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Abstract— Robot Dynamic Simulators offer convenient im-
plementation and testing of physical robots, thus accelerating
research and development. While existing simulators support
most real-world robots with serially linked kinematic and
dynamic chains, they offer limited or conditional support for
complex closed-loop robots. On the other hand, many of the
underlying physics computation libraries that these simulators
employ support closed-loop kinematic chains and redundant
mechanisms. Such mechanisms are often utilized in surgical
robots to achieve constrained motions (e.g., the remote center
of motion (RCM)). To deal with such robots, we propose a new
simulation framework based on a front-end description format
and a robust real-time dynamic simulator. Although this study
focuses on surgical robots, the proposed format and simulator
are applicable to any type of robot. In this manuscript, we
describe the philosophy and implementation of the front-end
description format and demonstrate its performance and the
simulator’s capabilities using simulated models of real-world
surgical robots.

I. INTRODUCTION

The Universal Robot Description Format (URDF) is one of

the most widely used representation formats for robots. There

are other formats that are either driven from URDF (Standard

Description Format (SDF) [1]) or allow conversion from

URDF (such as MuJoCo [2] format and V-REP Simulator

[3]). Arguably, URDF played a pivotal role in the success and

community adoption of Robot Operating System (ROS) [4]

and is tailored to serial manipulators and robots. While there

are ways to visually achieve redundant mechanisms using

mimic tags, realistic closed-loop constraints are not possible

as the limitation broadly comes from the design philosophy

of URDF. The idea of a robot, as envisioned by URDF, is a

spatial tree of bodies wherein the joints are essential parts of

the links. While this philosophy is the foundational building

block of kinematics and visualizations using the default ROS

simulator RViz (and derivative software such as MoveIt),

it thwarts the ability to define unconnected, sparsely and

densely connected combination of bodies.

The Simulation Description Format (SDF) is employed by

the Gazebo Simulator [1] and is similar to the URDF in many

core aspects while defining serial robots. SDF addresses the

key limitation of the URDF in defining closed-loop mecha-

nisms, however, the latest Gazebo simulator (9.0) does not
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support direct control of parallel linkages using ROS. While

URDF can only define a single robot per description file,

SDF has the capacity to support the distributed description of

robots. Moreover, SDF is designed for more general purpose

use with support for environment entities such as lighting,

scene-objects, and sensors. For the purpose of this discussion,

we shall limit the role of the current robot description formats

in their capability to represent kinematic/dynamic objects and

not necessarily environmental/scene objects.

Both the URDF and SDF (and even MuJoCo) use XML

language, which although historically has been used to store

and transmit configuration and description data, is not known

for human readability. This limitation has somewhat been

the reason behind the development of other markup lan-

guages such as JavaScript Object Notation (JSON) https:

//www.json.org/ and Yet Another Markup Language

(YAML) https://yaml.org/ . While XML retains its

place as the back-end tool for data storage, YAML and JSON

are gaining wide adoptability in front-end applications. In

addition to the readability component, both JSON and YAML

are feature-rich as compared to XML. For example, YAML

provides inherent support for macros in the form of anchors,

which tend to be useful for specification of properties.

Gazebo [1] is supported across major operating systems

(e.g., Microsoft Windows, Mac OS, and Linux), however, it

is used most commonly with ROS (Linux). While Gazebo is

feature-rich and allows for robust support for a large number

of sensors as loadable plugins, its support with URDF, and

consequently external control via ROS-topics is complicated

and non-robust. In fact, the process of going from a URDF to

SDF, and eventually loading joint controllers, communicable

using ros-topics/ros-services, is lengthy and repetitive even

for advanced users. Some of this complexity can be attributed

to ros control and ros controllers packages which form

the backbone of control via ROS. Even after a successful

bridge between ROS and Gazebo has been established, joint

control for connected bodies requires extra steps since the

joints must be controlled independently using messages and

services. There are of course ways to simplify the segregation

of joint controllers by using wrappers, such as the Gazebo

plug-in for da Vinci Surgical Robot [5]. While this might

not pose an issue for simpler robots with a limited number

of joints, it creates unnecessary complexity for real-world

surgical robots.
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II. THE AMBF FORMAT

Based on the limitations of the robot description formats,

and consequently robot simulators elaborated in Section I

the following metrics are outlined for the proposed Asyn-

chronous Multi-Body Framework Format (AMBF Format):

• Human Readability: One of the design motivations

behind the Asynchronous Multi-Body Framework For-

mat (AMBF Format or AMBF description file) is

human readability, and consequently modification by

hand. AMBF Format’s design philosophy places robot

description at the front-end for creating, modifying and

distributed testing of multi-bodies.

• Distributed Definition: All the relevant data for a single

body/constraint/environmental object should be con-

tained in the relevant definition block. Removal of the

data block should not affect any other body/constraint.

• Constraint Handling: A body could have multiple

constraints (joints), and each constraint is defined in-

dependently of other constraints. Addition/removal of a

constraint should not alter any other constraint except

for the physical/dynamic implications.

• Controllability: In this context, controllability refers to

the ability to apply forces on the body internally or

externally from the running simulation independent of

the other bodies. The connected bodies react passively

based on the type of constraint they share.

• Communicability: This refers to the ability to relay

information about all aspects of every body independent

from each other. This information can include the

constraints this body forms with all of its connected

bodies but not necessarily the information of bodies

themselves.

• Dynamic Loading: This defines the ability to add

bodies at run-time and even define constraints between

newly added bodies with existing bodies.

A. Anatomy of AMBF Format

The AMBF simulator was designed around the AMBF

format to demonstrate its capabilities. The AMBF simulator

uses several external packages that include Bullet Physics [6]

and CHAI-3D [7]. The types of data in the AMBF format

can be separated into various different types that include

World Data, Rigid Body Data, Soft Body Data, Constraint

Data, Lighting Data, Camera (View-port) Data and Input

Device Data. The flexibility of the AMBF format allow not

only for the definition of multiple robots and multi-bodies in

one description file, but also for the separation of a single

robot/multi-body in multiple description files, which is in line

with the Distributed Definition metric. As an implementation

example, all the body data for one robot can be defined in one

or more description files, whereas the constraint (joint) data

can be placed in separate file(s). The AMBF description files

are written based on the AMBF Format. Figure 1 outlines the

components of the AMBF description file (placed in tiles for

emphasis but are written sequentially). The contents of the

yellow tile are placed at the top and consist of global param-

eters applicable to the rest of the description file. Debugging

Fig. 1: The anatomy of AMBF format. The yellow tile forms

the header and consists of global parameters and header lists

which are highlighted with the purple dotted border. The red

tile represents a constraint, green represents bodies and blue

represents scene objects. The blue text highlights optional

parameters.

robot/multi-body models by ignoring certain sub-components

of the model is often an overlooked and understated design

feature of robot description formats. Commenting out parts

of the robot description is helpful, not only for debugging,

but also for testing sub-components of a model in isolation.

To ignore certain objects from loading in URDF or SDF, the

required object’s description spanning several lines needs to

be commented out. AMBF’s design specification uses header

lists (emphasized by the dotted purple border in the yellow

tile in Figure 1). The header lists are the entry point of the

document such that bodies, visual elements and constraints

are processed based on the content of these lists. Instead of

having to comment out multiple lines of object data, it is

sufficient to remove the object from header list of its type.

The ignored description block does not affect the loading

of any other body or constraint since the AMBF simulator,

it’s derivatives and the AMBF format are implemented while

considering the Distributed Definition, Constraint Handling

and Dynamic Loading specifications.

B. Densely Connected Tree of Bodies

To generate non-connected, semi-connected or densely

connected bodies, we employ a combination of a graph

network and a densely interconnected tree structure. Figure

2 illustrates an example of this composite structure. Unlike

other formats where the parent refers to the immediate

predecessor body, we relax this limitation by classifying all

the predecessors of the body as its parents. While the relax-

ation of such parent hierarchy might seem counterintuitive

in traditional robot representation formats, this relaxation is

essential to meet the defined metrics of AMBF.

The Table in Figure 2 shows the resulting population of

each body’s lineage. It should be noted that the lineage path

from one body to another may lead from multiple routes as
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Fig. 2: Densely connected bodies with the corresponding

lineage for each body shown on the right.

is the case between bodies (A → B) and (F → E). In such

cases, we restrict adding children/parents redundantly to a

body’s lineage. To achieve the fully connected tree, we use

an upward and a downward pass for each added constraint.

Algorithm 1 sums the process of adding a constraint. At

the end of all passes, each object maintains references to all

the successor joints while all the children register references

to all the predecessor bodies. It’s important to note that

in the case of diverging leaf nodes at a specific body, the

predecessor bodies contain the references to all the children

in every leaf node, however, the successors in leaf nodes are

unaware of bodies in other leaves.

Algorithm 1 Add Constraint Algorithm

1: function ADD JOINT(joint, parent, child)

2: p := parent, c := child
3: c.Parents← p, p.Children← c, p.Joints← joint
4: UpwardTreePass(p)
5: DownwardTreePass(c)
6: end function

7: function UPWARD TREE PASS(body)

8: P := body.Parents, C := body.Children
9: for p ∈ P do

10: for c ∈ C do

11: p.Children ∪ C & p.Joints ∪ c.Joints
12: end for

13: end for

14: end function

15: function DOWNWARD TREE PASS(body)

16: P := body.Parents, C := body.Children
17: for c ∈ C do

18: for p ∈ P do

19: c.Parents ∪ p.Parents
20: end for

21: end for

22: end function

C. Convention of Constraint Definition

Constraints are used to connect two bodies in certain

ways that limit their relative motion. In robot applications,

the constraints can broadly be classified into two founda-

tional types, the rotational constraint (revolute and hinge)

and the translational constraint (prismatic and slider). Other

constraints such as springs, cams, gears and 6 DOF joints

can be built with the combination of foundational types.

Fixed constraints present a special case, but can also be

implemented with either of the foundational types.

In alignment with the design philosophy of the Asyn-

chronous Framework, constraints are defined in a slightly

different manner as compared to URDF or SDF. In URDF,

the joint is treated at the origin of the child body or vice-

versa, and two additional fields are used to set the offset

of the child body’s visual mesh and the collision mesh.

Furthermore, these visual and collision offsets are defined

in the body’s definition, while the child origin (joint origin)

is defined in the joint description. This distribution of data

breaks the Asynchronous Design since, to get a complete

specification of the interconnection between two bodies, it

is necessary to parse the data beyond what is just defined in

the constraint description.

In the AMBF Constraint definition, a body’s origin is

always treated as the base frame of its representative mesh.

The way AMBF’s constraint definition differs from URDF

or SDF is by treating the constraint origin as independent

of the child’s or parent’s body origin. As a result, two fields

- namely pivot and axis - are used for the parent and the

child. The pivot defines the location of the constraint from

the body’s origin in Cartesian space, and the axis defines the

free axis in the body’s frame. This convention requires less

parameters to fully define an interconnection ( 13 = [parent’s

pivot (3) + parent’s axis (3) + child’s pivot (3) + child’s axis

(3) + offset (1)] ) as compared to URDF or SDF (15 = [joint’s

XYZ (3) + joints’s RPY (3) + joints’s axis (3) + child’s offset

XYZ (3) + child’s offset RPY (3)] ). While this description

is sufficient in constraining the two bodies, an extra scalar

parameter is required to define the rotational offset along the

parent axis between the two bodies. This offset is discussed

in detail in section III-B.

The direct use of parent/child axes to build constraints em-

phasizes the front-end nature of AMBF, which consequently

makes the specification of robots and multi-bodies easier.

This, however, adds more work at the back-end where the

constraints are actually parsed and processed. Internally, joint

transforms w.r.t. the parent body and child transforms w.r.t.

to the joint have to be computed. A unified convention to

define the rotation represented by axes in the parent/child

body frame is required. This convention utilizes the plane

formed by the two axes ( ~axp and ~axc) to define a rotation

matrix. This rotation is trivial except for the case where the

two axes are parallel to each other since there exist an infinite

number of rotation planes. To address such cases, Algorithm

2 is adopted across the AMBF Framework, AMBF Simulator,

Blender-to-AMBF add-on (III-B) and the URDF-to-AMBF

converter (III-A). In the Algorithm, S denotes the Skew-

Symmetric matrix, ~a ×
~b denotes the vector cross product,

I3×3 is the 3×3 Identity matrix and ~nx, ~ny , ~nz are the three

unit vectors.

Algorithm 2 Convention for Rotation Between Vectors

1: if abs(~a.~b) ≤ 1− ǫ then R
~b
~a = I3×3

2: else if ~a 6‖ ~b then

3: R
~b
~a = I3×3 + S(~a×~b) + S(~a×~b)2(1− ~a.~b)/(~a×~b)2

4: else if ~a 6‖ ~nx then R
~b
~a = AxisAngle(~a× ~nx, π)

5: else R
~b
~a = AxisAngle(~a× ~ny, π)

6: end if

D. Flexibility of Namespacing and Resource Paths

The foundational structure of AMBF Format allows for

the use of multiple namespaces in a single description file.
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TABLE I: Simplifying redundant names using namespaces

rather than suffixes

URDF & SDF AMBF Format

/body/limb 〈left|right〉 /body/〈left|right〉/limb

/box 〈one|two〉 lid 〈top|down〉 /〈one|two〉/box/〈top|down〉/lid

This is accomplished by overriding the description file’s

global namespace with local namespace parameter in the

respective body(ies) as shown for Body B in Figure 1.

Namespacing is not required for joints as their parents and

children are searched in all the listed namespaces. This

feature of the AMBF not only allows multiple robots and

multi-bodies to exist in one description file, but also the

ability to create different namespacing for sub-structures of a

single robot. One practical example is shown in Table I where

the identical bodies are distinguished by namespaces rather

than the addition of suffixes to their names. Among other

advantages, this allows for the convenience of disseminating

distributed controllers using namespaces rather than breaking

down link names.

A redundant aspect of URDF or SDF is the specification

of resource paths as it is often the case that a robot’s

visual and collision meshes are located in a single OS

directory. However, a qualified path for the mesh needs

to be defined for each link. This is somewhat simplified

by the use of “package” or “model” tags as base names,

which are resolved to the base folder of a “package” or

the “.gazebo/model” folder respectively. The AMBF format

simplifies this by separating the mesh’s name from its path.

Towards this end, two global resource paths are defined in

the AMBF description’s header shown in Figure 1 (for visual

and collision geometry). Similar to the global namespace

parameter, the mesh resource paths can be overridden locally

in the body’s description, thus allowing multiple paths in a

single description file. Additionally, the mesh path can either

be relative or absolute. This greatly improves the readability

and manageability of the AMBF description files.

E. Support for Soft Bodies

The AMBF format provides support for soft bodies in

addition to rigid bodies. Soft-bodies are defined almost

identically to rigid bodies except for additional solver data.

The AMBF simulator uses the Bullet’s soft body solvers

for simulating the interaction. It is recommended to use a

significantly lower resolution collision, which is then used

as a skeleton for the high density visual mesh. Currently,

there are 22 optional parameters that can be used to tune the

behavior of a soft body. Some of these parameters include

properties such as the magnitude of pressure and volume

constraints and elongation, flexion and torsion of underlying

nodes (vertices). A detailed discussion of all the parameters

is beyond the scope of this manuscript. It should be noted

that simulating a soft body does not guarantee real-time

dynamic update and has only experimental support in the

AMBF simulator at the moment.

TABLE II: Contents of payloads for afState and afCommand

for afObject and afWorld

afWorld afObject

afState afCommand afState afCommand

- - Base Frame Base Frame

Msg Num - Msg Num Msg Num

Server Time Client Time Server Time Client Time

Sim Time - Sim Time -

Num Devs Ena Throttle Name Ena Pos Ctrl

Dyn Freq Clock Mass & Inertia Pose

- Jump Steps Transform Wrench

- - Children[] -

- - Joint Names[] Pos Ctrlr Mask[]

- - Joint Positions[] Joint Cmds[]

F. Communication Payloads

Unlike other robot dynamics simulators, the AMBF sim-

ulator does not require any intermediate steps to prepare

for bi-directional communication. The bodies defined in the

AMBF format are designed to satisfy the communicability

and controlability requirement. An important utility of the

AMBF Framework is the capacity to interact with the bodies

and constraints using a well-defined communication pipeline.

Each body initiates a thread for its bidirectional communi-

cation using an Inter Process Communication (IPC) medium

(via ROS topics). The outgoing communication provides

information about the body’s state and is conveniently called

the afState message, while the incoming message is called

afCommand. Similar to a body, there is a single instance for

communication of world’s states/commands. The payloads

of the World/Body messages are summarized in the Table

II.

While most of the payload fields are self-explanatory,

some fields are addressed here. In the afState message,

the ‘children[]’ and ‘joints[]’ fields contain the names of

all the connected bodies and children joints to a specific

body. The field ‘joint positions[]’ contains the position of

the children joints in order of names in the ‘joints[]’ field. In

afCommand message, the field ‘Pose’ and ‘Wrench’ are used

to either set the Position or Wrench of the body in 6-DOF

space. Switching between controlling the body’s position and

wrench is achieved using the ‘Enable Position Control’ field.

‘Joint Commands[]’ is a command vector to be applied to the

children joints of the body in order of names in ‘joints[]’. The

size of this array does not need to match the size of ‘joints[]’.

Finally the ‘Position Controller Mask[]’ field is used to

specify which joint commands are position commands versus

effort commands and is optional as commands are treated

as effort targets by default. The asynchronous nature of

AMBF means that all the bodies are capable of running

their communication sub-routines in independent threads

automatically using the AMBF description file.
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III. COMPATIBILITY OF AMBF WITH EXTERNAL

SOFTWARE

A. URDF to AMBF Conversion

A significant number of robot models haven already been

defined using the URDF format, and arguably, newer robots

would continue to be represented using URDF. To take

advantage of the existing work and community support for

the URDF, a URDF-to-AMBF converter has been developed

in parallel with the design of the AMBF format and simu-

lator. The source code of this converter is available at [8].

The converter uses internally implemented XML parsing to

reduce the reliance on external ROS parsing packages for

portability outside Linux operating systems. As mentioned in

the previous sections, URDF is constrained by design to limit

the links to a single parent. From a design point of view, this

deadlock is enforced by the use of visual and collision offset

data in the link description. These offsets are taken from the

joint frames of relevant links. For the AMBF format, this

visual offset data is used in conjunction with joint data to

develop AMBF constraints based on Algorithm 3.

Algorithm 3 URDF Joint to AMBF Joint

1: if JointType := Fixed then ~axj = ~nz else ~axj = joint.Axis
2: Tpv

j
= (Tp

pv)
−1 ∗ Tp

j
⊲ pv = ParentV isual, p = Parent

3: ~pvtp = Ppv

j
, ~axp = Rpv

j
∗ ~axj ⊲ j = Joint, ax = axis

4: ~pvtc = P cv
j , ~axc = P cv

j ∗ ~axj ⊲ pvt = Pivot
5: ambfRp

c = RotBetweenV ectors( ~axc, ~axp)
6: urdfRp

c = (Rp
pv)

−1 ∗ Rp

j
∗ Rc

cv

7: Rjo = (ambfRp
c )

−1 ∗ urdfRp
c ⊲ jo = JointOffset

8: ~axjo, θjo = toAxisAngle(Rjo)

B. Bi-Directional Usage in Blender

The default simulator for ROS (RViz) does not have the

capabilities to generate robot models. The most recent ver-

sions of Gazebo provide limited support for generating robot

models, but its interface is experimental. Hence, SDF files

are often generated using URDF through script converters.

URDF files can be created using Solidworks (Solidworks

Corp., MA, USA) via Solidworks2URDF converter http:

//wiki.ros.org/sw_urdf_exporter. This versatile

converter has been in active development and the tool of

choice for anyone creating URDFs without handling XML

by hand. While ROS and its derivatives are designed to be

free for research purposes, Solidworks is not. Not only that,

Solidworks lacks support for Linux, which is the OS of

choice for ROS related development. It is worth mentioning

that the Solidworks2URDF converter lacks bi-directional

support in Solidworks (i.e., the generated URDF file cannot

be reused to load the corresponding Solidworks assembly).

Arguably, this can be attributed to the restrictions posed by

Solidwork’s plugin API rather than the converter itself.

Even though the AMBF format has a front-end interface to

allow for the easy creation of simple robots and mechanisms,

a graphical user interface is always helpful in fine-tuning

and creating complex robots and multi-bodies. We sought

out existing software that can be leveraged for this purpose.

A few specifications are outlined for the selection of the

Fig. 3: A subset of robot models already implemented for

the AMBF simulator in Blender. These robots include the da

Vinci Surgical Robot with multiple parallel mechanisms.

corresponding software, which include a “free to share”

license, bi-directional API to generate and load models, com-

munity support and optionally Linux portability. Based on

these specifications, Blender [9] is selected as the graphical

interface for creating AMBF description files (Figure 3).

Notably, the overall user interface of Blender might offer

a relatively steeper learning curve to users unfamiliar with

animation software.

Fig. 4: A few features of the Blender-to-AMBF add-on

include copy pasting robot models, scaling, altering the pose

of any subset of robots/links, visually setting constraints and

inertial properties, creating collision meshes and generat-

ing/loading created AMBF description files.

While Blender enjoys huge community support for graphic

designers, and hence offers extensive features for such, it

has not primarily been used for modeling dexterous robots

and bodies with a significant number of interconnected

constraints. Blender includes basic support for Bullet Physics

for defining constraints and rigid bodies. This support has

been leveraged to create a plugin for generating and loading

AMBF description files (Figure 4). To include bi-directional

usage with Blender, a few simplifications of the AMBF

description are required which are addressed in the following

subsections. The source code for Blender-to-AMBF add-on

is available at [10].

1) Loading AMBFs: Child body’s nz and nx are the de-

fault constraint axis for rotational and translational joints re-

spectively in both Blender and Bullet Physics, while AMBF
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format and simulator do not impose this limitation. To enable

the same model to be circularly compatible with Blender, the

Blender-to-AMBF add-on provides the necessary functional-

ity to alter the multi-body description by adjusting for child

body pivots and axis. Adjusting a body axis and pivot is

not trivial as all the successor bodies must be accounted for.

Since the design philosophy of AMBF separates constraints

from bodies, all the body data (meshes) are imported first

followed by joints, which in turn connect bodies and enforce

world transforms. The pivot and axis correction involves two

algorithms which are necessary to make sure that the entire

connected structure is bidirectionally compatible:

Algorithm 4 Adjust and Store Child Offsets

1: if JointType := Rotational then

2: ~axj = ~nz

3: elseJointType := Translational
4: ~axj = ~nx

5: end if

6: Rcadj

j ← RotBetweenV ectors( ~axj , ~axc)

7: T cadj

j := [Rc
j ,

~pvtc] ⊲ adj = Adjusted

8: ApplyMeshOffset(T cadj

j ) ⊲ c = Child, pvt = Pivot

9: Body OffsetMap [child]← T cadj

j

Figure 5 shows a parent (purple), and a child (turquoise)

and the corresponding joint axes marked with the black rings

for a rotational joint. To create the constraint, the child’s

axis is aligned with the parent using Algorithm 2 as shown

in Figure 5 (b). As illustrated in the Figure, the child’s

constraint axis ( ~ny) is different from the default axis for

rotational constraint type ( ~nz). Algorithm 4 is performed

iteratively for each constraint before the final Algorithm 6

is performed. The goal here is to offset the body meshes

such that the child pivots can be ~0 and the child axis is

set to the default constraint axis. While performing these

mesh offset operations, we keep track of the corresponding

imparted offsets so that they can be used later in Algorithm 6.

These offsets are stored in a map (f : body → T cadj

j ) where

the superscript T cadj

j reiterates that the offset is applied to all

bodies when considered as children, however, they are used

in Algorithm 6 when treated as parents.

The nature of representing joint data using pivot/axis

notation and the correction, thereby using Algorithm 4,

can result in axis misalignment along the constraint axis.

This misalignment occurs when the rotation due to offset

correction occurs outside the plane of rotation between the

parent’s and child’s body axes. The misalignment is best

explained by Figure 6. To account for the imparted axis

misalignment, Algorithm 5 is performed before Algorithm

6.

After adjusting for the child body offset and axis align-

ment, the final step is loading all constraints from the AMBF,

and consequently, assigning the correct body poses, and

eventually, parenting the bodies. This can be summed up

with 5 transformations applied iteratively for each constraint

to the respective bodies in Algorithm 6.

2) Support for Detatched Joints: As stated in the previous

sections, an important goal of the AMBF format is to support

(a) (b)

(c) (d)

Fig. 5: In the sub-figures, the purple and turquoise bodies

represent the parent and child with the constraint axes

marked with the black ring. In (b), the child body is rotated

to form a constraint by aligning ~axp and ~axc. (c) shows the

adjustment required in Blender such that the child body is

rotated to adjust the constraint axis to default ~nz followed

by (d) to align the constraint axes with parent’s axis.

Fig. 6: A visual representation of plane offset between the

plane formed by shortest angle rotation between parent’s and

child’s constraint axes (purple disk) and the rotation plane

of correction axis (green disk).

closed-loop mechanisms and parallel linkages for robots in

an easy manner. While this is conveniently achieved using

the front-end syntax of AMBF description format itself, we

have provided the necessary means to achieve this using

the graphical interface of Blender via Blender-to-AMBF

add-on. Blender does not support multiple parents for an

object, which is necessary for closed-loop mechanisms. To

circumvent this, we use an empty frame with a specific

prefix in its name. This empty frame is then used to define

a constraint by defining a parent and child body. While

parsing through the bodies and constraints in Blender scene

to generate an AMBF description file, we leverage the

Algorithm 5 Axis Alignment

1: Rp

j
= RotBetweenV ectors( ~axj , ~axp)

2: Rpadj

c = Rp

j
Rjadj

c

3: Rp
c = RotBetweenV ectors( ~axc, ~axp)

4: Roff = (Rpadj

c )−1 ∗ Rp
c

5: ~axoff , θoff = ToAxisAngle(Roff )
6: if θoff > ǫ then

7: Rao = FromAxisAngle( ~axc, θoff )

8: Body OffsetMap [child]← RaoT
cadj

j

9: else

10: Body OffsetMap [child]← I4×4

11: end if
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Algorithm 6 Pose Data from AMBF Format

1: if JointType := Rotational then

2: ~axj = ~nz

3: elseJointType := Translational
4: ~axj = ~nx

5: end if

6: Tw
p ← Parent Body’s Pose in World

7: Tbo ← Body OffsetMap [parent]
8: Tp

j
= [I3×3, ~pvtp]

9: Tjo = [Rjo, 0] ⊲ Rjo = FromAxisAngle( ~axj , θjo)
10: T j

c = [Rj
c, 0] ⊲ Rj

c = RotBetweenV ectors( ~axc, ~axj)
11: Tw

c = Tw
p Tbo Tp

j
Tjo T j

c

assigned naming prefix to treat the empty frame as a place

holder rather than an actual empty body. The allows us to

create densely connected bodies robustly without having to

manually touch up the AMBF description file.

Fig. 7: A multi-port view of the underlying simulation using

3 frame-buffers which output to separate windows and can

be dragged around different monitors.

C. Implementation of Multiple View-ports using Camera

Data

One of the design requirements of the AMBF framework

and the AMBF simulator is the ability to manipulate multi-

manual tasks in the real-time dynamic simulation with haptic

feedback. The design goal enables multiple users alongside

AI to share a simulation via haptic/input devices. To this

end, having multi-port frame buffers can assist the users

in performing tasks with their own perspective viewports.

Additionally, the users should potentially posses the camera

control for their view-port independent of the other users

in the simulation. As a result, the prospective design of

the AMBF description format includes support for achiev-

ing multiple viewports and binding input devices to each

(described in Figure 1 for the camera tile). Figure 7 shows

the result of using multiple cameras and thereby achieving

multiple views/windows of the underlying simulation.

IV. RESULTS AND DISCUSSION

The PC setup used for the results in this section consists

of an Intel(R) Core(TM) i7-3770 CPU (3.40GHz), Fujitsu 32

GB DDR3 RAM (1333 MHz) and an Nvidia GTX 1060 (8

Fig. 8: A simulation with several manipulators running in

real-time. The labeled manipulators (ECM and PSM) have

two connected closed-loop mechanism while the MTM has

one closed-loop mechanism.

Fig. 9: Each column shows the joint control of a different

manipulator labeled underneath. The last row shows the

dynamic update frequency of physics simulation. The ECM’s

and PSM’s 3rd graph depicts a translational joint while all

the joints of the MTM are rotational.

GB RAM) GPU running Ubuntu 18.04. We demonstrate the

controller performance of multiple closed-loop robots in the

simulation environment using ROS communication as IPC.

The robots shown in Figure 8 are commanded at 1 kHz. The

joints are controlled in position control mode and labeled

in Figure 9. The inertial parameters of the PSM and MTM

have been computed by Yan et.al [11] and can be utilized

in the AMBF description files. As shown in Figure 9, the

joint response at 1 kHz of communication frequency remains

stable and robust.

Fig. 10: The loading vs unloading times for simulators with

increasing number of complex robot models. The simulators

are loaded using the bash terminal.

The AMBF simulator was designed to reduce computa-

tional overheads and enable efficient loading and unloading
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of models. This also assists in the workflow of developing

a multi-body representation using Blender-to-AMBF add-on

and quickly loading it in the AMBF Simulator. We present

the loading times of multiple robots in parallel with multiple

closed loop constraints and compare them with Gazebo and

RViz using similar models and identical system load. As

evident from Figure 10, not only does the AMBF simulator

outperform Gazebo and RViz in terms of loading speed and

controller performance, it also outperforms in the cleanup

speed.

Fig. 11: WPI’s Neuro Surgery Robot Model using the

Blender-to-AMBF add-on. The robot consists of a 6 bar

linkage at the base and an inter-connected 8 bar linkage at

the top. The robot is controlled using ROS topics at 1 kHz

communication frequency.

Another demonstration of a complex robot (WPI’s Neuro

Robot [12]) and its controller performance is shown is Figure

11. The URDF description of the robot was developed at

[13] and is converted using the URDF-to-AMBF converter.

The AMBF model is then loaded in Blender using the

Blender-to-AMBF add-on to create parallel linkages and then

adding visual details and colors to the Robot. Using the IPC

controllers, various joints of the robot have been excited to

follow a different sinusoidal frequency.

Finally, we present a key feature of the AMBF Simulator

(and the AMBF format) where several input devices (hap-

tic/tracker) can be used to interact with a dynamic environ-

ment shown in Figure 12. The goal here is to demonstrate

the application of real-time dynamic haptic interaction with

simulated robots to perform tasks with shared autonomy.

In addition to interacting with simulated robots, the input

devices can be bound to any camera (view-ports shown in

Figure 7) which allow for hand-eye coordination w.r.t. the

camera and also allow the devices to move the camera itself.

A supplementary video demonstrates the additional features

of the AMBF Simulator.

Future goals for the AMBF Simulator and Framework

include bi-directional support with URDF and SDF and

improved performance of soft body simulations. Dedicated

Graphics Processing Units (GPU) need to be leveraged to

improve the speed of Softbody simulations. Some work has

already been done, but the nature of GPU compute languages

and varying features of different GPUs makes portability dif-

ficult. The source code for the AMBF Framework, Simulator

and its supported software can be found at [14].

Fig. 12: Interaction with Simulated Multi Manual Puzzles

defined using AMBF Format.
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