is nonzero only when ωη = η0 − 2(η0 − 2 0) and ρ ′
B = ρB = 1 [see Eq. (12) in Ref. [74]), with [23,95]:

〈η0 − 2(η0 − 2 0)‖B(0 2)
rel ‖η0(η0 0)〉1 =

√
dim(η0 0). (B6)

Returning to Eq. (B3), the matrix element of the symplectic lowering operator between the symplectic states on the left-hand
side can be expressed as [96]

〈σnρω�|B(0 2)
�B

|σn0ρ0ω0�0〉 = (−)ω−ω0U [σn0ω(0 2); ω0ρ01; n1ρ]〈ω0�0; (0 2)�B|ω�〉[��K (n0ω0, nω)]1/2(n‖B(0 2)‖n0),
(B7)

where the non-normalized reduced matrix element (n‖B(0 2)‖n0) is computed using the expressions in Table I of Ref. [97], and
the normalization is introduced through the diagonal part of the K matrix [74,76], as outlined in Eqs. (26) and (27). Substituting
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Eqs. (B7) and (B5) back into Eq. (B3), we obtain the relation in Eq. (24) for determining the overlap between cluster and
symplectic states.

[1] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[2] E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).
[3] J. A. Wheeler, Phys. Rev. 52, 1107 (1937).
[4] J. A. Wheeler, Phys. Rev. 52, 1083 (1937).
[5] H. Horiuchi, Prog. Theore. Phys. 43, 375 (1970).
[6] Y. C. Tang, M. LeMere, and D. R. Thompson, Phys. Rep. 47,

167 (1978).
[7] Y. Kanada-En’yo, Phys. Rev. Lett. 81, 5291 (1998).
[8] M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel,

and A. Richter, Phys. Rev. Lett. 98, 032501 (2007).
[9] Y. Funaki, H. Horiuchi, and A. Tohsaki, Prog. Part. Nucl. Phys.

82, 78 (2015).
[10] M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.-G.

Meißner, Rev. Mod. Phys. 90, 035004 (2018).
[11] K. T. Hecht, Phys. Rev. C 16, 2401 (1977).
[12] K. T. Hecht and W. Zahn, Nucl. Phys. A 318, 1 (1979).
[13] G. Rosensteel and D. J. Rowe, Phys. Rev. Lett. 38, 10 (1977).
[14] D. J. Rowe, Rep. Prog. Phys. 48, 1419 (1985).
[15] A. C. Dreyfuss, K. D. Launey, T. Dytrych, J. P. Draayer, and C.

Bahri, Phys. Lett. B 727, 511 (2013).
[16] G. K. Tobin, M. C. Ferriss, K. D. Launey, T. Dytrych, J. P.

Draayer, A. C. Dreyfuss, and C. Bahri, Phys. Rev. C 89, 034312
(2014).

[17] A. C. Dreyfuss, K. D. Launey, T. Dytrych, J. P. Draayer, R. B.
Baker, C. M. Deibel, and C. Bahri, Phys. Rev. C 95, 044312
(2017).

[18] K. D. Launey, T. Dytrych, and J. P. Draayer, Prog. Part. Nucl.
Phys. 89, 101 (2016).

[19] T. Dytrych, K. D. Launey, J. P. Draayer, D. J. Rowe, J. L. Wood,
G. Rosensteel, C. Bahri, D. Langr, and R. B. Baker, Phys. Rev.
Lett. 124, 042501 (2020).

[20] D. J. Rowe, AIP Conf. Proc. 1541, 104 (2013).
[21] Y. Suzuki and K. T. Hecht, Nucl. Phys. A 388, 102 (1982).
[22] M. Wiescher and T. Ahn, Clusters in astrophysics, in Nu-

clear Particle Correlations and Cluster Physics, 1st ed. (World
Scientific Publishing, Hackensack, 2017), Vol. 1, Chap. 8,
pp. 203–257.

[23] Y. Suzuki, Nucl. Phys. A 448, 395 (1986).
[24] Y. Suzuki and K. T. Hecht, Nucl. Phys. A 455, 315 (1986).
[25] K. T. Hecht and D. Braunschweig, Nucl. Phys. A 244, 365

(1975).
[26] K. T. Hecht, E. J. Reske, T. H. Seligman, and W. Zahn, Nucl.

Phys. A 356, 146 (1981).
[27] Y. Suzuki and W. Horiuchi, in Clustering in Light Nuclei with the

Correlated Gaussian Approach (World Scientific Publishing,
Singapore, 2017), Chap. 7.

[28] K. T. Hecht, H. M. Hofmann, and W. Zahn, Phys. Lett. B 103,
92 (1981).

[29] Y. Suzuki, R. G. Lovas, K. Yabana, and K. Varga, Structure and
Reactions of Light Exotic Nuclei (Taylor & Francis, Philadel-
phia, 2003).

[30] K. D. Launey, T. Dytrych, J. P. Draayer, G. K. Tobin, M. C.
Ferriss, D. Langr, A. C. Dreyfuss, P. Maris, J. P. Vary, and C.
Bahri, in Proceedings of the 5th International Conference on Fis-
sion and Properties of Neutron-rich Nuclei, ICFN5, November

4–10, 2012, Sanibel Island, Florida, edited by J. H. Hamilton
and A. V. Ramayya (World Scientific, Singapore, 2013), p. 29.

[31] R. B. Wiringa, S. C. Pieper, J. Carlson, and V. R.
Pandharipande, Phys. Rev. C 62, 014001 (2000).

[32] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,
K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067
(2015).

[33] E. Epelbaum, H. Krebs, D. Lee, and Ulf-G. Meißner, Phys. Rev.
Lett. 106, 192501 (2011).

[34] G. Rupak and D. Lee, Phys. Rev. Lett. 111, 032502 (2013).
[35] S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T. A.

Lähde, T. Luu, and U. G. Meißner, Nature (London) 528, 111
(2015).

[36] S. Bacca, N. Barnea, W. Leidemann, and G. Orlandini, Phys.
Rev. Lett. 110, 042503 (2013).

[37] K. Kravvaris and A. Volya, Phys. Rev. Lett. 119, 062501 (2017).
[38] A. Mercenne, N. Michel, and M. Płoszajczak, Phys. Rev. C 99,

044606 (2019).
[39] S. Quaglioni and P. Navrátil, Phys. Rev. Lett. 101, 092501

(2008).
[40] P. Navrátil, S. Quaglioni, I. Stetcu, and B. R. Barrett, J. Phys.

G: Nucl. Particle Phys. 36, 083101 (2009).
[41] B. Barrett, P. Navrátil, and J. Vary, Prog. Part. Nucl. Phys. 69,

131 (2013).
[42] A. Mercenne, K. D. Launey, J. E. Escher, T. Dytrych, and J. P.

Draayer, in Proceedings of the 6th International Workshop on
Compound-Nuclear Reactions and Related Topics (Lawrence
Berkeley National Laboratory, Berkeley, 2018).

[43] J. D. MacArthur, H. C. Evans, J. R. Leslie, and H. B. Mak, Phys.
Rev. C 22, 356 (1980).

[44] H. Horiuchi, K. Ikeda, and K. Kato, Prog. Theor. Phys. Suppl.
192, 1 (2012).

[45] B. Zhou, Y. Funaki, H. Horiuchi, Z. Ren, G. Röpke, P. Schuck,
A. Tohsaki, C. Xu, and T. Yamada, Phys. Rev. Lett. 110, 262501
(2013).

[46] F. D. Becchetti, J. Jänecke, and C. E. Thorn, Nucl. Phys. A 305,
313 (1978).

[47] N. Anantaraman, H. E. Gove, R. A. Lindgren, J. Tōke, J. P.
Trentelman, J. P. Draayer, F. C. Jundt, and G. Guillaume, Nucl.
Phys. A 313, 445 (1979).

[48] T. Tanabe, M. Yasue, K. Sato, K. Ogino, Y. Kadota, Y.
Taniguchi, K. Obori, K. Makino, and M. Tochi, Phys. Rev. C
24, 2556 (1981).

[49] W. Oelert, W. Chung, M. Betigeri, A. Djaloeis, C. Mayer-
Böricke, and P. Turek, Phys. Rev. C 20, 459 (1979).

[50] T. Fukui, Y. Taniguchi, T. Suhara, Y. Kanada-En’yo, and K.
Ogata, Phys. Rev. C 93, 034606 (2016).

[51] A. M. Mukhamedzhanov, H. L. Clark, C. A. Gagliardi, Y.-W.
Lui, L. Trache, R. E. Tribble, H. M. Xu, X. G. Zhou, V. Burjan,
J. Cejpek et al., Phys. Rev. C 56, 1302 (1997).

[52] R. E. Tribble, C. A. Bertulani, M. L. Cognata, A. M.
Mukhamedzhanov, and C. Spitaleri, Rep. Prog. Phys. 77,
106901 (2014).

[53] C. R. Brune, W. H. Geist, R. W. Kavanagh, and K. D. Veal,
Phys. Rev. Lett. 83, 4025 (1999).

044608-13

https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.ppnp.2005.09.002
https://doi.org/10.1103/PhysRev.52.1107
https://doi.org/10.1103/PhysRev.52.1083
https://doi.org/10.1143/PTP.43.375
https://doi.org/10.1016/0370-1573(78)90175-8
https://doi.org/10.1103/PhysRevLett.81.5291
https://doi.org/10.1103/PhysRevLett.98.032501
https://doi.org/10.1016/j.ppnp.2015.01.001
https://doi.org/10.1103/RevModPhys.90.035004
https://doi.org/10.1103/PhysRevC.16.2401
https://doi.org/10.1016/0375-9474(79)90465-2
https://doi.org/10.1103/PhysRevLett.38.10
https://doi.org/10.1088/0034-4885/48/10/003
https://doi.org/10.1016/j.physletb.2013.10.048
https://doi.org/10.1103/PhysRevC.89.034312
https://doi.org/10.1103/PhysRevC.95.044312
https://doi.org/10.1016/j.ppnp.2016.02.001
https://doi.org/10.1103/PhysRevLett.124.042501
https://doi.org/10.1063/1.4810815
https://doi.org/10.1016/0375-9474(82)90511-5
https://doi.org/10.1016/0375-9474(86)90335-0
https://doi.org/10.1016/0375-9474(86)90021-7
https://doi.org/10.1016/0375-9474(75)90549-7
https://doi.org/10.1016/0375-9474(81)90123-8
https://doi.org/10.1016/0370-2693(81)90677-8
https://doi.org/10.1103/PhysRevC.62.014001
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/PhysRevLett.106.192501
https://doi.org/10.1103/PhysRevLett.111.032502
https://doi.org/10.1038/nature16067
https://doi.org/10.1103/PhysRevLett.110.042503
https://doi.org/10.1103/PhysRevLett.119.062501
https://doi.org/10.1103/PhysRevC.99.044606
https://doi.org/10.1103/PhysRevLett.101.092501
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1103/PhysRevC.22.356
https://doi.org/10.1143/PTPS.192.1
https://doi.org/10.1103/PhysRevLett.110.262501
https://doi.org/10.1016/0375-9474(78)90180-X
https://doi.org/10.1016/0375-9474(79)90512-8
https://doi.org/10.1103/PhysRevC.24.2556
https://doi.org/10.1103/PhysRevC.20.459
https://doi.org/10.1103/PhysRevC.93.034606
https://doi.org/10.1103/PhysRevC.56.1302
https://doi.org/10.1088/0034-4885/77/10/106901
https://doi.org/10.1103/PhysRevLett.83.4025


A. C. DREYFUSS et al. PHYSICAL REVIEW C 102, 044608 (2020)

[54] M. L. Avila, G. V. Rogachev, E. Koshchiy, L. T. Baby,
J. Belarge, K. W. Kemper, A. N. Kuchera, A. M.
Mukhamedzhanov, D. Santiago-Gonzalez, and E. Uberseder,
Phys. Rev. Lett. 114, 071101 (2015).

[55] M. L. Avila, G. V. Rogachev, E. Koshchiy, L. T. Baby, J.
Belarge, K. W. Kemper, A. N. Kuchera, and D. Santiago-
Gonzalez, Phys. Rev. C 90, 042801(R) (2014).

[56] B. Buck, C. B. Dover, and J. P. Vary, Phys. Rev. C 11, 1803
(1975).

[57] Y. Kanada-En’yo, Prog. Theore. Exp. Phys. 2014, 103D03
(2014).

[58] H. Costantini, R. J. deBoer, R. E. Azuma, M. Couder, J.
Görres, J. W. Hammer, P. J. LeBlanc, H. Y. Lee, S. O’Brien,
A. Palumbo, E. C. Simpson, E. Stech, W. Tan, E. Uberseder,
and M. Wiescher, Phys. Rev. C 82, 035802 (2010).

[59] R. H. Cyburt, A. M. Amthor, A. Heger, E. Johnson, L. Keek, Z.
Meisel, H. Schatz, and K. Smith, Astrophys. J. 830, 55 (2016).

[60] R. G. Lovas, R. J. Liotta, K. Varga, and D. S. Delion, Phys. Rep.
294, 265 (1998).

[61] R. G. Thomas, Prog. Theor. Phys. 12, 253 (1954).
[62] P. Descouvement and D. Baye, Rep. Prog. Phys. 73, 036301

(2010).
[63] T. Teichmann and E. P. Wigner, Phys. Rev. 87, 123 (1952).
[64] I. J. Thompson and F. M. Nunes, Nuclear Reactions for

Astrophysics: Principles, Calculation and Applications of Low-
Energy Reactions (Cambridge University Press, Cambridge,
2009).

[65] K. M. Nollett and R. B. Wiringa, Phys. Rev. C 83, 041001(R)
(2011).

[66] C. R. Brune, Phys. Rev. C 66, 044611 (2002).
[67] J. P. Elliott, Proc. R. Soc. A 245, 128 (1958).
[68] J. P. Elliott and M. Harvey, Proc. R. Soc. A 272, 557 (1963).
[69] J. Escher and A. Leviatan, Phys. Rev. Lett. 84, 1866 (2000).
[70] J. Escher and A. Leviatan, Phys. Rev. C 65, 054309 (2002).
[71] T. Dytrych, K. D. Sviratcheva, C. Bahri, J. P. Draayer, and J. P.

Vary, Phys. Rev. Lett. 98, 162503 (2007).
[72] J. P. Draayer and Y. Akiyama, J. Math. Phys. 14, 1904 (1973).
[73] K. T. Hecht, Nucl. Phys. 62, 1 (1965).
[74] D. J. Rowe, G. Rosensteel, and R. Carr, J. Phys. A: Math. Gen.

17, L399 (1984).
[75] D. J. Rowe, J. Math. Phys. 25, 2662 (1984).
[76] K. T. Hecht, J. Phys. A: Math. Gen. 18, L1003 (1985).
[77] K. T. Hecht and W. Zahn, Nucl. Phys. A 313, 77 (1979).
[78] T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary,

E. Saule, U. Catalyurek, M. Sosonkina, D. Langr, and M. A.
Caprio, Phys. Rev. Lett. 111, 252501 (2013).

[79] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-
Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T.
Papenbrock, J. Sarich et al., Phys. Rev. Lett. 110, 192502
(2013).

[80] T. Dytrych, K. D. Sviratcheva, J. P. Draayer, C. Bahri,
and J. P. Vary, J. Phys. G: Nucl. Part. Phys. 35, 123101
(2008).

[81] H. Horiuchi and Y. Suzuki, Prog. Theore. Phys. 49, 1974
(1973).

[82] K. A. Wendt, C. Forssén, T. Papenbrock, and D. Sääf, Phys.
Rev. C 91, 061301(R) (2015).

[83] R. J. Schmidt, The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science 32, 369
(1941).

[84] D. Shanks, J. Math. Phys. 34, 1 (1955).
[85] Y. Kanada-En’yo, T. Suhara, and Y. Taniguchi, Prog. Theore.

Exp. Phys. 2014, 073D02 (2014).
[86] Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kato,

Y. Suzuki, and E. Uegaki, Suppl. Prog. Theore. Phys. 68, 29
(1980).

[87] B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, and F.
Timmes, Astrophys. J. Suppl. Ser. 192, 3 (2011).

[88] B. Paxton, M. Cantiello, P. Arras, L. Bildsten, E. F. Brown,
A. Dotter, C. Mankovich, M. H. Montgomery, D. Stello,
F. X. Timmes et al., Astrophys. J. Suppl. Ser. 208, 4
(2013).

[89] B. Paxton, P. Marchant, J. Schwab, E. B. Bauer, L. Bildsten,
M. Cantiello, L. Dessart, R. Farmer, H. Hu, N. Langer et al.,
Astrophys. J. Suppl. Ser. 220, 15 (2015).

[90] B. Paxton, J. Schwab, E. B. Bauer, L. Bildsten, S. Blinnikov, P.
Duffell, R. Farmer, J. A. Goldberg, P. Marchant, E. Sorokina et
al., Astrophys. J. Suppl. Ser. 234, 34 (2018).

[91] B. Paxton, R. Smolec, J. Schwab, A. Gautschy, L. Bildsten, M.
Cantiello, A. Dotter, R. Farmer, J. A. Goldberg, A. S. Jermyn
et al., Astrophys. J. Suppl. Ser. 243, 10 (2019).

[92] Y. Tanaka, in ESA Special Publication, Vol. 296, edited by J.
Hunt and B. Battrick (ESA, Paris, 1989).

[93] P. Ubertini, A. Bazzano, M. Cocchi, L. Natalucci, J. Heise, J. M.
Muller, and J. J. M. in ’t Zand, Astrophys. J. Lett. 514, L27
(1999).

[94] R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith,
S. Warren, A. Heger, R. D. Hoffman, T. Rauscher, A. Sakhauruk
et al., Astrophys. J. Suppl. Ser. 189, 240 (2010).

[95] G. Rosensteel, J. Math. Phys. 21, 924 (1980).
[96] D. J. Rowe, Prog. Part. Nucl. Phys. 37, 265 (1996).
[97] G. Rosensteel, Phys. Rev. C 42, 2463 (1990).

044608-14

https://doi.org/10.1103/PhysRevLett.114.071101
https://doi.org/10.1103/PhysRevC.90.042801
https://doi.org/10.1103/PhysRevC.11.1803
https://doi.org/10.1093/ptep/ptu121
https://doi.org/10.1103/PhysRevC.82.035802
https://doi.org/10.3847/0004-637X/830/2/55
https://doi.org/10.1016/S0370-1573(97)00049-5
https://doi.org/10.1143/PTP.12.253
https://doi.org/10.1088/0034-4885/73/3/036301
https://doi.org/10.1103/PhysRev.87.123
https://doi.org/10.1103/PhysRevC.83.041001
https://doi.org/10.1103/PhysRevC.66.044611
https://doi.org/10.1098/rspa.1958.0072
https://doi.org/10.1098/rspa.1963.0071
https://doi.org/10.1103/PhysRevLett.84.1866
https://doi.org/10.1103/PhysRevC.65.054309
https://doi.org/10.1103/PhysRevLett.98.162503
https://doi.org/10.1063/1.1666267
https://doi.org/10.1016/0029-5582(65)90068-4
https://doi.org/10.1088/0305-4470/17/8/001
https://doi.org/10.1063/1.526497
https://doi.org/10.1088/0305-4470/18/16/002
https://doi.org/10.1016/0375-9474(79)90568-2
https://doi.org/10.1103/PhysRevLett.111.252501
https://doi.org/10.1103/PhysRevLett.110.192502
https://doi.org/10.1088/0954-3899/35/12/123101
https://doi.org/10.1143/PTP.49.1974
https://doi.org/10.1103/PhysRevC.91.061301
https://doi.org/10.1080/14786444108520797
https://doi.org/10.1002/sapm19553411
https://doi.org/10.1093/ptep/ptu095
https://doi.org/10.1143/PTPS.68.29
https://doi.org/10.1088/0067-0049/192/1/3
https://doi.org/10.1088/0067-0049/208/1/4
https://doi.org/10.1088/0067-0049/220/1/15
https://doi.org/10.3847/1538-4365/aaa5a8
https://doi.org/10.3847/1538-4365/ab2241
https://doi.org/10.1086/311933
https://doi.org/10.1088/0067-0049/189/1/240
https://doi.org/10.1063/1.524479
https://doi.org/10.1016/0146-6410(96)00058-0
https://doi.org/10.1103/PhysRevC.42.2463

