
FINITE GENERATION OF SOME COHOMOLOGY RINGS

VIA TWISTED TENSOR PRODUCT AND ANICK RESOLUTIONS

VAN C. NGUYEN, XINGTING WANG, AND SARAH WITHERSPOON

Abstract. Over a field of prime characteristic p > 2, we prove that the cohomology rings of some
pointed Hopf algebras of dimension p3 are finitely generated. These are Hopf algebras arising in the
ongoing classification of finite dimensional pointed Hopf algebras in positive characteristic. They
include bosonizations of Nichols algebras of Jordan type in a general setting. When p = 3, we
also consider their Hopf algebra liftings, that is Hopf algebras whose associated graded algebra
with respect to the coradical filtration is given by such a bosonization. Our proofs are based
on an algebra filtration and a lemma of Friedlander and Suslin, drawing on both twisted tensor
product resolutions and Anick resolutions to locate the needed permanent cocycles in May spectral
sequences.
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1. Introduction

The cohomology ring of a finite dimensional Hopf algebra is conjectured to be finitely generated.
Friedlander and Suslin [9] proved this for cocommutative Hopf algebras, generalizing earlier results
of Evens [7], Golod [11], and Venkov [25] for finite group algebras and of Friedlander and Parshall [8]
for restricted Lie algebras. There are many finite generation results as well for various types
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of noncocommutative Hopf algebras (see, e.g., [3, 10, 12, 15, 23]). Most of these results are in
characteristic 0. In this paper, we prove finite generation for classes of noncocommutative Hopf
algebras in prime characteristic p > 2. These are some of the pointed Hopf algebras arising in
classification work of the first two authors.

Our main result is the following combination of Theorems 5.1.2 and 5.2.1 below:

Theorem. Let k be an algebraically closed field of prime characteristic p > 2. Consider the
following Hopf algebras over k:

(1) the p2q-dimensional bosonization R#kG of a rank two Nichols algebra R of Jordan type
over a cyclic group G of order q, where q is divisible by p; and

(2) a lifting H of R#kG when p = q = 3.

Then the cohomology rings of R#kG and of H are finitely generated.

Our theorem is exclusively an odd characteristic result since the Nichols algebra of Jordan type
does not appear in characteristic 2. Instead there is another related Nichols algebra [5] that will
require different techniques. Part (2) of our main theorem above is only stated for characteristic 3;
this is because we use the classification of such Hopf algebras from [19]. There, a complete classifi-
cation is given only in case p = 3 of the Hopf algebra liftings H of R#kG, that is the Hopf algebras
whose associated graded algebra with respect to the coradical filtration is R#kG. We expect our
homological techniques will be able to handle liftings in case p > 3 once more is known about their
structure.

More specifically, we let R#kG be a p2q-dimensional Hopf algebra given by the bosonization
of a truncated Jordan plane R as introduced in [5] (see Section 2.2 below). We prove that the
cohomology ring of such a Hopf algebra R#kG, that is H∗(R#kG,k) := Ext∗R#kG(k,k), is finitely

generated (this is part (1) of the main theorem). We also consider liftings H of R#kG in the
special case p = q = 3 (see Section 2.3 below). We prove that the cohomology ring H∗(H,k) is
finitely generated (this is part (2) of the main theorem).

The proof of the main theorem uses the May spectral sequence for the cohomology of a fil-
tered algebra. Both results (1) and (2) rely on a spectral sequence lemma due to Friedlander
and Suslin [9] whose application requires identifying some permanent cocycles in the spectral se-
quence. In either case (1) or (2) we choose a filtration for which the associated graded algebra
is a truncated polynomial ring whose cohomology is straightforward. We find permanent cocycles
by constructing two different resolutions of independent interest. The general definitions of the
resolutions are not new, but we provide here some nontrivial examples, with our main theorem as
an application. The first resolution is the twisted tensor product resolution of [21]. This resolu-
tion is recalled in Section 3.1, used in Section 3.2 to obtain a resolution for R, and used again in
Section 3.3 to obtain a resolution for R#kG. This resolution features in the proof of part (1) of
the main theorem in Section 5.1. Another resolution is the Anick resolution [1]. This is recalled
in Section 4.1, and a general result for the Anick resolution of k over a truncated polynomial ring
is in Section 4.2. The Anick resolution features in the proof of part (2) of the main theorem in
Section 5.2. We could have chosen to work with just one type of resolution, either Anick or twisted
tensor product, for proofs of parts (1) and (2) of our main theorem above. We instead chose to
work with both to illustrate a wider variety of techniques available, each having its own advantages.

Acknowledgment: The authors thank the referee for comments leading to improved clarity of
the paper.

2. Settings

Our results are for pointed Hopf algebras over an algebraically closed field k of characteristic
p > 2, hence we restrict to this assumption. The tensor product ⊗ is ⊗k, 1 denotes the identity
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map on any set, and all modules are left modules unless specified otherwise. In this section, we
will define the Nichols algebras and pointed Hopf algebras that are featured in this paper, and
summarize some structural results that will be needed.

2.1. Pointed Hopf algebras. Let H be any finite dimensional pointed Hopf algebra over k. The
coradical (the sum of all simple subcoalgebras) of H is H0 = kG, a Hopf subalgebra of H generated
by the grouplike elements G := {g ∈ H |∆(g) = g ⊗ g}, where ∆ is the coproduct on H.

Let

H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ H

be the coradical filtration ofH, whereHn = ∆−1(H⊗Hn−1+H0⊗H) inductively, see [18, Chapter 5].
Consider the associated graded Hopf algebra grH =

⊕
n≥0Hn/Hn−1, with the convention H−1 = 0.

Note that the zero term of grH equals its coradical, i.e., (grH)0 = H0. There is a projection
π : grH → H0 and an inclusion ι : H0 → grH such that πι = 1H0 . Let R be the algebra of
coinvariants of π:

R := (grH)co π = {h ∈ grH : (1H ⊗ π)∆(h) = h⊗ 1}.

By results of Radford [24] and Majid [16], R is a Hopf algebra in the braided category G
GYD of left

Yetter-Drinfeld modules over H0 = kG. Moreover, grH is the bosonization (or Radford biproduct)
of R and H0 so that grH ∼= R#H0 with the Hopf structure given in [18, Theorem 10.6.5]. As an
algebra, it is simply the smash product of H0 with R, analogous to a semidirect product of groups.

2.2. Our setting: Rank two Nichols algebra and its bosonization. For Sections 3 and 5.1,
we use the following setup. Let G := 〈g〉 ∼= Z/qZ be a cyclic group whose order q is divisible by p.
Consider

R := k〈x, y〉
/(

xp, yp, yx− xy − 1

2
x2
)
,

which is a p2-dimensional algebra as described in [5, Theorem 3.5], with a vector space basis
{xiyj | 0 ≤ i, j ≤ p − 1}. Observe that R is the Nichols algebra of a rank two Yetter-Drinfeld
module V = kx+ ky over G, where the G-action on V is given by

gx = x and gy = x+ y

(here, left superscript indicates group action), and the G-gradings of x and y are both given by g.
Let R#kG be the bosonization of R and kG. It is the corresponding p2q-dimensional pointed

Hopf algebra as studied in [5, Corollary 3.14], [19, §3 (Case B)], and [20, §4]. Its Hopf structure is
given by:

∆(x) = x⊗ 1 + g ⊗ x, ∆(y) = y ⊗ 1 + g ⊗ y, ∆(g) = g ⊗ g,
ε(x) = 0, ε(y) = 0, ε(g) = 1,

S(x) = −g−1x, S(y) = −g−1y, S(g) = g−1,

where ∆ is the coproduct, ε is the counit, and S is the antipode map of R#kG.

Remark 2.2.1. These algebras have featured in the following papers:

(1) These R,G,R#kG appear in [5, 19, 20] for various purposes. In their settings, G is a cyclic
group of order p. Here, we consider a more general setting with G being cyclic of order q
divisible by p.

(2) In [19], the first two authors classified p3-dimensional pointed Hopf algebra over prime
characteristic p. In their classification work, this p2-dimensional Nichols algebra R of Jordan
type is unique, up to isomorphism, and only occurs when p > 2.
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(3) The authors of [5] used right modules in their settings, whereas left modules were used in
[19], thus inducing a sign difference in the relation yx−xy− 1

2x
2 of R there. Here, we adopt

the relation described in [5]. In Section 5.2, when we study the cohomology of pointed Hopf
algebras H lifted from the associated graded algebras grH ∼= R#kG with respect to the
coradical filtration, we modify the relations of the lifting structure given in [19] accordingly,
see the next Section 2.3.

2.3. Our setting: A class of 27-dimensional pointed Hopf algebras. Suppose that the field
k has characteristic p = 3. Consider Hopf algebras H(ε, µ, τ) defined from three scalar parameters
ε, µ, τ as in [19]: These are pointed Hopf algebras of dimension 27 whose associated graded algebra
with respect to the coradical filtration is R#kG, the Hopf algebra described in Section 2.2, in this
case p = q = 3.

As an algebra, H(ε, µ, τ) is generated by g, x, y with relations

g3 = 1, x3 = εx, y3 = −εy2 − (µε− τ − µ2)y,
yg − gy = xg + µ(g − g2), xg − gx = −ε(g − g2),

yx− xy = −x2 + (µ+ ε)x+ εy + τ(1− g2),

where ε ∈ {0, 1} and τ, µ ∈ k are arbitrary scalars. The coalgebra structure is the same as that of
R#kG described in Section 2.2. By setting w = g − 1, we obtain a new presentation in which the
generators are w, x, y and the relations are:

w3 = 0, x3 = εx, y3 = −εy2 − (µε− τ − µ2)y,
yw − wy = wx+ x− (µ− ε)(w2 + w), xw − wx = ε(w2 + w),

yx− xy = −x2 + (µ+ ε)x+ εy − τ(w2 − w).

This choice of generating set will be convenient for our homological arguments later. As shown
in [19], H(ε, µ, τ) has dimension 27. It has a vector space basis {wixjyk | 0 ≤ i, j, k ≤ 2}.

3. Twisted tensor product resolutions

In this section, we apply the construction of a twisted tensor product resolution introduced in
[21] to our Nichols algebra R and its bosonization R#kG that were defined in Section 2.2. This
resolution will be used in the proof of Theorem 5.1.2 to identify some permanent cocycles in a May
spectral sequence.

3.1. The resolution construction. We first recall from [4] the general definition of a twisted
tensor product of algebras, and from [21] the general construction of a twisted tensor product
resolution. Let A and B be associative algebras over k with multiplication maps mA : A⊗A→ A,
mB : B ⊗B → B, and multiplicative identities 1A, 1B, respectively.

A twisting map τ : B⊗A→ A⊗B is a bijective k-linear map for which τ(1B ⊗ a) = a⊗ 1B and
τ(b⊗ 1A) = 1A ⊗ b, for all a ∈ A and b ∈ B, and

(3.1.1) τ ◦ (mB ⊗mA) = (mA ⊗mB) ◦ (1⊗ τ ⊗ 1) ◦ (τ ⊗ τ) ◦ (1⊗ τ ⊗ 1)

as maps B⊗B⊗A⊗A→ A⊗B. The twisted tensor product algebra A⊗τB is the vector space A⊗B
together with multiplication mτ given by such a twisting map τ , that is, mτ : (A⊗B)⊗ (A⊗B)→
A⊗B is given by mτ = (mA ⊗mB) ◦ (1⊗ τ ⊗ 1).

We now introduce compatibility conditions that are sufficient for constructing a resolution Y q of
A⊗τ B-modules from known resolutions of A-modules and B-modules.

Definition 3.1.2. [21, Definition 5.1] Let M be an A-module with module structure map ρA,M :
A⊗M →M . We say M is compatible with the twisting map τ if there is a bijective k-linear map
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τB,M : B ⊗M →M ⊗B such that

τB,M ◦ (mB ⊗ 1) = (1⊗mB) ◦ (τB,M ⊗ 1) ◦ (1⊗ τB,M ), and(3.1.3)

τB,M ◦ (1⊗ ρA,M ) = (ρA,M ⊗ 1) ◦ (1⊗ τB,M ) ◦ (τ ⊗ 1)(3.1.4)

as maps on B ⊗B ⊗M and on B ⊗A⊗M , respectively.

Let M be an A-module that is compatible with τ . We say a projective A-module resolution P q(M)
of M is compatible with the twisting map τ if each module Pi(M) is compatible with τ via maps τB,i
for which τB, q : B⊗P q(M)→ P q(M)⊗B is a k-linear chain map lifting τB,M : B⊗M →M⊗B. Let
N be a B-module and let P q(N) be a projective resolution of N over B. We put an A⊗τ B-module
structure on the bicomplex P q(M)⊗ P q(N) by using maps τB, q.

Under such compatibility conditions, twisted tensor product resolutions for left modules over
A ⊗τ B were constructed in [21] satisfying the following theorem, which is a consequence of [21,
Lemma 5.8, Lemma 5.9, Theorem 5.12].

Theorem 3.1.5. Let A and B be k-algebras with twisting map τ : B ⊗A→ A⊗B. Let P q(M) be
an A-projective resolution of M and P q(N) be a B-projective resolution of N . Assume

(a) M and P q(M) are compatible with τ , and
(b) Yi,j = Pi(M)⊗ Pj(N) is a projective A⊗τ B-module, for all i, j.

Then the twisted tensor product complex Y q = Tot(P q(M) ⊗ P q(N)) is a projective resolution of
M ⊗N as a module over the twisted tensor product A⊗τ B.

By Tot(P q(M)⊗P q(N)) we mean the total complex of the bicomplex P q(M)⊗P q(N), that is the
complex whose nth component is Yn = ⊕i+j=n(Pi(M)⊗Pj(N)) and differential is dn =

∑
i+j=n dij

where dij = di ⊗ 1 + (−1)i1⊗ dj .
In comparison to [21, Theorem 5.12], we have replaced one of the hypotheses by our hypothesis (b)

above, and in this case the proof is given by [21, Lemmas 5.8 and 5.9]. In some contexts, such
as ours here, the hypothesis (b) can be checked directly, and thus this version of the theorem is
sufficient.

3.2. Resolution for the Nichols algebra R. Let R be the Nichols algebra and R#kG be its
bosonization that were described in Section 2.2. We give the field k the structure of a trivial
(left) R- or (R#kG)-module, that is, the action is given by the augmentation ε(x) = 0, ε(y) = 0,
ε(g) = 1. We will construct a resolution of k as an R-module here, and as an (R#kG)-module in
Section 3.3 via twisted tensor product constructions.

We start with a construction of a resolution of k over R. Using the relation (3.9) in [5,
Lemma 3.8], we can view R as the twisted tensor product

R = k〈x, y〉
/(

xp, yp, yx− xy − 1

2
x2
)
∼= A⊗τ B,

where A := k[x]/(xp), B := k[y]/(yp). The twisting map τ : B ⊗A→ A⊗B is defined by

τ(yr ⊗ x`) =
r∑
t=0

(
r

t

)(
1

2

)t
[`][t] x`+t ⊗ yr−t,

where we use the convention:

[`][t] = `(`+ 1)(`+ 2) · · · (`+ t− 1),

with [`][0] = 1, for any `.
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Consider the following free resolutions of k as A-module and as B-module, respectively:

PAq (k) : · · · x
p−1· // A

x· // A
xp−1· // A

x· // A
ε // k // 0

PBq (k) : · · ·
yp−1· // B

y· // B
yp−1· // B

y· // B
ε // k // 0.

The map ε on A (respectively, on B) takes x to 0 (respectively, y to 0). Consider the tensor product
PAq (k) ⊗ PBq (k) as a graded vector space. The total complex is a complex of vector spaces with
differential in degree n given by

dn =
∑
i+j=n

di ⊗ 1 + (−1)i1⊗ dj .

We will now consider the total complex

K q := Tot(PAq (k)⊗ PBq (k))

and show that it is a projective resolution of k as an R-module. We begin by establishing the
compatibility conditions from Definition 3.1.2 for the A-module k and its resolution PAq (k). This is
hypothesis (a) of Theorem 3.1.5. That is, we define bijective k-linear maps τB,i that we abbreviate
here as τi, for which the diagram

· · · 1⊗xp−1· // B ⊗A

τ3

��

1⊗x· // B ⊗A

τ2

��

1⊗xp−1· // B ⊗A

τ1

��

1⊗x· // B ⊗A

τ0

��

1⊗ε // B ⊗ k //

∼=
��

0

· · · xp−1·⊗1 // A⊗B x·⊗1 // A⊗B xp−1·⊗1 // A⊗B x·⊗1 // A⊗B ε⊗1 // k⊗B // 0

commutes and conditions (3.1.3) and (3.1.4) hold. In Lemma 3.2.1 we show that the above chain
map makes k and PAq (k) compatible with τ , and so hypothesis (a) of Theorem 3.1.5 is satisfied.
Then in Lemma 3.2.2 we show that the maps τi give each PAi (k)⊗ PBj (k) = A⊗ B the structure

of a free R-module, hence satisfying hypothesis (b) of Theorem 3.1.5.

Lemma 3.2.1. For any integer i ≥ 0, let τi : B ⊗A→ A⊗B be defined as follows:

τi(y
r ⊗ x`) =

τ(yr ⊗ x`), i is even∑r
t=0

(
r
t

) (
1
2

)t
[`+ 1][t] x`+t ⊗ yr−t, i is odd.

Then

(a) τi is a bijective k-linear map whose inverse is

τ−1i (x` ⊗ yr) =


∑r

t=0

(
r
t

) (
−1

2

)t
[`][t] yr−t ⊗ x`+t, i is even∑r

t=0

(
r
t

) (
−1

2

)t
[`+ 1][t] yr−t ⊗ x`+t, i is odd.

(b) τi satisfies conditions (3.1.3) and (3.1.4). In particular,

τi ◦ (mB ⊗ 1) = (1⊗mB) ◦ (τi ⊗ 1) ◦ (1⊗ τi) and

τi ◦ (1⊗mA) = (mA ⊗ 1) ◦ (1⊗ τi) ◦ (τ ⊗ 1),

as maps on B ⊗B ⊗A and on B ⊗A⊗A, respectively.
(c) Each square in the above diagram commutes.

Consequently, k and its resolution PAq (k) are compatible with τ .
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Proof. Straightforward calculations show that each τi defined as in the lemma has the claimed
properties. We include one such verification as an example: To show that the maps τi satisfy
conditions (3.1.3) and (3.1.4), observe that if i is even, then both conditions hold from the definition
of τ , as τi = τ in this case and satisfies (3.1.1). It remains to check the case when i is odd. Let us
verify (3.1.3). The left hand side applied to yr1 ⊗ yr2 ⊗ x` in B ⊗B ⊗A is

τi ◦ (mB ⊗ 1)(yr1 ⊗ yr2 ⊗ x`) = τi(y
r1+r2 ⊗ x`) =

r1+r2∑
t=0

(
r1 + r2

t

)(
1

2

)t
[`+ 1][t] x`+t ⊗ yr1+r2−t,

while the right hand side is

(1⊗mB) ◦ (τi ⊗ 1) ◦ (1⊗ τi)(yr1 ⊗ yr2 ⊗ x`)

= (1⊗mB) ◦ (τi ⊗ 1)

(
yr1 ⊗

r2∑
k=0

(
r2
k

)(
1

2

)k
[`+ 1][k] x`+k ⊗ yr2−k

)

= (1⊗mB)

[
r2∑
k=0

(
r2
k

)(
1

2

)k
[`+ 1][k]

(
r1∑
s=0

(
r1
s

)(
1

2

)s
[`+ k + 1][s] x`+k+s ⊗ yr1−s

)
⊗ yr2−k

]

=

r1+r2∑
t=0

( ∑
k+s=t

(
r2
k

)(
r1
s

)(
1

2

)t
[`+ 1][k] [`+ k + 1][s]

)
x`+t ⊗ yr1+r2−t.

It is straightforward to check that [`+ 1][k] [`+ k + 1][s] = [`+ 1][k+s], and

t∑
k=0

(
r2
k

)(
r1
t− k

)
=

(
r1 + r2

t

)
.

This gives us the equality (3.1.3) as desired. �

Lemma 3.2.2. The vector space PAi (k)⊗ PBj (k) = A⊗B is a free (A⊗τ B)-module of rank one,

generated by 1⊗ 1, via the (A⊗τ B)-module isomorphism ϕ : A⊗τ B → A⊗B given by

ϕ(x` ⊗ yr) =

{
x` ⊗ yr, i is even∑r

t=0

(
r
t

)
t!
2t x

`+t ⊗ yr−t, i is odd,

whose inverse is given by

ϕ−1(x` ⊗ yr) =

{
x` ⊗ yr, i is even

x` ⊗ yr − r
2x

`+1 ⊗ yr−1, i is odd.

Proof. For each i, the map τi is used to give PAi (k) ⊗ PBj (k) = A ⊗ B the structure of a left

(A⊗τ B)-module. In the case when i is even, this is the usual (A⊗τ B)-module structure. In the
case when i is odd, the (A⊗τ B)-module structure via τi is given by

(A⊗τ B)⊗ (A⊗B)
1⊗τi⊗1 // A⊗A⊗B ⊗B mA⊗mB // A⊗B.

We now show that A⊗B is indeed a free module via the maps ϕ and ϕ−1 defined in the statement
of the lemma.

When i is even, the map ϕ is clearly bijective. We check that ϕ is a bijection with the stated
inverse when i is odd:

ϕ ◦ ϕ−1(x` ⊗ yr) = ϕ
(
x` ⊗ yr − r

2
x`+1 ⊗ yr−1

)
=

r∑
t=0

(
r

t

)
t!

2t
x`+t ⊗ yr−t − r

2

r−1∑
k=0

(
r − 1

k

)
k!

2k
x`+1+k ⊗ yr−1−k
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= x` ⊗ yr +
r∑
t=1

(
r

t

)
t!

2t
x`+t ⊗ yr−t −

r∑
t=1

r

(
r − 1

t− 1

)
(t− 1)!

2t
x`+t ⊗ yr−t

= x` ⊗ yr +
r∑
t=1

((
r

t

)
t− r

(
r − 1

t− 1

))
(t− 1)!

2t
x`+t ⊗ yr−t

= x` ⊗ yr +

r∑
t=1

(0)
(t− 1)!

2t
x`+t ⊗ yr−t = x` ⊗ yr.

By (3.1.4), ϕ is a module isomorphism. Therefore A⊗B is free as an (A⊗τ B)-module. �

In particular, the following is useful for our computations later:

ϕ−1(1⊗ y) =

{
1⊗ y, i is even

1⊗ y − 1
2x⊗ 1, i is odd,

ϕ−1(1⊗ yp−1) =

{
1⊗ yp−1, i is even

1⊗ yp−1 + 1
2x⊗ y

p−2, i is odd.

(3.2.3)

By Lemma 3.2.1, Lemma 3.2.2, and Theorem 3.1.5, the complex K q is a free resolution of k as
A⊗τ B-module. For each i, j ≥ 0, let φi,j denote the free generator 1⊗ 1 of PAi (k)⊗ PBj (k) as an
A⊗τ B-module. Then as an R-module:

Kn =
⊕
i+j=n

Rφi,j .

Recall that the differentials of this total complex are dn =
∑

i+j=n(di ⊗ 1 + (−1)i1 ⊗ dj). As

PAi (k) ⊗ PBj (k) is free as an A ⊗τ B-module with generator φi,j , we can write the image of φi,j
under the differential map via the action of A ⊗τ B on φi,j , using values of the inverse map ϕ−1

defined in (3.2.3) where needed. We express the differential on elements via this notation:

d(φi,j) =


xp−1φi−1,j + yp−1φi,j−1 if i, j are even,

xp−1φi−1,j + yφi,j−1 if i is even and j is odd,

xφi−1,j − (yp−1 + 1
2xy

p−2)φi,j−1 if i is odd and j is even,

xφi−1,j − (y − 1
2x)φi,j−1 if i, j are odd.

We interpret φi,j to be 0 if either i or j is negative.

3.3. G-action on the resolution for R. We retain the notations R and G as in Section 3.2.
The group action gives a twisting map under which R#kG may be viewed as a twisted tensor
product of R and kG, and will allow us to form a resolution Y q of the trivial (R#kG)-module k
via another application of Theorem 3.1.5. Specifically, Y q will be obtained as the twisted tensor
product resolution of K q with the bar resolution PkGq (k). In order to do this, we use the group
action to give us a twisting map on the complex K q analogous to the twisting map defining a skew
group algebra. We give this group action after Lemma 3.3.1. We then show in Lemma 3.3.3 that
K q is G-equivariant, that is, the group action commutes with the differentials. This observation
will lead us to a chain map τi required for application of Theorem 3.1.5.

We obtain the following relations in R by straightforward calculations:

• For any integer ` ≥ 0, yx` = x`y +
`

2
x`+1.

• For any integer n ≥ 1, (x+ y)n =

n∑
i=0

(
n

i

)
(i+ 1)!

2i
xiyn−i.

Further calculations show the following.



COHOMOLOGY OF POINTED HOPF ALGEBRAS 9

Lemma 3.3.1. Define an element

α := −yp−2 +

p−2∑
i=1

(−1)i+1 (i+ 1)!

2i+1
xiyp−2−i ∈ R.

Then α satisfies the following:

(a) xα = (x+ y)p−1 − yp−1 + 1
2x[(x+ y)p−2 − yp−2] ,

(b) (x+ y)α = −yp−1 − 1
2xy

p−2 ,

(c) αx = (x+ y)p−1 − yp−1 ,

(d) α(y − 1
2x) = −(x+ y)p−1.

Recall that G = 〈g〉 ∼= Z/qZ acts on R by gx = x and gy = x+ y. We define an action of G on
the complex K q, constructed in Section 3.2, as follows: for all 0 ≤ s ≤ q − 1,

gsφi,j =


φi,j , if i is odd
φi,j + s φi+1,j−1, if i is even and j is odd

φi,j + ((g
s−1+···+g+1)α)φi+1,j−1, if i, j are even.

Moreover, it is straightforward to check the following for all 1 ≤ s ≤ q,

g−s
φi,j =


φi,j , if i is odd
φi,j − s φi+1,j−1, if i is even and j is odd

φi,j − ((g
−s+···+g−1)α)φi+1,j−1, if i, j are even.

(3.3.2)

Lemma 3.3.3. With the above G-action, the complex K q is G-equivariant.

Proof. We first show that this G-action is well-defined, that is, g
q
φi,j = φi,j .

It is clear that when i is odd, or when i is even and j is odd that gqφi,j = φi,j , as q is divisible
by the characteristic p of the field k. When i, j are both even, we need to show that

gqφi,j = φi,j + ((g
q−1+···+g+1)α)φi+1,j−1 = φi,j ,

that is, we need to show (gq−1+···+g+1)α = 0.
From Lemma 3.3.1(c), we have αx = (x+ y)p−1 − yp−1. Now apply gs to both sides to obtain:

gsα gsx = (g
s
x+ gsy)p−1 − (g

s
y)p−1,

gsα x = (x+ y + sx)p−1 − (y + sx)p−1.

Thus, summing over all 0 ≤ s ≤ q − 1:(
q−1∑
s=0

gsα

)
x =

q−1∑
s=0

(
[y + (s+ 1)x]p−1 − (y + sx)p−1

)
= (y + qx)p−1 − yp−1 = 0.

So
∑q−1

s=0
gsα = 0 in the domain k〈x, y〉/(yx− xy − 1

2x
2) and hence is also 0 in R. Therefore, in all

cases, we have gqφi,j = φi,j and the above G-action is well-defined.
To check that the complex K q is G-equivariant, we need to check such G-action is compatible

with the differential maps in each degree, that is, d( gφi,j) = gd(φi,j), for all i, j ≥ 0. When i and
j are both even:

d( gφi,j) = d(φi,j + αφi+1,j−1)

= xp−1φi−1,j + yp−1φi,j−1 + α

(
xφi,j−1 − (y − 1

2
x)φi+1,j−2

)
,

gd(φi,j) = gxp−1 gφi−1,j + gyp−1 gφi,j−1

= xp−1φi−1,j + (x+ y)p−1(φi,j−1 + φi+1,j−2).
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Comparing, we see that coefficients for the terms φi,j−1 and φi+1,j−2 are exactly identities (c) and
(d) in Lemma 3.3.1, respectively. The other cases are similar by applying Lemma 3.3.1, and we
have d( gφi,j) = gd(φi,j) for all i, j, g. Thus, the complex K q is G-equivariant. �

We use this G-action next to form a twisted tensor product resolution of k as an R#kG-module.
Let the twisting map τ ′n : kG⊗Kn → Kn ⊗ kG be given by the action of G on Kn, so that

τ ′i+j(g ⊗ φi,j) =

 φi,j ⊗ g, if i is odd
(φi,j + φi+1,j−1)⊗ g, if i is even and j is odd
(φi,j + αφi+1,j−1)⊗ g, if i, j are even.

Then K q is compatible with τ ′ (giving the twisting that governs the smash product construction)
via the maps τ ′n, and hypothesis (a) of Theorem 3.1.5 is satisfied.

3.4. Resolution for the bosonization R#kG. Let PkGq (k) be the following free resolution of
the trivial kG-module k:

PkGq (k) : · · ·
(
∑q−1

s=0 g
s)·
// kG

(g−1)· // kG
(
∑q−1

s=0 g
s)·
// kG

(g−1)· // kG
ε // k // 0,

where ε takes g to 1.
Let

Y q := Tot(K q⊗ PkGq (k)).

The modules are free (R#kG)-modules by a similar argument to what we used earlier: In each
degree we have a direct sum of modules of the form R ⊗ kG. Each such is freely generated by
some φi,j ⊗ φk, where φk denotes the free generator for PkG

k (k) = kG. Thus hypothesis (b) of
Theorem 3.1.5 is satisfied, and we saw above that hypothesis (a) is satisfied via maps τ ′n. So by
Theorem 3.1.5, Y q is a free resolution of the (R#kG)-module k.

For each i, j, k ≥ 0, let φi,j,k denote the free generator φi,j⊗φk of Ki+j⊗PkG
k (k) as an (R#kG)-

module. We set φi,j,k = 0 if one of i, j, k is negative. Then, for all n ≥ 0, as an (R#kG)-module,

Yn =
⊕

i+j+k=n

(R#kG)φi,j,k.

We express the differentials on elements as follows, where d(φi,j) is given at the end of Section 3.2:

d(φi,j,k) = d(φi,j)⊗ φk

+ (−1)i+j



(g − 1)φi,j,k−1, if i, k are odd

(g − 1)φi,j,k−1 − g φi+1,j−1,k−1, if i is even and j, k are odd

(g − 1)φi,j,k−1 − αg φi+1,j−1,k−1, if i, j are even and k is odd(∑q−1
s=0 g

s
)
φi,j,k−1, if i is odd and k is even(∑q−1

s=0 g
s
)
φi,j,k−1 −

(∑q−1
s=0 sg

s
)
φi+1,j−1,k−1, if i, k are even and j is odd(∑q−1

s=0 g
s
)
φi,j,k−1

−
∑q−1

s=1((g
s−1+···+g+1)α) gsφi+1,j−1,k−1, if i, j, k are even.

We will give partial verification of the above differentials in view of (3.3.2).

The case where i, k are even and j is odd:

d(φi,j,k) = d(φi,j)⊗ φk + (−1)i+jφi,j ⊗ d(φk) = d(φi,j)⊗ φk + (−1)i+jφi,j

(
q−1∑
s=0

gs

)
⊗ φk−1
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= d(φi,j)⊗ φk + (−1)i+j
q−1∑
s=0

gs
(
g−s

φi,j

)
⊗ φk−1

= d(φi,j)⊗ φk + (−1)i+j
q−1∑
s=0

gs (φi,j − sφi+1,j−1)⊗ φk−1

= d(φi,j)⊗ φk + (−1)i+j

[(
q−1∑
s=0

gs

)
φi,j,k−1 −

(
q−1∑
s=0

sgs

)
φi+1,j−1,k−1

]
.

The case where i, j, k are even:

d(φi,j,k) = d(φi,j)⊗ φk + (−1)i+jφi,j ⊗ d(φk) = d(φi,j)⊗ φk + (−1)i+jφi,j

(
q−1∑
s=0

gs

)
⊗ φk−1

= d(φi,j)⊗ φk + (−1)i+j
q−1∑
s=0

gs
(
g−s

φi,j

)
⊗ φk−1

= d(φi,j)⊗ φk + (−1)i+j

[(
φi,j +

q−1∑
s=1

gs(φi,j −(g−1+···+g−s)αφi+1,j−1)

)
⊗ φk−1

]

= d(φi,j)⊗ φk + (−1)i+j

[(
q−1∑
s=0

gs

)
φi,j,k−1 −

(
q−1∑
s=1

gs ((g
−1+···+g−s)α)

)
φi+1,j−1,k−1

]

= d(φi,j)⊗ φk + (−1)i+j

[(
q−1∑
s=0

gs

)
φi,j,k−1 −

(
q−1∑
s=1

(gs−1+···+g+1)α gs

)
φi+1,j−1,k−1

]
.

Other verifications are similar. Note that in the above formulas for the differentials, we have

ε
(∑q−1

s=0 g
s
)

= 0 = ε
(∑q−1

s=0 sg
s
)

in characteristic p, since p divides q. Among these differentials

of free R#kG-module basis elements, the only terms in the outcomes d(φi,j,k) that do not have
coefficients in the augmentation ideal Ker(ε) are the terms −gφi+1,j−1,k−1, occurring when i is even
and j, k are odd. Consequently, letting n = i + j + k and letting φ∗i,j,k be the dual basis vector to

φi,j,k in the Hom space Homk

(⊕
i′+j′+k′=n kφi′,j′,k′ ,k

)
∼= HomR#kG(Yn,k), we have

d∗(φ∗i,j,k) =

{
−φ∗i−1,j+1,k+1, if i is odd and j, k are even

0, otherwise.

The cocycles are thus all the φ∗i,j,k except those for which i is odd and j, k are even. The coboundaries
are the φ∗i,j,k for which i is even and j, k are odd. Therefore, for all n ≥ 0, as a vector space,

Hn(R#kG,k) ∼=


Spank{φ∗i,j,k | i+ j + k = n}
−Spank{φ∗i,j,k | i is even and j, k are odd}, if n is even

Spank{φ∗i,j,k | i+ j + k = n}
−Spank{φ∗i,j,k | i is odd and j, k are even}, if n is odd.

4. Anick resolutions

In this section, we recall the Anick resolution and make some additional observations about it in
our setting. This resolution will be used in the proof of Theorem 5.2.1 to identify some permanent
cocycles in a May spectral sequence. Specifically, setting A = H(ε, µ, τ), the 27-dimensional Hopf
algebra of Section 2.3, we view A as a quotient of a free algebra by an ideal of relations. This view-
point leads to the construction of the Anick resolution, recalled in some generality in Section 4.1.
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We will consider a filtration on H(ε, µ, τ) under which it has the associated graded algebra given
by a truncated polynomial ring. In the proof of Theorem 5.2.1, we connect the Anick resolutions of
k over A = H(ε, µ, τ) and over its associated graded algebra grA in a May spectral sequence. To
exploit this connection, we recognize the Anick resolution of k over grA in Lemma 4.2.3 as a stan-
dard resolution for a truncated polynomial ring, relying on some explicit calculations of differentials
in the Anick resolution in Lemma 4.2.2.

4.1. The resolution construction. We generally construct the Anick resolution [1] as envisioned
by Cojocaru and Ufnarovski [6], adapted here to left modules under some conditions. An algorith-
mic description using Gröbner bases is given by Green and Solberg [13]. The construction of the
resolution also serves as a proof of exactness, since the differentials are defined recursively in each
degree, making use of a contracting homotopy in the previous degree that is constructed recursively
as well. See Theorem 4.1.2 below, due to Anick. We include a proof in our setting because we will
use some details of the construction in Sections 4.2 and 5.2.

Let A = T (V )/(I) where V is a finite dimensional vector space, T (V ) = Tk(V ) is the tensor
algebra on V over k, and I is a set of relations generating an ideal (I). We denote the image of an
element v of V in A also by v when it causes no confusion. We assume that A is augmented by an
algebra homomorphism ε : A→ k with ε(v) = 0 for all v ∈ V . Fix a totally ordered basis v1, . . . , vn
of V (say v1 < · · · < vn) and consider the degree lexicographic ordering on words in v1, . . . , vn.
That is, we give each vi the degree 1, and monomials (words) are ordered first according to total
degree, then monomials having the same degree (i.e. word length) are ordered as in a dictionary.

A normal word (called an element of an order ideal of monomials, or o.i.m. in [1]) is a monomial
(considered as an element of T (V )) that cannot be written as a linear combination of smaller words
in A. As a vector space, A has a basis in one-to-one correspondence with the set of normal words.

A tip (called an obstruction in [1]) is a word (considered as an element in T (V )) that is not
normal but for which any proper subword is normal. It follows that the tips correspond to the
relations: Let u be a tip and write the image of u in A as a linear combination u =

∑
aiti, where

each ti is a normal word and ai is a scalar. Then, viewed as an element of T (V ), u −
∑
aiti is

in the ideal of relations, (I). It also follows that the tips are in one-to-one correspondence with a
Gröbner basis of (I) [13].

We will construct the Anick resolution from the chosen sets of generators and relations in A
as follows. We reindex in comparison to [1] so that indices for spaces correspond to homological
degrees, and indices for functions correspond to homological degrees of their domains.

The Anick resolution is a free resolution of k considered to be an A-module under the augmen-
tation ε. We will first describe a free basis Cn in each homological degree n of the resolution. We
will write the resolution as:

· · · d3 // A⊗ kC2
d2 // A⊗ kC1

d1 // A
ε // k // 0,

where kCn denotes the vector space with basis Cn. We adapt the degree lexicographic ordering on
monomials in T (V ) to each A-module A ⊗ kCn by giving an element s ⊗ t, where s is a normal
word and t ∈ Cn, the degree of st viewed as an element of T (V ).

Let
C1 = {v1, . . . , vn},

that is, C1 is the chosen set of generators. Let C2 be the set of tips (or obstructions). The remaining
sets Cn will be defined as sets of paths of length n in a directed graph (or quiver) associated to
the generators and tips as follows [6]. The graph will have at most one directed arrow joining two
vertices, and paths will be denoted by the product of their vertices in T (V ), written from right to
left, for example, if f, g are vertices and there is an arrow from f to g, we denote the arrow by gf ,
and if there is a further arrow from g to h, then hgf denotes the path

f → g → h
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starting at f , passing through g, and ending at h.
Let B = {v1, . . . , vn} be a basis of V , equipped with the ordering v1 < · · · < vn as above, so that

we may identify B with C1. Let T be the set of tips. Let R be the set of all proper prefixes (that
is, left factors) of the tips considered as elements of T (V ). (Note that B ⊂ R.) Let Q = Q(B, T )
be the following quiver. The vertex set is {1} ∪ R. The arrows are all 1 → vi for vi ∈ B and all
f → g for which the word gf (viewed as an element of T (V )) uniquely contains a tip, and that tip
is a prefix (possibly coinciding with gf).

The set Cn consists of all paths of length n starting from 1 in the quiver. In this context, the
path 1→ f → g is identified with the product gf . (Note that f → g does not occur on its own as
an element of any Ci if f 6= 1, so for our purposes there will be no confusion in denoting paths this
way.) For use in constructing the chains Cn, we observe that we only use the vertices that are in
the connected component of Q containing 1. Let Q = Q(B, T ) be the connected component of 1
in Q, called the reduced quiver of B and T .

The differentials d are defined recursively, with a simultaneous recursive definition of a k-linear
contracting homotopy s:

(4.1.1) · · ·
d3 // A⊗ kC2
s2
oo

d2 // A⊗ kC1
s1
oo

d1 // A
s0
oo

ε //
k

η
oo // 0,

where η is the unit map (taking the multiplicative identity of k to the multiplicative identity of
A). We give these definitions next in our setting, simultaneously proving the following theorem.
Examples are given in [1, 6] and below in Sections 4.2 and 5.2.

Theorem 4.1.2. [1, Theorem 1.4] There are maps dn, sn for which (A⊗kC q, d q) is a free resolution
of k as an A-module and s q is a contracting homotopy.

Proof. We first define the maps dn, sn−1 for n = 1, 2 to illustrate the general method. We then use
induction on n.

Degree 1: We take n = 1 and let
d1(1⊗ vi) = vi

for all vi in B and extend d1 so that it is a left A-module homomorphism. To define the k-linear
map s0 : A→ A⊗ kC1, first write elements of A as k-linear combinations of normal words (which
form the chosen vector space basis of A). Define s0 on A via its values on all normal words, which
are as follows. Set s0(1) = 0 and s0(uvi) = u ⊗ vi for all normal words of the form uvi for some
word u and vi in B. Extend s0 so that it is a k-linear map on A, and note that it will not be an
A-module homomorphism in general. We now see that by construction,

a = (d1s0 + ηε)(a)

for all a ∈ A. It also follows that A ⊗ kC1 = Ker(d1) ⊕ Im(s0). To see this, let b ∈ A ⊗ kC1

and write b = (b − s0d1(b)) + s0d1(b). One checks that b − s0d1(b) ∈ Ker(d1); by definition,
s0d1(b) ∈ Im(s0). The intersection of these two spaces is 0 by the above equation and definitions:
If b ∈ Ker(d1) ∩ Im(s0), write b = s0(c). Then

c = (d1s0 + ηε)(c) = ηε(c),

which implies c ∈ k so that b = s0(c) = 0.

Degree 2: We take n = 2 and define d2(1 ⊗ u) for u in C2 as follows. By definition of C2, we
may write u = rvi uniquely in T (V ) for a word r in R and vi ∈ C1. Consider r ⊗ vi as an element
of A⊗ kC1, and further take its image under the A-module homomorphism d1:

d1(r ⊗ vi) = rd1(1⊗ vi) = rvi.

Define
d2(1⊗ u) = r ⊗ vi − s0(d1(r ⊗ vi)) = r ⊗ vi − s0(rvi),
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and extend d2 so that it is an A-module homomorphism on A ⊗ kC2. By its definition, rvi when
considered as an element of T (V ) is a tip (not a normal word), and considered here as an element
of A, it must be rewritten as a k-linear combination of normal words before applying s0 (since s0
is a k-linear map but not an A-module homomorphism). Now the definitions of d1 and s0 imply
d1s0|Ker(ε) = 1Ker(ε), the identity map on Ker(ε). It also follows that d1d2 = 0.

We wish to define s1 so that d2s1|Ker(d1) = 1Ker(d1) and more generally so that

d2s1 + s0d1 = 1A⊗kC1 .

First define s1 on elements in Ker(d1) by induction on their degrees, starting with those that are
least in the ordering, which are elements of A ⊗ kC1 corresponding to relations: Ordering the
elements of C2 as u1, . . . , u`, with u1 least, we define s1(d2(1 ⊗ u1)) = 1 ⊗ u1. Recall that we
have chosen a total order on a vector space basis of A ⊗ kC1, given by elements r ⊗ vi where r
is a normal word and vi ∈ B, to coincide with the order on the corresponding words rvi in T (V ).
Assume s1 has been defined on elements of Ker(d1) with highest term of degree (i.e. position in the
total order) less than n. Let

∑m
j=1 aijrij ⊗ vij ∈ Ker(d1) for some nonzero aij ∈ k, rij ∈ A, with

vi1 , . . . , vim distinct elements of B, and terms ordered so that ri1 ⊗ vi1 is greatest and has degree n.
Since d1(

∑
aijrij ⊗ vij ) = 0 in A by assumption, and ri1 ⊗ vi1 is greatest, the monomial ri1vi1 in

T (V ) must contain a tip. Since ri1 is a nonzero normal word, the tip must be a suffix (that is, right
factor) of ri1vi1 , say ri1vi1 = v′u′ in T (V ) with u′ a tip. Since u′ is a tip, there is an element in the

ideal (I) of the form u′+
∑`

k=1 bktk for some normal words tk and scalars bk. Write each tk = t′kvik
for words t′k. Set α = −

∑`
k=1 ai1bkv

′t′k ⊗ vik +
∑m

j=2 aijrij ⊗ vij and

s1

 m∑
j=1

aijrij ⊗ vij

 = ai1v
′ ⊗ u′ + s1(α).

Note that α consists of terms of lower degree than ri1⊗vi1 , and α ∈ Ker(d1) by construction, so we
may now apply the induction hypothesis to define s1(α). Recall that A⊗kC1 = Ker(d1)⊕ Im(s0).
We define s1 on Im(s0) to be 0. We claim that by these definitions,

d2s1 + s0d1 = 1A⊗kC1 .

To see this, we check separately for elements of Ker(d1) and of Im(s0). If x =
∑m

j=1 aijrij ⊗ vij ∈
Ker(d1) as above, then by the inductive definition of s1, we have

(d2s1 + s0d1)(x) = d2s1(x) = x.

If x ∈ Im(s0) then

(d2s1 + s0d1)(x) = s0d1(x) = x

since d1s0 + ηε = 1A. It follows that A ⊗ kC2 = Ker(d2) ⊕ Im(s1): If b ∈ A ⊗ kC2 then b =
(b− s1d2(b)) + s1d2(b), with b− s1d2(b) in Ker(d2) and s1d2(b) in Im(s1). If b ∈ Ker(d2) ∩ Im(s1),
write b = s1(c), and we have c = (d2s1 + s0d1)(c) = s0d1(c). Then b = s1(c) = s1s0d1(c) = 0 since
s1s0 = 0 by definition of s1.

Degree at least 3: We take n ≥ 3 and assume that A-module homomorphisms d1, . . . , dn−1
and k-linear maps s0, . . . , sn−2 have been defined so that di−1di = 0, si−1si−2 = 0, and disi−1 +
si−2di−1 = 1A⊗kCi−1

for 1 ≤ i ≤ n− 1. It follows by an argument similar to the above that

A⊗ kCi = Ker(di)⊕ Im(si−1)

for all 1 ≤ i ≤ n − 1. In particular, A ⊗ kCn−1 = Ker(dn−1) ⊕ Im(sn−2). We will define dn and
sn−1. The map dn is defined first as follows. Let u ∈ Cn. We may write uniquely u = ru′ for
u′ ∈ Cn−1 and r in R by construction of the quiver Q. Let

(4.1.3) dn(1⊗ u) = r ⊗ u′ − sn−2dn−1(r ⊗ u′).
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Now dn−1(r ⊗ u′) = rdn−1(1 ⊗ u′) since dn−1 is an A-module homomorphism, and in order to
apply sn−2 to this element of A ⊗ kCn−2, any elements of A will need to be rewritten as linear
combinations of normal words before applying sn−2 (since sn−2 is k-linear but not an A-module
homomorphism in general). It follows directly from the definition of dn and the induction hypothesis
that dn−1dn = 0.

We wish to define sn−1 so that dnsn−1|Ker(dn−1) = 1Ker(dn−1) and more generally so that

dnsn−1 + sn−2dn−1 = 1A⊗kCn−1 .

The map sn−1 is defined inductively as follows. Let
∑m

i=1 airi ⊗ ui ∈ Ker(dn−1) for some ai ∈ k,
normal words ri ∈ A, and ui ∈ Cn−1. Recall that we have chosen a total order on a vector space
basis of A ⊗ kCn−1, given by elements r ⊗ u where r is a normal word and u ∈ Cn−1, to coincide
with the order on the corresponding words ru in T (V ). We may assume r1 ⊗ u1 is the highest
term among all ri ⊗ ui. Write u1 = u′u′′, uniquely, where u′′ ∈ Cn−2. Then by definition of dn−1
(replacing n by n− 1 in equation (4.1.3)), we have

0 = dn−1

(
m∑
i=1

airi ⊗ ui

)
= a1r1u

′ ⊗ u′′ + β,

where β = −sn−3dn−2(a1r1u′ ⊗ u′′) + dn−1(
∑m

i=2 airi ⊗ ui), and when the term dn−1(
∑
airi ⊗ ui)

is expanded, due to cancellation, the resulting expression for β consists of terms lower in the order
than r1 ⊗ u1. Since 0 = a1r1u

′ ⊗ u′′ + β, considering r1u
′ as a word in T (V ), there is a tip v′′ that

is a factor of r1u
′ in T (V ). To make a unique choice of such a tip, write r1 = vj1 · · · vj` as a word in

the letters in B. Now u′ is not a tip, but r1u
′ contains a tip, and so there is a largest k (k ≤ `) for

which vjk · · · vj`u′ (uniquely) contains a tip, and by construction this tip will then be a prefix. Thus
we may write, uniquely, r1u

′ = v′tu′ where t ∈ R and tu′ uniquely contains a tip that is a prefix.
So there is an arrow u′ → t in the reduced quiver Q by definition. Therefore tu1 = tu′u′′ ∈ Cn. We
may thus set

(4.1.4) sn−1

(
m∑
i=1

airi ⊗ ui

)
= a1v

′ ⊗ tu1 + sn−1(γ),

where

γ =

m∑
i=1

airi ⊗ ui − dn(a1v
′ ⊗ tu1)

has highest term that is lower in the order than r1 ⊗ u1. (To obtain the above expression, in the
argument

∑
airi ⊗ ui of sn−1, we have added and subtracted dn(a1v

′ ⊗ tu1).) Now continue in the
same fashion to obtain sn−1(γ) in terms of elements lower in the total order, and so on. Since the
chosen basis of A⊗kCn−1 is well-ordered, we eventually reach an expression involving sn−1(0) = 0.

As before, we define sn−1 on Im(sn−2) to be 0, so that sn−1sn−2 = 0. A calculation as before
now shows that

dnsn−1 + sn−2dn−1 = 1A⊗kCn−1 .

Now by its definition and the above arguments, s q is a contracting homotopy for the complex (4.1.1),
implying that the complex is exact. Thus, (A⊗kC q, d q) is a free resolution of k as an A-module. �

4.2. A truncated polynomial ring. In this section, let k be any field and m1,m2,m3 ≥ 2 be in-
tegers. We look closely at the Anick resolution of k over the algebra A = k[w, x, y]/(wm1 , xm2 , ym3),
which in the next section will be identified with an associated graded algebra of the Hopf algebra
H(ε, µ, τ) defined in Section 2.3. This connection will be used in the proof of Theorem 5.2.1.

Choose generating set B = {w, x, y} and relations

(4.2.1) I = {wm1 , xm2 , ym3 , wx− xw, wy − yw, xy − yx}.
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Then A has basis {wixjyk | 0 ≤ i ≤ m1 − 1, 0 ≤ j ≤ m2 − 1, 0 ≤ k ≤ m3 − 1}. We choose the
ordering w < x < y. So, for example, the degree lex ordering on basis elements in degrees 0, 1, 2 is

1 < w < x < y < w2 < wx < wy < x2 < xy < y2.

Note that xy is a normal word, while yx is a tip (or obstruction). Generally, the normal words
correspond to the PBW basis of A, and the tips are

T := {wm1 , xm2 , ym3 , xw, yw, yx}.
The proper prefixes of the tips are

R = {wi, xj , yk | 0 ≤ i ≤ m1 − 1, 0 ≤ j ≤ m2 − 1, 0 ≤ k ≤ m3 − 1}.
The corresponding reduced quiver Q, as defined in Section 4.1, is as follows. (The nonreduced

quiver Q contains additional vertices and arrows if m > 3, but we do not need this here.) If m1 = 2,
the vertices w and wm1−1 are identified, and there is a loop at that vertex. Similarly for m2, m3.

1

vv �� ((w //





++x //





y




wm1−1

HH 66 22

xm2−1

HH 66

ym3−1

II

We have

C1 = {w, x, y},
C2 = {wm1 , xm2 , ym3 , xw, yw, yx},
C3 = {wm1+1, xm2+1, ym3+1, xwm1 , ywm1 , yxm2 , xm2w, ym3w, ym3x, yxw},

and similarly we may find Cn for n > 3.
A free basis of Cn is all 1 ⊗ u where u is a path of length n starting at 1 in the above reduced

quiver Q. Fix such a free basis element 1 ⊗ u. Suppose n = i + j + k and the first i vertices in
the path u are in the set {w,wm1−1}, the second j vertices of u are in the set {x, xm2−1}, and the
third k vertices are in the set {y, ym3−1}. Write u = ui,j,k and note that the triple of indices i, j, k
uniquely determines the path. For convenience, we set C0 = {1} and u000 = 1, identifying A with
A⊗ kC0. We set uijk = 0 if i, j, or k is negative.

Lemma 4.2.2. Let A = k[w, x, y]/(wm1 , xm2 , ym3), and let PAq (k) denote the Anick resolution of
k over A with respect to the chosen generators w, x, y and relations (4.2.1). Then

dn(1⊗ uijk) = yσ3(k) ⊗ ui,j,k−1 + (−1)kxσ2(j) ⊗ ui,j−1,k + (−1)j+kwσ1(i) ⊗ ui−1,j,k

where n = i+ j + k, and σa(`) =

{
1, if ` is odd,

ma − 1, if ` is even.

Proof. We will prove the formula for dn by induction on n. By definition, d1(1⊗ u100) = w⊗ u000,
d1(1⊗u010) = y⊗u000, and d1(1⊗u001) = x⊗u000, and these values agree with the claimed formula
for d1.

Assume the formula holds for dn−1. We first consider the case j = k = 0 and i > 0:

dn(1⊗ ui00) = wσ1(i) ⊗ ui−1,0,0 − sn−2dn−1(wσ1(i) ⊗ ui−1,0,0)
= wσ1(i) ⊗ ui−1,0,0 − sn−2(wσ1(i)(wσ1(i−1) ⊗ ui−2,0,0))
= wσ1(i) ⊗ ui−1,0,0 − sn−2(0) = wσ1(i) ⊗ ui−1,0,0,

since wσ1(i)wσ1(i−1) = 0 in the algebra A. This outcome agrees with the stated formula for dn.
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Next consider the case k = 0 and j > 0, applying the construction of sn−2 described in the proof
of Theorem 4.1.2: The vertex xσ2(j) is last in the path uij0, so by induction,

dn(1⊗ uij0) = xσ2(j) ⊗ ui,j−1,0 − sn−2dn−1(xσ2(j) ⊗ ui,j−1,0)
= xσ2(j) ⊗ ui,j−1,0 − sn−2((−1)j−1wσ1(i)xσ2(j) ⊗ ui−1,j−1,0)
= xσ2(j) ⊗ ui,j−1,0 + (−1)jwσ1(i) ⊗ ui−1,j,0,

since xσ2(j)xσ2(j−1) = 0 in A. This agrees with the stated formula for dn.
In case k > 0, since the vertex labeled yσ3(k) is the last in the path uijk, by induction, since

yσ3(k)yσ3(k−1) = 0,

dn(1⊗ uijk) = yσ3(k) ⊗ ui,j,k−1 − sn−2dn−1(yσ3(k) ⊗ ui,j,k−1)

= yσ3(k) ⊗ ui,j,k−1 − sn−2(yσ3(k)((−1)k−1xσ2(j) ⊗ ui,j−1,k−1 + (−1)j+k−1wσ1(i) ⊗ ui−1,j,k−1))

= yσ3(k) ⊗ ui,j,k−1 − sn−2((−1)k−1xσ2(j)yσ3(k) ⊗ ui,j−1,k−1 + (−1)j+k−1wσ1(i)yσ3(k) ⊗ ui−1,j,k−1).

Compare the two terms comprising the argument of sn−2; they are xσ2(j)yσ3(k) ⊗ ui,j−1,k−1 and

wσ1(i)yσ3(k) ⊗ ui−1,j,k−1, up to sign. These terms have the same total degree, since each arises via
an application to ui,j,k of some differential maps (that do not change total degree). Thus we must

compare them lexicographically, and we see that xσ2(j)yσ3(k) ⊗ ui,j−1,k−1 is the higher of the two

terms. The first step of applying sn−2 thus involves the term xσ2(j)⊗ ui,j−1,k corresponding to this
expression as the first term on the right side of equation (4.1.4). Continuing by working inductively,
with appropriate signs, we obtain

dn(1⊗ uijk) = yσ3(k) ⊗ ui,j,k−1 + (−1)kxσ2(j) ⊗ ui,j−1,k + (−1)j+kwσ1(i) ⊗ ui−1,j,k,
as desired. �

Next we see that the Anick resolution is isomorphic to a twisted tensor product resolution for
this small example. This is surely known to experts, but we include a proof for completeness.

Lemma 4.2.3. Let A = k[w, x, y]/(wm1 , xm2 , ym3). The Anick resolution P q := PAq (k) of k over
A is equivalent to the total complex X q of k over the tensor product of the minimal resolutions of
Aw = k[w]/(wm1), Ax = k[x]/(xm2), and Ay = k[y]/(ym3), that is, for each n there is an A-module
isomorphism ψn : Pn → Xn and ψ q is a chain map lifting the identity map on k.

Proof. Let PAwq (k) be the following free resolution of k as an A-module:

PAwq (k) : · · ·
(wm1−1)· // Aw

w· // Aw
(wm1−1)· // Aw

w· // Aw
ε // k // 0.

Let PAxq (k) and PAyq (k) be similar free resolutions of k as an Ax-module and as an Ay-module,
respectively. Let X q = Tot(PAyq (k)⊗PAxq (k)⊗PAwq (k)), be the total complex of the tensor product
of these three complexes.

We will show that Pn ∼= Xn as an A-module for each n and that such isomorphisms may be
chosen so as to constitute a chain map between P q and X q. We will prove this by induction on n,
beginning with n = 0 and n = 1. For n = 0, note that P0 = A ∼= Ay ⊗ Ax ⊗ Aw = X0 and each
maps onto k via ε. We take ψ0 to be this isomorphism.

For n = 1, note that P1 = A⊗ k{w, x, y}, while X1 is equal to

(P
Ay

1 ⊗ PAx
0 ⊗ PAw

0 )⊕ (P
Ay

0 ⊗ PAx
1 ⊗ PAw

0 )⊕ (P
Ay

0 ⊗ PAx
0 ⊗ PAw

1 ).

To keep track of degrees, let φ100 denote 1 ⊗ 1 ⊗ 1 in P
Ay

1 ⊗ PAx
0 ⊗ PAw

0 and similarly φ010, φ001.
Let ψ1 : P1 → X1 be defined by

ψ1(1⊗ w) = φ100, ψ1(1⊗ x) = φ010 and ψ1(1⊗ y) = φ001.
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More generally let φijk denote 1⊗ 1⊗ 1 in P
Ay

k ⊗ PAx
j ⊗ PAw

i . Recall similar notation uijk for free
basis elements of Pn described above. Define ψn : Pn → Xn as follows:

ψn(1⊗ uijk) = φijk.

Extend ψn to an A-module isomorphism.
The differential on X q may be written as

dn(φijk) = yσ3(k)φi,j,k−1 + (−1)kxσ2(j)φi,j−1,k + (−1)j+kwσ1(i)φi−1,j,k.

Comparing with Lemma 4.2.2, we see that ψ q is a chain map. �

5. Finite generation of some cohomology rings

We now apply the constructions of twisted tensor product and Anick resolutions discussed in
Sections 3 and 4 to prove that the cohomology rings of the Hopf algebras in our settings (see Sec-
tions 2.2 and 2.3) are finitely generated.

5.1. Cohomology of the Nichols algebra and its bosonization. Let R,G be defined as in
Section 2.2. Recall that we have used a twisted tensor product to construct a resolution K q for k
as an R-module in Section 3.2 and further to construct a resolution Y q for k as a module over the
bosonization R#kG in Section 3.4.

By examining the expression for the cohomology H2(R#kG,k) given at the end of Section 3.4,
we see that it includes nonzero elements represented by the 2-cocycles φ∗2,0,0, φ

∗
0,2,0, φ

∗
0,0,2. We find

their cup products, which will be used in the proof of Theorem 5.1.2 below.
To simplify notation, let

ξx = φ∗2,0,0, ξy = φ∗0,2,0, ξg = φ∗0,0,2.

Using the projectivity of the resolution Y q, one can show that these functions may be extended to
chain maps on Y q as follows:

ξx(φi,j,k) = φi−2,j,k, ξy(φi,j,k) = φi,j−2,k, ξg(φi,j,k) = φi,j,k−2,

for all i, j, k, where we set φi′,j′,k′ = 0 if any one of i′, j′, k′ is negative. Consequently, ξx, ξy, ξg are
generators of a polynomial subalgebra k[ξx, ξy, ξg] of H∗(R#kG,k) in even degrees. For example,
the above formulas can be used to show that

(φ∗2,0,0)
2 = φ∗4,0,0 and φ∗2,0,0 ^ φ∗0,2,0 = φ∗2,2,0 = φ∗0,2,0 ^ φ∗2,0,0

and generally if i, j, k, i′, j′, k′ are all even, then

φ∗i,j,k ^ φ∗i′,j′,k′ = φ∗i+i′,j+j′,k+k′ .

We will also need the following lemma, which is [15, Lemma 2.5] as adapted in [9, Lemma 1.6].
A permanent cocycle of degree n in a spectral sequence E∗,∗ is an element of Enr for some r that
survives to En∞ in the following sense: Let di denote the differential on Ei and πii+1 : Ker(di)→ Ei+1

denote the canonical projection, an element α of Enr is a permanent cocycle if diπ
r
iα = 0 for all

i ≥ r, where πsi = πi−1i πi−2i−1 · · ·πss+1 for i > s and πrr is the identity map. An element of E∗,∗r is a
permanent cocycle if it is a sum, over n, of permanent cocycles of degree n.

Lemma 5.1.1. Let Ep,q1 =⇒ Ep+q∞ be a multiplicative spectral sequence of k-algebras concentrated
in the half plane p+ q ≥ 0, and let B∗,∗ be a bigraded commutative k-algebra concentrated in even
(total) degrees. Assume that there exists a bigraded map of algebras from B∗,∗ to E∗,∗1 such that the
image of B∗,∗ consists of permanent cocycles, and E∗,∗1 is a noetherian module over the image of
B∗,∗. Then E∗∞ is a noetherian module over Tot(B∗,∗).

We are now ready to prove our first main theorem.
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Theorem 5.1.2. Let R := k〈x, y〉/(xp, yp, yx − xy − 1
2x

2) be the Nichols algebra defined in
Section 2.2, and G := 〈g〉 be a cyclic group of order q divisible by p, acting on R by automorphisms
with gx = x and gy = x + y. Then the cohomology ring of the bosonization, H∗(R#kG,k), is
finitely generated.

Proof. Without loss of generality we may assume that q = pa for some a. To see this, note
that G ∼= Z/paZ × Z/`Z for some ` coprime to p and some a ≥ 1. Elements of the subgroup
of G that is isomorphic to Z/`Z act trivially on R since their orders are coprime to p, and so
R#kG ∼= (R#kZ/paZ) ⊗ (kZ/`Z) as an algebra. Thus the cohomology of R#kG is the graded
tensor product of the cohomology of R#kZ/paZ and of kZ/`Z. The cohomology of kZ/`Z is
concentrated in degree 0, where it is simply k, since ` is coprime to p.

Now assume that q = pa. Let w = g − 1 and note that since the order of g is q,

R#kG ∼= k〈w, x, y〉/(wq, xp, yp, yx− xy − 1

2
x2, xw − wx, yw − wy − wx− x).

Assign the degree lexicographic order on monomials in w, x, y, with w < x < y. This gives rise to an
N-filtration on R#kG for which gr(R#kG) ∼= k[w, x, y]/(wq, xp, yp). (See, e.g., [2, Theorem 4.6.5].)

We will apply the May spectral sequence [17] in our context, for which:

E∗,∗1
∼= H∗(gr(R#kG),k) =⇒ E∗,∗∞

∼= gr H∗(R#kG,k).

The algebra gr(R#kG) ∼= k[w, x, y]/(wq, xp, yp) has a resolution given by a tensor product as in
Lemma 4.2.3, equivalently by repeating the twisted tensor product construction in Section 3.3 but
with trivial twisting. We find that there are elements in degree 2 of H∗(gr(R#kG),k) corresponding
to ξw, ξx, ξy ∈ H2(R#kG,k) (here, we identify ξw = ξg), and we use the same notation for them, by
abuse of notation. These elements are permanent cocycles in the May spectral sequence: We have
already seen that these cocycles exist for the filtered algebra R#kG, as constructed in Section 3.3.
They are permanent cocycles as we may identify their images with the corresponding elements of
H∗(R#kG,k).

Specifically, let B∗,∗ = k[ξw, ξx, ξy]. By identifying H∗(gr(R#kG),k) with group cohomology,
or by arguments in [15, Section 4], we see that E∗,∗1

∼= H∗(gr(R#kG),k) is a noetherian B∗,∗-
module (it is generated over B∗,∗ by some elements ηw, ηx, ηy in degree 1). By Lemma 5.1.1, E∗,∗∞ ∼=
gr H∗(R#kG,k) is a noetherian module over k[ξw, ξx, ξy]. By an appropriate Zariskian filtration
[14, Chapter 2], one can lift information from the associated graded ring to the filtered ring; thus,
H∗(R#kG,k) is noetherian over k[ξw, ξx, ξy]. Therefore, by [7, Proposition 2.4], H∗(R#kG,k) is
finitely generated as an algebra. �

Remark 5.1.3. There is a different proof of Theorem 5.1.2 that is closer to Evens’ original proof
of finite generation of group cohomology, given in [20, Section 5 and Erratum]. That proof uses [20,
Theorem 3.1] which gives some sufficient conditions for H∗(R#kG,k) to be noetherian, where R
is any finite dimensional augmented algebra with action of finite group G preserving the augmen-
tation map. These conditions arise from a Lyndon-Hochschild-Serre spectral sequence relating
H∗(R#kG,k) to H∗(G,H∗(R,k)), instead of the May spectral sequence associated to an algebra
filtration that we use here.

5.2. Cohomology of some pointed Hopf algebras of dimension 27. In this section, we let
k be a field of characteristic p = 3 and consider the Hopf algebras H(ε, µ, τ) defined in Section 2.3.
Consider k to be the H(ε, µ, τ)-module on which w, x, y each act as 0.

Theorem 5.2.1. Let H(ε, µ, τ) be the Hopf algebra of dimension 27 defined in Section 2.3. Then
the cohomology ring H∗(H(ε, µ, τ),k) is finitely generated.

Proof. Choose the ordering w < x < y as before, and the corresponding degree lexicographic order-
ing on monomials. Due to the form of the relations, this gives rise to an N-filtration on H(ε, µ, τ)
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for which the associated graded algebra is grH(ε, µ, τ) ∼= k[w, x, y]/(w3, x3, y3). (See, e.g., [2, The-
orem 4.6.5].) We consider the Anick resolution P q of k over H(ε, µ, τ), filtered correspondingly,
and the resulting May spectral sequence of the complex HomH(ε,µ,τ)(P q,k). This is a multiplicative
spectral sequence under the product induced by a diagonal map P q → P q ⊗ P q lifting the identity
map on k. Denote the associated graded resolution to P q by grP q, which we may identify with the
Anick resolution of k over grH(ε, µ, τ), described in Lemma 4.2.3.

The Anick resolution of k over A = H(ε, µ, τ) has the same free basis sets Cn as that for
grH(ε, µ, τ) described in Section 4.2. Direct calculations show that it has the following differentials
in degrees 2 and 3 (recall that the parameter ε only takes the values 0 or 1): By the proof of
Theorem 4.1.2, values of d2 on tips correspond to the relations, specifically,

d2(1⊗ w3) = w2 ⊗ w,
d2(1⊗ x3) = x2 ⊗ x− ε⊗ x,
d2(1⊗ y3) = y2 ⊗ y + εy ⊗ y + (µε− τ − µ2)⊗ y,
d2(1⊗ xw) = x⊗ w − w ⊗ x− εw ⊗ w − ε⊗ w,
d2(1⊗ yw) = y ⊗ w − w ⊗ y − w ⊗ x− 1⊗ x+ (µ− ε)w ⊗ w + (µ− ε)⊗ w,
d2(1⊗ yx) = y ⊗ x− x⊗ y + x⊗ x− (µ+ ε)⊗ x− ε⊗ y + τw ⊗ w − τ ⊗ w.

Values of d3 require some computation, using the algorithm outlined as part of the proof of Theo-
rem 4.1.2, and on free basis elements they are:

d3(1⊗ w4) = w ⊗ w3, d3(1⊗ x4) = x⊗ x3, d3(1⊗ y4) = y ⊗ y3,
d3(1⊗ xw3) = x⊗ w3 − w2 ⊗ xw,
d3(1⊗ x3w) = x2 ⊗ xw + w ⊗ x3 + εwx⊗ xw + εx⊗ xw + εw ⊗ xw,
d3(1⊗ yw3) = y ⊗ w3 − w2 ⊗ yw + w2 ⊗ xw + w ⊗ xw,
d3(1⊗ yxw) = y ⊗ xw − x⊗ yw + w ⊗ yx+ εw ⊗ yw + x⊗ xw + (µ+ ε)w ⊗ xw,
d3(1⊗ y3w) = y2 ⊗ yw + w ⊗ y3 + wy ⊗ yx+ wx⊗ yx+ (ε− µ)wy ⊗ yw

+(µ− ε)wx⊗ yw − τw2 ⊗ yw + y ⊗ yx− (ε+ µ)y ⊗ yw
+τw2 ⊗ xw + x⊗ yx+ (µ− ε)x⊗ yw + (µ2 − εµ)w ⊗ yw + τw ⊗ xw,

d3(1⊗ yx3) = y ⊗ x3 − x2 ⊗ yx+ τwx⊗ xw + εx⊗ yx− τx⊗ xw + ετw ⊗ xw,
d3(1⊗ y3x) = y2 ⊗ yx+ x⊗ y3 − xy ⊗ yx− τwx⊗ yw − τwy ⊗ yw

+τw2 ⊗ yx+ τwx⊗ xw + ετw2 ⊗ yw + (ετ + µτ)w2 ⊗ xw
+µy ⊗ yx+ τy ⊗ yw − µx⊗ yx+ τx⊗ xw
+τw ⊗ yx+ (ετ + µτ)w ⊗ yw + ετw ⊗ xw.

For example, to find d3(1⊗ yw3), we first compute

d3(1⊗ yw3) = y ⊗ w3 − s1d2(y ⊗ w3) = y ⊗ w3 − s1(yw2 ⊗ w).

Using the relations, rewrite yw2 as w2y − w2x− wx+ (µ+ ε)w2 + εw, so the above expression is

= y ⊗ w3 − s1(w2y ⊗ w − w2x⊗ w − wx⊗ w + (µ+ ε)w2 ⊗ w + εw ⊗ w).

Now d2(w
2⊗ yw) = w2y⊗w−w2⊗ x+ (µ− ε)w2⊗w and, adding and subtracting the expression

−w2 ⊗ x+ (µ− ε)w2 ⊗ w, the above may be rewritten as

= y ⊗ w3 − s1(w2y ⊗ w − w2 ⊗ x+ (µ− ε)w2 ⊗ w + w2 ⊗ x− (µ− ε)w2 ⊗ w
− w2x⊗ w − wx⊗ w + (µ+ ε)w2 ⊗ w + εw ⊗ w)

= y ⊗ w3 − w2 ⊗ yw − s1(w2 ⊗ x− w2x⊗ w − wx⊗ w − εw2 ⊗ w + εw ⊗ w)).
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For the next two steps, we note that d2(w
2 ⊗ xw) = w2x ⊗ w − εw2 ⊗ w and d2(w ⊗ xw) =

wx⊗ w − w2 ⊗ x− εw2 ⊗ w − εw ⊗ w, and so the above may be rewritten as

= y ⊗ w3 − w2 ⊗ yw − s1(w2 ⊗ x− w2x⊗ w + εw2 ⊗ w + εw2 ⊗ w − wx⊗ w + εw ⊗ w)

= y ⊗ w3 − w2 ⊗ yw + w2 ⊗ xw − s1(w2 ⊗ x− wx⊗ w + εw2 ⊗ w + εw ⊗ w).

We recognize the argument of s1 above as d2(w ⊗ xw) and so we obtain the value of d3(1 ⊗ yw3)
as claimed.

Looking at the values of d3 given above, note that the coefficients in the factor A = H(ε, µ, τ) of
A⊗kC2 in the image of each of these free basis elements (under d3) are in the augmentation ideal.
(A similar statement does not apply to d2.) In particular, letting (w3)∗, . . . denote elements in the
dual basis in Homk(kC2,k) ∼= HomA(A⊗ kC2,k), to the tips w3, . . . of kC2, it follows that

d∗3((w
3)∗) = 0, d∗3((x

3)∗) = 0, d∗3((y
3)∗) = 0.

Setting ξw = (w3)∗, ξx = (x3)∗, and ξy = (y3)∗, we see that these functions are cocycles in
Homk(kC2,k) ∼= HomA(A⊗ kC2,k).

It follows from the above observations that ξw, ξx, ξy are permanent cocycles in the May spectral
sequence, and we may use them in an application of Lemma 5.1.1: On the E1-page, ξw, ξx, ξy
correspond to analogous 2-cocycles on grH(ε, µ, τ) that generate a polynomial subalgebra of its
cohomology ring by a similar analysis to that in earlier sections. That is, by Lemma 4.2.3, the Anick
resolution is essentially the same as the (twisted) tensor product resolution used earlier. Now let
B = k[ξw, ξx, ξy]. Let ηw = (w)∗, ηx = (x)∗, ηy = (y)∗ in Homk(kC1,k) ∼= HomA(A⊗kC1,k). The
cohomology of grH(ε, µ, τ) is finitely generated as a module over B, by ηw, ηx, ηy and their products
(note η2w = 0, η2x = 0, η2y = 0, so these products constitute a finite set). By Lemma 5.1.1, using
an appropriate Zariskian filtration [14, Chapter 2], the cohomology H∗(H(ε, µ, τ),k) is noetherian
over k[ξw, ξx, ξy]. By [7, Proposition 2.4], it is finitely generated as an algebra. �

Remark 5.2.2. An alternative proof of our earlier Theorem 5.1.2 would proceed just as our above
proof of Theorem 5.2.1: One could compute the differentials on the Anick resolution of the algebra
to show existence of the needed elements ξw, ξx, ξy. We chose instead to use the twisted tensor
product construction there, for which we were able to give formulas for the differentials in all
degrees, yielding a more explicit, if not shorter, presentation. Thus our earlier Theorem 5.1.2 has
several proofs, of different flavors: One proof is in [20, Section 5], using a Lyndon-Hochschild-Serre
spectral sequence for a skew group algebra, one proof is that given in Section 5.1 using a May
spectral sequence and a twisted tensor product resolution, and yet one more proof would proceed
similarly to the proof of Theorem 5.2.1, using a May spectral sequence and the Anick resolution. By
contrast, we offer just this one proof of our Theorem 5.2.1. One may not use a Lyndon-Hochschild-
Serre spectral sequence directly since H(ε, µ, τ) is not a skew group algebra. One might potentially
use a May spectral sequence with a twisted tensor product resolution, but constructing such a
resolution may be more difficult in this context and we do not pursue this.
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