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Abstract

Lens spaces are a family of manifolds that have been a source of many interest-
ing phenomena in topology and differential geometry. Their concrete construction, as
quotients of odd-dimensional spheres by a free linear action of a finite cyclic group,
allows a deeper analysis of their structure. In this paper, we consider the problem of
moments for the distance function between randomly selected pairs of points on homo-
geneous three-dimensional lens spaces. We give a derivation of a recursion relation for
the moments, a formula for the kth moment, and a formula for the moment generating
function, as well as an explicit formula for the volume of balls of all radii in these lens
spaces.

1 Introduction

Given a set of data, what is the best guess for the random process that produced the
data? Attempts to answer special cases of this question have motivated new developments
in statistics, mathematics, and machine learning. As a starting point, one would like to
understand whether the observed data has a distribution differing from what is “expected.”
However, determining what is expected can be quite subtle when the data takes values on
a manifold, though when the manifold is homogeneous, there are additional tools that one
can use to simplify the problem. At an intuitive level, a homogeneous manifold is a space in
which each point is indistinguishable from any other point.

For distance data, one would ideally like to check whether the distribution of pairwise
distances is compatible with the corresponding distribution on the manifold. In a previous
paper [4], we considered the problem of computing the expected distances between randomly
drawn points on manifolds of partially oriented flags. These manifolds generalize projective
spaces and other Grassmannians and form a large family of homogeneous spaces. The
examples in which we had the most success computing expected distances turn out to be
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(scaled) lens spaces; that is, quotients of an odd-dimensional sphere by the free action of
a cyclic group. In this paper we go beyond simple expectations and determine precisely
the distributions of distances between pairs of random points in all homogeneous three-
dimensional lens spaces.

These distributions are examples of distance distributions (or sometimes shape distribu-
tions or distance histograms), which make sense on arbitrary metric measure spaces, and
are often used for geometric classification and shape analysis [5, 6, 7, 8, 17, 18, 19]. Our
results provide a strong statistical baseline against which to compare data on lens spaces,
which have recently been applied to data science [20], appear frequently in the cosmography
literature [1, 3, 26, 27], and are the natural setting for spherical data with cyclic symmetries.

To establish notation, each pair of positive integers (n,m) with n > m and gcd(n,m) = 1
determines a three-dimensional lens space L(n;m) which is a quotient of the 3-sphere S3 by
the cyclic group of order n. By requiring the quotient to be a Riemannian submersion, we
induce a Riemannian metric on L(n;m), which turns out to be homogeneous when m = 1 or
n−1. Moreover, L(n; 1) and L(n;n−1) are isometric, so to understand distance distributions
on homogeneous lens spaces it suffices to consider those lens spaces of the form L(n; 1).

As a first step, we determine all moments of distance (i.e., expected values of powers of
distance) by solving a recurrence relation that they satisfy:

Theorem 1. For each k ≥ 0 and each n ≥ 2, the kth moment of distance on L(n; 1) is

In,k =
1

(k + 1)(k + 2)

[
4

k + 3

(π
n

)k+2

1F2

[
1

k+4
2
, k+5

2

;−π
2

n2

]
+ tan

π

n

(
n
(π

2

)k+1

1F2

[
1

k+3
2
, k+4

2

;−π
2

4

]
− 2
(π
n

)k+1

1F2

[
1

k+3
2
, k+4

2

;−π
2

n2

])]
,

where for n = 2 this is interpreted as the limit of the above expression as n→ 2, and 1F2 is
a hypergeometric function whose definition we recall on page 9 below.

The alternating finite sum formula given in (8) is typically more useful for small k, but
one virtue of this formulation in terms of hypergeometric functions is that it is easy to extract
asymptotic information:

Corollary 2. As k →∞ the kth moment of distance grows like

I2,k ∼
2

k

(π
2

)k
and In,k ∼

n

k2

(π
2

)k+1

tan
π

n
for n ≥ 3.

A more attractive and systematic packaging of the moments is in the form of the moment-
generating function of distance:

Theorem 3. The moment-generating function of distance on L(n; 1) is

Mn(t) =


4

π(4+t2)

(
2(etπ/2−1)

t
+ tetπ/2

)
if n = 2

2n
π(4+t2)

(
2(etπ/n−1)

t
+ tan π

n

(
etπ/2− etπ/n

))
if n ≥ 3.
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We then use the moment-generating function to determine the cumulative distribution
function of distance, which (up to scaling) simply reports volumes of balls. Consequently,
our probabilistic approach to studying distances on lens spaces yields the following purely
geometric result:

Theorem 4. For n ≥ 2, the volume of a ball of radius r in L(n; 1) is

Vn(r) =

{
2π(r − sin r cos r) if r ≤ π

n
2π2

n
− 2π cos2 r tan π

n
else.

Notice, in particular, that this formula for volume extends beyond the injectivity radius
π
n

of L(n; 1), in contrast to most results about volumes of balls in Riemannian manifolds
(e.g., [14]). In addition to the potential applications of these ideas to data problems, this
seems to be a novel result to add to existing knowledge about the geometry and topology of
lens spaces [2, 9, 15, 16, 21, 22, 23, 24, 28].

We describe our perspective, provide basic background material on lens spaces, and give
the setting in which algorithms and analytic computations are to be made in Section 2. In
Section 3 we describe algorithms for sampling random points and determining their distance
apart. In addition, we present the results of several Monte Carlo experiments that illustrate
differences between distributions of distances on homogeneous and non-homogeneous lens
spaces. Section 4 contains the main theoretical results of the paper.

2 Lens Spaces

Three-dimensional lens spaces are a family of manifolds that arise as the orbit space of a finite
cyclic group acting freely on the unit 3-sphere. More precisely, let Zn = {ei2πk/n ∈ C | 1 ≤
k ≤ n} denote the cyclic group of order n and consider S3 = {(α, β) ∈ C2 | |α|2 + |β|2 = 1}.
Given n,m ∈ N with gcd(m,n) = 1, there is a free action of Zn on S3 defined by

ω · (α, β) = (ωα, ωmβ),

for each ω ∈ Zn. The resulting orbit space is the lens space L(n;m).
To visualize L(n;m), we can look at the fundamental domain of the Zn action on S3 ⊆ C2,

as in Figure 1. The fundamental domain of the rotation e2πi/n in the first factor is an arc
of length 2π

n
in the unit circle in the z1-plane of C2. All points in S3 with first coordinate

in such a fundamental domain form a lens-shaped domain as pictured. The top and bottom
faces of the lens consist of all points lying on geodesics connecting an endpoint of the arc to
all points in the unit circle in the z2-plane: these are hemispheres of unit 2-spheres meeting
at an angle of 2π

n
along the unit circle in the z2-plane. Since the endpoints of the arc are

identified under the 2π
n

rotation in the z1-coordinate, the bottom face is identified with the
top face by this rotation. However, this identification happens with a 2πm

n
twist in the z2-

coordinate, so that the green sector in the bottom face is glued to the green sector in the
top face (in the picture, m = 2).
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θ1

θ2

η

2π
n

2π
n

Figure 1: A fundamental domain of the lens space L(n;m). The arrows indicate the direc-
tions of the join coordinates (θ1, θ2, η) that will be defined on page 5.

Lens spaces were introduced by Tietze [25] and have historically provided interesting
examples of manifolds which cannot be distinguished by homology or homotopy groups. For
example, L(5; 1) and L(5; 2) are not homeomorphic (nor even homotopy equivalent) despite
the fact that π1(L(5; 1)) ∼= π1(L(5; 2)) and H•(L(5; 1)) ∼= H•(L(5; 2)) [2]. In fact, the lens
spaces L(n;m1) and L(n;m2) are homotopy equivalent if and only if m1m2 = ±a2 (mod n)
for some a ∈ N, and are homeomorphic if and only if m1 = ±m±1

2 (mod n) [9, 22]. Using
these criteria, one can easily conclude that L(7; 1) and L(7; 2) are examples of manifolds
which are homotopy equivalent but not homeomorphic.

In addition to their topological structure, lens spaces have geometric structure. The round
metric on S3 induces a unique metric on S3/Zn = L(n;m) that makes π : S3 → L(n;m) a
Riemannian submersion. A result of Ikeda and Yamamoto [15] implies that two three-
dimensional lens spaces are isometric if and only if they are homeomorphic. This result,
combined with work of Tanaka [24], shows that the spectrum of the Laplacian uniquely
determines a three-dimensional lens space among all Riemannian manifolds. An explicit
orthonormal eigenbasis for the Laplacian is given in [16]. Moreover, the isoperimetric problem
has been solved in all lens spaces L(n;m) with n large enough [28].

With respect to this Riemannian metric, some lens spaces are homogeneous, meaning the
isometry group acts transitively. Theorem 7.6.6 of Wolf [29] says that Sd/G is homogeneous
if and only if the group G has a Clifford representation — that is, a faithful orthogonal
representation ρ : G → O(d + 1) such that ρ(g) = ±I or half of the eigenvalues of ρ(g)
are λ ∈ S1 and the other half are λ̄. The action of Zn on S3 has the faithful orthogonal
representation ρ : Zn → O(4) given by

ρ(ω) =


cos 2π/n − sin 2π/n 0 0
sin 2π/n cos 2π/n 0 0

0 0 cos 2πm/n − sin 2πm/n
0 0 sin 2πm/n cos 2πm/n

 ,

and has eigenvalues ei2π/n, e−i2π/n, ei2πm/n and e−i2πm/n. Hence L(n;m) is homogeneous pre-
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cisely when m = 1 or m = n−1. Since L(n; 1) and L(n;n−1) are homeomorphic and hence
isometric, we may simply take m = 1 when dealing with homogeneous lens spaces.

2.1 Coordinate systems

Using the natural group structure on S3 given by its identification with the unit quaternions,
we can describe an isomorphism between S3 and SU(2). Writing quaternions in the form
α + βj for α, β ∈ C, define ϕ : S3 → SU(2) by

ϕ : α + βj 7→
(
α −β
β α

)
,

where ζ denotes the complex conjugate of ζ. It is easy to check that ϕ is a Lie group
isomorphism. The action of Zn on S3 then induces an action on SU(2) given explicitly by

ω ·
(
α −β
β α

)
=

(
ωα −ωmβ
ωmβ ωα

)
. (1)

Describing the lens space in this way will make our computations straightforward. The idea
is that we can easily generate random elements of SU(2) according to Haar measure (which
corresponds to the uniform probability measure on S3), compute the orbits explicitly, and
then distances between orbits correspond to distances in the lens space.

For homogeneous lens spaces, we will be able to make explicit analytic calculations in
Section 4. To do so, we’ll parametrize S3 using join coordinates, which realize the 3-sphere as
the join of two circles. Since S3 = {(α, β) ∈ C2 | |α|2 + |β|2 = 1}, we can write α = eiθ1 cos η
and β = eiθ2 sin η for θ1, θ2 ∈ [−π, π) and η ∈ [0, π/2]. This can also be expressed in Cartesian
coordinates on R4 as

x = cos θ1 cos η

y = sin θ1 cos η (2)

z = cos θ2 sin η

w = sin θ2 sin η.

These coordinates easily yield the volume form dVolS3 = cos η sin η dη ∧ dθ1 ∧ dθ2, and
the volume form induced by the Riemannian submersion metric on the homogeneous lens
space L(n; 1) is dVolL(n;1) = cos η sin η dη ∧ dθ1 ∧ dθ2, where now θ1, θ2 ∈ [−π/n, π/n). A
straightforward calculation shows that Vol(L(n; 1)) = 2π2/n2.

3 Algorithms and Experiments

In this section we’ll provide an algorithm for a Monte Carlo experiment. We then use this
as a guide for analysis on higher moments.

5



Algorithm 1 Random Special Unitary Matrix

1: function RandSU(n)
2: A,B ← random n× n Gaussian
3: C ← A+ iB . where i =

√
−1

4: Q← GramSchmidt(C)
5: Q1,n ← 1

det(Q)
Q1,n . Q1,n is the last column of Q

6: end function

Our aim is to describe a Monte Carlo simulation which will allow us to approximate
expected (Riemannian) distances between two points in L(n;m). We will use Algorithm 1
to randomly generate elements of SU(n).

We will use the Riemannian distance function on SU(2) (see [10]), then use the Rie-
mannian submersion π : SU(2) → L(n;m) to obtain a distance function on the lens space.
Suppose that A,B ∈ SU(2), and let λ1, λ2 be the eigenvalues of AB∗. For a nonzero complex
number z = x + yi, we let log z denote the principal value logarithm whose imaginary part
lies in the interval (−π, π]. We have

d(A,B) =
1√
2

√
| log λ1|2 + | log λ2|2

or, since λ2 = λ1, d(A,B) = | log λ1|. To compute distances on L(n;m), we first compute
the orbits, then compute pairwise distances between the elements of each orbit, and finally
take the minimum of all distances computed. Thus for [A], [B] ∈ L(n;m), we have

d([A], [B]) = min
1≤j,k≤n

{d(ωj · A, ωk ·B)},

where ω = e2πi/n. This leads to Algorithm 2.

Algorithm 2 Expected Distance on L(n;m)

1: D ← [0] ∗N . Begin with a list of N zeroes
2: for k ← 1, N do
3: A← RandSU(2)
4: B ← RandSU(2)
5: orbitdata← [0] ∗ n× n . Initialize n× n zero matrix
6: for i← 1, n do
7: for j ← 1, n do
8: orbitdata(i, j)← d(ωi · A, ωj ·B)
9: end for

10: end for
11: D(k)← min(orbitdata)
12: end for

return mean(D)
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Figure 2: On the left are histograms of distances between 1,000,000 random pairs of points
in L(5; 1) [blue] and L(5; 2) [red], computed using Algorithm 2; the curve shows the true
density of distances in L(5; 1) from (11). The right shows histograms of distances in L(5; 2)
from 1,000,000 random points to different fixed points, where the fixed points are the images

in L(5; 2) of SU(2) elements of the form

(
cosφ − sinφ
sinφ cosφ

)
, where φ = 0 [blue], π/8 [red],

and π/4 [green]; the curve shows the density of distances from random points in L(5; 1) to
any fixed point, again from (11). In particular, whereas the distributions of distances from
random points to any fixed point in the homogeneous space L(5; 1) are all the same, these
distributions vary with the fixed point in the non-homogeneous L(5; 2).

For example, using Algorithm 2 with N = 1,000,000, we estimate the expected distances
between random points on L(5; 1) and L(5; 2) to be approximately 0.85897 and 0.80378,
respectively, reflecting the fact that these lens spaces are not isometric (nor even homeo-
morphic); see Figure 2. The corresponding estimates for L(7; 1) and L(7; 2) are 0.82641 and
0.73641, respectively, again reflecting the fact that these spaces are neither isometric nor
homeomorphic, though they are homotopy equivalent.

In the homogeneous case, it actually suffices to fix a representative of a fixed orbit, then
check the distances between the chosen representative and each element of the other orbit.
To see this, note that

d([A], [B]) = min
1≤i,j≤n

{d(ωi · A, ωj · B)

= min
1≤k≤n

{d(ωk · AB∗, I).

If A,B are chosen according to Haar measure on SU(2), then AB∗ will also be distributed
according to Haar measure, which is definitionally invariant under the (left or right) action of
SU(2) on itself. Hence, when doing a computational experiment, we can generate one random
element of SU(2), compute the orbit under the action, and then compute the distances from
each element in the orbit to the identity. This yields the less computationally expensive
Algorithm 3.

For N = 1,000,000, a näıve Matlab implementation of Algorithm 2 gives the esti-
mate E[d;L(5, 1)] ≈ 0.85897 in about 940 seconds on a laptop, whereas Algorithm 3 yields
E[d;L(5, 1)] ≈ 0.85921 in about 86 seconds.
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Algorithm 3 Expected Distance on L(n; 1)

1: D ← [0] ∗N
2: for l← 1, N do
3: A← RandSU(2)
4: orbitdata← [0] ∗ n
5: for k ← 1, n do
6: orbitdata(k)← d(ωk · A, I)
7: end for
8: D(l)← min(orbitdata)
9: end for

return mean(D)

4 Distributions of Distances

We now restrict to the case that L(n;m) is homogeneous; as previously mentioned, we
can (and will) assume in what follows that m = 1. In this section we derive an analytic
description of the distributions of distances on all the L(n; 1) lens spaces.

As a first step to understanding these distributions of distances, we will compute the kth
moment of distance between 2 random points in L(n; 1). We now work in join coordinates (2),
and we think of points in L(n; 1) as orbits of points in S3. Since L(n; 1) is homogeneous, we
may fix one point to be (the orbit of) the point q = (1, 0, 0, 0). The fundamental domain
of the Zn action centered at this point (depicted in Figure 1) is determined by the join
coordinate inequalities

−π
n
≤ θ1, θ2 <

π

n
,

so computing the expectation of kth power of distance in L(n; 1) is equivalent to computing
the expectation of [dS3(p, q)]

k, where p varies over this fundamental domain. With p written
in join coordinates, dS3(p, q) = arccos(p · q) = arccos(cos θ1 cos η), so the kth moment of
distance is exactly

In,k := E[dk;L(n; 1)] =
1

Vol(L(n; 1))

∫
L(n;1)

[dL(n;1)([p], [q])]
k dVolL(n;1)

=
n2

2π2

∫ π/n

−π/n

∫ π/n

−π/n

∫ π/2

0

arccosk(cos θ1 cos η) cos η sin η dη dθ1 dθ2.

Obviously,
In,0 = 1. (3)

For k ≥ 1, the integral expression for In,k can be simplified somewhat by integrating out
θ2, observing that the integrand is even in θ1, and making the substitution cosu = cos θ1 cos η.
Doing so produces the integral

In,k =
2n

π

∫ π/n

0

sec2 θ1

∫ π/2

θ1

uk cosu sinu du dθ1. (4)
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Notice that this integral is improper for n = 2. For n ≥ 3 we can apply the reduction
formula [13, 2.631.1] for the inner integral to compute the first moment

In,1 =
π

2n
+
n− 2

4
tan

π

n
(5)

and the relation

In,k = −k(k − 1)

4
In,k−2 +

1

k + 1

(π
n

)k
+

n

2π

[(π
2

)k
−
(π
n

)k]
tan

π

n
(6)

for k ≥ 2.
We can solve this recurrence using standard methods. The following theorem expresses

the solution in terms of generalized hypergeometric functions pFq

[
a1 a2 ... ap
b1 b2 ... bq

; z

]
. In the defi-

nition of this class of functions, it is convenient to introduce the Pochhammer symbol (a)n,
defined by the rule

(a)n =

{
1 if n = 0

a(a+ 1) · · · (a+ n− 1) if n ≥ 1.

Equivalently, so long as a is not a nonpositive integer (a)n = Γ(a+n)
Γ(a)

.
In terms of the Pochhammer symbol, the generalized hypergeometric function is defined

by the series

pFq

[
a1 a2 . . . ap
b1 b2 . . . bq

; z

]
=
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
,

provided none of the b1, . . . , bq is a nonpositive integer. When p ≤ q, the series converges for
all z and pFq is entire.

Theorem 1. For each k ≥ 0 and each n ≥ 3, the kth moment of distance on L(n; 1) is

In,k =
1

(k + 1)(k + 2)

[
4

k + 3

(π
n

)k+2

1F2

[
1

k+4
2
, k+5

2

;−π
2

n2

]
+ tan

π

n

(
n
(π

2

)k+1

1F2

[
1

k+3
2
, k+4

2

;−π
2

4

]
− 2
(π
n

)k+1

1F2

[
1

k+3
2
, k+4

2

;−π
2

n2

])]
. (7)

Values for small k are given in Table 1.

Proof. While the difference equation (6) is second-order, the even and odd In,k are indepen-
dent of each other, so we can separately reduce each to a first-order difference equation and
then solve that first-order equation.

For example, if k = 2m is even, then defining ym := In,2m and index-shifting allows us to
re-write (6) as

ym+1 = −(2m+ 2)(2m+ 1)

4
ym +

1

2m+ 3

(π
n

)2m+2

+
n

2π

[(π
2

)2m+2

−
(π
n

)2m+2
]
tan

π

n
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k In,k

0 1

1 π
2n

+
(

1
4
n− 1

2

)
tan π

n

2 −1
2

+ π2

3n2 +
(
π
8
n− π

2n

)
tan π

n

3 −3π
4n

+ π3

4n3 +
(
π2−6

16
n+ 3

4
− π2

2n2

)
tan π

n

4 3
2
− π2

n2 + π4

5n4 +
(
π3−12π

32
n+ 3π

2n
− π3

2n3

)
tan π

n

5 15π
4n
− 5π3

4n3 + π5

6n5 +
(
π4−20π2+120

64
n− 15

4
+ 5π2

2n2 − π4

2n4

)
tan π

n

6 −45
4

+ 15π2

2n2 − 3π4

2n4 + π6

7n6 +
(
π5−30π3+360π

128
n− 45π

4n
+ 15π3

4n3 − π5

2n5

)
tan π

n

7 −315π
8n

+ 105π3

8n3 − 7π5

4n5 + π7

8n7 +
(
π6−42π4+840π2−5040

256
n+ 315

8
− 105π2

4n2 + 21π4

4n4 − π6

2n6

)
tan π

n

Table 1: Values of the kth moment of distance In,k for small k and n ≥ 3.

with initial condition y0 = In,0 = 1 from (3).
This is in the standard form ym+1 = gmym + hm for general first-order linear difference

equations, and hence has solution

ym =
m−1∏
j=0

gj

(
y0 +

m−1∑
j=0

hj∏j
`=0 g`

)
(8)

= (−1)m
(2m)!

22m

(
1 +

m−1∑
j=0

(−1)j+1

(2j + 3)!

(
2π

n

)2j+2

+
n

2π
tan

π

n

m−1∑
j=0

(−1)j+1

(2j + 2)!

(
π2j+2 −

(
2π

n

)2j+2
))

after some simplification.
In turn, each of the finite sums becomes one of the hypergeometric functions in (7). For

example,

1 +
m−1∑
j=0

(−1)j+1

(2j + 3)!

(
2π

n

)2j+2

=
n

2π

m∑
j=0

(−1)j

(2j + 1)!

(
2π

n

)2j+1

=
n

2π

∞∑
j=0

(−1)j

(2j + 1)!

(
2π

n

)2j+1

− n

2π

∞∑
j=m+1

(−1)j

(2j + 1)!

(
2π

n

)2j+1

=
n

2π
sin

2π

n
− (−1)m+1

(2m+ 3)!

(
2π

n

)2m+2 ∞∑
i=0

1

(m+ 2)i(m+ 5
2
)i

(
−π

2

n2

)i
.

After multiplying each term by 1 = i!
i!

= (1)i
i!

, the remaining sum is the standard power series

representation of 1F2

[
1

m+2 m+ 5
2
;−π2

n2

]
.
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Simplifying the remaining terms in (8) and replacing 2m with k yields the solution (7)
for the even moments.

On the other hand, notice that we can solve the difference equation (6) for In,1 indepen-
dent of the value of In,−1. Therefore, if we define zm = In,2m−1 for m ≥ 1, we can choose the
initial condition z0 arbitrarily. If we choose z0 = 1,1 then the difference equation and initial
condition for zm are essentially identical to those in the problem we just solved. Indeed, solv-
ing the system and plugging in k = 2m− 1 at the end yields the exact same expression (7)
for the odd moments, completing the proof.

We can’t plug n = 2 into the expressions (5) and (6), but taking the limit as n→ 2 gives
the corresponding values of the improper integral (4):

I2,1 =
1

π
+
π

4

I2,k = −k(k − 1)

4
I2,k−2 +

1

k + 1

(π
2

)k
+
k

π

(π
2

)k−1

.

The solution of this initial value problem (together with I2,0 = 1) is simply the limit
of (7) as n→ 2:

Corollary 5. The kth moment of distance on L(2; 1) = RP3 is

I2,k =
1

k + 1

(π
2

)k[
2 1F2

[
1

k+3
2
, k+4

2

;−π
2

4

]
+

π2

(k + 2)(k + 3)

(
1F2

[
1

k+4
2
, k+5

2

;−π
2

4

]
− 4

k + 4
1F2

[
2

k+5
2
, k+6

2

;−π
2

4

])]
.

We point out that the partially oriented flag manifolds F`((1, 1, 1); {{1}, {2}, {3}}) and
F`((1, 1, 1), {{1}, {2, 3}}) considered in our previous paper [4] are (up to a global scale factor
of 2) the lens spaces L(2; 1) and L(4; 1), respectively, and indeed the expected values of
distance that we computed on those spaces were exactly 2I2,1 = 2

π
+ π

2
and 2I4,1 = 1 + π

4
.

For small k the finite sum formula (8) is typically more useful than (7) — and, indeed,
the finite sum is what we see in Table 1 — but one virtue of Theorem 1 and Corollary 5 is
that we can easily determine the asymptotic behavior of In,k as k → ∞ by retaining only
the leading terms in the power series representations of the hypergeometric functions.

Corollary 2. For fixed n ≥ 3, the asymptotic growth of the kth moment of distance on
L(n; 1) as k →∞ is

In,k ∼
n

k2

(π
2

)k+1

tan
π

n
.

1We emphasize that In,−1 6= 1; in fact, it is not too hard to show that

In,−1 =
n

π

[
γ − Ci

(
2π

n

)
+ log

(
2π

n

)
+

(
Si(π)− Si

(
2π

n

))
tan

π

n

]
,

where γ ≈ 0.577 is the Euler–Mascheroni constant and Ci and Si are the cosine integral and sine integral
functions, respectively.
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k lim
n→∞

In,k

0 1

1 1
4
π

2 −1
2

+ π
8
π

3 π2−6
16

π

4 3
2

+ π3−12π
32

π

5 π4−20π2+120
64

π

6 −45
4

+ π5−30π3+360π
128

π

7 π6−42π4+840π2−5040
256

π

Table 2: lim
n→∞

In,k for small k. The coefficient of π is the coefficient of n tan π
n

in the corre-

sponding entry in Table 1, and the remaining term is the constant term from Table 1.

For n = 2, the asymptotic growth of the kth moment of distance on L(2; 1) = RP3 is

I2,k ∼
2

k

(π
2

)k
.

On the other hand, if we fix k and let n get large, only the middle term in (7) survives:

Corollary 6. For fixed k ≥ 0,

lim
n→∞

In,k =
π

(k + 2)(k + 1)

(π
2

)k+1

1F2

[
1

k+3
2

k+4
2

;−π
2

4

]
.

Values for small k are given in Table 2.

Another way to package the information contained in Theorem 1 is by computing the
moment-generating function of distance:

Theorem 3. For n ≥ 3, the moment-generating function of distance on L(n; 1) is

Mn(t) =
2n

π(4 + t2)

(
2(etπ/n− 1)

t
+ tan

π

n

(
etπ/2− etπ/n

))
. (9)

For n = 2, the moment-generating function is

M2(t) =
4

π(4 + t2)

(
2(etπ/2− 1)

t
+ tetπ/2

)
.

Proof. By definition,

Mn(t) = E(etd;L(n; 1)) =
2n

π

∫ π/n

0

sec2 θ1

∫ π/2

θ1

etu cosu sinu du dθ1 (10)
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π
6

π
3

π
2

1
2

1

3
2

Figure 3: Histogram of distances between 10,000,000 random points on L(3; 1) generated by
Algorithm 3 compared to the pdf f3(x) =

6
π

(
sin2 x+Θ(x− π/3)

(− sin2 x+
√
3 sin x cos x

))
.

using the same substitution that produced (4). Using the identity sin 2u = 2 sin u cosu and
integrating by parts twice yields

Mn(t) =
2n

π(4 + t2)

(
etπ/n− 1

t
+ tan

π

n
etπ/2−

∫ π/n

0

etθ1(t tan θ1 + sec2 θ1 − 1) dθ1

)

for n ≥ 3. Integrating the first term inside the integral by parts produces a term which
cancels the second, and the rest is straightforward.

For n = 2, evaluating the indefinite integral (10) boils down to taking the limit of (9) as
n → 2, which produces the desired expression for M2(t).

We can recover the probability density function (pdf) fn of distance as the inverse Laplace
transform of Mn(−t):

f2(x) =
4

π
sin2 x

fn(x) =
2n

π

(
sin2 x+Θ(x− π/n)

(
− sin2 x+ sin x cos x tan

π

n

))
, (11)

where Θ is the Heaviside function which is zero for negative values and 1 for positive values.
See Figure 3.

As n → ∞ we see that fn(x) → sin 2x, the pdf of the sine distribution introduced by
Gilbert in the study of moon craters [11, 12]. It is not so surprising to see this distribution:
as n → ∞ the lens spaces L(n; 1) converge in the Gromov–Hausdorff sense to a 2-sphere of
radius 1/2, and the distance distribution on this sphere is exactly the sine distribution.

In turn, given the pdf, we can integrate to get the cumulative distribution function Fn(x)
of distance on L(n; 1):

F2(x) =
2

π
(x− sin x cosx)

Fn(x) =
n

π

(
x− sin x cos x+Θ(x− π/n)

(π
n
− x+ sin x cos x− cos2 x tan

π

n

))
;
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n = 2

n = 3

n = 4

n = 5

n = 6

n → ∞

1
2

1

π
4

π
2

Figure 4: The cumulative distribution function of distance on L(n; 1) for 2 ≤ n ≤ 6 and in
the limit as n→∞.

see Figure 4.
By definition,

Fn(x) = P(d(p, q) ≤ x) =
VolBq(x)

VolL(n; 1)

where q ∈ L(n; 1) is any fixed point and p ∈ L(n; 1) is random; since L(n; 1) is homogeneous
this is independent of q. Hence, we can compute the volume Vn(r) := VolBq(r) of a ball of
radius r in L(n; 1) as

Vn(r) = Vol(L(n; 1))Fn(r) =
2π2

n
Fn(r).

This proves:

Theorem 4. For n ≥ 2, the volume of a ball of radius r in L(n; 1) is

Vn(r) =

{
2π(r − sin r cos r) if r ≤ π

n
2π2

n
− 2π cos2 r tan π

n
else.

Since the diameter of L(n; 1) is π
2
, Vn is only defined on [0, π

2
], so we never reach the

second case when n = 2. Also, 2π(r− sin r cos r) is simply the volume of a ball of radius r in
S3; not surprisingly, things get interesting only when r > π

n
, the injectivity radius of L(n; 1).

Thinking in these geometric terms, the pdfs from (11) are scaled areas of spheres. Rescal-
ing by the same 2π2

n
factor as above yields the surface area An(r) of the sphere of radius r

centered at any point in L(n; 1):

An(r) =

{
4π sin2 r if r ≤ π

n

4π sin r cos r tan π
n

else.

5 Concluding Remarks

Three-dimensional lens spaces are a family of topological/geometric objects that have played
a historical role in the development of manifold theory. Their interest derives both from
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their ease of construction and as examples of manifolds exhibiting unusual phenomena.
They appear across several disciplines including topology, geometry, cosmography, and data
science, and are a natural setting for spherical data with cyclic symmetries. While lens
spaces have been well studied from varying perspectives, we are unaware of other sources
which consider distance distributions on them.

Distance distributions have been used in geometric classification and can be used to
understand general metric measure spaces. While they can often be approximated effectively
using Monte Carlo techniques, it would be interesting to determine analytic expressions
for distance distributions on a broader class of manifolds. For manifolds which are not
homogeneous spaces, the distribution of distances from a fixed point depends on the point.
In other words, the volume formula for a ball is dependent on the location of the center of
the ball in the manifold. In turn, integrating the distribution of distances from a fixed point
as the fixed point varies over the manifold yields the distribution of distances between pairs
of random points.

Non-homogeneous lens spaces, both in three and in higher dimensions, are particularly
tractable examples of non-homogeneous manifolds, so in these spaces it may be feasible
to find analytic expressions for the distributions of distances both from a fixed point and
between random points.
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