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Abstract. Exact symmetry and symmetry-breaking phenomena play
a key role in gaining a better understanding of the physics of many-
particle systems, from quarks and atomic nuclei, through molecules
and galaxies. In nuclei, exact and dominant symmetries such as rota-
tional invariance, parity, and charge independence have been clearly
established. Beyond such symmetries, the nature of nuclear dynam-
ics appears to exhibit a high degree of complexity, and only now, we
show the fundamental role of an emergent approximate symmetry in
nuclei, the symplectic Sp(3,R) symmetry, as clearly unveiled from ab
initio studies that start from realistic interactions. In this article, we
detail and enhance our recent findings presented in [T. Dytrych, K.D.
Launey, J.P. Draayer, D.J. Rowe, J.L. Wood, G. Rosensteel, C. Bahri,
D. Langr, R.B. Baker, Phys. Rev. Lett. 124, 042501 (2020)], that estab-
lish Sp(3,R) as a remarkably good symmetry of the strong interaction,
and point to the predominance of a few equilibrium nuclear shapes
(deformed or not) with associated vibrations and rotations that pre-
serve the symplectic Sp(3,R) symmetry. Specifically, we find that the
structure of nuclei below the calcium region in their ground state, as
well as in their low-lying excited states and giant resonances, respects
this symmetry at the 60–80% level.

1 Introduction

We have recently shown through first-principle large-scale nuclear structure calcu-
lations that the special nature of the strong nuclear force determines highly regular
patterns in nuclei that can be tied to an emergent approximate symmetry [1]. We find
that this symmetry is remarkably ubiquitous, regardless of the type of the nucleus
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and the particular strong interaction heritage, and mathematically tracks with a
symplectic group. For a set of A particles, the symplectic symmetry Sp(3,R) is based
on a very basic concept: linear canonical transformations of particle coordinates and
momenta that preserve the fundamental Heisenberg commutation relation, as detailed
in Section 2. The most interesting insight, however, arises from a complementary
perspective: the symplectic symmetry has been recognized to preserve an equilibrium
shape under transformations, such as rotations, orientations in space, and vibrations
[2]. This, in turn, has important implications to our understanding of the physics
of nuclei: the approximate symplectic symmetry is manifested in nuclear states as
the predominance of only a few symplectic irreducible representations (or irreps, sub-
spaces of configurations that preserve the symmetry). Hence, we now understand that
nuclei are made of only a few equilibrium shapes, deformed or not, with associated
vibrations and rotations.

In this paper, we detail that dominant features of light to intermediate-mass nuclei
(below the calcium region), including their low-lying excited states and giant reso-
nances, track with the symplectic symmetry and naturally emerge from first-principle
(ab initio) considerations, even in close-to-spherical nuclear states without any rec-
ognizable rotational properties. Therefore, the present outcomes not only explain but
also predict the emergence of nuclear collectivity.

To study this without limitations within the interaction and approximations dur-
ing the many-body nuclear simulations, we use the ab initio symmetry-adapted
no-core shell model (SA-NCSM) [1,3,4]. The model starts with realistic interac-
tions tied to elementary particle physics considerations and fitted to nucleon-nucleon
scattering data, and uses symmetry-adapted (SA) bases based on the Sp(3,R) sym-
metry and its subgroup, the deformation-related SU(3). The Sp(3,R) approximate
symmetry is utilized to dramatically reduce computational resources required in ab
initio large-scale modeling of nuclear structure and reactions. This, in turn, pioneers
predictions in open-shell deformed intermediate-mass nuclei, such as Ne and Mg iso-
topes [1,5–7], and targets short-lived isotopes with enhanced deformation or cluster
substructure along various nucleosynthesis pathways, especially where experimental
measurements are incomplete or not available.

2 Symplectic and SU(3) symmetries

It is well known that SU(3) [8–12] is the symmetry group of the spherical har-
monic oscillator (HO) that underpins the shell model [13] and the valence-shell SU(3)
(Elliott) model [8,14,15] (for technical details of SU(3), see reference [16]). The Elliott
model has been shown to naturally describe rotations of a deformed nucleus without
the need for breaking rotational symmetry. The key role of deformation in nuclei and
the coexistence of low-lying quantum states in a single nucleus characterized by con-
figurations with different quadrupole moments [17] makes the quadrupole moment a
dominant fundamental property of the nucleus. Hence, the quadrupole moment and
the monopole moment or “size” of the nucleus, along with nuclear masses, establishes
the energy scale of the nuclear problem. Indeed, the nuclear monopole and quadrupole
moments underpin the essence of symplectic Sp(3,R) symmetry.

The symplectic group Sp(3,R) consists of all particle-independent linear canonical
transformations of the single-particle phase-space observables, the positions ri and
momenta pi (with particle index i = 1, . . . , A and special directions α, β = x, y, z)

r′iα =
∑
β

Aαβriβ +Bαβpiβ (1)
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p′iα =
∑
β

Cαβriβ +Dαβpiβ (2)

that preserve the Heisenberg commutation relations [riα, pjβ ] = i~δijδαβ [2,4,18].
Generators of these transformations, symbolically denoted as matrices A, B, C, and
D, are constructed as “quadratic coordinates” in phase space, ri and pi, and, most
importantly, sum over all the particles and act on the space orientation [on the con-
trary, the generators of the complementary O(A) sum over the three spatial directions
and act on the particle index, with a growing complexity with increasing particle num-
ber]. Hence, the generators include physically relevant operators: the total kinetic

energy (p
2

2 = 1
2

∑
i pi · pi), the monopole moment (r2=

∑
i ri · ri), the quadrupole

moment (Q2M=
√

16π/5
∑
i r

2
i Y2M (r̂i)), the orbital momentum (L=

∑
i ri×pi), and

the many-body harmonic oscillator Hamiltonian (H0=p2

2 + r2

2 ).
Another key feature is that a single-particle Sp(3,R) irrep spans all positive-parity

(or negative-parity) states for a particle in a three-dimensional spherical or triaxial
(deformed) harmonic oscillator. Not surprisingly, the symplectic Sp(3,R) symmetry,
the underlying symmetry of the symplectic rotor model [18,19], has been found to
play a key role across the nuclear chart – from the lightest systems [20,21], through
intermediate-mass nuclei [4,22,23], up to strongly deformed nuclei of the rare-earth
and actinide regions [18,24–26]. The results agree with experimental evidence that
supports formation of enhanced deformation and clusters in nuclei, as well as vibra-
tional and rotational patterns, as suggested by energy spectra, electric monopole and
quadrupole transitions, radii and quadrupole moments [5,17,27]. And while these
earlier algebraic models have been very successful in explaining dominant nuclear pat-
terns, they have assumed symmetry-based approximations and have often neglected
symmetry mixing. This establishes Sp(3,R) as an effective symmetry1 for nuclei,
which may or may not be badly broken in realistic calculations. It is then imperative
to probe if this symmetry naturally arises within an ab initio framework, which will,
in turn, establish its fundamental role.

3 Many-body symmetry-adapted (SA) framework

Ab initio approaches (e.g., see Ref. [28] and references therein) build upon a “first
principles” foundation, namely, the properties of only two or three nucleons that are
often tied to symmetries and symmetry-breaking patterns of the underlying quantum
chromodynamics theory. We utilize the ab initio nuclear shell-model theory [29–31]
that solves the many-body Schrödinger equation for A particles,

HΨ(r1, r2, . . . , rA)=EΨ(r1, r2, . . . , rA). (3)

In its most general form, it is an exact many-body “configuration interaction”
method, for which the interaction and basis configurations are as follows.

The intrinsic non-relativistic nuclear Hamiltonian H = Trel + VNN + V3N + . . .+

VCoulomb includes the relative kinetic energy Trel = 1
A

∑A
i<j

(pi−pj)2

2m (m is the nucleon

mass), the nucleon-nucleon VNN and, possibly, three-nucleon V3N interactions and

1 A familiar example for an effective symmetry is SU(3). While the Elliott model with a single
SU(3) irrep explains ground-state rotational states in deformed nuclei, the SU(3) symmetry is, in
general, largely mixed, mainly due to the spin-orbit interaction (nonetheless, SU(3) has been shown
to be an excellent quasi-dynamical symmetry, that is, each rotational state has almost the same
SU(3) content [26]).
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beyond, typically derived in the chiral effective field theory [32–35], along with the
Coulomb interaction between the protons.

The method adopts a complete orthonormal many-particle basis ψk,
such as the antisymmetrized products of single-particle states of a spher-

ical harmonic oscillator of characteristic length b=
√

~
mΩ . The expansion

Ψ(r1, r2, . . . , rA) =
∑
k ckψk(r1, r2, . . . , rA) renders equation (3) into a matrix eigen-

value equation with unknowns ck,
∑
k′ Hkk′ck′ = Eck, where the many-particle

Hamiltonian matrix elements Hkk′=〈ψk|H|ψk′〉 are calculated for the given inter-
action and the solution {c2k} defines a set of probability amplitudes.

However, in ab initio shell-model calculations the complexity of the nuclear prob-
lem dramatically increases with the number of particles, and when expressed in terms
of literally billions of shell-model basis states, the structure of a nuclear state is unrec-
ognizable. But expressing it in a more informative basis, the symmetry-adapted (SA)
collective basis [3,4], leads to a major breakthrough: we observe the incredible sim-
plicity of nuclear low-lying states and the dominance of an approximate symmetry of
nuclear dynamics, the symplectic Sp(3,R) symmetry, which together with its slight
symmetry breaking naturally describe atomic nuclei.

The SA-NCSM is reviewed in reference [4] and has been first applied to nuclei
below the calcium region using the SU(3)-adapted basis [36] and the Sp(3,R)-
adapted basis [1]. Briefly, the many-nucleon basis states of the SA-NCSM are
constructed using efficient group-theoretical algorithms [37] and are labeled according
to SU(3)(λµ)×SU(2)S by the total intrinsic spin S and (λµ) quantum numbers with
λ = Nz−Nx and µ = Nx−Ny, where Nx+Ny +Nz = N ≤ Nmax for a total of N HO
quanta distributed in the x, y, and z direction. Hence, e.g., Nx = Ny=Nz, or equally
(λµ) = (00), describes a spherical configuration, while Nz larger than Nx = Ny,
or µ = 0, indicates prolate deformation. Hence, the model space is reorganized to
subspaces that have fixed deformation, specified by U(3) and its quantum numbers
N(λµ). One can further organize these deformed configurations to subspaces that
are associated with a fixed shape (here referred to as “equilibrium shape” or sim-
ply “shape”), labeled by a single deformation N0(λ0 µ0). These subspaces, specified
by Sp(3,R), include the equilibrium shape, its vibrations (referred to as “dynamical
shapes”) and rotations. For example, a symplectic irrep 0(8 0) consists of a prolate
equilibrium shape with λ0 = 8 and µ0 = 0 in the 0p-0h (0-particle-0-hole) subspace
(valence shell), along with many other deformed configurations, or dynamical shapes,
that include particle-hole excitations to higher shells.

As for the inter-nucleon interaction, it is unitarily transformed to the SA basis,
with matrix elements reduced with respect to SU(3) × SU(2) (outlined in Refs. [38]
and [39]). We note that while the model utilizes symmetry groups to construct the
basis, calculations are not limited a priori by any symmetry and employ a large set
of basis states that can, if the nuclear Hamiltonian demands, describe a significant
symmetry breaking.

In references [36,40,41], we have shown that the SA-NCSM can use a significantly
reduced number of SU(3)-adapted basis states (selected model spaces) as compared
to the corresponding large complete Nmax model space without compromising the
accuracy for various observables, including energies, point-particle proton and matter
rms radii, electric quadrupole and magnetic dipole moments, reduced electromagnetic
B(E2) transition strengths, and electron scattering form factors. In addition, we have
shown that, for these selected spaces, the size of the model space and the number
of nonzero Hamiltonian matrix elements grow slowly with Nmax [40], allowing the
SA-NCSM to accommodate model spaces of larger Nmax and to reach heavier nuclei,
with recent SA-NCSM results reported for 32Ne and 48Ti [42].

To achieve this, in the SA-NCSM all basis states are kept up to a given N , while
for higher N , the model space is down selected in a systematic way using Sp(3,R)
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Fig. 1. (a) Selection of configurations in N + 4 (open squares) based on dominant N + 2
configurations, shown in terms of the deformation β and triaxiality γ shape parameters
[43,44]. N + 2 configurations (filled circles) within a symplectic irrep are determined by the
kinetic energy or quadrupole operator (for monopole or quadrupole symplectic excitations,
respectively), or equivalently, by the number of all possible ways two HO quanta are dis-
tributed in the x, y, and z directions. (b) Convergence of the B(E2; 2+

1 → 0+
gs) strength

in 12C with the SA-NCSM selection cutoff, εmax, for the JISP16 NN interaction [45] and
~Ω = 20 MeV.

considerations (Fig. 1a). Configurations that are highly favored in the N model space
inform important configurations in the N + 2 model space, which in turn inform the
N + 4 model space, etc., and those track with larger deformation β along the Nz axis
(consistent with results in Refs. [23,46]). Notably, these N + 4 configurations can be
readily reached from the N + 2 configurations in the Nz-Nx plane by two excitations
in the z direction. Hence, we can introduce a selection cutoff εmax, that is given by
the fraction of the SA model space used. The order in which basis states are included

is determined according to a weight w(Nx, Ny, Nz + 2) =
P (Nx,Ny,Nz)

dim(Nx,Ny,Nz+2) , where

P (Nx, Ny, Nz) is the probability amplitude obtained in SA-NCSM calculations in the
N model space, and dim denotes the dimensionality of the configuration to be selected
(spin degrees are omitted for simplicity). The prescription is then applied to N + 4
up through Nmax. Similar to NCSM, a measure of convergence of the results is the
degree to which the SA-NCSM obtains results independent of the model parameters
Nmax, ~Ω, and εmax [see Fig. 1b for increasing εmax]. Remarkably, even for small
εmax cutoffs, which correspond to drastically reduced model spaces, observables such
as, e.g., B(E2) values are quite close to the converged results, a feature that further
improves with Nmax. A major advantage of the SA-NCSM is that the SA model space
can be down-selected to a subset of SA basis states that describe equilibrium and
dynamical shapes, and within this selected model space the spurious center-of-mass
motion can be factored out exactly [47,48].

In SA-NCSM calculations that use the Sp(3,R)-adapted basis [1], the basis
is built from the SU(3)-adapted basis. The difficulty stems from the fact that
there are no known Sp(3,R) coupling/recoupling coefficients, and one has to
resort to innovative techniques. In our method, we adopt the SU(3) scalar opera-

tor {A(2 0) × B(0 2)}(0 0)
L=0M=0 constructed by symplectic Sp(3,R) generators, where

B
(0 2)
LM =(−)L−M (A

(2 0)
L−M )† is conjugate to A(2 0) and moves a particle two shells down.

This SU(3) scalar operator is computed for a given set of basis states with the same
N(λµ); eigenvectors of this matrix realize Sp(3,R)-adapted basis states and pro-
vide a unitary transformation from the SU(3)-adapted basis to the Sp(3,R)-adapted
basis, while the known eigenvalues are used to assign each eigenvector to a specific
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symplectic irrep. Given the unitary transformation, the SU(3)-decomposed Hamilto-
nian is straightforwardly constructed for the new Sp(3,R) basis. In selected model
spaces, the resulting Hamiltonian matrix is then drastically small in size and its
eigensolutions, the nuclear energies and states, can be calculated without the need
for supercomputers.

4 Nature’s preference: approximate symplectic symmetry from
first principles

We report on the remarkable outcome, as unveiled from first-principle calculations
below the calcium region, that nuclei exhibit relatively simple physics. We now under-
stand that a low-lying nuclear state is predominantly composed of a few equilibrium
shapes that vibrate and rotate, with each shape characterized by a single symplectic
irrep. For example, in 20Ne, there is a single most predominant irrep, (8 0), that make
up about 70% or more of the ground state (Fig. 2a) and its rotational excitations [1].
Using this single Sp(3,R) irrep, it is notable that even excitation energies and B(E2)
strengths fall closely to the experimental data (Fig. 2b). Indeed, E2 transitions are
determined by the quadrupole operator Q, an Sp(3,R) generator that does not mix
symplectic irreps – hence, the largest fraction of these transitions, and hence nuclear
collectivity, necessarily emerges within this most dominant symplectic irrep (similarly
for rms radii, since r2 is also a symplectic generator).

To report observables, we use extrapolations to the infinite number of shells (inde-
pendent of model parameters Nmax and ~Ω). They are based on the fast convergence
we observe for nuclear properties, such as energies and B(E2) strengths, within a
set of symplectic irreps and around an optimum ~Ω value (Figs. 2c and 2d). Hence,
for data on a converging trend, one can use the Shanks transformation ansatz for a

quantity X∞ =
∑∞
n=0 xn such that XN =

∑N
n=0 xn is given by XN = X∞ + AqN

for large N , where 0 < q < 1 [50,51]. X∞ is the extrapolated result independent of
the basis parameters (or the “full-space” result within the set of symplectic irreps).
The truncation error at each order N of the series expansion is given by O(qN ); the
leading-order error xN+1 = XN+1 − XN is thus O(qxN ), which is consistent with
effective-field-theory expansions for a sufficiently small expansion parameter (see,
e.g., [52]). For results that largely depend on ~Ω, extrapolated values for each ~Ω sig-
nificantly deviate; however, for ~Ω values around the optimum one, deviations in
X∞ are drastically reduced, leading to relatively small uncertainties in the quoted
extrapolated values.

4.1 Symmetry in low-lying excited states and giant resonances

The near symmetry is not restricted to ground states, but extends to low-lying states.
For example, some yrast states have almost identical Sp(3,R) structure to that of the
ground state (e.g., see Ref. [1] for 3+

1 and 2+
1 in 6Li, and for 2+

1 and 4+
1 in 20Ne; see

also Fig. 6 for 12C). Practically the same symplectic content observed is a rigorous
signature of rotations of a shape and can be used to identify members of a rotational
band and enhanced B(E2) strengths.

Furthermore, the lowest 1− state in 20Ne is found to be largely dominated by the
prolate (9 0)S = 0 shape, with some contribution from (5 2)S = 0 [53]. The second
0+ state in 20Ne is dominated by two equilibrium shapes (Fig. 3a). It is interesting to
note that the most deformed equilibrium shape for protons in the valence shell is (4 0),
and the same for neutrons, resulting in overall shapes of (8 0), (4 2), and (0 4), the
first of which dominates the ground state (Fig. 2a), whereas the (4 2) and (0 4) shapes
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Fig. 2. Ab initio SA-NCSM of 20Ne calculated in the model space of 11 HO major shells with
the NNLOopt interaction [49] and ~Ω = 15 MeV: (a) contribution of the symplectic Sp(3,R)
irreps, given by the size of the circles, that make up the ground state of 20Ne, calculated
with an SU(3)-adapted basis in a selected model space of 112× 106 basis states (labeled as
“All”); each irrep is specified by its equilibrium shape, labeled by the shape deformation β
and triaxiality γ, with the largest contribution coming from the (8 0) shape; (b) observables
calculated with the Sp(3,R)-adapted basis using only the most dominant 1 or 3 symplectic
irreps, as compared to experiment (“Expt.”); dimensions of the largest model spaces used
are also shown. Energies and reduced B(E2) transition strengths (in W.u.) are reported for
extrapolations to infinitely many shells of converging results across variations in the number
of shells and ~Ω. (c, d) SA-NCSM calculations and the extrapolated central value (dashed
line) and uncertainties (red shaded band) for the single most deformed Sp(3,R) irrep used
in (b).

dominate the next 0+ state for the NNLOopt interaction (Fig. 3a). Another interesting
0+ state in 20Ne is the lowest isobaric analog state (IAS), which corresponds to
the lowest 0+ state in the neighboring 20Na and 20F isotopes (Fig. 3b). This state
manifests a dominance of a single prolate shape (6 1) that is slightly less deformed
as compared to the (8 0) shape and is the main shape of the 20Na and 20F lowest
0+ state where (8 0) is Pauli forbidden. It is important to emphasize that, besides
the predominant irrep(s), there is a manageable number of symplectic irreps, each of
which contributes at a level that is typically at least an order of magnitude smaller.

Nuclear saturation properties can be informed by nuclear breathing modes, or
giant monopole resonances [55]. To study these, we calculate the response of the 20Ne
ground state to an isoscalar monopole probe M0 = 1

2

∑
i r

2
i (Fig. 4a). Since the M0

operator is a symplectic generator and does not mix symplectic irreps, the monopole
response tracks the contribution of the (8 0) shape, the predominant shape of the 20Ne
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Fig. 3. Symplectic Sp(3,R) irreps that make up (a) the second 0+ state and (b) the lowest
0+ isobaric analog state (IAS) in 20Ne, labeled by the total HO excitations N0, SU(3) labels
(λ0 µ0), and total intrinsic spin S0 of the equilibrium shape. Results are reported for ab
initio SA-NCSM calculations with the NNLOopt interaction, for an SU(3)-adapted basis in
a selected model space of 11 HO major shells and ~Ω = 15 MeV.

Fig. 4. (a) Monopole response function for the 20Ne ground state vs. excitation energy,
for a width of Γ = 2 MeV of the Lorentzian kernel [54]. (b) Symplectic Sp(3,R) irreps that
make up the 0+ excited state (“GR”) that contributes the most to the giant resonance
of 20Ne, labeled by the total HO excitations N0, SU(3) labels (λ0 µ0), and total intrinsic
spin S0 of the equilibrium shape. Inset: Distribution of the N0 = 0(8 0)S0 = 0 shape in this
“GR” state along SU(3) configurations, labeled by the total HO excitations N and SU(3)
labels (λµ), as compared to the distribution of the same shape in the ground state (“gs”).
Results are reported for ab initio SA-NCSM calculations that use the NNLOopt interaction
for ~Ω = 15 MeV, and with an SU(3)-adapted basis in a selected model space of (a) 13 and
(b) 11 HO major shells.

ground state, to all excited 0+ states. It is not surprising then that the distribution
and the peak of the response function are consistent with the results of reference
[1], where the set of excited 0+ states with nonnegligible contribution of the 1p-1h
vibrations of the ground-state shape (8 0) has been suggested to describe a fragmented
giant monopole resonance with a centroid around 29 MeV and a typical wavefunction
spread out to higher deformation due to vibrations [56], as compared to the ground
state (Fig. 4b, inset). Indeed, by examining the state that is related to the peak
in the response function, we find that two equilibrium shapes dominate (Fig. 4b):
N0 = 0(8 0)S0 = 0 and N0 = 2(10 0)S0 = 0. The (8 0) also dominates the ground
state, where it peaks at N = 0, while in the giant resonance state this shape peaks
at the N = 2 (10 0)S = 0 vibration (Fig. 4b, inset). Note that N0 = 2(10 0)S0 = 0
is an equilibrium shape and N = 2 (10 0)S = 0 is a dynamical shape, a vibration of
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Fig. 5. Symplectic Sp(3,R) irreps that make up (a) the 0+ ground state and (b) the
second 0+ state of 8He, labeled by the total HO excitations N0, SU(3) labels (λ0 µ0), and
total intrinsic spin S0 of the equilibrium shape, together with the corresponding β-γ plot.
Results are reported for ab initio SA-NCSM calculations with the NNLOopt interaction, for
an SU(3)-adapted basis in a complete model space of 14 HO major shells and ~Ω = 20 MeV.

the N0 = 0(8 0)S0 = 0 equilibrium shape, but remarkably both have the same SU(3)
quantum numbers.

Similarly, the lowest two 0+ states in 8He, which has been suggested to be a halo
nucleus, are made of a predominant shape that contributes at the 40–55% level and a
secondary in importance shape with about 20% contribution (Fig. 5). It is interesting
to note that both shapes are “opposite” in their deformation, (1 0) is prolate and
the other one (0 2) is oblate (we note that another common convention associates a
positive β value with a prolate shape, whereas a negative β indicates an oblate shape).
While, in general, 8He is considered to be spherical, the present outcome points to
an interplay of two shapes in the ground state, which on average may appear to
have a zero deformation, but with a B(E2) strength from its 2+ rotational state that
constructively adds the nonzero contributions of both shapes.

4.2 Sensitivity to the NN interaction

The predominance of a few shapes is neither sensitive to the type of the realistic
interaction used, nor to the parameters of the basis, ~Ω and Nmax [1]. Details such
as contribution percentages slightly vary, but dominant features retain. Furthermore,
even when the NN interaction is trimmed down by removing many SU(3)-symmetric
components that contribute less than a percent to the entire interaction, the results
practically coincide with the corresponding ab initio calculations that use the full
interaction [57]. As an illustrative example, we show that the SU(3) content for both
the ground state and the lowest 2+ state in 12C remains practically the same when
the full N3LO-EM [34] is used or its selected counterpart (Fig. 6). The corresponding
matter rms radius deviates only by 1% when the selected interaction is used (Fig. 6a,
inset), and such deviations typically decrease with larger model spaces (we note that
in these calculations we neglect the three-nucleon forces that will reduce the deviation
from the experimental value). This study offers another remarkable outcome, namely,
chiral potentials such as N3LO-EM, when expressed as a sum of SU(3)-symmetric
components, exhibit a clear dominance of its (0 0) component, which preserves defor-
mation. In addition, we find that many of these components are negligible, which in
turn makes the selection feasible.
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Fig. 6. SU(3) irreps that make up (a) the ground state and (b) the first 2+ state of 12C,
labeled by the total intrinsic spin S and SU(3) labels (λµ). Results are reported for ab
initio SA-NCSM calculations with the full N3LO-EM interaction [34] (solid blue) and its
selected counterpart (dashed gray), for an SU(3)-adapted basis in a complete model space
of 8 HO major shells and ~Ω = 15 MeV. Insets: matter rms radius of the 12C ground state
as a function of the model space.

Table 1. Average energy per pair Wc (along the diagonal) and correlations ζ of selected
phase-equivalent NN interactions (including the Coulomb interaction between protons),
given as (W 0

c ,W
1
c ) and (ζ0, ζ1) for (T = 0, T = 1) pairs, respectively. The NN part of two

chiral potentials NNLOopt[49] and NNLOsat [65] is considered, along with a comparison to
the JISP16 [45] based on the J-matrix inverse scattering method, for the two-nucleon sys-
tem (A = 2) and for a 12-particle system such as 12C (A = 12, T = 0). All interactions are
reported for HO parameter 1/b ∼ 0.6 fm−1.

NNLOopt NNLOsat JISP16 NNLOopt NNLOsat

A = 2 A = 12, T = 0

NNLOopt (−1.56,−0.19)
NNLOsat (0.99, 0.86) (−1.33,−0.54) (0.92, 0.92)
JISP16 (0.88, 0.84) (0.88, 0.87) (−1.31,−0.51) (0.84, 0.84) (0.88, 0.88)

Finally, the symplectic symmetry has been shown to ubiquitously arise from first
principles regardless of the NN interaction and the type of nucleus. It is then inter-
esting to address the question whether all NN interactions used in such calculations
possess close similarity to each other, or if they deviate in certain features that appear
to be inconsequential to the emergence of the symmetry. To study this, we consider
average energies per pairs (centroids) and correlations [58] between various realistic
interactions within the framework of spectral distribution theory [59–64] (Tab. 1).
The outcomes show that the average energy for an isoscalar (isovector) pair is the
largest (smallest) for NNLOopt, as compared to other interactions, whereas all of
the interactions correlate strongly both at the level of the interaction itself and as
propagated in, e.g., 12C, with almost perfect correlation for the T = 0 part of the
NNLOsat and NNLOopt. In general, two interactions with the same eigenvectors have
a correlation coefficient of ζ = 1. Hence, the correlation outcome corroborates the
above-mentioned results, that is, the same orderly pattern is observed in the eigen-
vectors for all these interactions, while the emergence of the symmetry appears not
to be sensitive to the differences in the average energy.

In short, our findings show that nuclei below the calcium region, in their ground
state as well as low-energy excitations, display relatively simple emergent physics that
is collective in nature and tracks with an approximate symplectic symmetry heretofore
gone unrecognized as emergent from the strong nuclear force. It is important to note
that no new dominant shapes appear as we increase the model space, retaining the
predominance of the single irrep, as shown in reference [1]. This has an important
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implication: complete SA-NCSM calculations are performed in smaller model-space
sizes to identify the nonnegligible symplectic irreps, while the model space is then
augmented by extending these irreps to high (otherwise inaccessible) HO major shells.
Accessing these shells is vital to account for collective and spatially enhanced modes.
As these modes play an important role in nuclear structure and reactions modeling,
the present outcome is key to achieving ab initio predictions, e.g., for short-lived
isotopes with deformed or cluster structure along various nucleosynthesis pathways,
especially where experimental measurements are incomplete or not available.
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J. Park, F. Sarazin, J.K. Smith, D. Southall, K. Starosta, C.E. Svensson, K. Whitmore,
M. Williams, C.Y. Wu, Phys. Rev. C 99, 051301 (2019)

7. J. Williams, G.C. Ball, A. Chester, T. Domingo, A.B. Garnsworthy, G. Hackman,
J. Henderson, R. Henderson, R. Krücken, A. Kumar, K.D. Launey, J. Measures,
O. Paetkau, J. Park, G.H. Sargsyan, J. Smallcombe, P.C. Srivastava, K. Starosta, C.E.
Svensson, K. Whitmore, M. Williams, Phys. Rev. C 100, 014322 (2019)

www.hpc.lsu.edu
www.tacc.utexas.edu


2440 The European Physical Journal Special Topics

8. J.P. Elliott, Proc. Roy. Soc. A 245, 128 (1958)
9. M. Moshinsky, Rev. Mod. Phys. 34, 813 (1962)

10. J.P. Draayerm Y. Akiyama, J. Math. Phys. 14, 1904 (1973)
11. M. Moshinsky, J. Patera, R.T. Sharp, P. Winternitz, Ann. Phys. (N.Y.) 95, 139 (1975)
12. K.T. Hecht, W. Zahn, Nucl. Phys. A 318, 1 (1979)
13. M.G. Mayer, J.H.D. Jensen, Elementary theory of nuclear shell structure (Wiley,

New York, 1955)
14. J.P. Elliott, Proc. Roy. Soc. A 245, 562 (1958)
15. J.P. Elliott, M. Harvey, Proc. Roy. Soc. A 272, 557 (1962)
16. V.K.B. Kota, SU(3) symmetry in atomic nuclei (Springer, Singapore, 2020)
17. K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)
18. D.J. Rowe, Rep. Progr. Phys. 48, 1419 (1985)
19. G. Rosensteel, D.J. Rowe, Phys. Rev. Lett. 38, 10 (1977)
20. D.J. Rowe, G. Thiamova, J.L. Wood, Phys. Rev. Lett. 97, 202501 (2006)
21. A.C. Dreyfuss, K.D. Launey, T. Dytrych, J.P. Draayer, C. Bahri, Phys. Lett. B 727,

511 (2013)
22. J.P. Draayer, K.J. Weeks, G. Rosensteel, Nucl. Phys. A 413, 215 (1984)
23. G.K. Tobin, M.C. Ferriss, K.D. Launey, T. Dytrych, J.P. Draayer, C. Bahri, Phys. Rev.

C 89, 034312 (2014)
24. O. Castaños, P.O. Hess, J.P. Draayer, P. Rochford, Nucl. Phys. A 524, 469 (1991)
25. M. Jarrio, J.L. Wood, D.J. Rowe, Nucl. Phys. A 528, 409 (1991)
26. C. Bahri, D.J. Rowe, Nucl. Phys. A 662, 125 (2000)
27. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, U. Meißner, Rev. Mod. Phys. 90,

035004 (2018)
28. K.D. Launey (ed.), Emergent phenomena in atomic nuclei from large-scale modeling

(World Scientific Publishing Co., 2017)
29. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys.

77, 427 (2005)
30. P. Navrátil, J.P. Vary, B.R. Barrett, Phys. Rev. Lett. 84, 5728 (2000)
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