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ABSTRACT
This article introduces amachine for sampling approximatemodel-X knockoffs for arbitrary and unspecified
data distributions using deep generative models. The main idea is to iteratively refine a knockoff sampling
mechanism until a criterion measuring the validity of the produced knockoffs is optimized; this criterion
is inspired by the popular maximum mean discrepancy in machine learning and can be thought of as
measuring the distance to pairwise exchangeability between original and knockoff features. By building
upon the existing model-X framework, we thus obtain a flexible and model-free statistical tool to per-
form controlled variable selection. Extensive numerical experiments and quantitative tests confirm the
generality, effectiveness, and power of our deep knockoff machines. Finally, we apply this new method
to a real study of mutations linked to changes in drug resistance in the human immunodeficiency virus.
Supplementary materials for this article are available online.
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1. Introduction

1.1. Motivation

Model-X knockoffs (Candès et al. 2018) is a new statistical tool
that allows the scientist to investigate the relationship between a
response of interest and a large number of explanatory variables.
In particular,model-X knockoffs can be used to identify a subset
of important variables from a larger pool that could potentially
explain a phenomenon under study while controlling the false
discovery rate (Benjamini and Hochberg 1995). This method-
ology does not require any knowledge of how the response
depends on the features, and the correctness of the inferences
rests entirely on a precise description of the distribution of the
explanatory variables, which are assumed to be random. This
makes model-X knockoffs well-adapted to situations in which
good models are available to describe the joint distribution
of the features, as in genome-wide association studies (Sesia,
Sabatti, and Candès 2018). To extend this approach to a broad
set of applications, however, we need flexible tools to construct
knockoff variables in the absence of reliable prior knowledge
about the distribution of the covariates. Instead, we assume
to have sufficient labeled or unlabeled samples to learn this
distribution to a suitable level of approximation.

The goal of this article is simply stated: tomake the knockoffs
framework practically model-free and, therefore, widely appli-
cable. This is achieved by exploiting recent progress in machine
learning, which is repurposed to harness information from
large unsupervised datasets and sample approximate model-X
knockoffs. The outcome is a sensible set of tools for controlled
variable selection that can help alleviate the irreproducibil-
ity issues afflicting many areas of science and data analysis
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(Ioannidis 2005; Gelman and Loken 2014; Baker 2016; Munafò
et al. 2017).

1.2. A Preview of our Contribution

Given independent copies of X = (X1, . . . ,Xp) ∈ R
p from

some unknown distribution PX , we seek to construct a random
generator of valid knockoffs X̃ = (X̃1, . . . , X̃p) such that the
joint law of (X, X̃) is invariant under the swapping of any Xj and
X̃j for each j ∈ {1, . . . , p}. Concretely, the machine takes X as
input and generates X̃ through a mapping fθ (X,V), where V is
random noise and fθ is a deep neural network. The parameters
of the network are fitted on the data to optimize a loss function
that quantifies the extent to which X̃ is a good knockoff copy
of X. This goal is related to the classical problem of learn-
ing generative models; however, the challenge here is unusual
since no sample from the target distribution PX̃|X is available.
Fortunately, the existing methods of deep generative modeling
can be suitably repurposed, as we shall see in Section 4. The
lack of uniqueness of the target distribution should be resolved
by making X̃ as different as possible from X, since a trivial
copy would satisfy the required symmetry without being of any
practical use. Our approach generalizes the solution in Candès
et al. (2018), which relies on the simplifying assumption thatX is
multivariate Gaussian. In the context of deep generativemodels,
the analogous idea consists of training a machine that optimizes
the compatibility of the first two moments of (X, X̃)while keep-
ing the strength of the pairwise correlations between Xj and X̃j
under control. By including in the loss function an additional
term that promotes the matching of higher moments, we will
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https://doi.org/10.1080/01621459.2019.1660174
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2019.1660174&domain=pdf&date_stamp=2020-12-02
mailto:msesia@stanford.edu
http://www.tandfonline.com/r/JASA
http://www.tandfonline.com/r/JASA


1862 Y. ROMANO, M. SESIA, AND E. CANDÈS

show that one can move beyond the second-order approxima-
tion toward a model-free knockoff generator. The effectiveness
of deep knockoffmachines can be quantitativelymeasured using
suitable goodness-of-fit diagnostics, as shown empirically by the
results of our numerical experiments and data analysis. The
algorithms described in this article have been implemented in
Python and the corresponding software is available from https://
web.stanford.edu/group/candes/deep-knockoffs/.

1.3. RelatedWork

The idea of using knockoffs as negative control variables orig-
inated in the context of linear regression with a fixed design
matrix (Barber and Candès 2015). The generation of knock-
offs beyond the settings considered in Candès et al. (2018)
has also been tackled in Gimenez, Ghorbani, and Zou (2018),
which extends the results of Sesia, Sabatti, and Candès (2018)
to a broader class of Bayesian networks. Other recent advances
include the work of Lu et al. (2018), Fan et al. (2018), and Zheng
et al. (2018), while some interesting applications can be found
in Xiao et al. (2017), Xie, Chen, and Shi (2018), and Gao et al.
(2018). Very recently, deep generative models have indepen-
dently been suggested as a procedure for sampling knockoffs
in Jordon, Yoon, and van der Schaar (2019), through adversar-
ial rather than moment matching networks. Even though the
fundamental aims coincide and the solutions are related, our
machine differs profoundly by design and it offers a more direct
connection with existing work on the second-order knockoffs.
Also, it is well known that adversarial networks are difficult
to train (Arjovsky and Bottou 2017), while moment matching
is a simpler task (Dziugaite, Roy, and Ghahramani 2015; Li,
Swersky, and Zemel 2015). Since the approach of Jordon, Yoon,
and van der Schaar (2019) requires simultaneously training
four interacting neural networks, we expect that our machine
should demand less tuning and be faster to learn. This may
be a significant advantage since the ultimate goal is to make
knockoffs accessible to researchers from different fields. A com-
putationally lighter alternative is proposed in Liu and Zheng
(2018), which relies on the variational autoencoder (Kingma
and Welling 2013) to generate knockoff copies. Since our work
was developed in parallel1 to those of Jordon, Yoon, and van der
Schaar (2019) and Liu and Zheng (2018), we do not include
these recent proposals in our simulation studies. Instead, we
compare our method to well-established alternatives.

2. Model-X Knockoffs

A random vector X̃ ∈ R
p is said to be a knockoff copy ofX ∈ R

p

(Candès et al. 2018) if

(X, X̃)
d= (X, X̃)swap(j), for each j ∈ {1, . . . , p}. (1)

Above, the symbol d= indicates equality in distribution and
(·)swap(j) is the operator swapping Xj with X̃j; if p = 2 and j = 1,
(X1,X2, X̃1, X̃2)swap(j) is equal to (X̃1,X2,X1, X̃2). Knockoffs play
a key role in the following variable selection problem.

1The results of this article were first discussed at the University of California,
Los Angeles, during the Green Family Lectures on September 27, 2018.

Consider n observations {Xi,Yi}ni=1, with Xi ∈ R
p drawn

independently from a known PX , and the label Yi ∈ R from an
unknown conditional distribution PY|X . The goal is to identify
a subset of components of X that affect Y . One refers to Xj as
unimportant if it is conditionally independent of the response
Y once the value of the other p − 1 variables is known. The set
of true null hypothesesH0 contains all variables that are unim-
portant. While searching for the largest subset Ŝ of important
variables, the false discovery rate should be controlled below a
nominal level q ∈ (0, 1), that is, E

[
(|Ŝ ∩ H0|)/(|Ŝ ∨ 1|)

]
≤ q.

The approach of Candès et al. (2018) provably controls this
error rate without placing any restrictions on PY|X , which can
be arbitrary and completely unspecified. The first step consists
of generating a knockoff copy X̃ for each available sample of X,
such that both Equation (1) is satisfied and Y |� X̃ | X. Some
measures of feature importance Zj and Z̃j are then evaluated for
each Xj and X̃j. For this purpose, almost any available method
from statistics andmachine learning can be applied to the vector
of labels Y and the augmented data matrix [X, X̃] ∈ R

n×2p,
as long as the identity of the knockoffs is not revealed. Each
pair is then combined through an antisymmetric function into
the statistics Wj, for example, Wj = Zj − Z̃j, such that a
large and positive value suggests evidence against the jth null
hypothesis, while unimportant variables are equally likely to be
positive or negative. Then, exact control of the false discovery
rate below the nominal level q can be obtained by selecting
Ŝ = {

j : Wj ≥ τq
}
(Barber and Candès 2015), where

τq = min
{
t > 0 :

1 + |{j : Wj ≤ −t}|
|{j : Wj ≥ t}| ≤ q

}
.

The validity of this approach relies on our ability to generate
X̃ satisfying Equation (1). Even though procedures to sample
exact knockoffs have been derived for a few special classes of PX
(Candès et al. 2018; Sesia, Sabatti, and Candès 2018; Gimenez,
Ghorbani, and Zou 2018), the general case remains challenging
because Equation (1) is very stringent. For instance, obtaining
independent samples fromPX or permuting the rows ofXwould
only ensure that (X1,X2) is equal in distribution to (X̃1, X̃2),
while the analogous result would not hold between (X1,X2) and
(X1, X̃2). At the same time, the latter property is crucial since a
null variable and its knockoff must explain on average the same
fraction of the variance in Y . A practical approximate solution
(Candès et al. 2018) is to relax (1) and match only the first two
moments of the distributions. In this sense, X̃ is a second-order
knockoff copy of X if E[X] = E[X̃] and

cov
[
(X, X̃)

]
=

[
� � − diag(s)

� − diag(s) �

]
, (2)

where� is the covariancematrix ofX and s is any p-dimensional
vector such that (2) is positive semidefinite. This weaker form
of exchangeability is reminiscent of the notion of fixed-design
knockoffs (Barber and Candès 2015), and it can be practically
implemented by approximating the distribution of X as multi-
variate Gaussian (Candès et al. 2018). This often works well in
practice, even though it is in principle insufficient to guarantee
control of the false discovery rate under the general conditions
of the model-X framework (Barber, Candès, and Samworth
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2018). In this article, we build upon the existing work to obtain
higher-order knockoffs that can achieve a better approximation
of Equation (1) using modern techniques from the field of deep
generative models.

3. Deep Generative Models

Given n independent p-dimensional samples {Xi}ni=1 from an
unknown distribution PX , one often seeks a generative model
to synthesize new observations that could plausibly belong to
the training set, while being sufficiently different to be nontriv-
ial. Several solutions have been proposed, some of which are
based on hiddenMarkovmodels (Baum and Petrie 1966), Gaus-
sian mixture models (Nasrabadi 2007), or Boltzmann machines
(Ackley, Hinton, and Sejnowski 1985). Recently, many tradi-
tionalmethods have been largely replaced by variational autoen-
coders (Kingma and Welling 2013) and generative adversarial
networks (Goodfellow et al. 2014). These are based on a para-
metric function fθ (V) that maps an input noise vector V to the
domain of X. The parameters in θ represent a neural network
and they need to be learned from the data. The function fθ is
deterministic for any fixed V and, with an appropriate choice
of θ , it transforms the noise to obtain a variable approximately
distributed as X.

Training deep generativemodels is difficult, and considerable
effort has been dedicated to the development of practical algo-
rithms that can find good solutions. Even though adversarial
networks have enjoyed a great deal of success, they require
solving a non-convex minimax optimization problem that is
notoriously difficult (Arjovsky and Bottou 2017). This issue is
mitigated inmore recent alternatives such asmoment-matching
networks and relatedmethods (Dziugaite, Roy, andGhahramani
2015; Li, Swersky, andZemel 2015; Li et al. 2017; Bińkowski et al.
2018; Srivastava et al. 2018). The rest of this section is dedicated
to reviewing the basics of some of the latter approaches, upon
which we will begin to develop a knockoff machine.

Given two sets of independent observations {Xi}ni=1 and
{Zi}ni=1, drawn from some unknown distributions PX and PZ ,
a generative model must verify whether PX = PZ . This problem
has a long history in the statistics literature and many non-
parametric tests have been proposed to address it (Bickel 1969;
Friedman and Rafsky 1979; Schilling 1986; Henze 1988; Fried-
man 2004; Gretton et al. 2012; Székely and Rizzo 2013). The
work of Gretton et al. (2012) introduced a test statistic called
maximum mean discrepancy, whose desirable computational
properties have inspired the development of moment matching
networks (Li, Swersky, and Zemel 2015; Dziugaite, Roy, and
Ghahramani 2015). The key idea is to quantify the discrepancy
between the two distributions in terms of the largest differ-
ence in expectation between φ(X) and φ(Z), over functions
φ mapping into the unit ball of a reproducing kernel Hilbert
space (Gretton et al. 2012). This characterization can be made
explicit with the kernel trick (Gretton et al. 2012), leading to the
practical utilization described below.

Let X,X′,Z,Z′ be independent samples drawn from PX and
PZ , and k be a kernel function. Then, we define the maximum
mean discrepancy between PX and PZ as follows:

DMMD(PX ,PZ) = EX,X′
[
k(X,X′)

] − 2EX,Z [k(X,Z)]
+ EZ,Z′

[
k(Z,Z′)

]
. (3)

If the characteristic kernel of a reproducing kernel Hilbert space
(Gretton et al. 2012) is used, it can be shown that Equation
(3) is equal to zero if and only if PX = PZ . Concretely, valid
choices of k include theGaussian kernel, k(X,X′) = exp{−‖X−
X′‖22/(2ξ 2)}, with any ξ > 0, and mixtures of such. The choice
of kernel implicitly determines the feature mapping φ that
defines the discrepancymeasure; this can be computed explicitly
for the Gaussian kernel (Cotter, Keshet, and Srebro 2011). In
general, the maximummean discrepancy is always nonnegative
and it can be estimated from finite samples X,Z ∈ R

n×p in an
unbiased fashion via

D̂MMD(X,Z) = 1
n(n − 1)

n∑
i=1,j
=i

[
k(Xi,Xj) + k(Zi,Zj)

]
− 2

n2
n∑

i=1,j=1
k(Xi,Zj), (4)

as discussed in Gretton et al. (2012). Since the expression in
Equation (4) is easily computable and differentiable, it can serve
as the objective function of a deep generative model (Li, Swer-
sky, and Zemel 2015; Dziugaite, Roy, and Ghahramani 2015).
The generator is then trained on X to produce samples Z that
minimize (4), by applying the standard techniques of gradient
descent. This idea can also be repurposed to develop a knockoff
machine, as discussed in the next section.

4. Deep KnockoffMachines

4.1. Overview

A knockoff machine is defined as a random mapping fθ that
takes as input a random X ∈ R

p, an independent noise vector
V ∼ N (0, I) ∈ R

p, and returns an approximate knockoff
copy X̃ = fθ (X,V) ∈ R

p. The machine is characterized by
a set of parameters θ and it should be designed such that the
joint distribution of (X, X̃) deviates from Equation (1) as little
as possible. If the original variables follow a multivariate Gaus-
sian distribution, that is, X ∼ N (0,�), a family of machines
generating exact knockoffs is given by

fθ (X,V) = X − X�−1diag{s}
+ (

2diag{s} − diag{s}�−1diag{s})1/2 V , (5)

for any choice of the vector s that keeps the matrix multiplying
V positive-definite (Candès et al. 2018). In practice, the value
of s is typically determined by solving a semidefinite program
(Candès et al. 2018); see Section 4.3. By contrast, the algorithm
for sampling knockoff copies of hiddenMarkovmodels in Sesia,
Sabatti, and Candès (2018) cannot be easily represented as an
explicit function fθ . This difficulty should be expected for vari-
ous other choices of PX , and an analytic derivation of fθ seems
intractable in general.

In order to develop a flexible machine for arbitrary and
unknown distributions PX , we assume fθ to take the form
of a deep neural network, as described in the supplementary
material. The values of its parameters will be estimated from
observations of X by solving a stochastic optimization problem.
Our approach is sketched in Figure 1 and it can be summarized
as follows. The machine is provided with n realizations of the



1864 Y. ROMANO, M. SESIA, AND E. CANDÈS

PX X

fθ(X,V )V

X̃

J (X, X̃)Knockoff machine Knockoff scorer

Data generating process

Knockoffs

Figure 1. Schematic of the learning mechanism of a knockoff machine. The arrows indicate the flow of information between the data, the machine and the knockoff
scoring function.

random vector X, independently sampled from an unknown
PX . For any fixed θ , each X̃i is computed as a function of
the input Xi and the noise Vi, for i ∈ {1, . . . , n}. The noise
Vi is independently resampled for each observation and each
time the machine is called. A scoring function J examines the
empirical distribution of (X, X̃) and quantifies its compliance
with Equation (1). After each iteration, the parameters θ are
updated in the attempt to improve future scores. Ideally, upon
successful completion of this process, the machine should be
ready to generate approximate knockoffs X̃ for new observations
of X drawn from the same PX . A specific scoring function that
can generally lead to high-quality knockoffs will be defined
below.

4.2. Second-OrderMachines

We begin by describing the training of a special machine for
expository purposes. Suppose that instead of requiring (X, X̃)

to respect Equation (1), we would be satisfied with the second-
order knockoffs. In order to incentivize the machine to produce
X̃ such that the joint covariance matrix Ĝ of (X, X̃) ∈ R

2p

obeys Equation (2), we consider a simple loss function that
computes a differentiablemeasure of its compatibility with these
requirements. After writing

Ĝ =
[
ĜXX ĜXX̃
ĜXX̃ ĜX̃X̃

]
, (6)

where ĜXX , ĜX̃X̃ ∈ R
p×p are the empirical covariance matrices

of X, X̃, we define

Jsecond-order(X, X̃) = λ1
‖ĜXX − ĜX̃X̃‖2F

‖ĜXX‖2F
+ λ2

‖M ◦ (ĜXX − ĜXX̃)‖2F
‖ĜXX‖2F

. (7)

The symbol ◦ indicates element-wise multiplication, whileM =
E − I ∈ R

p×p, with E being a matrix of ones and I the identity
matrix. While this loss function encourages the matching of the
second moments, we will also add (λ3/p) · ‖n−1 ∑n

i=1(Xi −
X̃i)‖22 to Equation (7), in order to ensure that E[X] = E[X̃].
Smaller values of this loss suggest that X̃ is a better second-
order approximate knockoff ofX. Since J is smooth, themachine
can be trained by stochastic gradient descent. For simplicity,
λ1, λ2, λ3 = 1 throughout this article.

As we mentioned earlier, knockoffs are not uniquely defined,
and it is desirable to make X̃ as different as possible from X. A
practical solution consists of adding a regularization term to the
loss, targeting large pairwise empirical correlations between X
and X̃:

Jdecorrelation(X, X̃) = ‖diag(ĜXX̃) − 1 + s∗SDP(ĜXX)‖22. (8)

Above, Ĝ is defined as in Equation (6) and: s∗SDP(�) =
argmins∈[0,1]p

∑p
j=1

∣∣1 − sj
∣∣ such that 2� � diag(s) � 0. This

semi-definite program is the same used in Candès et al. (2018)
for the special case of X ∼ N (0,�), to minimize the pairwise
correlations between X̃ and X. Under the Gaussian assumption,
the constraint 2� � diag(s) � 0 is necessary and sufficient
to ensure that the joint covariance matrix of (X, X̃) is positive
semidefinite. Compared to the original method in Candès et al.
(2018), the additional computational burden of fitting a neural
network is significant. However, the tools developed in this
section can be generalized beyond the second-order setting, as
discussed next.

4.3. Higher-OrderMachines

In order to build a general knockoffmachine, onemust precisely
quantify and control the deviation from exchangeability: the
difference in distribution between (X, X̃) and (X, X̃)swap(j) for
each j ∈ {1, . . . , p}. For this purpose, we deploy the max-
imum mean discrepancy from Section 3. In order to obtain
an unbiased estimate, we randomly partition the data into
X′,X′′ ∈ R

n/2×p and define the corresponding output of the
machine as X̃′, X̃′′. Then, it is natural to seek a machine that
targets

∑p
j=1 D̂MMD

[
(X′, X̃′), (X′′, X̃′′)swap(j)

]
. Above, D̂MMD

stands for the empirical estimate in (4) with a Gaussian kernel.
Intuitively, this is minimized in expectation if (1) is satisfied, as
more precisely stated below.We refer to this solution as a higher-
order knockoff machine because the expansion of the Gaussian
kernel into a power series leads to a characterization of (3) in
terms of the higher-moments of the two distributions (Cotter,
Keshet, and Srebro 2011; Gretton et al. 2012). Our approach can
thus be interpreted as a natural generalization of the method in
Candès et al. (2018).

Since computing D̂MMD for p swaps may be expensive, in
practice we will only consider

JMMD(X, X̃) = D̂MMD
[
(X′, X̃′), (X̃′′,X′′)

]
+ D̂MMD

[
(X′, X̃′), (X′′, X̃′′)swap(S)

]
, (9)
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where S indicates a uniform random subset of {1, . . . , p} such
that j ∈ S with probability 1/2. The following result, whose
proof is in the supplementary material, confirms that the objec-
tive in Equation (9) provides a sensible guideline for training
knockoff machines.

Theorem 1. Let X ∈ R
n×p be a collection of independent

observations drawn from PX , and define X̃ as the corresponding
random output of a fixed machine fθ . Then for JMMD defined
as in Equation (9), E

[
JMMD(X, X̃)

] ≥ 0. Moreover, equality
holds if and only if themachine produces valid knockoffs for PX .
Above, the expectation is taken overX, the noise in the knockoff
machine, and the random swaps in the loss function.

With finitely many observations, stochastic gradient descent
aims tominimize the expectation of Equation (9) conditional on
the data. This involves a high-dimensional nonconvex optimiza-
tion problem that is difficult to study theoretically. Nonetheless,
effective algorithms exist and a weak form of convergence of
stochastic gradient descent for our machine is established in the
supplementary material. Therefore, these results provide a solid
basis for our method.

The full objective function of a knockoff machine may also
include the quantities from Equations (7) and (8), as a form of
regularization, thus reading as follows:

J(X, X̃) = γ JMMD(X, X̃) + λJsecond-order(X, X̃)

+ δJdecorrelation(X, X̃). (10)

The second-order penalty may appear redundant because JMMD
already penalizes discrepancies in the covariance matrix, as well
as in all other moments. However, setting λ > 0 explicitly
leverages the second-order approximation upon which we aim
to improve, and often helps in reducing the training time. With
any fixed (γ , λ, δ), the machine can be fitted by stochastic gra-
dient descent, as summarized in Algorithm 1. Further details
regarding the implementation of ourmachines are in the supple-
mentary material. For optimal performance, the hyperparame-
ters should be tuned to the data distribution at hand. For this
purpose, we discuss below some tools to measure goodness of
fit.

5. Robustness and Diagnostics

5.1. Measuring Goodness of Fit

The goodness of fit of a conditional model producing approxi-
mate knockoff copies X̃ | X can be informally described as the
compatibility of the distribution of (X, X̃) with (1). By defining
and evaluating different measures of discrepancy, the quality of
our deep knockoff machines can be quantitatively compared to
that of existing alternatives. For any PX and PX̃|X , one should
verify whether H(j)

0 : P(X,X̃) = P(X,X̃)swap(j)
, ∀j ∈ {1, . . . , p}.

In order to reduce the number of comparisons, we will instead
consider the following two hypotheses:

Hfull
0 : P(X,X̃) = P(X̃,X), Hpartial

0 : P(X,X̃) = P(X,X̃)swap(S)
, (11)

where S is a random subset of {1, . . . , p}, chosen uniformly and
independently of (X, X̃), such that j ∈ S with probability 1/2.

Algorithm 1: Training a deep knockoff machine
Input: X ∈ R

n×p – Training data.
(γ , λ, δ) – Hyperparameter of the loss function.
θ1 – Initialization values for the weights and biases
of the network.
(μ,T) – Learning rate and number of iterations.

for t = 1 : T do

Sample the noise realizations: Vi ∼ N (0, I), for all
1 ≤ i ≤ n;
Randomly divide X into two disjoint mini-batches
X′,X′′;
Pick a subset of swapping indices S ⊂ {1, . . . , p}
uniformly at random;

Generate the knockoffs as a deterministic function of θ :
X̃i = fθt (Xi,Vi), for all 1 ≤ i ≤ n;
Evaluate the objective function, using the fixed batches
and swapping indices:
Jθt (X, X̃) = γ JMMD(X, X̃) + λJsecond-order(X, X̃) +
δJdecorrelation(X, X̃);

Compute the gradient of Jθt (X, X̃), which is now a
deterministic function of θ ;

Update the parameters: θt+1 = θt − μ∇θt Jθt (X, X̃);
end
Output: fθT – A knockoff machine.

Either hypothesis can be separately investigated with a variety
of existing two-sample tests. In order to study Hfull

0 , we define
Z1 and Z2 as two independent sets of n observations of Z1 =
(X, X̃) and Z2 = (X̃,X). The analogous tests of Hpartial

0 can be
performed by defining Z2 as samples of (X, X̃)swap(S), and are
omitted.

Covariance diagnostics. It is natural to begin with a compari-
son of the covariance matrices of Z1 and Z2, namely G1,G2 ∈
R
2p×2p. For this purpose, we compute the following statistic

meant to test the hypothesis that G1 = G2:

ϕ̂COV = 1
n(n − 1)

n∑
i=1,j
=i

[
(Z�

1iZ1j)
2 + (Z�

2iZ2j)
2
]

− 2
n2

n∑
i=1,j=1

(Z�
1iZ2j)

2. (12)

This quantity is an unbiased estimate of ‖G1 − G2‖2F =
Tr(G�

1 G1) + Tr(G�
2 G2) − 2Tr(G�

1 G2), if Z1 and Z2 have zero
mean (Li andChen 2012). In practice,Z1 andZ2 will be centered
if this assumption does not hold. The asymptotic distribution
of Equation (12) can be derived under mild conditions, thus
yielding a nonparametric test of the null hypothesis that G1 =
G2 (Li and Chen 2012). However, since our goal is to compare
knockoffs generated by alternative algorithms, we will simply
interpret larger values of (12) as evidence of a worse fit.

MMD diagnostics. Since ϕ̂COV does not capture the higher-
order moments of (X, X̃), different diagnostics should be used
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in order to have power against other alternatives. For example,
the first null hypothesis in Equation (11) can be tested by com-
puting:

ϕ̂MMD = D̂MMD (Z1,Z2) , (13)

where the function D̂MMD is defined as in Equation (4); see
Gretton et al. (2012) for details. Since this is an unbiased
estimate of the maximum mean discrepancy between the two
distributions, large values can again be interpreted as evidence
against the null. On the other hand, exact knockoffs will yield
zero on average.

KNN diagnostics. The k-nearest neighbors test (Schilling
1986) can also be employed to obtain a non-parametricmeasure
of goodness of fit. For simplicity, we consider here the special
case of k = 1. For each sample zli ∈ Zl, with l ∈ {1, 2}, we
denote the nearest neighbor in Euclidean distance of zli among
Z = Z1 ∪ Z2 \ {zli} as NN(zli). Then, we define Il(i) to be equal
to one if NN(zli) ∈ Zl and zero otherwise, and compute the
fraction of samples whose nearest neighbor happens to originate
from the same distribution:

ϕ̂KNN = 1
2n

n∑
i=1

[I1(i) + I2(i)] . (14)

In expectation, ϕ̂KNN is equal to 1/2 if the two distributions are
identical, while larger values provide evidence against the null
(Schilling 1986).

Energy diagnostics. Finally, the hypotheses in Equation (11)
can also be tested in terms of the energy distance (Székely and
Rizzo 2013), defined as follows:

DEnergy(PZ1 ,PZ2) = 2EZ1,Z2‖Z1 − Z2‖2 − EZ1,Z′
1
‖Z1 − Z′

1‖2
− EZ2,Z′

2
‖Z2 − Z′

2‖2, (15)

where Z1,Z′
1,Z2, andZ′

2 are independent samples drawn from
PZ1 and PZ2 , respectively. Assuming finite secondmoments, one
can conclude that DEnergy ≥ 0, with equality if and only if
Z1 and Z2 are identically distributed (Székely and Rizzo 2013).
Therefore, we follow the approach of Székely and Rizzo (2013)
and define the empirical estimator

D̂Energy (Z1,Z2) = 2
n2

n∑
i=1,j=1

‖Z1i − Z2j‖2

− 1
n2

n∑
i=1,j=1

[‖Z1i − Z1j‖2 + ‖Z2i − Z2j‖2
]
,

and the test statistic

ϕ̂Energy = n
2

[
D̂Energy (Z1,Z2) − 2

n2
n∑

i=1
‖Z1i − Z2i‖2

]
. (16)

If the two distributions are equal, this quantity converges to zero
as n grows, under the assumption of finite second moments.
Otherwise, if the two distributions differ, it grows to infinity. For
our purpose, we interpret larger values of ϕ̂Energy as evidence of
a poorer fit.

5.2. False Discovery Rate UnderModelMisspecification

The quality of the knockoffs produced by our machines will be
tested according to the measures of discrepancy defined above.
However, even when (X, X̃) does not respect Equation (1), the
false discovery rate may sometimes be controlled in practice.
Since a scientist aiming to perform inference on real problems
cannot blindly trust any statistical method, it is important to
develop a richer set of validation tools. The strategy in Candès
et al. (2018) consists of making numerical experiments that
replicate the model misspecification present in the data of inter-
est. The idea is to sample an artificial response Y from some
known conditional likelihood given the real explanatory vari-
ables X. Meanwhile, approximate knockoff copies are generated
using the best available algorithm. Since the true null hypotheses
are known in this setting, the proportion of false discoveries can
be evaluated after applying the knockoff filter. By repeating this
a sufficient number of times, it is possible to verify whether the
false discovery rate is contained. Such experiments help confirm
whether the knockoffs can be applied because the distribution of
(X, X̃) is the same as in the real data.

6. Numerical Experiments

6.1. Experimental Setup

The machine of Section 4 is implemented in Python, according
to the technical details in the supplementary material. Here,
we analyze the performance of our method in a variety of
experiments for different PX . In each case the machines are
trained on n = 104 realizations of X ∈ R

p, with p =
100. Stochastic gradient descent is applied using mini-batches
of size n/4 and learning rate μ = 0.001, for T = 105
gradients steps. A few values of (γ , λ, δ) in the proximity of
(1, 1, 1) are considered. The machine is typically not very sen-
sitive to this choice, although we will discuss how different
ratios work better with some distributions. Upon completion
of training, the goodness of fit is quantified in terms of the
metrics in Section 5.1: the matching of second moments (12),
the maximum mean discrepancy (13), the k-nearest neighbors
statistic (14) and the energy statistic (16). These measures are
evaluated on 1000 previously unseen samples from the same
PX . The diagnostics obtained with deepmachines are compared
against those corresponding to other existing algorithms. We
consider different choices of PX : (i) a multivariate Gaussian; (ii)
a multivariate Student’s-t distribution; (iii) a “sparse Gaussian”
model; (iv) a hidden Markov model; (v) a Gaussian mixture. In
the interest of space, the results corresponding to (iv) and (v)
are in the supplementary material. A natural benchmark in all
scenarios is the second-ordermethod fromCandès et al. (2018),
which we apply by relying on the empirical covariance matrix
�̂ computed on the same data used to train the deep machine.
We will observe that our machines significantly improve on
the second-order method when PX deviates the most from a
multivariate Gaussian, that is, in (ii) and (iii), while performing
similarly in the other cases. Moreover, we also consider exact
knockoff constructions with perfect oracle knowledge of PX as
ideal competitors.

Finally, variable selection is carried out in a controlled
setting, on a response simulated from a known conditional
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Figure 2. Experiments with multivariate Gaussian variables and simulated response. The performance of the machine is compared to that of second-order and oracle
knockoffs. The results are averaged over 1000 independent experiments.

likelihood. For each i ∈ {1, . . . ,m}, the response variableYi ∈ R

is sampled according to Yi ∼ N (Xiβ , 1), with β ∈ R
p con-

taining 30 randomly chosen non-zero elements equal to a/
√
m.

The experiments are repeated 1000 times, for different values of
the signal amplitude a and the number of observations m. The
importance measures are defined by fitting the elastic-net (Zou
andHastie 2005) on the augmented datamatrix [X, X̃] ∈ R

m×2p

and Y ∈ R
m. More precisely, we compute (β̂ , β̃) ∈ R

2p as the
solution of

argmin
(b,b̃)

{‖Y − Xb − X̃b̃‖22
m

+ (1 − α)
τ

2

(
‖b‖22 + ‖b̃‖22

)
+ ατ

(
‖b‖1 + ‖b̃‖1

) }
, (17)

with the value of τ tuned by 10-fold cross validation and some
fixed α ∈ [0, 1]. The knockoff filter is applied on the statistics
Wj = |β̂j| − |β̃j|, for all 1 ≤ j ≤ p, at the nominal level q = 0.1.
The power and the false discovery rate with knockoffs generated
by different algorithms can be evaluated and contrasted, as a
consequence of the exact knowledge of the ground truth. It is
important to stress that these experiments and all the diagnos-
tics described above only rely on new observations from PX ,
generated independently of those used for training.

6.2. Multivariate Gaussian

The first example is that of a multivariate Gaussian distribution,
for which the exact construction of knockoffs in Candès et al.
(2018) provides the ideal benchmark. We consider PX to be an
autoregressive process of order one, such that X ∼ N (0,�) and
�ij = ρ|i−j|, with ρ = 0.5. A deep knockoff machine is trained
with (γ , λ, δ) = (1, 1, 1). The controlled numerical experiments
are carried out on synthetic datasets containing m = 150
samples, and setting α = 0.1 in Equation (17). The results
corresponding to the deep machine are shown in Figure 2 as a
function of the signal amplitude. The performance is compared
to that of the second-order method (Candès et al. 2018) and
an oracle that constructs exact knockoffs by applying Equation
(5) with the true covariance matrix � and the value of s in
(5) that solves the semi-definite program from Section 4.3. The
goodness of fit is further investigated in terms of the diagnostics

in Figure 3 and 8(a), which show that the knockoffs generated
by the oracle are perfectly exchangeable, while the deepmachine
and the second-order knockoffs are almost equivalent. Addi-
tional diagnostics are reported in the supplementary material.

6.3. Multivariate Student’s t-distribution

We now consider a multivariate Student’s t-distribution with
ν = 3 degrees of freedom, defined such that X = √

(ν − 2)/ν ·
Z/

√
�, whereZ ∼ N (0,�) and� is independently drawn from

a gammadistributionwith shape and rate parameters both equal
to ν/2. The covariance matrix � is that of an autoregressive
process of order one with ρ = 0.5. Each variable has unit
variance, while moments of order ν or higher are not finite.
The numerical experiments of Section 6.2 are carried out using
m = 200 samples and setting α = 0 in (17). The performance
of the deep machine is only compared to that of the second-
order method. An oracle is not considered here because it is not
well known, although it can be derived. The deep machine is
trained with (γ , λ, δ) = (1, 0.01, 0.01) because we expect that
less weight should be given to the empirical covariance matrix,
which is less reliable than those in the previous experiments.
The results shown in Figure 4 indicate that the deep knockoffs
control the false discovery rate while second-order knockoffs
fail. The goodness-of-fit diagnostics reported in Figures 5 and
8b illustrate that the deepmachine significantly outperforms the
second-order knockoffs.

6.4. Sparse Gaussian variables

A second example is presented inwhich second-order knockoffs
do not control the false discovery rate. The distribution here
involves variables that are weakly correlated but highly depen-
dent. In particular, we sample η ∼ N (0, 1), while a random
subsetA of size L is independently chosen from {1, . . . , p}. Then,
∀j ∈ {1, . . . , p}, Xj = η

√(L
p
)
/
(L−1
p−1

)
if j ∈ A and Xj = 0

otherwise. Here, we choose L = 30. The covariance matrix �

corresponding to this PX is equal to �ij = 1, if i = j, and
�ij = (L − 1)/(p − 1) otherwise. Then, we perform the usual
controlled numerical experiment on the machine trained with
hyperparameters equal to (γ , λ, δ) = (1, 0.1, 1), usingm = 200
samples and α = 0 in (17). The hyperparameter λ = 0.1
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Figure 6. Experiments with sparse Gaussian variables. The other details are as in Figure 2.
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●

●

0.33

0.34

0.35

0.36

Machine Second
 order

Oracle

Method

C
or

re
la

tio
n

(a) Gaussian

●

●
●

●

●

0.40

0.42

0.44

0.46

0.48

Machine Second
 order

Method

C
or

re
la

tio
n

(b) Multivariate Student’s-t

●

●

0.020

0.025

0.030

0.035

Machine Second
 order

Method

C
or

re
la

tio
n

(c) Sparse Gaussian
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knockoffs.

decreases the weight given to the empirical covariance matrix,
as in the previous experiment. The performance of this machine
is only compared to that of the second-order approximation, as
shown in Figures 6–8(c). Even though our machine is not exact,

its approximation ismore accurate than that of the second-order
method. This improvement is confirmed in Figure 6, illustrating
that the deep machine leads to successful control of the false
discovery rate, unlike the second-order knockoffs.
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7. Application

7.1. Overview of the Data

We deploy our deep machine to a study of variations in drug
resistance among human immunodeficiency viruses of type
I in order to detect important mutations (Rhee et al. 2006).
We choose this application for its importance and because the
data are freely available from https://hivdb.stanford.edu/pages/
published_analysis/genophenoPNAS2006/. Moreover, an earlier
release with fewer samples also appears in the first paper on
knockoffs (Barber andCandès 2015). It should be acknowledged
that it is not immediately clear whether the underlying assump-
tions of the model-X settings are really satisfied. In particular,
we do not know how realistically the samples can be described
as independent and identically distributed pairs (X,Y) drawn
from some joint underlying distribution. Rigorously validating
these assumptions would require expert domain knowledge and
additional data. Therefore, we interpret this analysis as an illus-
tration of how deep knockoff machines can be used in practice,
without advancing any claim of new scientific findings. In any
case, it is encouraging that many of the mutations discovered by
our method are already known to be important, as discussed in
Section 7.3 and in the supplementary material.

For simplicity, we focus on analyzing the resistance to one
protease inhibitor drug, namely lopinavir. The response variable
Yi represents the log-fold increase in resistance measured in the
ith virus.Having remote-file-name-inhibit-cacheved all samples
containingmissing values, we are leftwith n = 1431. Each of the
p = 150 binary features Xj indicates the presence of a particular
mutation. Half are chosen because they are previously known
to be associated with changes in the drug resistance. The other
half are chosen because they are the most frequently occurring
mutations. If multiple mutations occur at the same position, the
first two are treated as distinct while the others are ignored.
The variables are standardized to have zero mean and unit
variance, even though they have binary support. The machine
used in Section 6.1 is slightly modified to produce binary output
through a sigmoid activation. The hyperparameters in the loss
function are (γ , λ, δ) = (1, 1, 1). The machine is trained after
T = 5 × 104 gradients steps and a learning rate μ = 0.01.

The strategy adopted for the analysis of these data is dif-
ferent from that described in the simulations of Section 6. A

deep knockoff machine is trained on the 150 mutation features
corresponding to all 1431 subjects. Since the data is limited,
we fit the machine on the same samples for which we need
to generate the knockoff copies to perform variable selection.
Therefore, it is possible that some overfitting will occur. In other
words, even though the machine thus obtained may not be very
accurate on new observations of X, the knockoffs produced on
the training set will be nearly indistinguishable upon a finite-
sample swap with the original variables. Overfitting knockoffs
has been empirically observed to lead to a loss of power at worst,
while the control of the Type I errors typically remains intact
(Candès et al. 2018; Lu et al. 2018; Sesia, Sabatti, and Candès
2018). This claim is confirmed by the results of the numerical
experiments presented below, although future research should
investigate a theoretical explanation of this phenomenon. For
now, we accept this limitation and proceed by verifying that the
machine works for our purposes.

7.2. Numerical ExperimentsWith Real Variables

The numerical experiments presented here are similar to those
in Section 6, with the important difference that X ∈ R

1431×150

is held constant while we simulate a response variable for each
observation. In theory, model-X knockoffs may not control
the false discovery rate conditional on X. However, it can be
informative to apply and compare in this context the procedures
described above. Since n is much greater than p and X is fixed,
fixed-X knockoffs (Barber and Candès 2015) are a reasonable
alternative to the deep machine and the second-order method.
The results corresponding to the three competing approaches
averaged over 1000 replications are shown in Figure 9 as a func-
tion of the signal amplitude. It is reassuring to observe that the
second-order and the fixed-X knockoffs appear to control the
false discovery rate and achieve similar power, while the deep
machine outperforms both. Additional numerical experiments
with these data can be found in the supplementary material.

7.3. Results

Finally, the knockoffs generated by the machine trained in Sec-
tion 7.2 are used to select important features that contribute to
explaining changes in the drug resistance of the viruses. The
knockoff filter is applied using the same importance statistics
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Figure 9. Numerical experiment with real human immunodeficiency virus mutation features and simulated response. The performance of the deepmachine is compared
to that of the second-order and fixed-X knockoff. The false discovery rate (left) and the power (right) are averaged over 1000 replications. Each replication is performed on
the original X.

https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/
https://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1871

●

●

●

●

●

●

30

40

50

60

70

80

Machine Second−order Fixed−X
Method

N
um

be
r o

f d
is

co
ve

rie
s

Figure 10. Boxplot of the number of drug-resistance mutations in the human
immunodeficiency virus discovered using different knockoff generation methods.
The variability in the results corresponds to 100 independent samples of the knock-
off copies.

as above, setting α = 0.1 in Equation (17). The nominal false
discovery rate is q = 0.1. In order to investigate the stability of
the findings obtained with this machine, the variable selection
procedure is repeated 100 times, starting from a new inde-
pendent realization of the knockoffs conditional on the data.
The distribution of the number of discoveries on this dataset is
displayed in Figure 10, along with the analogous quantity cor-
responding to the second-order knockoffs (Candès et al. 2018)
and the randomized version of the fixed-X knockoffs (Barber
and Candès 2015). The results indicate that the deep machine
leads to more discoveries than the alternative approaches. This
is in line with the numerical experiments presented above.
It is interesting that the selections made with our machine
are quite stable upon resampling of X̃ | X, unlike those of
other methods. This potentially significant advantage of deep
knockoff machines should be investigated more rigorously in
future work. The list of discovered mutations is in large part
consistent with the prior knowledge on their importance, as
shown in the supplementarymaterial. According to the database
on https://hivdb.stanford.edu/dr-summary/comments/PI/, many
of our findings have been previously reported to have amajor or
accessory effect on changes in drug resistance.

8. Discussion

8.1. Summary

The deep machines presented in this paper extend the knockoff
method to a vast range of problems. The idea of sampling knock-
off copies by matching higher moments is a natural generaliza-
tion of the existing second-order approximation; however, the
inherent difficulties of this approach have prompted us to exploit
the powerful new methods of deep learning. The numerical
experiments and the data analysis described in this paper can
be reproduced on a single graphics processing unit within a
few hours. We believe that the computational cost will decrease
as more experience is acquired, and applications on a larger
scale should be pursued. The extensive numerical experiments
show that our solution can match the performance of the avail-
able exact knockoff constructions for several data distributions,
and greatly outperform the previous approximations in more

complex cases. The diagnostics computed on independent test
data confirm that the deep machines are correctly learning to
generate valid knockoffs, without relying on prior knowledge.
The encouraging outcomes of the data analysis motivate further
applications.

There is a subtle but meaningful difference between the
perspective taken by the existing theory of model-X knockoffs
and the common practice on real data. In principle, finite-
sample control of the false discovery rate is guaranteed when
the knockoff copies are constructed with respect to the true PX .
However, knockoffs are often constructed using an estimated P̂X
obtained from the same samples used for variable selection, as
discussed in Section 7. The interesting empirical observation is
that when P̂X overfits the training samples, knockoffs typically
becomemore conservative rather than too liberal. To the best of
our knowledge, this phenomenon still lacks a rigorous explana-
tion. In any case, the numerical simulations of Section 6 show
that our machines can learn how to generate valid knockoffs.
In conclusion, we believe that this work is a valuable contri-
bution because it allows the rich framework of knockoffs to be
applied in very general settings. In fact, given sufficient data and
adequate computing resources, deep knockoff machines can be
trained on virtually any kind of features.

8.2. FutureWork

There are several paths open for future research. For example,
variations of our machines could be based on different scoring
functions or regularization penalties. The machines described
in this paper take an agnostic view of the data distribution, but
there are many applications in which some prior knowledge
of the structure of the variables is available. Exploiting this
could improve the computational and statistical efficiency of
ourmethod, especially in high-dimensionswhere themaximum
mean discrepancy may not be very powerful (Ramdas et al.
2015). For example, one may use prior knowledge to reduce the
dimensions of the data prior to computing the maximummean
discrepancy (Li, Swersky, and Zemel 2015) or learn a suitable
kernel from the data (Sutherland et al. 2016; Li et al. 2017).

A different project could involve the extension of our diag-
nostics using a wider selection of two-sample tests (Heller,
Heller, and Gorfine 2012; Heller and Heller 2016), and a sys-
tematic study of their relative strengths. An extension of the
theoretical results in Barber, Candès, and Samworth (2018) may
also be valuable. Since alternative knockoff constructions based
on different deep learning techniques have been independently
proposed in parallel to the writing of this paper (Jordon, Yoon,
and van der Schaar 2019; Liu and Zheng 2018), it is also up to
future research to extensively compare their empirical perfor-
mance.
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Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A. (2018),
“Demystifying MMD GANs,” arXiv no. 1801.01401. [1863]

Candès, E. J., Fan, Y., Janson, L., and Lv, J. (2018), “Panning for Gold:
‘Model-X’ Knockoffs for High Dimensional Controlled Variable Selec-
tion,” Journal of the Royal Statistical Society, Series B, 80, 551–577. [1861,
1862,1863,1864,1866,1867,1870,1871]

Cotter, A., Keshet, J., and Srebro, N. (2011), “Explicit Approximations of the
Gaussian Kernel,” arXiv no. 1109.4603. [1863,1864]

Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. (2015), “Training Gener-
ative Neural Networks via MaximumMean Discrepancy Optimization,”
arXiv no. 1505.03906. [1862,1863]

Fan, Y., Lv, J., Sharifvaghefi,M., andUematsu, Y. (2018), “IPAD: Stable Inter-
pretable Forecasting With Knockoffs Inference,” arXiv no. 1809.05032.
[1862]

Friedman, J. H. (2004), “OnMultivariate Goodness-of-Fit and Two-Sample
Testing,” Technical Report, Stanford Linear Accelerator Center, Menlo
Park, CA (US). [1863]

Friedman, J. H., and Rafsky, L. C. (1979), “Multivariate Generalizations
of the Wald-Wolfowitz and Smirnov Two-Sample Tests,” The Annals of
Statistics, 7, 697–717. [1863]

Gao, C., Sun, H., Wang, T., Tang, M., Bohnen, N. I., Müller, M. L. T. M.,
Herman, T., Giladi, N., Kalinin, A., Spino, C., Dauer, W., Hausdorff,
J. M., and Dinov, I. D. (2018), “Model-Based and Model-Free Machine
Learning Techniques for Diagnostic Prediction and Classification of
Clinical Outcomes in Parkinson’s Disease,” Scientific Reports, 8, 7129.
[1862]

Gelman, A., and Loken, E. (2014), “The Statistical Crisis in Science,” Amer-
ican Scientist, 102, 460–465. [1861]

Gimenez, J. R., Ghorbani, A., and Zou, J. (2018), “Knockoffs for the Mass:
New Feature Importance Statistics With False Discovery Guarantees,”
arXiv no. 1807.06214. [1862]

Goodfellow, I., Pouget-Abadie, J.,Mirza,M., Xu, B.,Warde-Farley,D.,Ozair,
S., Courville, A., and Bengio, Y. (2014), “Generative Adversarial Nets,”
in Advances in Neural Information Processing Systems, pp. 2672–2680.
[1863]

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola,
A. (2012), “A Kernel Two-Sample Test,” Journal of Machine Learning
Research, 13, 723–773. [1863,1864,1866]

Heller, R., andHeller, Y. (2016), “Multivariate Tests of Association Based on
Univariate Tests,” in Advances in Neural Information Processing Systems,
pp. 208–216. [1871]

Heller, R., Heller, Y., andGorfine,M. (2012), “AConsistentMultivariate Test
of Association Based on Ranks of Distances,” Biometrika, 100, 503–510.
[1871]

Henze, N. (1988), “A Multivariate Two-Sample Test Based on the Number
of Nearest Neighbor Type Coincidences,” The Annals of Statistics, 772–
783. [1863]

Ioannidis, J. P. (2005), “Why Most Published Research Findings are False,”
PLoS Medicine, 2, e124. [1861]

Jordon, J., Yoon, J., and van der Schaar, M. (2019), “KnockoffGAN: Gener-
ating Knockoffs for Feature Selection Using Generative Adversarial Net-
works,” in International Conference on Learning Representations. [1862,
1871]

Kingma, D. P., and Welling, M. (2013), “Auto-Encoding Variational Bayes,”
arXiv no. 1312.6114. [1862,1863]

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos, B. (2017), “MMD
GAN: Towards Deeper Understanding of Moment Matching Network,”
in Advances in Neural Information Processing Systems, pp. 2203–2213.
[1863,1871]

Li, J., and Chen, S. X. (2012), “Two Sample Tests for High-Dimensional
Covariance Matrices,” The Annals of Statistics, 40, 908–940. [1865]

Li, Y., Swersky, K., and Zemel, R. (2015), “Generative Moment Matching
Networks,” Lille, France: International Conference on Machine Learn-
ing, pp. 1718–1727. [1862,1863,1871]

Liu, Y., and Zheng, C. (2018), “Auto-Encoding KnockoffGenerator for FDR
Controlled Variable Selection,” arXiv no. 1809.10765. [1862,1871]

Lu, Y. Y., Lv, J., Fan, Y., and Noble, W. S. (2018), “DeepPINK: Reproducible
Feature Selection in Deep Neural Networks,” arXiv no. 1809.01185.
[1862,1870]

Munafò, M. R., Nosek, B. A., Bishop, D. V., Button, K. S., Chambers, C. D.,
Du Sert, N. P., Simonsohn, U., Wagenmakers, E.-J., Ware, J. J., and
Ioannidis, J. P. (2017), “A Manifesto for Reproducible Science,” Nature
Human Behaviour, 1, 0021. [1861]

Nasrabadi, N. M. (2007), “Pattern Recognition and Machine Learning,”
Journal of Electronic Imaging, 16, 049901. [1863]

Ramdas, A., Reddi, S. J., Póczos, B., Singh, A., and Wasserman, L. (2015),
“On theDecreasing Power of Kernel andDistance BasedNonparametric
Hypothesis Tests inHighDimensions,” Austin, TX: Twenty-NinthAAAI
Conference on Artificial Intelligence. [1871]

Rhee, S.-Y., Taylor, J., Wadhera, G., Ben-Hur, A., Brutlag, D. L., and Shafer,
R.W. (2006), “Genotypic Predictors of Human Immunodeficiency Virus
Type 1DrugResistance,”Proceedings of theNational Academy of Sciences,
103, 17355–17360. [1870]

Schilling, M. F. (1986), “Multivariate Two-Sample Tests Based on Nearest
Neighbors,” Journal of the American Statistical Association, 81, 799–806.
[1863,1866]

Sesia, M., Sabatti, C., and Candès, E. (2018), “Gene Hunting With Hidden
Markov Model Knockoffs,” Biometrika, 106, 1–18. [1861,1862,1863,
1870]

Srivastava, A., Xu, K., Gutmann, M. U., and Sutton, C. (2018), “Ratio
Matching MMD Nets: Low Dimensional Projections for Effective Deep
Generative Models,” arXiv no. 1806.00101. [1863]

Sutherland, D. J., Tung, H.-Y., Strathmann, H., De, S., Ramdas, A., Smola,
A., andGretton, A. (2016), “GenerativeModels andModel CriticismVia
OptimizedMaximumMeanDiscrepancy,” arXiv no. 1611.04488. [1871]

Székely, G. J., andRizzo,M. L. (2013), “Energy Statistics: AClass of Statistics
Based on Distances,” Journal of Statistical Planning and Inference, 143,
1249–1272. [1863,1866]

Xiao, Y., Angulo,M. T., Friedman, J.,Waldor,M. K.,Weiss, S. T., and Liu, Y.-
Y. (2017), “Mapping the Ecological Networks ofMicrobial Communities
From Steady-State Data,” bioRxiv no. 150649. [1862]

Xie, Y., Chen, N., and Shi, X. (2018), “False Discovery Rate Controlled Het-
erogeneous Treatment Effect Detection for Online Controlled Experi-
ments,” in Proceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery &DataMining, ACM, pp. 876–885. [1862]

Zheng, Z., Zhou, J., Guo, X., and Li, D. (2018), “Recovering the Graphical
Structures via Knockoffs,” Procedia Computer Science, 129, 201–207.
[1862]

Zou, H., and Hastie, T. (2005), “Regularization and Variable Selection via
the Elastic Net,” Journal of the Royal Statistical Society, Series B, 67, 301–
320. [1867]


	Abstract
	1.  Introduction
	1.1.  Motivation
	1.2.  A Preview of our Contribution
	1.3.  Related Work

	2.  Model-X Knockoffs
	3.  Deep Generative Models
	4.  Deep Knockoff Machines
	4.1.  Overview
	4.2.  Second-Order Machines
	4.3.  Higher-Order Machines

	5.  Robustness and Diagnostics
	5.1.  Measuring Goodness of Fit
	5.2.  False Discovery Rate Under Model Misspecification

	6.  Numerical Experiments
	6.1.  Experimental Setup
	6.2.  Multivariate Gaussian
	6.3.  Multivariate Student's t-distribution
	6.4.  Sparse Gaussian variables

	7.  Application
	7.1.  Overview of the Data
	7.2.  Numerical Experiments With Real Variables
	7.3.  Results

	8.  Discussion
	8.1.  Summary
	8.2.  Future Work

	Funding
	References


