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Abstract. Learners often have metacognitive deficits that limit their ability to 

select material at appropriate levels in independent studying situations. The in-

creasing prevalence of intelligent recommender systems can assume this role, 

while also fostering a kind of experiential meta-instruction. The creation of hy-

brid tutors (federated systems of both adaptive and static learning resources with 

a single interface and learning record store) provides an opportunity to test this 

experiential instruction of metacognitive strategies. As a test case, we examine 

the hybrid tutor ElectronixTutor, which has two distinct intelligent recommender 

engines corresponding to distinct use cases. Each of these constitutes a method 

of providing scaffolding to learners so that they can internalize the principled, 

theoretically informed reasons for the order of their progression through learning 

content. However, the learning described is speculative and requires evaluation. 

By examining expected efficacy, perceived efficacy, actual efficacy, and espe-

cially the relationships among these three concepts, actionable insights should 

arise pertaining to adaptive instructional system design, learning science gener-

ally, and other areas.  
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1 Introduction 

1.1 Metacognitive Deficits 

Progressing through a federated learning environment via adaptive recommendations 

may constitute experiential learning of metacognitive strategies. Intelligent, personal-

ized recommendations attempt a delicate task otherwise incumbent upon learners. That 

task depends upon metacognitive processes and awareness which are deficient in (or 

potentially foreign to) many learners [1]. To compensate for the paucity of those skills, 

conventional independent learners have rigid lesson plans, at best. Such plans fail to 

provide many aspects of an experiential process identified by many as critical to 

knowledge construction [2,3,4]. 

Appropriate recommendations—human or otherwise—may complement explicit 

content instruction by scaffolding how to learn complex topics beyond the immediate 

application or solution. However, this meta-instruction works best when learners un-

derstand the essential logic of artificially intelligent recommendations—that their past 

performance and personal characteristics inform what should come next. The challenge 

then becomes how to introduce and reinforce the complexities and relationships among 



these variables through interactive experience, and how to evaluate whether or not such 

instruction has taken place. 

Experiential instruction relies largely on emotional engagement and dynamism. 

Graesser [5] argues that emotions are the “experiential glue” of learning environments. 

To accomplish this engagement, adaptive instructional systems sometimes must oper-

ate in open defiance of the user experience design principle that cognitive load should 

be minimized. A cognitively demanding state of confusion may serve as an effective 

emotional and experiential tool to establish or correct mental models of the domain, as 

well as the learner’s understanding of his mastery status within it [6]. Naturally, this 

state of confusion may also lead to frustration and in turn disengagement. This risk 

necessitates a balance, maintained by accurate assessment of the learner’s status on 

multiple dimensions. 

Further complicating the high-wire act, learners need some degree of understanding 

of the intelligent recommendations that guide their interaction with the system. Jackson, 

Graesser, and McNamara [7] argued that the accuracy of expectations of the learning 

technology constitute stronger predictors of actual learning than prior knowledge, ini-

tial motivation, and technological proficiency combined. As learners are unlikely to 

differentiate between the production quality of individual learning resources and the 

federated learning system generally (with special emphasis on the intelligent recom-

mender), a holistic measure of expected efficacy compared to actual efficacy may prove 

strongly predictive of the latter. 

1.2 Hybrid Tutor 

Effective instruction of complex domains naturally progresses and varies along multi-

ple dimensions to instill complex understanding. For example, Ohm’s Law in electrical 

engineering logically precedes calculating voltage of series and parallel circuits, be-

cause those calculations frequently rely on Ohm’s Law. Complementing that linear pro-

gression, alternation between applied, conceptual, and formalized denotation can pro-

vide symbiotic advancements. Applied mathematical problems may contextualize the 

need for Ohm’s Law to find a solution. A subsequent conceptual exercise may demon-

strate why voltage increases with current and decreases with resistance, and in what 

proportions. Understanding those in succession can concretize formulaic problems and 

foster a learning environment tied to practice. This constitutes an authentic learning 

experience, critical in developing meaningful skill acquisition [8]. For these reasons, 

comprehensive content instruction of complex domains nearly requires the availability 

of learning resources targeted at various levels and perspectives. 

In this manuscript, we refer to a class of learning environment called a hybrid tutor 

[9]. These systems combine static learning resources, like text or videos, with adaptive 

resources such as intelligent tutoring systems or interactive assessments. Hybrid tutors 

incorporate these disparate resources within a single interface and provide intelligent 

recommendations based on progress across the various components.  

The hybrid tutor we use for illustration is called ElectronixTutor [10,11]. This sys-

tem subsumes several independently developed learning resources pertaining to elec-

trical engineering principles and application. These include static conventional texts, 



dialogue-based conceptual interactions, stepwise formulaic progressions, tiered multi-

ple-choice questions, and comprehensive diagrammatic problems, among others.  

These resources serve as the raw material from which to construct holistic content 

instruction and meta-instruction through two distinct intelligent recommendation path-

ways (one unconstrained, the other instructor-driven). Both pathways leverage the same 

comprehensive model of progression and perspective. They both produce individual-

ized assessment of performance that recognizes (via distinct methods) deficiency and 

excellence. We leverage the construction and evaluation of ElectronixTutor to examine 

in context the relevant issues of sequential progression, diversity of perspective, expe-

riential instruction, intelligent recommendation, and the relationship between learner 

expectation and learning outcomes. 

2 Designing for Experiential Learning 

2.1 Adaptive Recommendations 

Adaptive instructional systems are generally advantageous, relative to non-adaptive 

learning tools [12]. However, methods of implementation for adaptivity vary widely, 

as does the relative advantage bestowed on the learner. The relatively novel architecture 

of hybrid tutors requires similarly novel construction of adaptive recommendation en-

gines. Recommendations need to function simultaneously within-resource and be-

tween-resource. The system must translate progress in an independently developed 

learning resource into a holistic understanding of the learner [13,14]. From there, the 

system must make determinations based on learning theory that account for the learner 

and domain considerations noted above. Based on those determinations, the system 

then identifies the learning resource and individual item that best matches the needs of 

the moment.  

The complexity of this decision-making process leaves considerable room for vari-

ation. ElectronixTutor includes two distinct methods of constructing adaptive recom-

mendations. These follow from two basic use cases. In the first case, independent learn-

ers wish to increase their knowledge of the domain. This likely does not involve any 

structure outside of that suggested by the domain itself, and recommendations follow 

accordingly with adaptivity derived from the individual’s historical performance data. 

In the second case, the system functions as a classroom companion learning tool. There, 

instructors may wish to have a degree of control over the content order and availability, 

to more closely follow existing syllabi and lesson plans. 

Historically Derived. In the case of an independent learner, ElectronixTutor leverages 

all data collected about the learner throughout all historical interactions [15]. These data 

reside in the learning record store, from which the system calculates performance on 

several dimensions, including performance within that topic, within that resource, re-

cent versus historical average, etc. From there, the system generates potential recom-



mended items using considerations influenced by learner characteristics and experien-

tial factors. For example, the system may use historical performance information to 

infer that the learner is particularly motivated based on extended time spent on prob-

lems without giving up. In that situation, pushing the envelope may be the ideal ap-

proach.  

This recommendation engine provides three options to the learner, from which they 

can select freely. These options may all come from the same learning resource or not. 

If the engine identifies more than three appropriate items, it performs conflict resolution 

based on historical performance within that learning resource and topic. Low perfor-

mance triggers a zone of proximal development strategy [16], wherein the candidate 

problem’s difficulty suggests a learner should be able to successfully complete it with 

some structural support. High performance triggers a “pushing the envelope” strategy, 

with advanced difficulty. This strategy allows the system to “catch up” to advanced 

students quickly. If performance is average, the recommendation engine defaults to 

random selection among the candidate problems. Fig. 1 illustrates the process.  

 

Fig. 1. A simplified depiction of historically derived intelligent recommendations, with sample 

considerations illustrating how possible items are generated.  

Instructor Circumscribed. In the case of a hybrid tutor being deployed as a classroom 

companion learning tool, instructors will likely want some degree of control over con-

tent ordering and availability. To accommodate that, while still leveraging the intelli-

gent adaptivity afforded by the medium, ElectronixTutor incorporates a second recom-

mendation engine. In this engine, instructors designate on which of the topics (e.g., 

Ohm’s Law, parallel circuits, transformers) learners should focus during a designated 

time frame. This singular recommendation (as opposed to the three generated by the 

historically derived engine) appears under the label “Today’s Topic”.  

Because of the restriction to a single topic, and further because that topic is likely 

new to the learner, the system has substantially fewer datapoints from which to calcu-

late recommendations accurate to the individual’s needs and idiosyncrasies. Also, the 

instructor may prefer a relatively explainable procedure for determining if learners have 



reached a set level of mastery on that topic. For these reasons, instructor circumscribed 

recommendations rely on a decision chart rather than complex calculations.  

This process may vary slightly among topics (depending on the breadth of resources 

available), but typically proceeds as follows. First, the recommendation engine directs 

learners to a topic summary, with text providing an overview of the new topic, including 

hyperlinks to external resources (e.g., Wikipedia). Learners then progress to conversa-

tional reasoning questions. These questions provide substantial diagnosticity as they 

contain multi-part answers and account for the level of fluency with which the learner 

was able to produce each part [17].  Based on this nuanced performance evaluation, the 

system leads learners to advanced, remedial, or roughly equivalent problems across all 

learning resources. Basic adaptivity (i.e., correct responses lead to more difficult prob-

lems and vice versa) complements a bias toward variability in learning resources pre-

sented.  

This process continues until two conditions have been met. First, the learner’s over-

all performance within the topic reaches a “mastery threshold”. This score updates with 

every completed item and includes weightings relative to difficulty and scope. The in-

structor can determine the numeric value of the threshold (represented between zero 

and one), to allow added control over learner requirements. Second, the learner must 

have completed items in at least three learning resources. This ensures breadth of un-

derstanding, as different learning resources have distinct focus areas and approaches 

(e.g., conceptual versus mathematical versus practical).  

Using this approach, instructors can assign homework that biases fluency with the 

content, rather than interaction with a set amount of content. Both historically derived 

and instructor circumscribed recommendation engines appear in the top-left portion of 

the screen, emphasizing their importance to the learning process (see Fig. 2). By de-

fault, both are available. The instructors may disable the historically derived option (as 

well as the self-directed learning option, shown below the other two options) to have 

added control over the content. In the case of an independent learner unaffiliated with 

a class, the instructor circumscribed recommendations proceed through the 15 topics in 

order, with each successive topic unlocked by completion of the previous one.  

 

Fig. 2. The ElectronixTutor interface with a conversational reasoning question. 



2.2 Scaffolding 

In addition to providing flexibility in learner use cases, the two recommendation gen-

eration methods described provide distinct opportunities to scaffold metacognitive 

strategies. The experience of receiving personalized recommendations acts in the tradi-

tional role of a tutor, and “serves the learner as a vicarious form of consciousness until 

such time as the learner is able to master his own action through his own consciousness 

and control.” [18] (p. 24)  

In historically derived recommendations, a complex combination and processing of 

information yields three appropriate options for next steps. As detailed above, this goes 

significantly beyond questions becoming harder after a successful completion. The sys-

tem demonstrates how to properly balance approaches rather than binging on a single 

learning resource. Detection of frustration within problems should lead to relatively 

easier problems that build confidence. Ideally this also avoids disengagement by virtue 

of variety. Repeated, but not exclusive, exposure to problem areas reinforces the need 

for persistence balanced against diversity.  

The ability to select from three options emphasizes these principles by tripling the 

number of exposures to metacognitively aware decisions. A list of three conversational 

reasoning recommendations could highlight that the learner has been avoiding that re-

source, or that he lacks conceptual understanding. And the act of choosing creates a 

closer link between the artificial intelligence and the acts it is scaffolding.  

In instructor circumscribed recommendations, a relatively restricted state space re-

duces the number of possibilities to a level that the learner may find more manageable. 

Consistency at the beginning of a topic (Topic Summary followed by Conversational 

Reasoning) demonstrates important principles in addressing content—first refresh 

yourself on the big picture then check for conceptual understanding. Subsequent rec-

ommendations reinforce the importance of diversity or perspective and of holistic un-

derstanding, while progression to harder or easier content provides implicit, high-level 

feedback on performance. Finally, completing a topic upon reaching the mastery 

threshold correlates successful content fluency with a specific metacognitive status.  



3 Proposed Evaluation 

In theory, interacting with the prescribed recommendation engines constitute a means 

for scaffolding metacognitive awareness. However, their effectiveness in this regard 

relies on learners understanding that intent and evaluating the proffered information 

accordingly. How much learners fulfill this requirement, or indeed are aware of its 

existence, remains largely in doubt. Scaffolding typically assumes explicit instruction, 

as opposed to the experiential and implicit method described in the hybrid tutor. We 

conclude our discussion with a proposal of methods to evaluate the degree to which, 

and mechanisms by which, experiential learning provides instruction related to 

metacognitive awareness and strategies.  

3.1 Expected Efficacy 

Following the findings of Jackson, Graesser, and McNamara [7], we anticipate learner 

expectations to strongly predict learning outcomes. However, these findings have not 

yet been replicated in metacognitive awareness and strategies—they applied to learning 

outcomes of the target domain. Adapting the approach appears relatively straightfor-

ward. A survey of participants before interacting with the system could illustrate ex-

pectation for how adaptive instructional technologies generate recommendations. 

Some difficulty arises in avoiding biasing subsequent interactions with the system. 

For example, asking “What factors do you believe will influence how the system gen-

erates recommendations for you?” may cause the participant to search for intention 

most diligently than he would have otherwise. Further, it may bias him toward belief 

that the recommendations are genuinely artificially intelligent. This may not have been 

the default position. To avoid this, acquiring a general sense of the participant’s views 

on personalized adaptivity may prove less problematic. People commonly interact with 

applications that claim to learn their preferences (e.g., Nest smart thermostats), daily 

routine (e.g., Google Maps), language use (e.g., auto-complete text generation) etc. A 

broad trust or frustration in these technologies likely correlates highly with their ex-

pected efficacy of intelligent recommendations in learning technology. Complementing 

this subtlety is the structure of the hybrid tutor itself, where the focus lies primarily on 

the learning content, not elements of progression through them.  

This aspect of the evaluation has two benefits. First, it expands the research on the 

link between learner expectations and learning outcomes to include metacognitive 

learning through experiential instruction. Second, it may provide valuable context for 

the mechanisms by which intelligent recommendations lead to (or fail to lead to) met-

acognitive benefits with respect to learning. If the effect does extend to this application 

but metacognitive learning outcomes are hindered by inaccurate expectations, the in-

tervention to remedy the situation becomes clearer. Effort spent in optimizing the rec-

ommender engines may be more efficiently deployed in conveying their capabilities to 

the learners.  



3.2 Perceived Efficacy 

A measure of perceived efficacy would complement the expected efficacy survey. Fol-

lowing completion of the testing, a survey would measure perception of the hybrid tu-

tor’s intelligence and the appropriateness of its adaptivity. This would provide a direct 

measure of the match between actual capabilities and its perceived capabilities. This 

directly impacts our understanding of experiential instruction of metacognitive strate-

gies. If learners did not notice any reason for the recommendations, then they are un-

likely to have absorbed the lessons implicit within them.  

Comparison to the previous survey could also demonstrate the effect of bias on per-

ceptions of intelligent adaptivity. This could potentially have far-reaching implications 

for any kind of artificially intelligent adaptivity. Trust in automation constitutes a large 

research field with immediate economic concerns such as the public’s willingness to 

cede control to self-driving cars. Improvements to the automation systems themselves 

may be tempered by bias that negates or ignores tangible advances.  

3.3 Actual Efficacy 

Finally, we come to a direct examination of the potential for experiential instruction of 

metacognitive strategies through intelligent recommendations. This will require a de-

gree of deception. As stated, instructing these strategies requires learners to understand 

that recommendations are adaptive to the learners, based on past performance and in-

dividual characteristics. A proper control group requires the absence of that understand-

ing.  

Randomly dividing the participant population, half should proceed normally through 

the hybrid tutor for some amount of time enough to encounter as many iterations of the 

recommender(s) as is feasible. The other half of the participants should follow the same 

procedure, except they should be under the impression that the order of learning re-

sources and items is predetermined. The experimenter should show them a checklist of 

items through which they will proceed one at a time. Almost certainly, the participant 

will glance at this (preferably inscrutable) list and then disregard the specifics. From 

there, the experimenter simply pretends to read from the checklist while in fact instruct-

ing the participant to continue using intelligently generated recommendations. Further, 

the label “Recommended for you” should be altered to “Random practice” to avoid 

implications of intelligence.  

During or after the task, one or more established methods of metacognitive assess-

ment [19] can provide empirical validation of the approach. Think-aloud protocol and 

reflecting when prompted are both common, though with some concern that they inter-

rupt the learning process [20]. Alternatively, following completion of the task, all par-

ticipants could take a survey. This should include self-assessment of their mastery of 

topics encountered (which can be compared to calculated values), impression of the 

relative values of learning resources (e.g., conceptually-oriented versus mathematically 

rigorous), and their mastery of each of the learning resources (again, comparing to cal-

culated values). This between-participants experimental approach could rigorously test 

the impact of experiential instruction on metacognitive strategy learning.  



3.4 Conclusion 

Deficiencies in metacognitive strategies and awareness mean that learners appropri-

ately selecting content without the benefit of expert supervision is unlikely. Because of 

this, intelligent recommendations provide an invaluable service to learners in adaptive 

instructional systems. Beyond the act of substituting for experts, those recommenda-

tions may provide meta-instruction by virtue of scaffolding understanding of the mech-

anisms at play in deciding the best way forward.  

Principles of experiential learning and scaffolding of instruction suggest that this 

may be the case. Hybrid tutors provide a viable testing environment, with differential 

methods of intelligent recommendation helping to ensure sufficient breadth to general-

ize any findings. Evaluating the extent to which and mechanisms by which this proves 

effective could have far-reaching impacts. Comparisons among the expected, per-

ceived, and actual efficacy of intelligent recommendations can inform learning science, 

trust in automation, and adaptive instructional system design principles. 
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