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Abstract— Robot Dynamic Simulators offer convenient im-
plementation and testing of physical robots, thus accelerating
research and development. While existing simulators support
most real-world robots with serially linked kinematic and
dynamic chains, they offer limited or conditional support for
complex closed-loop robots. On the other hand, many of the
underlying physics computation libraries that these simulators
employ support closed-loop kinematic chains and redundant
mechanisms. Such mechanisms are often utilized in surgical
robots to achieve constrained motions (e.g., the remote center
of motion (RCM)). To deal with such robots, we propose a new
simulation framework based on a front-end description format
and a robust real-time dynamic simulator. Although this study
focuses on surgical robots, the proposed format and simulator
are applicable to any type of robot. In this manuscript, we
describe the philosophy and implementation of the front-end
description format and demonstrate its performance and the
simulator’s capabilities using simulated models of real-world
surgical robots.

I. INTRODUCTION

The Universal Robot Description Format (URDF) is one of
the most widely used representation formats for robots. There
are other formats that are either driven from URDF (Standard
Description Format (SDF) [1]) or allow conversion from
URDF (such as MuJoCo [2] format and V-REP Simulator
[3]). Arguably, URDF played a pivotal role in the success and
community adoption of Robot Operating System (ROS) [4]
and is tailored to serial manipulators and robots. While there
are ways to visually achieve redundant mechanisms using
mimic tags, realistic closed-loop constraints are not possible
as the limitation broadly comes from the design philosophy
of URDF. The idea of a robot, as envisioned by URDEF, is a
spatial tree of bodies wherein the joints are essential parts of
the links. While this philosophy is the foundational building
block of kinematics and visualizations using the default ROS
simulator RViz (and derivative software such as Movelt),
it thwarts the ability to define unconnected, sparsely and
densely connected combination of bodies.

The Simulation Description Format (SDF) is employed by
the Gazebo Simulator [1] and is similar to the URDF in many
core aspects while defining serial robots. SDF addresses the
key limitation of the URDF in defining closed-loop mecha-
nisms, however, the latest Gazebo simulator (9.0) does not
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support direct control of parallel linkages using ROS. While
URDF can only define a single robot per description file,
SDF has the capacity to support the distributed description of
robots. Moreover, SDF is designed for more general purpose
use with support for environment entities such as lighting,
scene-objects, and sensors. For the purpose of this discussion,
we shall limit the role of the current robot description formats
in their capability to represent kinematic/dynamic objects and
not necessarily environmental/scene objects.

Both the URDF and SDF (and even MuJoCo) use XML
language, which although historically has been used to store
and transmit configuration and description data, is not known
for human readability. This limitation has somewhat been
the reason behind the development of other markup lan-
guages such as JavaScript Object Notation (JSON) https:
//www.Jjson.org/ and Yet Another Markup Language
(YAML) https://yaml.org/ . While XML retains its
place as the back-end tool for data storage, YAML and JSON
are gaining wide adoptability in front-end applications. In
addition to the readability component, both JSON and YAML
are feature-rich as compared to XML. For example, YAML
provides inherent support for macros in the form of anchors,
which tend to be useful for specification of properties.

Gazebo [1] is supported across major operating systems
(e.g., Microsoft Windows, Mac OS, and Linux), however, it
is used most commonly with ROS (Linux). While Gazebo is
feature-rich and allows for robust support for a large number
of sensors as loadable plugins, its support with URDF, and
consequently external control via ROS-topics is complicated
and non-robust. In fact, the process of going from a URDF to
SDF, and eventually loading joint controllers, communicable
using ros-topics/ros-services, is lengthy and repetitive even
for advanced users. Some of this complexity can be attributed
to ros_control and ros_controllers packages which form
the backbone of control via ROS. Even after a successful
bridge between ROS and Gazebo has been established, joint
control for connected bodies requires extra steps since the
joints must be controlled independently using messages and
services. There are of course ways to simplify the segregation
of joint controllers by using wrappers, such as the Gazebo
plug-in for da Vinci Surgical Robot [5]. While this might
not pose an issue for simpler robots with a limited number
of joints, it creates unnecessary complexity for real-world
surgical robots.
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II. THE AMBF FORMAT

Based on the limitations of the robot description formats,
and consequently robot simulators elaborated in Section I
the following metrics are outlined for the proposed Asyn-
chronous Multi-Body Framework Format (AMBF Format):

o Human Readability: One of the design motivations
behind the Asynchronous Multi-Body Framework For-
mat (AMBF Format or AMBF description file) is
human readability, and consequently modification by
hand. AMBF Format’s design philosophy places robot
description at the front-end for creating, modifying and
distributed testing of multi-bodies.

« Distributed Definition: All the relevant data for a single
body/constraint/environmental object should be con-
tained in the relevant definition block. Removal of the
data block should not affect any other body/constraint.

o Constraint Handling: A body could have multiple
constraints (joints), and each constraint is defined in-
dependently of other constraints. Addition/removal of a
constraint should not alter any other constraint except
for the physical/dynamic implications.

« Controllability: In this context, controllability refers to
the ability to apply forces on the body internally or
externally from the running simulation independent of
the other bodies. The connected bodies react passively
based on the type of constraint they share.

o Communicability: This refers to the ability to relay
information about all aspects of every body independent
from each other. This information can include the
constraints this body forms with all of its connected
bodies but not necessarily the information of bodies
themselves.

e Dynamic Loading: This defines the ability to add
bodies at run-time and even define constraints between
newly added bodies with existing bodies.

A. Anatomy of AMBF Format

The AMBF simulator was designed around the AMBF
format to demonstrate its capabilities. The AMBF simulator
uses several external packages that include Bullet Physics [6]
and CHAI-3D [7]. The types of data in the AMBF format
can be separated into various different types that include
World Data, Rigid Body Data, Soft Body Data, Constraint
Data, Lighting Data, Camera (View-port) Data and Input
Device Data. The flexibility of the AMBF format allow not
only for the definition of multiple robots and multi-bodies in
one description file, but also for the separation of a single
robot/multi-body in multiple description files, which is in line
with the Distributed Definition metric. As an implementation
example, all the body data for one robot can be defined in one
or more description files, whereas the constraint (joint) data
can be placed in separate file(s). The AMBF description files
are written based on the AMBF Format. Figure 1 outlines the
components of the AMBF description file (placed in tiles for
emphasis but are written sequentially). The contents of the
yellow tile are placed at the top and consist of global param-
eters applicable to the rest of the description file. Debugging

=
1bodies: [ Body A, Body B | 1 Joint A-B:
\ioints: [ Joint A-B ] | - parent: Body A
Icamera: [Camera Top ] 1 child: Body B

1

1

parent axis: {x: 0, y: 0, z: 1}
parent pivot: {x: 0, y: 0.1, z: 0.5}
child axis: {x: 1, y: 0, z: 0}

child pivot: {x: 0, y: -0.1, z: 0}
type: revolute

controller: {P: 10, I: 0, D: 0.1}

\lights: [ Bulb ]
_________________________
high resolution path: ./meshes/high_res

low resolution path: ./meshes/high_res
namespace: /ambf/env/human/

e

Body A:
- name: Torso
- location: - inertial offset:

- position: {x: 0, y: 0, z: 0} - position: {x: 0, y: 0, z: 0}
- orientation: {r: 0, p: 0, y: 0} namespace: /movable/
- mass: 45 mass: 10
- inertia: {ix: 6, iy: 10, iz: 8} linear controller: {P: 5, D: 0.1}
- mesh: Torso.stl mesh: Head.stl

Body B:
- name: Head

Camera Top:

- location: {x: 0.5, y: -0.5, z: 2.5} - location: {x: 3.0, y: -3.0, z: 2.0}
- direction: {x: 0, y: 0, z: -1.0} look at: {x: 0.0, y: 0.0, z: -0.5}
- spot exponent: 0.3 up: {x: 0.0, y: 0.0, z: 1.0}

- shadow quality: 5 clipping: {near: 0.01, far: 10.0}
- cutoff angle: 0.7 field view angle: 0.7
controlling devices: [Falcon]

Fig. 1: The anatomy of AMBF format. The yellow tile forms
the header and consists of global parameters and header lists
which are highlighted with the purple dotted border. The red
tile represents a constraint, green represents bodies and blue
represents scene objects. The blue text highlights optional
parameters.

robot/multi-body models by ignoring certain sub-components
of the model is often an overlooked and understated design
feature of robot description formats. Commenting out parts
of the robot description is helpful, not only for debugging,
but also for testing sub-components of a model in isolation.
To ignore certain objects from loading in URDF or SDF, the
required object’s description spanning several lines needs to
be commented out. AMBF’s design specification uses header
lists (emphasized by the dotted purple border in the yellow
tile in Figure 1). The header lists are the entry point of the
document such that bodies, visual elements and constraints
are processed based on the content of these lists. Instead of
having to comment out multiple lines of object data, it is
sufficient to remove the object from header list of its type.
The ignored description block does not affect the loading
of any other body or constraint since the AMBF simulator,
it’s derivatives and the AMBF format are implemented while
considering the Distributed Definition, Constraint Handling
and Dynamic Loading specifications.

B. Densely Connected Tree of Bodies

To generate non-connected, semi-connected or densely
connected bodies, we employ a combination of a graph
network and a densely interconnected tree structure. Figure
2 illustrates an example of this composite structure. Unlike
other formats where the parent refers to the immediate
predecessor body, we relax this limitation by classifying all
the predecessors of the body as its parents. While the relax-
ation of such parent hierarchy might seem counterintuitive
in traditional robot representation formats, this relaxation is
essential to meet the defined metrics of AMBF.

The Table in Figure 2 shows the resulting population of
each body’s lineage. It should be noted that the lineage path
from one body to another may lead from multiple routes as
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Fig. 2: Densely connected bodies with the corresponding
lineage for each body shown on the right.

is the case between bodies (A — B) and (F' — FE). In such
cases, we restrict adding children/parents redundantly to a
body’s lineage. To achieve the fully connected tree, we use
an upward and a downward pass for each added constraint.
Algorithm 1 sums the process of adding a constraint. At
the end of all passes, each object maintains references to all
the successor joints while all the children register references
to all the predecessor bodies. It’s important to note that
in the case of diverging leaf nodes at a specific body, the
predecessor bodies contain the references to all the children
in every leaf node, however, the successors in leaf nodes are
unaware of bodies in other leaves.

Algorithm 1 Add Constraint Algorithm

1: function ADD JOINT(joint, parent, child)

2: p := parent, c := child

3: c.Parents < p, p.Children <+ c, p.Joints < joint
4: UpwardTreePass(p)

5: DownwardTreePass(c)

6: end function

7: function UPWARD TREE PASS(body)

8: P := body.Parents, C := body.Children

9: for p € P do

10: for c € C do

11: p.Children U C & p.Joints U c.Joints
12: end for

13: end for

14: end function

15: function DOWNWARD TREE PASS(body)

16: P := body.Parents, C := body.Children
17: for c € C do

18: for p € P do

19: c.Parents U p.Parents
20: end for

21: end for

22: end function

C. Convention of Constraint Definition

Constraints are used to connect two bodies in certain
ways that limit their relative motion. In robot applications,
the constraints can broadly be classified into two founda-
tional types, the rotational constraint (revolute and hinge)
and the translational constraint (prismatic and slider). Other
constraints such as springs, cams, gears and 6 DOF joints
can be built with the combination of foundational types.
Fixed constraints present a special case, but can also be
implemented with either of the foundational types.

In alignment with the design philosophy of the Asyn-
chronous Framework, constraints are defined in a slightly
different manner as compared to URDF or SDF. In URDF,
the joint is treated at the origin of the child body or vice-
versa, and two additional fields are used to set the offset

of the child body’s visual mesh and the collision mesh.
Furthermore, these visual and collision offsets are defined
in the body’s definition, while the child origin (joint origin)
is defined in the joint description. This distribution of data
breaks the Asynchronous Design since, to get a complete
specification of the interconnection between two bodies, it
is necessary to parse the data beyond what is just defined in
the constraint description.

In the AMBF Constraint definition, a body’s origin is
always treated as the base frame of its representative mesh.
The way AMBF’s constraint definition differs from URDF
or SDF is by treating the constraint origin as independent
of the child’s or parent’s body origin. As a result, two fields
- namely pivot and axis - are used for the parent and the
child. The pivot defines the location of the constraint from
the body’s origin in Cartesian space, and the axis defines the
free axis in the body’s frame. This convention requires less
parameters to fully define an interconnection ( 13 = [parent’s
pivot (3) + parent’s axis (3) + child’s pivot (3) + child’s axis
(3) + offset (1)] ) as compared to URDF or SDF (15 = [joint’s
XYZ (3) + joints’s RPY (3) + joints’s axis (3) + child’s offset
XYZ (3) + child’s offset RPY (3)] ). While this description
is sufficient in constraining the two bodies, an extra scalar
parameter is required to define the rotational offset along the
parent axis between the two bodies. This offset is discussed
in detail in section III-B.

The direct use of parent/child axes to build constraints em-
phasizes the front-end nature of AMBF, which consequently
makes the specification of robots and multi-bodies easier.
This, however, adds more work at the back-end where the
constraints are actually parsed and processed. Internally, joint
transforms w.r.t. the parent body and child transforms w.r.t.
to the joint have to be computed. A unified convention to
define the rotation represented by axes in the parent/child
body frame is required. This convention utilizes the plane
formed by the two axes (aZ, and aZ.) to define a rotation
matrix. This rotation is trivial except for the case where the
two axes are parallel to each other since there exist an infinite
number of rotation planes. To address such cases, Algorithm
2 is adopted across the AMBF Framework, AMBF Simulator,
Blender-to-AMBF add-on (III-B) and the URDF-to-AMBF
converter (III-A). In the Algorithm, S denotes the Skew-
Symmetric matrix, @ X b denotes the vector cross product,
I35 is the 3 x 3 Identity matrix and 7, 71, 1, are the three
unit vectors.

Algorithm 2 Convention for Rotation Between Vectors

1: if abs(d@.b) < 1 — e then RE = Isx3

2: elseif @ IV & then

3: RE=1Isxs+S(@xb)+5(@xb)2(1—ab)/(@xb)?
4: else if @ | 71, then R = AzisAngle(@ x 1}, )

5: else RY = AwisAngle(@ X 11y, )

6: end if

D. Flexibility of Namespacing and Resource Paths

The foundational structure of AMBF Format allows for
the use of multiple namespaces in a single description file.
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TABLE I: Simplifying redundant names using namespaces
rather than suffixes

[ URDF & SDF [
/body/limb_(left|right)
/box_{one|two)_lid_{top]|down)

AMBF Format ]
/body/(left|right)/limb
/{one[two)/box/{top|down)/lid

This is accomplished by overriding the description file’s
global namespace with local namespace parameter in the
respective body(ies) as shown for Body B in Figure 1.
Namespacing is not required for joints as their parents and
children are searched in all the listed namespaces. This
feature of the AMBF not only allows multiple robots and
multi-bodies to exist in one description file, but also the
ability to create different namespacing for sub-structures of a
single robot. One practical example is shown in Table I where
the identical bodies are distinguished by namespaces rather
than the addition of suffixes to their names. Among other
advantages, this allows for the convenience of disseminating
distributed controllers using namespaces rather than breaking
down link names.

A redundant aspect of URDF or SDF is the specification
of resource paths as it is often the case that a robot’s
visual and collision meshes are located in a single OS
directory. However, a qualified path for the mesh needs
to be defined for each link. This is somewhat simplified
by the use of “package” or “model” tags as base names,
which are resolved to the base folder of a “package” or
the “.gazebo/model” folder respectively. The AMBF format
simplifies this by separating the mesh’s name from its path.
Towards this end, two global resource paths are defined in
the AMBF description’s header shown in Figure 1 (for visual
and collision geometry). Similar to the global namespace
parameter, the mesh resource paths can be overridden locally
in the body’s description, thus allowing multiple paths in a
single description file. Additionally, the mesh path can either
be relative or absolute. This greatly improves the readability
and manageability of the AMBF description files.

E. Support for Soft Bodies

The AMBF format provides support for soft bodies in
addition to rigid bodies. Soft-bodies are defined almost
identically to rigid bodies except for additional solver data.
The AMBF simulator uses the Bullet’s soft body solvers
for simulating the interaction. It is recommended to use a
significantly lower resolution collision, which is then used
as a skeleton for the high density visual mesh. Currently,
there are 22 optional parameters that can be used to tune the
behavior of a soft body. Some of these parameters include
properties such as the magnitude of pressure and volume
constraints and elongation, flexion and torsion of underlying
nodes (vertices). A detailed discussion of all the parameters
is beyond the scope of this manuscript. It should be noted
that simulating a soft body does not guarantee real-time
dynamic update and has only experimental support in the
AMBEF simulator at the moment.

TABLE II: Contents of payloads for afState and afCommand
for afObject and afWorld

afWorld afObject
afState afCommand afState afCommand
- - Base Frame Base Frame
Msg Num - Msg Num Msg Num
Server Time Client Time Server Time Client Time
Sim Time - Sim Time -
Num Devs Ena Throttle Name Ena Pos Ctrl
Dyn Freq Clock Mass & Inertia Pose
- Jump Steps Transform Wrench
- - Children[] -
- - Joint Names|[] Pos Ctrlr Mask[]
- - Joint Positions[] Joint Cmds[]

F. Communication Payloads

Unlike other robot dynamics simulators, the AMBF sim-
ulator does not require any intermediate steps to prepare
for bi-directional communication. The bodies defined in the
AMBEF format are designed to satisfy the communicability
and controlability requirement. An important utility of the
AMBF Framework is the capacity to interact with the bodies
and constraints using a well-defined communication pipeline.
Each body initiates a thread for its bidirectional communi-
cation using an Inter Process Communication (IPC) medium
(via ROS topics). The outgoing communication provides
information about the body’s state and is conveniently called
the afState message, while the incoming message is called
afCommand. Similar to a body, there is a single instance for
communication of world’s states/commands. The payloads
of the World/Body messages are summarized in the Table
1L

While most of the payload fields are self-explanatory,
some fields are addressed here. In the afState message,
the ‘children[]’ and ‘joints[]’ fields contain the names of
all the connected bodies and children joints to a specific
body. The field ‘joint positions[]’ contains the position of
the children joints in order of names in the ‘joints[]’ field. In
afCommand message, the field ‘Pose’ and ‘“Wrench’ are used
to either set the Position or Wrench of the body in 6-DOF
space. Switching between controlling the body’s position and
wrench is achieved using the ‘Enable Position Control’ field.
‘Joint Commands[]’ is a command vector to be applied to the
children joints of the body in order of names in ‘joints[]’. The
size of this array does not need to match the size of ‘joints[]’.
Finally the ‘Position Controller Mask[]’ field is used to
specify which joint commands are position commands versus
effort commands and is optional as commands are treated
as effort targets by default. The asynchronous nature of
AMBF means that all the bodies are capable of running
their communication sub-routines in independent threads
automatically using the AMBF description file.
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III. COMPATIBILITY OF AMBF WITH EXTERNAL
SOFTWARE

A. URDF to AMBF Conversion

A significant number of robot models haven already been
defined using the URDF format, and arguably, newer robots
would continue to be represented using URDF. To take
advantage of the existing work and community support for
the URDF, a URDF-to-AMBF converter has been developed
in parallel with the design of the AMBF format and simu-
lator. The source code of this converter is available at [8].
The converter uses internally implemented XML parsing to
reduce the reliance on external ROS parsing packages for
portability outside Linux operating systems. As mentioned in
the previous sections, URDF is constrained by design to limit
the links to a single parent. From a design point of view, this
deadlock is enforced by the use of visual and collision offset
data in the link description. These offsets are taken from the
joint frames of relevant links. For the AMBF format, this
visual offset data is used in conjunction with joint data to
develop AMBF constraints based on Algorithm 3.

Algorithm 3 URDF Joint to AMBF Joint

. if JointType := Fized then aZ; = n. else aZ; = joint. Axis

: TJP“ = (TI];’U)_1 * T]P > pv = ParentVisual,p = Parent
: put, = PP, aZp = RYY * aZ;

> j = Joint, ax = axis
pote = P, aZ, = PV al;

ambfRY = RotBetweenV ectors(aZ., aZy)
curdfRY = (Rgv)_1 * R;’ * R,

: Rj, = (ambfRP)™! x urdf RP

I ajo, 05, = toAxisAngle(R;,)

> pvt = Pivot

> jo = JointOf fset

P U W=

B. Bi-Directional Usage in Blender

The default simulator for ROS (RViz) does not have the
capabilities to generate robot models. The most recent ver-
sions of Gazebo provide limited support for generating robot
models, but its interface is experimental. Hence, SDF files
are often generated using URDF through script converters.
URDF files can be created using Solidworks (Solidworks
Corp., MA, USA) via Solidworks2URDF converter http:
//wiki.ros.org/sw_urdf_exporter. This versatile
converter has been in active development and the tool of
choice for anyone creating URDFs without handling XML
by hand. While ROS and its derivatives are designed to be
free for research purposes, Solidworks is not. Not only that,
Solidworks lacks support for Linux, which is the OS of
choice for ROS related development. It is worth mentioning
that the Solidworks2URDF converter lacks bi-directional
support in Solidworks (i.e., the generated URDF file cannot
be reused to load the corresponding Solidworks assembly).
Arguably, this can be attributed to the restrictions posed by
Solidwork’s plugin API rather than the converter itself.

Even though the AMBF format has a front-end interface to
allow for the easy creation of simple robots and mechanisms,
a graphical user interface is always helpful in fine-tuning
and creating complex robots and multi-bodies. We sought
out existing software that can be leveraged for this purpose.
A few specifications are outlined for the selection of the

Fig. 3: A subset of robot models already implemented for
the AMBF simulator in Blender. These robots include the da
Vinci Surgical Robot with multiple parallel mechanisms.

corresponding software, which include a “free to share”
license, bi-directional API to generate and load models, com-
munity support and optionally Linux portability. Based on
these specifications, Blender [9] is selected as the graphical
interface for creating AMBF description files (Figure 3).
Notably, the overall user interface of Blender might offer
a relatively steeper learning curve to users unfamiliar with
animation software.

Load AMBF YAML Config

Fig. 4: A few features of the Blender-to-AMBF add-on
include copy pasting robot models, scaling, altering the pose
of any subset of robots/links, visually setting constraints and
inertial properties, creating collision meshes and generat-
ing/loading created AMBF description files.

While Blender enjoys huge community support for graphic
designers, and hence offers extensive features for such, it
has not primarily been used for modeling dexterous robots
and bodies with a significant number of interconnected
constraints. Blender includes basic support for Bullet Physics
for defining constraints and rigid bodies. This support has
been leveraged to create a plugin for generating and loading
AMBF description files (Figure 4). To include bi-directional
usage with Blender, a few simplifications of the AMBF
description are required which are addressed in the following
subsections. The source code for Blender-to-AMBF add-on
is available at [10].

1) Loading AMBFs: Child body’s n, and n, are the de-
fault constraint axis for rotational and translational joints re-
spectively in both Blender and Bullet Physics, while AMBF
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format and simulator do not impose this limitation. To enable
the same model to be circularly compatible with Blender, the
Blender-to-AMBF add-on provides the necessary functional-
ity to alter the multi-body description by adjusting for child
body pivots and axis. Adjusting a body axis and pivot is
not trivial as all the successor bodies must be accounted for.
Since the design philosophy of AMBF separates constraints
from bodies, all the body data (meshes) are imported first
followed by joints, which in turn connect bodies and enforce
world transforms. The pivot and axis correction involves two
algorithms which are necessary to make sure that the entire
connected structure is bidirectionally compatible:

Algorithm 4 Adjust and Store Child Offsets

. if JointType := Rotational then

a; =n,

: elseJointType := Translational

aZj = ny

. end if

R;?a - RotBetweenVectors(aZ;,aZ.)

c® c e
T = [R], pvtc] .
: ApplyMeshOffset(cha 7 )
: Body Of fset Map [child] + TJ-Cad]

@i
/ > adj = Adjusted

> ¢ = Child, pvt = Pivot

R A R e

Figure 5 shows a parent (purple), and a child (turquoise)
and the corresponding joint axes marked with the black rings
for a rotational joint. To create the constraint, the child’s
axis is aligned with the parent using Algorithm 2 as shown
in Figure 5 (b). As illustrated in the Figure, the child’s
constraint axis (riy) is different from the default axis for
rotational constraint type (n3). Algorithm 4 is performed
iteratively for each constraint before the final Algorithm 6
is performed. The goal here is to offset the body meshes
such that the child pivots can be 0 and the child axis is
set to the default constraint axis. While performing these
mesh offset operations, we keep track of the corresponding
imparted offsets so that they can be used later in Algorithm 6.
These offsets are stored in a map (f : body — chadj) where

the superscript Tfﬂd] reiterates that the offset is applied to all
bodies when considered as children, however, they are used
in Algorithm 6 when treated as parents.

The nature of representing joint data using pivot/axis
notation and the correction, thereby using Algorithm 4,
can result in axis misalignment along the constraint axis.
This misalignment occurs when the rotation due to offset
correction occurs outside the plane of rotation between the
parent’s and child’s body axes. The misalignment is best
explained by Figure 6. To account for the imparted axis
misalignment, Algorithm 5 is performed before Algorithm
6.

After adjusting for the child body offset and axis align-
ment, the final step is loading all constraints from the AMBF,
and consequently, assigning the correct body poses, and
eventually, parenting the bodies. This can be summed up
with 5 transformations applied iteratively for each constraint
to the respective bodies in Algorithm 6.

Lk ES

(c) ()]

Fig. 5: In the sub-figures, the purple and turquoise bodies
represent the parent and child with the constraint axes
marked with the black ring. In (b), the child body is rotated
to form a constraint by aligning aZ, and aZ.. (c) shows the
adjustment required in Blender such that the child body is
rotated to adjust the constraint axis to default n; followed
by (d) to align the constraint axes with parent’s axis.

Fig. 6: A visual representation of plane offset between the
plane formed by shortest angle rotation between parent’s and
child’s constraint axes (purple disk) and the rotation plane
of correction axis (green disk).

closed-loop mechanisms and parallel linkages for robots in
an easy manner. While this is conveniently achieved using
the front-end syntax of AMBF description format itself, we
have provided the necessary means to achieve this using
the graphical interface of Blender via Blender-to-AMBF
add-on. Blender does not support multiple parents for an
object, which is necessary for closed-loop mechanisms. To
circumvent this, we use an empty frame with a specific
prefix in its name. This empty frame is then used to define
a constraint by defining a parent and child body. While
parsing through the bodies and constraints in Blender scene
to generate an AMBF description file, we leverage the

Algorithm 5 Axis Alignment

: R;.) = RotBetweenVectors(aZ;, aZp)
dj sadj
: R = pPRI™
R? = RotBetweenVectors(aZ., aZp)
padi 1 »
 Rosyp = (RY 7)™ xR

c
axgff, 005 = ToAxisAngle(Royf)
2 if 0,55 > € then

Rao = FromAxisAngle(aZc, 0o¢f)
8: Body Of fset Map [child] + Raocha

NouE Wy o

dj

9: else
2) Support for Detatched Joints: As stated in the previous  10:  Body Of fset Map [child] < I1x4
sections, an important goal of the AMBF format is to support 11 end if
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Algorithm 6 Pose Data from AMBF Format
1: if JointType := Rotational then

2: a; =mn

3: elseJointType := Translational

4: at; = my

5: end if

6: T, + Parent Body’s Pose in World

7: Tpo < Body O f fset Map [parent]

8: TJP = [I3x3, pvtp)

9: Tjo = [Rj0, 0] > Rj, = FromAxisAngle(aZy, 0;,)
10: T? = [R,0] ) > R! = RotBetweenVectors(aZ., aZ;)
1 T =T, Tyo TV Ty T?

assigned naming prefix to treat the empty frame as a place
holder rather than an actual empty body. The allows us to
create densely connected bodies robustly without having to
manually touch up the AMBF description file.

Fig. 7: A multi-port view of the underlying simulation using
3 frame-buffers which output to separate windows and can
be dragged around different monitors.

C. Implementation of Multiple View-ports using Camera
Data

One of the design requirements of the AMBF framework
and the AMBF simulator is the ability to manipulate multi-
manual tasks in the real-time dynamic simulation with haptic
feedback. The design goal enables multiple users alongside
Al to share a simulation via haptic/input devices. To this
end, having multi-port frame buffers can assist the users
in performing tasks with their own perspective viewports.
Additionally, the users should potentially posses the camera
control for their view-port independent of the other users
in the simulation. As a result, the prospective design of
the AMBF description format includes support for achiev-
ing multiple viewports and binding input devices to each
(described in Figure 1 for the camera tile). Figure 7 shows
the result of using multiple cameras and thereby achieving
multiple views/windows of the underlying simulation.

IV. RESULTS AND DISCUSSION

The PC setup used for the results in this section consists
of an Intel(R) Core(TM) 17-3770 CPU (3.40GHz), Fujitsu 32
GB DDR3 RAM (1333 MHz) and an Nvidia GTX 1060 (8

Fig. 8: A simulation with several manipulators running in
real-time. The labeled manipulators (ECM and PSM) have
two connected closed-loop mechanism while the MTM has
one closed-loop mechanism.
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Fig. 9: Each column shows the joint control of a different
manipulator labeled underneath. The last row shows the
dynamic update frequency of physics simulation. The ECM’s
and PSM’s 3rd graph depicts a translational joint while all
the joints of the MTM are rotational.

GB RAM) GPU running Ubuntu 18.04. We demonstrate the
controller performance of multiple closed-loop robots in the
simulation environment using ROS communication as IPC.
The robots shown in Figure 8 are commanded at 1 kHz. The
joints are controlled in position control mode and labeled
in Figure 9. The inertial parameters of the PSM and MTM
have been computed by Yan et.al [11] and can be utilized
in the AMBF description files. As shown in Figure 9, the
joint response at 1 kHz of communication frequency remains
stable and robust.

W Gazebo W AMBF W RViz
Cleanup Times

W Gazebo W AMBF Rviz
Load Times

Time (s)
o N & o ®
Time (s)

° & ®

1 4 1 4

2 3 2 3
Number of Robot Models Number of Robot Models

Fig. 10: The loading vs unloading times for simulators with
increasing number of complex robot models. The simulators
are loaded using the bash terminal.

The AMBF simulator was designed to reduce computa-
tional overheads and enable efficient loading and unloading
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of models. This also assists in the workflow of developing
a multi-body representation using Blender-to-AMBF add-on
and quickly loading it in the AMBF Simulator. We present
the loading times of multiple robots in parallel with multiple
closed loop constraints and compare them with Gazebo and
RViz using similar models and identical system load. As
evident from Figure 10, not only does the AMBF simulator
outperform Gazebo and RViz in terms of loading speed and
controller performance, it also outperforms in the cleanup
speed.

rad.

rad’

time

Fig. 11: WPI’s Neuro Surgery Robot Model using the
Blender-to-AMBF add-on. The robot consists of a 6 bar
linkage at the base and an inter-connected 8 bar linkage at
the top. The robot is controlled using ROS topics at 1 kHz
communication frequency.

Another demonstration of a complex robot (WPI’s Neuro
Robot [12]) and its controller performance is shown is Figure
11. The URDF description of the robot was developed at
[13] and is converted using the URDF-to-AMBF converter.
The AMBF model is then loaded in Blender using the
Blender-to-AMBF add-on to create parallel linkages and then
adding visual details and colors to the Robot. Using the IPC
controllers, various joints of the robot have been excited to
follow a different sinusoidal frequency.

Finally, we present a key feature of the AMBF Simulator
(and the AMBF format) where several input devices (hap-
tic/tracker) can be used to interact with a dynamic environ-
ment shown in Figure 12. The goal here is to demonstrate
the application of real-time dynamic haptic interaction with
simulated robots to perform tasks with shared autonomy.
In addition to interacting with simulated robots, the input
devices can be bound to any camera (view-ports shown in
Figure 7) which allow for hand-eye coordination w.r.t. the
camera and also allow the devices to move the camera itself.
A supplementary video demonstrates the additional features
of the AMBF Simulator.

Future goals for the AMBF Simulator and Framework
include bi-directional support with URDF and SDF and
improved performance of soft body simulations. Dedicated
Graphics Processing Units (GPU) need to be leveraged to
improve the speed of Softbody simulations. Some work has
already been done, but the nature of GPU compute languages
and varying features of different GPUs makes portability dif-
ficult. The source code for the AMBF Framework, Simulator
and its supported software can be found at [14].

SIMULATED
END-EFFECTORS

Fig. 12: Interaction with Simulated Multi Manual Puzzles
defined using AMBF Format.
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