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Let G be a group acting properly and by isometries on a metric space X; it follows
that the quotient or orbit space X/G is also a metric space. We study the Vietoris—Rips
and Cech complexes of X/G. Whereas (co)homology theories for metric spaces let the
scale parameter of a Vietoris—Rips or Cech complex go to zero, and whereas geometric
group theory requires the scale parameter to be sufficiently large, we instead consider
intermediate scale parameters (neither tending to zero nor to infinity). As a particular
case, we study the Vietoris—Rips and Cech thickenings of projective spaces at the first
scale parameter where the homotopy type changes.

Keywords: Vietoris—Rips complex; metric thickening; isometric group action; orbit space;
homotopy type; persistent homology.

AMS Subject Classification: 55U10, 55P10, 54E35, 05E45, 20F65

1. Introduction

Vietoris-Rips and Cech complexes are geometric constructions which transform
a metric space X into a simplicial complex depending on the choice of a scale
parameter r. Indeed, the Vietoris—Rips complex VR(X;r) includes as its simplices
all finite subsets of X of diameter at most r, and the Cech complex C(X; ) includes
all finite subsets of X contained in a ball of radius r. These complexes have been used
in nerve lemmas [9] to relate homotopy types of spaces with good covers thereof.
They have also been used to define (co)homology theories for metric spaces [22, 31,
39]. Indeed, one can associate to a metric space the homology or cohomology of its
Vietoris-Rips or Cech simplicial complex and then take the limit as the positive
scale parameter goes to zero.

Vietoris—Rips complexes were independently developed for use in geometric
group theory as a way to thicken a metric space, i.e. to view it from a zoomed-out
perspective [20]. In particular, one can use Vietoris—Rips complexes to construct
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finite-dimensional Eilenberg—-MacLane spaces for torsion-free hyperbolic groups [10,
Theorem 3.21]. Indeed, let G be a hyperbolic group, equipped with the shortest path
metric on its Cayley graph for some choice of generators. Then VR(G;r) is con-
tractible for scale r sufficiently large, G acts simplicially, and if G is torsion free, then
this produces a finite-dimensional model VR(G;r)/G for the Eilenberg-MacLane
space K(G,1). Vietoris—Rips complexes have also been connected to Bestvina—
Brady Morse theory [45], singular homology theories depending on a choice of
scale [18], notions of homotopy type depending on a choice of scale [7, 11], Borsuk—
Ulam theorems into higher-dimensional codomains [6], and to the filling radius in
quantitative topology [19, 26, 32].

More recently, in applied and computational topology, Vietoris-Rips and Cech
complexes have been used to recover the “shape” of a dataset. Indeed, there are
theoretical guarantees that if X is a sufficiently nice sample from an unknown
underlying space M, then one can recover the homotopy types, homology groups,
or approximate persistent homology of M from X [14, 15, 29, 43]. In data analysis
contexts, instead of letting r be arbitrarily small (as for (co)homology theories),
and instead of letting r be sufficiently large (as in geometric group theory), we
instead are interested in an intermediate range of scale parameters r. Indeed, if r is
smaller than the distance between any two data points in X, then VR(X;r) = X
is a disjoint union of points. Conversely, if r is larger than the diameter of X,
then VR(X;7) is necessarily contractible. Neither of these regimes help us describe
the “shape” of dataset X. Instead, the interesting topology appears when scale r
is varied in an intermediate regime, as computed by persistent homology. These
varying regimes of scale parameters (r small, r intermediate, r large) are analogous
to the subcritical, critical and super-critical regimes in random topology [8, 24].

As a finite dataset X converges (say, as more samples are drawn) to an under-
lying infinite space M, the persistent homology of VR(X;r) converges to that of
VR(M;r) [14]. There has thus been interest in the literature to identify the homo-
topy types of the Vietoris—Rips complexes of manifolds. Essentially, the only exam-
ples that are fully understood are the Vietoris—Rips complexes of the circle [2, 4],
which obtain the homotopy types of all odd spheres as the scale parameter increases,
before they finally become contractible. We have a countably infinite number of
“phase transitions” from one odd-dimensional sphere S2*~! to the next one S2¢+1
as the scale increases, demonstrating the complexity of the situation. Vietoris—Rips
thickenings of n-spheres for n > 1 are understood only up to the first change in
homotopy type [3]. The 1-dimensional persistent homology of geodesic spaces is
also understood [17, 41].

In this paper, we take one step towards merging the perspectives on Vietoris—
Rips complexes provided by geometric group theory and by applied topology. We
study Vietoris—Rips complexes of spaces which are equipped with a group action (as
in geometric group theory) but in the range of intermediate scale parameters (as in
applied topology). More specifically, let G be a group acting properly and by isome-
tries on a metric space X; it follows that the quotient space X /G is a metric space.
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We study the Vietoris—Rips complexes of the quotient space X/G. Our first results
are for small scale parameters (but not tending to zero), in which we are able to show
that the Vietoris—Rips complex of the quotient, namely, VR(X/G;r), is isomorphic
to the quotient of the Vietoris-Rips complex, namely, VR(X;r)/G. We further-
more identify which scale parameters lie in this regime in terms of the quantitative
properties of the group action. Our results apply not only for the Vietoris—Rips
simplicial complex but also for the Vietoris—Rips metric thickening [3], and we give
analogous results for Cech simplicial complexes and Cech metric thickenings.

We also consider a slightly larger regime of scale parameters for projective
spaces. Let S™ be the n-sphere equipped with the geodesic metric* such that the
circumference of any great circle is one. The sphere is naturally equipped with a
G = ({1}, x) 2 Z/27Z action, which exchanges each point x with its antipode —zx.
Let RP" = S™/(x ~ —x) = S™/G be real projective space equipped with the
quotient metric. Note that with the quotient metric, the circumference of any great
circle in RP™ is % We demonstrate that VR(RP"; r) is homotopy equivalent to RP™
for all r less than %, which is the diameter of an inscribed equilateral triangle in any
great circle of RP". Furthermore, we study the metric thickening VRZ' (RP"; 1) at
the first scale parameter, namely r = %, where the homotopy type chan—ges. In doing
so, we leverage the fact that RP"™ is the quotient of S™ under the antipodal action.
We prove that VRZ (RP"; %) has the homotopy type of a (2n+1)-dimensional CW
complex and hence has trivial homology and cohomology in dimensions 2n + 2 and
above.

As one example application of our work, suppose X is an unknown space of
confirmations of a molecule, or perhaps only those confirmations of a molecule whose
associated energy is bounded from above by a chosen energy cutoff. If the molecule
has a group G of symmetries, then GG will act on the space X. Given a random
sample Y,, of n points from X, recovered for example by molecular dynamics, one
might try to estimate the topology of conformation space X by computing the
persistent homology of the Vietoris-Rips complexes VR(Y,,;r) as r varies. As one
forms a denser and denser sample by increasing the number of random points n,
the persistent homology of VR(Y,,;7) converges to that of VR(X;r) and hence can
be used to estimate the homology groups of X [14]. How would this experiment
compare if instead one first quotiented out by the molecular symmetries G and
instead considered a finite sample Y,! of n points from X/G? As n goes to infinity, the
persistent homology of VR(Y,;r) will converge to that of VR(X/G;r). Our results
show that these two experiments are consistent in the following sense. For scale r
small enough, the quotient of VR(X;7) by the symmetry group G is isomorphic to
VR(X/G;r) as simplicial complexes, and therefore quotienting out by the group of
symmetries affects the experiment, and the predicted topological types, in a way

2 Analogous results also hold with the Euclidean metric on S™, with the relevant scale parameters
being adjusted accordingly, and with no change to the homotopy types. We restrict attention to
the geodesic metric for convenience.
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that is understood. Furthermore, we give precise bounds on which scale parameters
r are small enough for such results to hold.

2. Preliminaries

We recall a few standard preliminaries in point set topology and algebraic topology
that will lead into an introduction to Vietoris-Rips and Cech simplicial complexes
and thickenings.

Metric spaces

A metric space (X, d) is a set X equipped with a metric d: X x X — R satisfying
the following properties:

e d(x,y) is a nonnegative real number for all choices of x and y in X,
e d(x,y) is zero if and only if z = y and
o d(z,y) +d(y, 2) = d(z, 2).

For x € X and r > 0, we let B(z,r) = {y € X |d(z,y) < r} denote the open
ball in X of radius r about x. Given a subset ¥ C X of a metric space, we let
diam(Y) = sup{d(z,z’)|z,2’ € Y} denote the diameter of this subset. Metric
spaces are a commonly studied topic in mathematics, and they are generalized by
topological spaces, which also have a notion of open neighborhoods but need not
have a notion of distance.

Simplicial complexes

A simplex on the vertices vg, v1, va, ..., v may be thought of as the convex hull of
these points when they are placed at the location of the standard basis vectors e;
in Euclidean space. A simplicial complex is a union of simplices joined together by
gluing maps. More precisely, given a set of vertices V', an abstract simplicial complex
K is a collection of subsets of V' (called simplices) containing all singleton sets, with
the property that if ¢ € K is a simplex and 7 C ¢, then we also have 7 € K. The
geometric realization of a simplicial complex is a way to turn this combinatorial
data into a topological space containing vertices, edges, triangles, tetrahedra, and
so forth; in this paper we identify abstract simplicial complexes with their geometric
realizations.

Vietoris—Rips simplicial complexes

Let X be a metric space and let r > 0 be a scale parameter. A Vietoris—Rips
simplicial complex VR<(X;r) is a simplicial complex with vertex set X in which
the simplex {zg,z1,..., 2} is in the complex if, for all 0 < 4, j < k, the pairwise
distance between z; and x; is at most r. We instead write VR« (X;7) when the
pairwise distances are required to be strictly less than r and VR(X;r) when the
distinction is not important.
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Cech simplicial complexes

Let X be a metric space and let » > 0 be a scale parameter. A Cech simplicial
compler C(X;7) is a simplicial complex with vertex set X in which the simplex
{xo,1,..., 2z} is in the complex if NF_ B(x;, ) # 0. We write C<(X;r) to instead
specify the use of closed balls B< (z, r) ={ye X|d(z,y) <r}.

Vietoris—Rips and Cech metric thickenings

As sets, the Vietoris-Rips and Cech metric thickenings [3] are identical to the
geometric realizations of the corresponding Vietoris-Rips and Cech simplicial com-
plexes. However, they are equipped with a different topology, indeed a metric, which
sometimes produces a different (and often more natural) homeomorphism type, or
it can even produce a different homotopy type.

More explicitly, let X be a metric space and let » > 0. The Vietoris—Rips metric
thickening is the set

VRZ (X;r) = {Z)\Csx |keN, \; >0, Z)\ =1, dlam({xo,...,xk})gr},

=0

equipped with the 1-Wasserstein metric [16, 27, 28]. Here, . denotes the Dirac
delta probability measure with mass one at x € X. Roughly speaking, one can
think of a measure as a mass distribution. From this viewpoint, two measures can
be thought of as two mass distributions, and the 1-Wasserstein distance between
the two measures is the minimum amount of work required to transport the mass
in the first mass distribution to the mass in the second mass distribution. This is
sometimes called the earth mover’s distance [40]. The definition for VRZ (X;r) is
analogous.

We remark that the inclusion X < VR™(X;r) defined by = — ¢, is continuous
(in fact an isometry onto its image), whereas the analogous inclusion X — VR(X;r)
into the simplicial complex is not continuous for X not discrete. It is also worth
remarking that the simplicial complex VR(X; ) is not metrizable if it is not locally
finite by [36, Proposition 4.2.16(2)] even though the input X is a metric space.
By contrast, the thickening VR (X;r) is always a metric space, and furthermore
VR™(X;r) is an r-thickening of X by [3, Lemma 3.6].

The Cech metric thickening is the set

Cm(X;7) {wa [kEN, Ai>0, ) Ni=1,nk B(:z:i,r);é@},

again equipped with the 1-Wasserstein metric.

For the remainder of this paper, we refer to a point > \;d,, in a metric thick-
ening simply as Y A;x;. This allows us to let > \;z; refer to either a point in a
metric thickening or to a point in the geometric realization of a simplicial complex.
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3. Group Actions and Vietoris—Rips Thickenings

Let a group G act on a metric space X. We study Vietoris—Rips complexes and
thickenings of X/G. We begin in Sec. 3.1 by describing when X /G is metrizable. In
Sec. 3.2, we survey additional metric assumptions on the action of G on X. These
additional assumptions allow us, in Sec. 3.3, to relate VR(X/G;r) to VR(X;7)/G.
We end with examples in Sec. 3.4.

3.1. Metrizable quotient spaces

An action of a group G on a set X is a function G x X — X, denoted (g, z) — ¢z,
satisfying g (h-x) = (gh) -z for all g, h € G and z € X, and satisfying e-x = z for
all x € X (where e is the identity element of G). The orbit of an element z € X,
under the action of G, is the set O(z) = {g-x|g € G}. Note that x € O(z) and
that, for any two elements z,y € X, either O(x) = O(y) or O(x) N O(y) = 0. As a
consequence, the orbits of the group action partition X.

Let G be a group acting on a metric space X. We say that G acts by isometries
on X if, for each g € GG, the map ¢g: X — X defined by x — ¢ - x is an isometry. In
other words, we have a homomorphism from G into the group of isometries of X.
Furthermore, we say that the action of G on X is proper if, for each x € X, there
exists some r > 0 such that the set {g € G|g- B(x,r) N B(x,r) # 0} is finite. In
particular, an action by a finite group is necessarily proper.

For x € X, we let [z] denote the corresponding orbit in X/G. It follows from
[10, Proposition 1.8.5] that if G acts properly by isometries on X, then the quotient
space X /G is itself a metric space. Its quotient metric is defined via

dxyc([x], [2]) = Jnf dx(z,9-2'). (3.1)

The assumption of a proper action rules out examples such as the action of the
rationals Q on the reals R by addition in which the quotient space R/Q is not
metrizable.P

If the metric space X is equipped with an isometric action of G, it follows
that the Vietoris—Rips complexes VR(X;r) are also equipped with an action of G.
Indeed, given any point »_ A\;z; € VR(X;r) and g € G, we define g - Y \ix; =
Yo Aig - x;. For Y > A\jz; € VR(X;r), we let [> A\;z;] denote the corresponding orbit
in VR(X;7)/G. Analogous actions can be defined on the Vietoris—Rips thickening
VR™(X;r) as well as on Cech complexes and thickenings.

If G acts properly by isometries on X, then X /G is a metric space with distance
given by (3.1), and so we can define its Vietoris—Rips and Cech simplicial complexes
and thickenings. Our goal in this section will be to explain the relationship between
VR(X/G;r) and VR(X;r)/G when r is small, and analogously for the Cech and
the metric thickening versions.

bOther contexts in which X/G is a metric space, with the quotient metric as described above, are
in [10, Sec. 5], [13, Secs. 3 and 10] and [23, Chap. 4-7].
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3.2. Different types of group actions

We now survey a list of increasingly stringent properties that the action of G on X
could satisfy. The definition of a free action requires X to be a set, the definition of a
covering space action requires X to be a topological space, and the definitions of an
r-ball action and an r-distance action require X to be a metric space. Free actions
and covering space actions are classical: see [10] for a wide variety of properties
that a group acting on a metric space could satisfy, such as being faithful, free,
co-compact, or proper. We introduce r-ball and r-distance action as quantitative
versions of these properties.

e The action of G on X is free if g-x = z for any = € X implies that g is the
identity element in G.

e The action of G on X is a covering space action if every point € X has a
neighborhood U 3 x such that if UNg-U # (), then g is the identity element in
G. See [21, Sec. 1.3] or [30, pp. 311-312] for more details; the term covering space
action is introduced by Hatcher in part in order to disambiguate terminology.

e For r > 0, we define the action of G on X to be an r-ball action if B(x,r)Ng -
B(xz,r) # 0 for any € X implies that g is the identity element in G.

e For r > 0, we define the action of G on X to be an r-distance action if dx(x,g -
x) < r for any x € X implies that g is the identity element in G.

We have the following sequence of proper inclusions for r» > 0:

2r-distance actions C r-ball actions C covering space actions C free actions.

Definition 3.1. Let » > 0. The action of G on a metric space X is an r-diameter
action when, for any non-negative integer k, diamx,c{[zo], ..., [rx]} < r implies
that there exists a unique choice of elements ¢g; € G for 1 < ¢ < k such that
diamx{zo,g1 - ®1..., g% - 21} = diamx/c{[20], ..., [2]}.

We claim that an r-diameter action is also an r-distance action. Indeed, suppose
r > dx(x,g-x) > diamx/c{[z],[g - z]}. Then the r-diameter action assumption
implies there exists a unique element g € G such that dx (z, g-x) = diamx{z,g-x} =
diamx/c{[z], [g - ]} = 0, i.e. necessarily z = g - x, and so g is the identity since
r-diameter actions are free. Hence, this is an r-distance action.

However, we give the following example to show that r-distance actions are not
necessarily r-diameter actions.

Example 3.2. Let G = Z act on X = R by translation, i.e. for any g € Z and x € R
we have g-x = g+ . Note this action is a 1-distance action, since if 1 > d(x,g-x) =
d(xz,g+x) = |g|, then g = 0 is the identity in Z. Clearly, it is not a (1 + ¢)-distance
action for any € > 0. This action is not an r-diameter action for any r > % since we
have diamg,7{[0], [3], [3]} = 3, but ming, 4,ez diamg{0, 91 + 3,92 + 2} = 3. One
can check that this is an r-diameter action for r < %
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Definition 3.3. Let r > 0. The action of G on X is an r-nerve action when, for
any nonnegative integer k, N¥_, Bx ¢ ([z;],7) # 0 implies that there exists a unique
choice of elements g; € G for 1 < i < k such that N*_ Bx(g; - z;,7) # 0, where we
require gq is the identity element of G.

We now demonstrate that Z acting on R by translation is both a %—ball action

and a i-nerve action, with the r parameters being as high as possible, demonstrating

that r-nerve actions and r-ball actions are distinct concepts.

Example 3.4. We first show that Z acting on R by translation is a %—ball action.
Select an arbitrary open ball of radius % in R. Then, it follows that this action is
a 1-ball action since, for any 0 # g € Z, the balls B(z, 1) and g - B(z, 3) do not
intersect. So Z acting on R by translation is a %—ball action.

We will now demonstrate that Z acting on R by translation is not a (% +¢)-ball
action for any € > 0. Now, take an arbitrary %—ka ball. Then, we note that B(z, %—I—a)
and the action of g = 1 € Z result in an intersection of B(xz,r) and g - B(z,r) and
yet ¢ is not the identity element. Therefore, Z acting on R by translation is not a
(1 + ¢)-ball action for any & > 0.

Now, we show that Z acting on R is a i—nerve action. Take an arbitrary set of
intersecting balls of radius %, namely, N¥_, By sz([zi], %) # (). These balls are open
intervals of length half the circumference of the circle, and, hence, they intersect
in a single, smaller, connected interval. It follows that once gg = 0 € Z is chosen,
there exists a unique choice of elements g; € Z for 1 < ¢ < k such that ﬂfZOBR(gi .

x;,r) #0, as required (see Fig. 1).

Fig. 1. (Color online) As explained in Example 3.4, the action of Z on R is a i—nerve action.

Indeed, let xop € R, indicated above by the black tick mark, and consider the ball BR/Z([:L‘()], i),

drawn as the blue arc on the circle. For any other open ball of radius Lin the circle, there is at

4
most one lift of this ball to R that intersects Bgr(xo, i)
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Finally, for any € > 0, the action of Z on R by translation is not a (i + ¢)-nerve
action, demonstrating that i is indeed the maximum parameter we can use. To
see this, take two balls of radius 1 + ¢ in R/Z centered at [0] and [3]. These two
balls intersect at both [1] and [2] in R/Z = S'. The two components of intersection
correspond to the fact that when we lift to balls of the form BR(O& + ¢) and
g1+ BR(%, i +¢), we can maintain a nontrivial intersection either by choosing g = 0
or g; = —1. Since this choice of g; is not unique, the action of Z on R by translation
is not a (§ -+ &)-nerve action.

3.3. Group actions and metric thickenings

Let G be a group acting properly and by isometries on a metric space X. We now
explain how to understand the Vietoris Rips and Cech simplicial complexes and
metric thickenings of X /G for sufficiently small scale parameters depending on the
behavior of the action of G.

Proposition 3.5. Let G be a group acting properly and by isometries on a metric
space X . If the action is a t-diameter action, then

e VR (X/G;r) is isomorphic to VR« (X;7) /G for all r < t,

e VR<(X/G;r) is isomorphic to VR<(X;r)/G for all r < t,

e VR” (X/G;r) is homeomorphic to VRZ (X;r) /G for all r < t, and
e VRZ (X/G;r) is homeomorphic to VRZ (X;r) /G for all r < t.

Proof. We first consider the case of the Vietoris—Rips simplicial complexes. We
can handle the first two bullet points simultaneously simply because a simplex in
either complex has diameter less than t.

Consider the simplicial map h: VR(X;r) — VR(X/G;r) defined by h(z) = [z];
on geometric realizations this is defined via h(>  \jz;) = > Ai[x;]. This map is
well defined since G acts isometrically. Note that if two points in the geometric
realization of VR(X;r) are in the same orbit of the G action on the geometric
realization, then they have the same image under h. It follows that h induces a
map h: VR(X;7)/G — VR(X/G;r). We will show that h is a homeomorphism.

We need to show the following two facts:

(1) Map h is surjective.
(2) Map h is injective.

For (1), note that h is surjective if h is surjective. The map h is surjective
because, given any simplex o = {[zg], ..., [zr]} € VR(X/G;r), by the definition of
an r-diameter action, there exists a simplex ¢’ = {zg, g1 21 ...,9k-2r} € VR(X;7)
with h(o’) = o.

For (2), we would like to consider any two points [>_ Axi,[> Nz} €
VR(X;7)/G with h([3 Nai]) = h([3N;2%]). This means that h(3 Azi) =
h(D-Njxl), ie. that 3 Aifz;] = Y Aj[}]. It suffices to show that there is some
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g € G with g- > Njz; = > N2}, This follows from the “uniqueness” part of the
definition of an r-diameter action. Indeed, given any simplex o = {[zo],..., [zx]} €
VR(X/G;r), there exists a unique simplex ¢ = {xo,¢1 - z1...,9k -z} € VR(X;7)
containing x¢ with h(c’) = o and hence a unique simplex ¢’ € VR(X;r)/G with
h(c") =0.

For the case of Vietoris—Rips metric thickenings, we consider the analogous map
h: VR™(X;r) — VR™(X/G;r) defined by h(> N\iz;) = > Ai[x;]; this map is well-
defined since G acts isometrically. The only additional observation to make in this
case is that both h and its inverse are continuous. O

The Cech case is similar.

Proposition 3.6. Let G be a group acting properly and by isometries on a metric
space X . If the action is a t-nerve action, then

(X/G;r) is isomorphic to C(X;7)/G for all v < t,
(X/G;r) is isomorphic to C<(X;7)/G for all r < t,
(X/G;r) is homeomorphic to C(X;7)/G for all v <t and
(X/G;7r) is homeomorphic to C2(X;7)/G for all 7 < t.

e o o o
Q Q2 O« O

INSASIAT A

Proof. We first consider the case of the Cech simplicial complexes. Consider the
simplicial map h: C(X;r) — C(X/G;r) defined by h(z) = [z]; on geometric real-
izations this is defined via h(>_ A\;jz;) = > Ai[x;]. This map is well defined since G
acts isometrically. Note that if two points in the geometric realization of C(X i)
are in the same orbit of the G action, then they have the same image under h. It
follows that h induces a map h: C(X;r)/G — C(X/G;r). We will show that & is a
homeomorphism.
Again, we need to show the following two facts:

(1) Map h is surjective.
(2) Map h is injective.

For (1), note that h is surjective if h is surjective. The map h is surjective

because, given any simplex o = {[zo], ..., [zx]} € C(X/G;r), by the definition of
an r-nerve action, there exists a simplex o’ = {zg, g1 -1 ..., gr -z} € C(X;r) with
h(o") = o.

For (2), we would like to consider any two points [ Aiz], [Y- Njz}] € C(X;r)/G
with A([Y2 Nizi]) = h([3 Na]). This means that k(3" Aix;) = h(3 N;a}), i.e. that
> Ailzi] = >0 Nj[2}]. Tt suffices to show that there is some g € G with g- Y \jx; =
> Aja’. This follows from the “uniqueness” part of thevdeﬁnition of an r-nerve
action. Indeed, given any simplex o = {[zo],...,[zx]} € C(X/G;r), there exists a
unique simplex & = {20, 9121 ..., gk - 21} € C(X;7) containing zo with k(') =
and hence a unique simplex ¢ € C(X;r)/G with h(c”) = 0.

For the case of Cech metric thickenings, it suffices to observe that the map h
and its inverse are also continuous as maps on the Cech thickenings. O
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Fig. 2. In Example 3.8, the space X is a set of 12 circles in R3.

3.4. Examples

We now look at some examples of groups acting isometrically on topological spaces.
Although we don’t often know the precise homotopy types of Vietoris—Rips com-
plexes of arbitrary spaces, we can sometimes address the relationship between
VR(X/G;r) and the quotient of VR(X; ) under the group action.

Example 3.7. Let G = Z act on X = R by translation. From Example 3.2, we
know this is an r-diameter action for r < % Hence, if S = R/Z is the circle of unit
circumference, then Proposition 3.5 implies that for r < %, the complex VR(S1;7) =
VR(R/Z;r) is isomorphic to VR(R;r)/Z, which is homotopy equivalent to S'. By
contrast, the action of Z on R is not an r-diameter action for any r > %, and
also VR(S';7) is not homotopy equivalent to S* for any r > % by [2]. Hence, this
example shows the tightness of the bounds on 7 in Proposition 3.5.

Example 3.8. Suppose X consists of several connected components which are all
isometric. Let GG act by isometries on X, and suppose furthermore that G acts
freely on the connected components of X, meaning that if z,g-x € X are in the
same connected component, then g is the identity element. Suppose no two distinct
connected components are within distance ¢ of each other. It follows that G is
a t-diameter action on X. Therefore, Proposition 3.5 implies that for r < ¢, the
complex VR(X;r) is isomorphic to the disjoint union H|G| VR(X/G;r).

For example, let Y be a circle in R3 with center at (2,2, —¥2), lying in the
1

88 8
plane with normal vector (1,1,0), and with radius £ using the Euclidean metric.

The action of G = Ay, as the group of rotational symmetries of a particular reg-

V2

ular tetrahedron centered about the origin (with vertex coordinates (:I:%, 0, —Tz),
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(0, ﬂ:%, %)), extends to R3. The orbit of the circle, Y, consists of 12 copies of Y;
see Fig. 2. We let X denote the union of these 12 copies, so X/G =Y. We obtain
that VR(X;r) is isomorphic to the disjoint union of 12 copies of VR(X/G;r) for

all r smaller than the distance between connected components in X.

In some cases we can conjecture the full homotopy type over all scale parameters
r, as the next example shows.

Example 3.9. Take the unit circle with center (4,0) in R2. If we rotate this circle
about the origin under the action of G = Z/6Z, i.e. by rotating R? about the
origin in multiples of 60°, we obtain 6 unit circles (with centers (+4,0), (+2,2+v/3),
(£2,-2v/3)). We let X denote the union of the 6 circles. The closest distance
between two adjacent circles in X is 2. By Example 3.8 and Proposition 3.5, for
r < 2 we have an isomorphism VR(X;r) = ]_[6 VR(X/G;r). The homotopy types
of the Vietoris—Rips complexes of the unit circle VR(X/G;7) are known for all
r [2]. We obtain VR (X;7) 2 [[° §2++! for all 0 < r < 2, where the integer k is
monotonically nondecreasing with r.

For larger scale parameters r > 2, we can form conjectures by noting that the
Vietoris—Rips complex of each individual circle is contractible, but that we have six
unit circles that are evenly-spaced around a larger circle of radius 4. Think of each
of the six circles, momentarily, as a single point, giving six evenly-spaced points.
Vietoris—Rips complexes of evenly-spaced points on the circle have been studied
in [1, 4]. In particular, the Vietoris—Rips complex of six-evenly spaced points on
the circle, as the scale increases, obtains the homotopy types of six disjoint points,
the circle S!, the two-sphere S?, and finally the contractible space. This knowledge
allows us to conjecture the homotopy type of VR(X;7) at r > 2 when the six circles
join up but individually are contractible. Indeed, we conjecture that the successive
homotopy types of VR« (X;7) are the following, starting from r» = 0 and going up
to the diameter of the whole space: [1® S, [1°53, [1°5%, [1°57, I1° 59, ... for
0 < r < 2 (this part is proven), S* for 2 < r < 4v/3 — 2, S? for 4V/3 —2 < r < 6,
and finally the contractible space for r > 6.

Example 3.10. Take the torus X with the flat metric (i.e. X is a quotient of R?)
under the action of G = Z /147 = 7./27 x 7./ 77, defined as follows. Take the torus
to be [0,27] x [0, 27] with the top and bottom (respectively, left and right) edges
identified. Then, identify the points [z,y] with [z, y+ 2] and [z+7, y]. The quotient
space is a torus with different distances for traveling along geodesics around the
short loop and long loop in this torus.

The action of G is a %—T{—diameter action, but not a (%—7{ + ¢)-diameter action
for any € > 0. If we take the points [0,0], [0,2%] and [0, 3F], then we note that

the diameter of these points in the quotient metric is 3—7{, but there is no choice of
27

elements in G so that the diameter of the corresponding lifted points in X is 7.

However, if an arbitrary number of points are selected next to an arbitrary point

Xo| € at are o lameter less an 5o, en €re exists a unique cnoice o
X/G that f diameter less than 27, then th ist ique choice of
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elements in G so that diamx {zo, g1 21 ..., 9% Tx} = diamx,c{[zo],. .., [zx]}. This
follows since, when moving along a geodesic in X /G, it requires at least 27“ in path
length to return back to the initial starting point.

We deduce from Proposition 3.5 that VR(X/G;r) = VR(X;7)/G for r < 2T,
though we do not know what the homotopy types of these Vietoris—Rips complexes
of tori are.¢

A related group action on the torus X, i.e. the square [0,27] x [0,27] with
sides identified, is by the dihedral group D7 with fourteen elements. Put 7 equally
spaced points of the form (@,0) along the bottom edge of this square, and 7
equally spaced but “offset” points of the form (m%,w) along the line y = 7
in this square. The dihedral group of order 14 will act by translations and glide
reflections, permuting these 14 points. We can similarly obtain some information
relating the Vietoris—Rips complexes of the quotient space X/G to the quotient of
the Vietoris—Rips complex of the original space X, for r small.

Example 3.11. Consider the 22-holed torus X depicted in Fig. 3 in R?, with the
Euclidean submetric. Equip X with the action of G = Z/77Z as a group of rotations
by 27 /7. The quotient space X /G is obtained from a single severed arm of the torus
after identifying two boundary circles: this is a 4-holed torus with an asymmetric
metric. For scale r small, the Vietoris—Rips complex of the X, after quotienting this
complex by G, is isomorphic to the Vietoris—Rips complex of the quotient 4-holed
torus X/G. Hatcher notes that these types of actions of Z/mZ on an (mn+1)-holed
torus are the only covering space actions on this torus [21, Example 1.41].

Example 3.12. Section 5 of the paper [5] considers a space X that is an “infinite
ladder” with a countable number of rungs that is equipped with an action by the

Fig. 3. A 22-holed torus in R3.

“Homotopy types of Vietoris—Rips complexes of tori with the L°® or supremum metric are fully
understood by [2, Proposition 10.2].
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group of integers G = Z which is generated by translating by n rungs. The quotient
space of this action X/G is a “circular ladder” with n rungs. The paper [5] uses
our Proposition 3.5 in order to understand the homotopy type of the Vietoris—Rips
complex of the circular ladder X/G in terms of the (known) Vietoris—Rips complex
of the infinite ladder X.

In Secs. 4 and 5, we treat with a fair amount of detail the example where X is
the n-sphere, equipped with its antipodal action, and hence X /G is real projective
n-space.

4. Vietoris—Rips Thickenings of Projective Spaces at Small Scales

We study Vietoris—Rips thickenings of projective spaces at small scales in this sec-
tion before proceeding to large scales in the following section.

4.1. Notation

We first describe our notation for spheres and projective spaces.

Spheres

The n-sphere S™ is the set of points at distance one from the origin in Euclidean
space:

1
Sn = {(.’1?1,1'2,1'3, ce 7$n+1) - Rn+

;xle}.

A metric on S™ may be defined by either retaining the Euclidean metric by viewing
S™ as a subspace of R™"*!, or by looking at the geodesic arc length of walking along
S™ as a surface. For convenience, we will equip S™ with the geodesic metric where
the circumference of any great circle is one.

Real projective space
The projective space RP"™ is the quotient space
RP"™ = S"/~,

where the ~ relation maps vectors to other vectors through multiplication by =£1.
We often denote a point 2 € RP™ with the notation [z]. We will equip RP™ with
the quotient metric induced from the geodesic metric on S™. That is, we have

dgrpn ([z], [2]) = min{dgn (z,2"), dgn (z, —2")}.

This is a specific case of the metric on a quotient spaces defined in Eq. (3.1).

Since each great circle in S™ has circumference one, the “great circles” in RP"
1
2
different metric on RP"; our results also apply to this case with only minor changes

have circumference s. One could instead use the Euclidean metric on S™ to get a

to the relevant scale parameters.
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4.2. Complexes and thickenings

For r < &, we will show that VR™(RP";r) ~ RP™. We do this by noting that RP" =
S™/(x ~ —x) is the quotient of S™ under the action of G = ({£1}, x) = Z/2Z.
The following two lemmas imply in Corollary 4.3 that this action is a %—diameter
action (though the constant in the first lemma is slightly better).

We note that % is twice the filling radius of this projective space (with diameter
i) [25], and hence the homotopy equivalence VR (RP";r) ~ RP" for r < % given
by Theorem 4.5 is also closely related to the recent preprint [32]. This perspective
does not provide the first new homotopy type given by Theorem 5.2 in Sec. 5, to
our knowledge.

Lemma 4.1. Suppose xg,...,xx € S™ with diam{zo,...,zr} < i and let g; €

{1} for all 0 < i < k. Then diam{gozo, ..., grzr} < T if and only if all signs g;
are chosen to be positive or all signs are chosen to be negative.

Proof. Suppose d(z;,z;) < +. Then we compute
o d(—zi,—x;) = d(z;, ;) < 7,

e d(z;,—x;) =5 —d(z;,z;) > ; and

o d(—z,xj) = % d(zi,z;) > i.

This means that diam{g;z;,g;7;} < 3 L if and only if the signs g; and g; are both

positive or both negative, from which the claim follows. O
Lemma 4.2. [If diamgpn{[xo],..., [zk]} < %, then there is a choice of signs g; €
{£1} for 1 <i <k such that
. 1
diamgn {x0, g121 .. ., grTr} < 5

Proof. Let 1 < i < k. By hypothesis, we have dgp ([2o], [#;]) < &, and, hence, we
can pick a sign g; such that dg» (zg, gix;) < %. For the remainder of this proof, we
let =7 denote g;z;.

We have chosen signs such that dgn(zo,z}) < # for all 4; it remains to show

that dgn (2}, 27) < g for all 1 <i,j < k. If not then since dgpn ([2i], [z;]) < &

6
necessarily we Would have that dg» (2], —7) < =. However, since dgn (—z}, —x9) =
dsn (2}, 70) < &, this would give the contradlctlon

1 1 1

5 = ds» (20, =20) < dsn (20, 27) + dsn (a7, —2j) + dsn(~2j, —20) <3- & = 3,
from the triangle inequality. Hence, it must be the case that dg« (z],z}) < % for all
1 <i,j <k, and, therefore, the action of G on S™ is a %—diameter action. O

Qualitatively, we see from Lemma 4.2 that a cluster of sufficiently close points
in RP™ has as its preimage “two clusters” of sufficiently close points in S™. The
above two lemmas combine together to give the following.
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Corollary 4.3. The action of G = ({£1},x) = Z/2Z on S™ for n > 1 is an
r-diameter action for r < %, and this bound is tight.
Proof. The existence part of the definition of an r-diameter action is given by
Lemma 4.2, and uniqueness is given by Lemma 4.1.

Furthermore, the bound r < % in Lemma 4.2 is tight. Indeed, if we had r = %,
then a counterexample is obtained by letting {[zo], [1], [zx]} be three evenly-spaced
points on a great circle of RP™ for n > 1 whose preimage is six evenly-spaced points
on a great circle of S™. O

We are now prepared to study Vietoris—Rips thickenings of projective spaces
at sufficiently small scale parameters. Let ~ denote the equivalence relation on
VR™(S™;r) induced by the canonical Z/27Z action on S™; more explicitly this equiv-
alence relation is given by > . A\iz; ~ > . Ai(—z;). By definition RP™ = (S™/~);
Lemma 4.4 will generalize this to say that for r sufficiently small, we also have
VR™(RP™;r) = VR™(5™;r)/~.

Let W be the set of all interior points of equilateral 2-simplices in VR< (RP"; %)
inscribed in a great circle of RP™. More precisely,

2

=0

Ai > 0 and {[zo], [1], [2]}

is a regular 2-simplex in a great circle}.

Lemma 4.4. We have the following isomorphisms of simplicial complexes and
homeomorphisms of metric thickenings:

1
VR(RP";r) = VR(S™;r)/~ forr < 6

1
VR™(RP™;r) 2 VR™(S™;1)/~ forr < 6’
1 1
VR. (RP™; = ) = VR (S = | /~,
6 6
VR? (RP" = | = VR™ [ §"; = ) /~,
6 6
1 1
VR<(RP™; S\W 2 VR<(S™; £/~

1 1
v (s D) \ v (50,1 1

Proof. We prove the case of the simplicial complexes; the proof for metric thick-
enings is analogous.
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We first consider the cases of VR(RP™;r) with r < %, and VR« (RP™;}).
The group Z/27 acts properly by isometries on S™ and by Corollary 4.3 is a %
diameter action. Thus, by Proposition 3.5, we have VR(RP";r) = VR(S"/~;r) is
homeomorphic to VR(S";7)/~.

The case of VR<(RP™; 2)\W follows similarly. Indeed, since W has been

6
removed, for any simplex {[zq], ..., [zx]} € VR<(RP™; $)\W, there exists a unique
choice of elements g; € ({1}, x) for 1 <14 < k such that diamgn{xo, 91 21 ..., gk
x} = diamgpn {[z0], ..., [zk]}. O

4.3. Thickenings

We now identify the scale parameters which are sufficiently small so that the
Vietoris—Rips thickenings of the projective space RP™ are homotopy equivalent to
RP™. Though Hausmann’s theorem [3, 22] guarantees that such a sufficiently small
scale parameter exists, we identify the optimal such scale because the bounds given
in Hausmann’s theorem are not optimal. We restrict attention to metric thickenings
instead of simplicial complexes, as those are the results needed in Sec. 5 in order
to study larger scales.

Let f: S® — R™*! be the inclusion map, and extend linearly to obtain a (non-
injective) map f: VR™(S™;r) — R"*! sending a formal convex combination of
points in S™ to its corresponding linear combination in R**!. Let 7: R"*"\ {0} —
S™ be the radial projection map. Let r, be the diameter of an inscribed regular
(n + 1)-simplex in S™. For r < r,, the image of f: VR™(S™;r) — R"*! misses
the origin in R"*! by the proof of [33, Lemma 3]]. Hence, we have a composite
map 7f: VR™(S™;r) — S™. If furthermore r < %, then by Lemma 4.4 we get an
induced map

VR™(RP";7) 2 (VR™(S™;7r)/~) L5 (R™\{0})/~)
2, (S /) = RP™.

By an abuse of notation, we also denote the above composite map by
wf: VR™(RP";r) — RP" (see Fig. 4).

Theorem 4.5. The maps

1
wf: VR™(RP";r) — RP" forr < 6’

1
nf: VRZ (]RP"; 6) — RP",

1
mf: VRZ (]RP”; 6) \W — RP",
are homotopy equivalences.

We remark that the above theorem is also true for Vietoris—Rips simplicial
complexes after adding the additional restriction that r > 0.
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Fig. 4. (Color online) A 2-simplex inscribed in S™ (in the drawing n = 1), along with its antipode,
containing example points (drawn in red) that get identified under the map VR™(S™;r) —

(R™HI\{0})/~.

Proof. We have that 7f: VR™(S™;r) — S™ is a homotopy equivalence by [3] since
r < Ty. Since wf: VR™(S™;r) — S™ respects the identifications ~, this gives that
the three maps above are also homotopy equivalences. O

The following lemma will be used in the proof of Theorem 5.2 on the Vietoris—
Rips thickenings of projective spaces at large scales.

Lemma 4.6. Let A be an equilateral 2-simplex inscribed in a great circle of
RP™. Note 9A C VRZ (RP”; %) \W. The map 7f: VRZ (RP"; %) — RP™, when
restricted to A, is bijective onto its image, namely, the great circle in RP™ in which

A is inscribed.

Proof. We will work in the unit sphere S” C R™*!, which is a double cover of
RP™. Without loss of generality, the equilateral triangle A can be supposed to have
coordinates £(1,0,...,0), £(cos 3,sin ,0,...,0) and +(cos g, —sin5,0,...,0).
That is, the triangle inscribed in RP™ can be viewed as a hexagon inscribed in
S™. Considering 7 f to have domain VR(S™; %) at first, we note that the restric-
tion of wf to this hexagon maps bijectively onto the great circle in S™ given by
(cos®,sinh,0,0,...0), where 6 € [0,27), with antipodal points on the hexagon
mapped to antipodal points on S™. After quotienting out by the antipodal action
on both the domain and codomain, i.e. after returning to the point of view where
7 f has domain VR(RP"; %), we see that 7f|ga: OA — RP™ maps bijectively onto
its image, the great circle in RP™ in which A is inscribed. O

5. Vietoris—Rips Thickenings of Projective Spaces at Large Scales

As a subgoal of this document, we would like to identify the homotopy type of

VRZ (RP";r), the Vietoris—Rips thickenings of projective space, for larger scale

parameters r. We are able to describe this homotopy type for r = %, which is
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the first scale parameter where the homotopy type of VRZ (RP";r) changes. The
proof is analogous to (but more complicated than) the pro:)f of the homotopy type
of Vietoris—Rips thickenings of the sphere in [3, Theorem 5.4]. In Sec. 5.1, we recall
the proof of [3, Theorem 5.4], with a few more details added, so that we can set
notation and clarify the ideas. We then modify these techniques to handle the
equivariant setting of the projective space in Sec. 5.2.

At larger scales, we will restrict attention to the Vietoris—Rips metric thickenings
and not discuss simplicial complexes. The reason for this is as follows. If S* is the
geodesic circle of unit circumference, then VRZ (8% %) ~ §3 is a 3-sphere [3, 6],
whereas VR<(S%; 3) ~ \/° 52 is an uncountably infinite wedge sum of 2-spheres [2].
We think of the former homotopy type as being “correct,” and by contrast we think
of the wild homotopy type of the simplicial complex VR<(S?; %) as an artifact of
the fact that it is equipped with the “wrong” topology. Indeed, the topology on
VR<(S'; 3) is such that the inclusion S' < VR(S';1) is not even continuous,
since the vertex set of a simplicial complex is equipped with the discrete metric.
Additionally, one should think of the 3-sphere S® as being the “right” homotopy
type at scale % since for all 0 < € < 1—15, we have VR(S?; %—l—&) ~ S3. A similar story
is true for the Vietoris—Rips thickenings and simplicial complexes of n-spheres and
projective spaces, and this is why we now restrict attention to Vietoris—Rips metric
thickenings.

5.1. Vietoris—Rips thickenings of the sphere at large scales

Let S™ be the n-sphere equipped with the geodesic metric. Recall r, is the
diameter of an inscribed regular (n + 1)-simplex in S™. For r < r,, we have
VR™(S™;r)~S". The first new homotopy type of the Vietoris—Rips thickening of
the sphere VRZ (S™;r) is determined in [3, Theorem 5.4] to be the join S™* SOntl)

Ania
We first obtain a homotopy equivalence to an adjunction space

1
VRZ (8™;7y,) = S™ Uy (D”le X 780(714_ )),
- An+2

where D" is the closed (n + 1)-dimensional ball, where % parametrizes

all regular oriented (n + 1)-simplices A™*! inscribed in S™, and where h: S™ x

%njll) — 8™ via h(z,y) = x.

It takes some care to describe the parameter space %;1). Note SO(n+1) is a
topological group, and as we explain in the paragraph belgw, the alternating group
Ap 42 can be seen as a subgroup of SO(n+ 1) even though there is no canonical way
to do this. Once A,, ;2 has been identified with a subgroup of SO(n+ 1), then A,
acts on SO(n + 1) via left multiplication, as explained in [30, Example 3.88(f)].

Therefore, we define % as the quotient space or “orbit space” of this action,

ie. % is SO(n+1)/~, where ~ is the equivalence relation where x ~ g -z for
all z € SO(n + 1) and g € A,,4+2. We emphasize that we are not trying to identify
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Fig. 5. Two regular inscribed simplices in S2.

Ay 42 with a normal subgroup of SO(n + 1), nor are we trying to give %’il) the
structure of a quotient group (see Fig. 5). !

The above paragraph relies on identifying the alternating group A, 42 with a
subgroup of SO(n+1). To do this, fix a regular (n+1)-dimensional simplex inscribed
in S™ inside R"*1, with the center of the simplex at the origin. The (n + 1)-simplex
has n+ 2 vertices, and A,,12 as its group of rotational symmetries. We can therefore
associate each element g € A, 4o with an (n + 1) x (n + 1) rotation matrix that
permutes the vertices of the simplex in the same way that g does. For example, if
n = 1, then no matter what fixed regular 2-simplex inscribed in S in R? one picks,
the three elements of A3 = Z/3Z will be the rotation matrices

Lo 27 27 4 Y
cos — —sin — cos — —sin —
3 3 and 3 3
[0 1] sin 2—7T Cos 2—7T sin 4—7T Cos 4—7T
3 3 3 3

However, if n > 2, then different choices of a fixed regular (n+ 1)-simplex inscribed
in S™ in R"*! will give different rotation matrices corresponding to the elements of
Ay 42. Since any two ways of viewing A,, 2 as a subgroup of SO(n+1) are conjugate,
[21, Exercise 24(b) in Sec. 1.3] implies that the homeomorphism type of SO(nt1)

Ango
does not depend on this choice.

Theorem 5.1. ([3, Theorem 5.4]) We have a homotopy equivalence

. SO(n+1)
An+2

VRZ (8™;7y) = S™

Proof. Let W be the set of all interior points of regular (n + 1)-simplices inscribed
in VR<(S™;7y,). More precisely,

n+1
W = {Z)\’x’ | A; >0 for all i and {xzq, ...,z 1} is a regular (n + 1)—simplex}.
i=0
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Note the closure of W in VR<(S™;r,,) is homeomorphic to D"t x % We
construct the following commutative diagram.

STL

Dn+1 % S(?4(n+1) ») IS SO(n+1) af |~
n+2 n+2

VRZ(S";rn) \ W

The function h: S™ x So(nj—l) — 8" is defined by h(z,y) = z. For y € 780(:;1)7

let {yo, ..., Yn+1} be the n+2 vertices of the rotated regular (n+1)-simplex param-
eterized by y. Let

n+1
oA, = {Z Aiyi € VRZ (8™;7,) \W | A\; = 0 for some z}

1=0

be the boundary of the corresponding simplex. Note 7 f[aa, : A, — S™ is bijective.
Define map ¢g: S™ x % — VRZ (S™;r,) \W by letting g(x,y) be the unique
point of A, such that 7 f(g(z,y)) = x; that is, g(z,y) = (7 f|oa,) *(z). We have
wf og = h, meaning the square commutes.

We now have the following sequence of homotopy equivalences, where C(X)
denotes the cone of a topological space X.

VR (S™;7) = ((VRZ (85 7) \W) U <D"+1xw>

An+2
~ 5", (Dn+1 « w)
An+2

Aan SO(n+1) e S0(n+1)
~ ( X C( Aoes >> Ugn so(::;) (C(S ) X Aoes

SO(n+1)
=8"* ——.

An—|—2

Indeed, the first line is by the definitions of W, of g, and of adjunction spaces.
The second line follows from the commutative diagram above and the homotopy
invariance properties of adjunction spaces [12, 7.5.7] or [37, Proposition 5.3.3]).
The third line follows from these same properties of adjunction spaces, induced by
contractibility of C (%). The fourth line uses an equivalent definition for the
join of two topological gpaces asY xZ =Y xC(Z)UyxzC(Y) x Z. O



J. Topol. Anal. Downloaded from www.worldscientific.com

by COLUMBIA UNIVERSITY on 03/23/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

22  H. Adams, M. Heim & C. Peterson

5.2. Vietoris—Rips thickenings of the real projective
plane at large scales

We henceforth have proved that the metric thickening VRZ' (RP"™; ) is homotopy
equivalent to RP"™ for r < %. The first change in homotopy tgfpe occurs when r = %.
Indeed, for n = 1, we have VR’; (]RP"; %) = S3, as there is a homeomorphism
between RP! and S* which results in an isometry (up to scaling all distances by
two) between VRZ (RPl; %) and VRZ (Sl; é)

The flavor of VR (RP™; r) is different than that of VR™ (S™;r) at large scales r.
Indeed, whereas the homotopy type of VR (S™;r) first changes due to the appear-
ance of regular (n+1)-simplices [3], the homotopy type of VR (RP™; r) first changes
due to the appearance of (lower-dimensional) 2-simplices inscribed in great circles
of RP™.

Theorem 5.2. The metric space VR%1 (RP"; %) has the homotopy type of a (2n+
1)-dimensional CW complex.

Proof. Let Gr(k,d) denote the Grassmannian of all k-planes through the origin in
R?. The space Gr(k,d) is a manifold of dimension k(d — k). Let I = [0, 1] be the
closed unit interval.

We define

Y ={(V,2y,tz,7) € Gr(2,n+ 1) x RP" x RP" x [ | £y, +2 € V}/~,

where ~ will be defined below. The 2-plane V' € Gr(2,n + 1) encodes a great circle
in RP", i.e. the 2-fold quotient of intersection circle of V with S™ C R"*!. The
point +y encodes a point along that great circle, the point =z encodes a second
point along that great circle, and the radius r € I encodes a radius inside a disk.
The identifications ~ are defined as follows:

o (V,ty,+x,0) ~ (V,+y,+2’,0) for all z and z’.
o (V,ty,tx,r) ~ (V,xy',+x,r) for any points +y and +3" whose angles in the
great circle corresponding to V' are a multiple of %” apart.

The point (V, £y, +x,7) can be thought of as a point of radius r at angle +z in a
disc attached to the great circle corresponding to V', where the boundary of that
disk will be attached to VRZ (RP™; ) \W via some map g (defined below) along
an equilateral triangle containing +y. Indeed, observe that if V' and y are fixed,
then {(V,ty,t+x,7) C Y|V = Vh,y = yo are fixed} is homeomorphic to a disk.
The first bullet point defining ~ above is since in polar coordinates, the center of
any disc has radius r = 0 and an undetermined angle that could correspond to any
+x. The second bullet point defining ~ above is so that inscribed triangles with a
vertex at y or y’ (whose angles in the great circle corresponding to V' are a multiple
of 2% apart) are identified.

We let Z C Y be the subset of all points of the form (V,+y,+x,1), i.e. those

points that are on some great circle. Consider the following commutative diagram,
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where the vertical map is a homotopy equivalence by Theorem 4.5.

RP™
/

Y D> Z wf

k¢

VRZ(RP™; 1)\ W

We define map h: Z — RP™ by h(V,ty,+x,1) = +x. We define g: Z7 —
VRZ (]RP”; %) \W as follows. Let A be the equilateral triangle containing +y that
is inscribed in the great circle corresponding to V. Define g(V, +y, +x,1) to be the
unique point on the 1-skeleton A of this 2-simplex such that = f(g(V, +y, £z,1)) =
+x; existence and uniqueness of this point follow since 7 f|sa: OA — RP™ is bijec-
tive onto its image by Lemma 4.6. It follows that 7 f o g = h. Therefore, we have
the following homotopy equivalence.

1 1
VRZ (RP“; 6) = <VR’2 (RP”; 6) \W) U, Y ~RP" U, Y,

where the last step is by Theorem 4.5 and the homotopy invariance properties of
adjunction spaces [12, 7.5.7] or [37, Proposition 5.3.3].

It remains to show that RP™ U, Y is homotopy equivalent to a (2n + 1)-
dimensional CW complex. We begin with the torus bundle

T ={(V,+y,+z) € Gr(2,n+ 1) x RP" x RP"| +y, +z € V}

over Gr(2,n + 1), with projection map 7" — Gr(2,n + 1) via (V, ty,tz) — V.
Consider also the circle bundle

C'={(V,£y) € Gr(2,n+ 1) x RP"| £y € V}

over Gr(2,n + 1), with projection map C" — Gr(2,n + 1) via (V,xy) — V. The
space T := T'/~q, where (V, Ly, £x) ~1 (V,%y’, £x) for any points £y and +y’
whose angles in the great circle corresponding to V' are a multiple of %“ apart,
is also a torus bundle over Gr(2,n + 1). Hence, T is a manifold of dimension two
more than dim(Gr(2,n+1)) = 2(n— 1), meaning dim(7") = 2n. Similarly, the space
C := C'/~q, where (V,+y) ~1 (V,£y) is defined analogously, is a circle bundle
over Gr(2,n + 1). The space T' x I is therefore a (2n + 1)-dimensional manifold
with boundary, and hence a (2n + 1)-dimensional CW complex. Finally, we claim
that Y = (T x I)/~2, where (V,+y,+x,0) ~o (V,xy,+2',0) for all z and 2/,
is also a (2n + 1)-dimensional CW complex. Indeed, note that 7' x {0} is a CW
subcomplex of T'x I. The map q: T'x {0} — C defined by (V, ty, +z,0) — (V, ty)
is a differentiable fiber bundle (with circular fibers). Hence, [35, Corollary 2.2]
states that we can put simplicial complex structures on 7' x {0} and C so that ¢ is
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simplicial; see also [38]. Since ¢ is cellular, the adjunction space C U, (T' x I) is a
CW complex, and so we have that

Y = (T x I)/m2) = C U, (T x I)

is a (2n + 1)-dimensional CW complex. To see that Z is a CW subcomplex of Y,
note that Z sits inside Y as T x {1}. It follows from [34, Corollary IV.2.5]¢ that
the adjunction space RP" Uy Y is homotopy equivalent to a (2n + 1)-dimensional
CW complex. O

We obtain as a consequence the following corollary. We remark that this corol-

lary is far from obvious, as VRZ (RP”; %) is in some sense “infinite dimensional.”

Corollary 5.3. Since VRZ (]RP”; %) has the homotopy type of a (2n + 1)-
dimensional CW complezx, its homology and cohomology groups are trivial in dimen-
sions 2n + 2 and larger.

Conjecture 5.4. We conjecture that there is some € > 0 sufficiently small such
that for all 0 < & < e, the homotopy types of VR™(RP™; & +8) and VR(RP™; & + )
are equal to that of VRZ (RP"; %)

Question 5.5. What are the homotopy types of VR™(RP™;r) at larger scale
parameters r > %, and, in particular, what is the smallest value of ¢ > 0 for

which we obtain a new homotopy type VRZ (RP”; % + 8) * VRZ (RP"; %)?

6. Conclusion

We have initiated the study of what happens when a group acts on a metric space,
and hence also on its Vietoris—Rips simplicial complex and metric thickening, at
intermediate scale parameters. We show that, for small enough scale parameters r,
both the simplicial complex VR(X/G;r) and the metric thickening VR™(X/G;r)
are homotopy equivalent to VR(X;7)/G and VR (X;r)/G, respectively. We give
precise quantitative control on which scale parameters r are small enough and
provide a similar result for Cech complexes. We further extend these results to
analyze the homotopy types of Vietoris—Rips thickenings of real projective spaces
at the first scale parameter where their homotopy types change.
We end with a description of a few open questions motivated by this work.

Question 6.1. What are the homotopy types of the Cech complexes C(RP";7) of
projective spaces? We note that the action of G = ({£1}, x) = Z/2Z on S™ is an
r-nerve action for all r < %, where the circumference of a great circle in S™ is 1
(and so the circumference of a great circle in RP™ is 1). Hence, C(RP";7) ~ RP"

for all r < %. What are the homotopy types of C(RP™;7) at larger scales?

dRelated results are [34, Theorem I1.5.11] or [44, Theorem I1.4.3], which furthermore implies that
if h is a cellular map, then RP™ Uy, Y is a CW complex.
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Question 6.2. We note that RP? is just one example of a spherical 3-manifold,
i.e. a quotient space S®/G where G is a finite subgroup of SO(4) acting freely
by rotations. What can one say about Vietoris—Rips thickenings of other spherical
manifolds?

Question 6.3. In addition, what can be said about lens spaces? Let S?"~! be the
unit sphere in complex n-dimensional space C". For integers p, {1, ..., ¢, with each
¢; relatively prime to p, we define the lens space L(p; {1, ...,¢,) to be the quotient
of $2"~! under the action of Z/pZ generated by

(21,...,2n) — (e2™0/Pyy, .. 2™ /Py ).

See [21, Example 2.43]. Any such lens space has fundamental group Z/pZ. Inter-
estingly, different choices of the ¢;’s can produce lens spaces that are either
homeomorphic, homotopy equivalent but not homeomorphic, or not homotopy
equivalent. What can be said about the homotopy types of Vietoris—Rips thick-
enings of lens spaces?
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