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Abstract— Surgical robots for laparoscopy consist of several
patient side slave manipulators that are controlled via surgeon
operated master telemanipulators. Commercial surgical robots
do not perform any sub-tasks – even of repetitive or non-
invasive nature – autonomously or provide intelligent assistance.
While this is primarily due to safety and regulatory reasons, the
state of such automation intelligence also lacks the reliability
and robustness for use in high-risk applications. Recent develop-
ments in continuous control using Artificial Intelligence and Re-
inforcement Learning have prompted growing research interest
in automating mundane sub-tasks. To build on this, we present
an inspired Asynchronous Framework which incorporates real-
time dynamic simulation – manipulable with the masters of a
surgical robot and various other input devices – and interfaces
with learning agents to train and potentially allow for the
execution of shared sub-tasks. The scope of this framework
is generic to cater to various surgical (as well as non-surgical)
training and control applications. This scope is demonstrated
by examples of multi-user and multi-manual applications which
allow for realistic interactions by incorporating distributed con-
trol, shared task allocation and a well-defined communication
pipe-line for learning agents. These examples are discussed in
conjunction with the design philosophy, specifications, system-
architecture and metrics of the Asynchronous Framework and
the accompanying Simulator. We show the stability of Simulator
while achieving real-time dynamic simulation and interfacing
with several haptic input devices and a training agent at the
same time.

I. INTRODUCTION

Partial autonomy of sub-tasks has exciting prospects for

research aimed for the next generation of surgical robotics.

Research in this area focuses on assisting the surgeon in

accomplishing sub-tasks, thereby making the automation

passive in nature. Some notable research in this area includes

autonomous algorithms for performing soft-tissue suturing

[1], an automated approach for sinus surgery using computer

navigation techniques [2], characterization and automation

of soft-tissue suturing using a curved needle guide [3] and

automation of cutting/creasing sub-tasks while employing

learning by observation [4]. Additionally, [5] presents a

holistic approach to simplifying the task of manipulator

positioning prior to surgeon interaction, and [6] demonstrates

a telemanipulated surgical simulation designed for heart

surgery. A trainable infrastructure is presented in [7] with

controllable dominance and aggression factors for automat-

ing repetitive surgical tasks. Lastly, a shared infrastructure
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for collecting da Vinci Research Kit (dVRK) manipulators

and vision data, primarily for training learning agents by

motion decomposition of sub-tasks is developed in [8].

Recent developments in deep learning and AI have sparked

the interest of researchers from a variety of fields. Until very

recently, the scope of deep learning algorithms were limited

to discretized problems, and thus, most real world control

problems remained out of reach. However, the introduction

of Deep Deterministic Policy Gradients (DDPG) model [9] –

an improvement over Deterministic Policy Gradients – broke

new grounds while making the realization of smart agents

for continuous control problems seemingly possible. These

advancements led to the successful training of a simulated

human rag-doll capable of running, jumping and avoiding

obstacles [10]. Unsurprisingly, there has been an increase

in the number of software libraries targeted for machine

and reinforcement learning developed by the open source

community. Many of these libraries provide Python API’s

and are capable of utilizing high-bandwidth system resources

for faster training of data. Zamora et al. [11] present a useful

reinforcement learning toolkit catered towards mobile robots

that employs such a Python interface for reinforcement

learning by interconnecting the Gazebo simulator with Open-

AI’s GYM [12].

Fig. 1: An overview of components selected for the Asynchronous Frame-
work for Assistive intelligence, simulation and collaborative control.

We propose the use-case of an Intelligent Agent for col-

laborative control of real-time tasks, specialized for robotic

surgery. Given that we intend to assist the Master with

collaboration rather than fully automatic control, we use

the more appropriate term of Assistive Intelligence. The

coordination can range between two target types, (1) multi-

sensory feedback to the Master – visual, haptic and tactile

– and (2) cooperative control of one or more slaves in

conjunction with user-controlled manipulators. We propose a

framework to achieve both forms of assistance by providing
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the means to integrate modern surgical robots/haptics devices

with high fidelity asynchronous control, haptic feedback and

the implementation of a distributed asynchronous framework

for manipulating simulated dynamic bodies that allow for the

training of learning agents.

II. HIGH LEVEL SYSTEM ARCHITECTURE

An essential step towards the realization of the proposed

Asynchronous Framework is the stable and robust control of

multiple input devices in the simulated dynamic environment.

Section III-A discusses the challenge associated with this

multi-device control. The second, but equally important, step

is the selection of the right software components which is

driven either by the compatibility in our use-case (CISST-

SAW and dVRK – an open-source research kit based on the

clinical da Vinci surgical robot – [13] [14]) or the popularity

and adoption of the components in the research community.

As such, the existing components which have been chosen

to complement the Asynchronous Framework include CHAI-

3D [15], Bullet [16], Keras [17], Keras-RL [18], and Open-

AI’s GYM [12]. Figure 1 shows a holistic view of the

inclusion of the aformentioned components in Asynchronous

Framework.

The motivation behind the selection of each component is

presented briefly, starting with the two integral components,

Bullet [16] and CHAI-3D [15]. Bullet’s Dynamics Engine

is already used in some open-source robotics simulators,

including Gazebo - the preferred dynamic simulator for the

Robot Operating System (ROS) community. While Open

Dynamics Engine (ODE) is another competitive physics

library, Bullet provides a built-in collision detection library.

CHAI-3D is an open-source library that supports a vast

majority of commercial haptic devices and offers a device

agnostic interface to applications rendered in Open-GL [19].

CHAI-3D lacks a built-in physics computation library but

has preliminary support for modules built around Bullet and

ODE.

Keras [17] is chosen because of its compatibility with

modern libraries for training Neural Networks, and its ease

of use. Keras-RL [18] is built to support Keras and provides

the implementations of various Reinforcement Learning al-

gorithms. OpenAI’s GYM allows for the creation of envi-

ronments and agents that expose an action-state interface for

input-output and is the default frontend for utilizing Keras-

RL (and consequently Keras for training Neural Networks

using TensorFlow).

The Asynchronous Framework is realized in an application

called the Asynchronous Multi-Body Framework (AMBF)

Simulator which provides a dynamic-haptic simulation (ren-

dered by utilizing CHAI-3D’s interfaces and Bullet as the

dynamics solver) and allows for high-fidelity control via

robust inter-process communication interfaces. The AMBF

Simulator utilizes a ground-up design philosophy that al-

lows for control of each dynamic object in an intuitive

asynchronous fashion (Figure 2). The details, discussions,

and metrics of the simulator are presented in Section III-B.

Additionally, we present a Python Client (AMBF Client) that

Fig. 2: A visual representation of the Asynchronous Framework with
regards to the C++ AMBF Simulator where each simulated dynamic
object is represented as an afObject. The afObjects utilize independent
communication pipelines by exposing State/Command interfaces which
allow isolated control

utilizes the communication interfaces exposed by the AMBF

Simulator and complements it to provide robust and easy-to-

use interfaces for training on real-time dynamic tasks with

simulation in the loop haptic-feedback (Section III-E).

III. IMPLEMENTATION DETAILS

A. Asynchronous Control of Multiple Haptic Devices

Bullet Physics is used as a module in CHAI-3D to simulate

dynamic bodies while using haptic/input devices to interact

with them. This built-in module is designed to interface a

single haptic device while using a fixed time-step for the

dynamic update. The fixed time-step allows for a stable

performance, but it lacks accuracy as it does not track the real

world clock. A realistic multi-manual task requires multiple

input devices interacting with each other and bodies in the

simulation, all while maintaining a recommended haptic

update-rate (≥ 1kHz) and the dynamic simulation clock

in sync with the real-world clock. Achieving this setup is

not trivial as the challenges are inherent to the implemen-

tations of rigid body dynamics using numerical integration

and constraint solving methods. Regardless of the dynamic

engine used, the overall simulation typically has an update-

step in which it applies the forces/constraints/collisions to

children objects and numerically integrates over the given

time-step. In a sense, this update-step synchronizes all the

dynamic bodies, and hence, all the body constraints require

resolution prior to each step.

The computational time of each update-step depends on

several internal, as well as external, (OS scheduling) factors.

The internal factors are mainly the magnitude of the time-

step δt and the collision computation of high-density meshes

during contact. To keep in sync with the real world clock,

the time-step needs to be calculated simultaneously on each

update-step. Adding several input devices to simulation adds

to the computational time, thereby increasing the duration of

successive time-steps. Getting bounds on the time-step is not

trivial in a non real-time OS and unbounded time-steps lead

to cyclic deterioration.

Each haptic device is represented by a simulated dynamic

end-effector (SDE) and is controlled using a dynamic control

law. In a trivial implementation, all the devices are sequen-

tially read to calculate and apply the action forces on their

SDEs, next, the simulated world is stepped forward by δt
which updates the states of dynamic bodies. Finally, the

6269

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 00:16:00 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: A block diagram depicting the Design of Asynchronous Control
Scheme, the Simulated end-effectors and Devices maintain independent and
mutually exclusive Data Structures (DS) that are updated on successive
writes and are capable of asynchronous reads

reactionary forces are applied to the corresponding input

devices in the same time-step.

(a) (b)

(c) (d)

Fig. 4: Figure (a) and (b) show the haptic update-rate of 5 devices when
controlled ’sequentially’ vs ’asynchronously’, respectively. Figure (c) and
(d) show the corresponding rates for physics update-loops for ’sequential’
vs ’asynchronous’ control

Controlling each device in task-space requires a large num-

ber of matrix operations, including similarity transforms to

enable hand-eye (camera) coordination and offset-transforms

for clutch engaging/disengaging (presented in Section III-

C and equation 4). The drivers for several commercial

devices – Geomagic Phantom/Touch from (3D Systems Corp,

Rock Hill, SC, USA) and Falcon (Novint Technologies Inc.,

NY, USA) – impose a delay while commanding forces to

restrict the update-rate. Tracker devices (such as Razer Hydra

from (Razer Inc., CA, USA) operate at lower update-rates

(≤ 400Hz), and hence pose additional challenges. There-

fore, the issue with the “sequential” implementation is that

reading/writing multiple devices throttles the update-rate of

the dynamic and haptic feedback loops. Moreover, mixing

devices with different update-rates makes the dynamic sim-

ulation unusable. This can be alleviated by withholding the

force commands in the main loop and executing them con-

currently in a separate thread. However, while this improves

the update-timing, it makes the devices and SDEs unstable

due to a non-deterministic delay between the computation of

control laws and the application of output forces.

To counteract these issues, an asynchronous control

scheme is implemented where the loop delays are isolated

from each other to prevent cyclic deterioration. A block

diagram representing this control scheme is shown in Figure

3. Implementation wise, the dynamic update-loop runs in a

separate thread and all of the haptic update-loops in separate

individual threads. Each input device owns a data-structure

which is shared to allow for asynchronous reads and writes.

This data-structure maintains the device’s states and has

fields to store the commanded forces. A similar, but non-

identical, data-structure is defined for each SDE. The novelty

in this implementation is the application of forces/commands

in dynamic and haptic threads, as the execution counters of

each thread are asynchronous by design. The difference be-

tween the two control schemes is analyzed by experimenting

with a multi-manual task of grasping, picking and placing

objects and recording the dynamic and haptic update-rates.

In one example configuration, the framework is stressed

by simultaneously testing five haptic devices including two

Novint Falcons, a Geomagic Touch, and two master telema-

nipulators (MTMs) from (Intuitive Surgical Inc., Sunnyvale,

CA, USA). As shown in Figure 4(a), (c) in the sequential

implementation, the update-rate never meets the 1 kHz set-

point. On the other hand, in Figure 4(b), and (d), the device

update-rates stay close to 1 kHz but the dynamic update-

rate can swing depending upon the collision computation

for high-density meshes during contact. The states and com-

mands are stored outside the haptic/dynamic update-loops

and are then used as “set-points” in the relevant threads to

prevent saturating the forces in both simulation and haptic

feedback loops.

B. Design of Asynchronous Framework (AMBF) Simulator

We used a design philosophy, motivated by several differ-

ent sources, which assimilates the concept of bodies in dy-

namic simulation as independent objects with self-contained

kinematic & dynamic properties, thereby mimicking real-

world objects. This philosophy is to distinguish from the

practical implementation where the simulated bodies are part

of an interconnected graph in a unified simulation and require

sequential updates. The goal of this design philosophy is to

allow for asynchronous manipulation and control of each

simulated body independently. As a result, objects in the

simulation are classified as either afObject or afWorld, where

‘af’ stands for ‘Asynchronous Framework’. An afObject is a

kinematic or dynamic rigid body which can have any number

of movable parts (including 0). At their core both afObject

and afWorld have two interfaces for communication, utilizing

afState / afCommand for state / command pair. These two

interfaces implement a generic input-output design that is

easy to scale and communicate in parallel through an Inter

Process Communication (IPC) medium (Figure 2).

The AMBF Simulator has a single world instance which

is responsible for managing all the visual, kinematic and

dynamic objects. This world instance supports features such

as step-throttling, step-skipping and reporting metrics (dis-

cussed in more detail in Section III-F).
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(a) (b)

Fig. 5: These figures show the simulated end-effectors controlled by dVRK
Master with clutch/camera foot-pedals enabled. The clutch is used to move
the haptic device disengaged, and the camera foot-pedal is used to re-orient
the view-direction without affecting the end-effector

Fig. 6: This block diagram depicts a plugin based interface for dVRK
manipulators using ROS as an IPC. The ROS functionality is sealed in
the Arm Bridge Class whereas the ARM Interface exposes API for user
applications.

C. Integration of Constraints

The AMBF Simulator may contain sets of constrained

bodies connected via sliding or rotating joints. Additionally,

realistic multi-manual simulations targeting surgical applica-

tions may require grippers, forceps or retractors as simulated

dynamic end-effectors (SDEs). For such SDEs, the abstract

control of the jaw angle is preferable over explicit joint

position or effort control. As a result, rather than providing

angular limits and independent joint control for the SDE’s,

we use a more straightforward range between 0.0 and 1.0 for

fully closed and fully open SDE jaw position. Interpolation

is used for the values in between.

Figure 5 shows a pair of SDEs which act as proxies for

dVRK MTMs and are controlled using a modified PD control

law Fsim = [f ; η], where:

f = Klδxts +Blδ
2x/dtd (1)

η = (Kaδθts +Baδ
2θ/dtd)z (2)

Here f and η are the force and torque, while K and B
are Stiffness and Damping coefficients. The term ts =

dtf
dtd

enables us to scale the time-step for asynchronous control

by taking the fraction of custom fixed time-step (dtf ) by the

dynamic time-step (dtd). The control law outputs a spatial

wrench which is added at each dynamic update-step of the

physics simulation. Since the output wrench is added to the

existing external forces on a simulated body, ts prevents

the saturation of external forces for slower update-rates.

Conveniently, it is often the case that, ts = 1 (such as the

dynamic simulation running at intended speed). δx and δθ
are the linear and angular offsets, and z is the axis of angular

offset. These quantities are calculated from equations 3 and

5.

δx = xn−1
s +Rc(xh − xp+

h )− xg (3)

Rs = Rp−
s Rc(R

p+
h )TRhR

T
c (4)

(z, δθ) = AxisAngle(RT
g Rs) (5)

In equations 3 and 5, R denotes the rotation matrix. The

super-script for the rotation matrix is ignored when it is

represented w.r.t. the world frame. Special use is made of

the superscripts p+ and p−. p+ denotes the event when the

clutch/camera button is pressed, and p− denotes the release

event. In this sense, Rp+
h is the recorded rotation matrix

when the camera/clutch button is pressed, whereas, Rp−
s

is the simulated rotation recorded when the camera/clutch

button is released. The remaining subscripts are defined

as follows: l = linear, a = angular, s = simulated,

h = haptic device, c = camera and g = gripper.

The force feedback on the dVRK Masters is computed ac-

cording to equation 6. The term (J(q)T )†Υ(q, q̇, q̈)ΠE is the

estimated gravity wrench and is appended to the computed-

wrench from the simulation. We have done previous work

on the development of a haptic interface for the dVRK

manipulators [20] for this purpose. The dVRK masters are

interfaced using a plugin called DVRK Arm demonstrated

in Figure 6 which abstracts the CISST-SAW [14] imple-

mentation. This plugin based interface fully supports the

Asynchronous Framework and hides all ROS-functionality

from the AMBF Simulator. The details of DVRK Arm are

beyond the scope of the current manuscript, but the source

code can be found at [21].

Fmtm = (J(q)T )†Υ(q, q̇, q̈)ΠE + Tmtm
sim (−Fsim) (6)

D. The Communication Medium

We experimented with shared memory and sockets as

IPCs in Linux. The complexity involved at the cost of

communication speed was not justified in creating a scal-

able solution for shared memory. Socket communication,

although relatively slower, is scalable and provides similar

implementations across all dominant Linux flavors and even

other operating systems and programming languages. It does,

however, require data-serialization and de-serialization. In

addition to enjoying substantial community support, ROS

[22] has the ability for serialization and socket communi-

cation together and thus, made it an appropriate candidate

for our Asynchronous Framework.

Each afObject (and the single instance of afWorld) utilizes

a plugin for afObjComm (afWorldComm in afWorld’s case)

while using ROS as a middleware. The communication

plugins use the same thread as their owners, and unlike other

solutions for independent nodes over a distributed network

(ROS Nodelets http://wiki.ros.org/nodelet), the

AMBF Simulator uses a single node and distributes/isolates

the callbacks using custom callback queues. This isolation
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provides the flexibility to launch the communication in-

stances from within the AMBF Simulator without the need

for ros-launch files.

Each communication instance owns a WatchDog timer

which has a primary and a secondary function for data

transmission control. The primary function of the Watch-

dog is to reset the afCommand if the timing condition –

the invocation frequency of the afObjComm/afWorldComm

callback – is not met. This keeps the asynchronous control

safe for physical devices connected to AMBF Simulator.

The Watchdog timer is re-initiated once a stream of new

commands starts flowing in. The secondary purpose of the

watchdog timer is to limit the publishing frequency of

afStates to lower values if the watchdog timer expires, thus

reducing the use of computing resources.

E. The Python Client

As discussed in section I, many of the popular libraries for

learning and training agents have Python interfaces (Keras,

GYM, Tensorflow/Theano, and Keras-RL). In alignment with

these preferred interfaces, we present a stand-alone Python

client that complements the AMBF Simulator. This client is

capable of creating callable instances of afObjects and af-

World (using ROS Communication) which are isolated from

one another to reduce communication and computational

overheads. We outlined various specifications that prioritize

robustness in handling load. These design specifications are

intended for real-time training on data as well as closed-loop

control by accounting for the communication overheads and

slower execution speeds of Python applications. Based on

these specifications, the Python Client uses data sequencing

techniques and payload time-stamps to keep track of states,

actions and rewards. The consequence of the design speci-

fications is reflected not only in the Python Client itself but

also in the AMBF Simulator and the Payload Types (Section

III-F). A block diagram representing the Python Client is

shown in Figure 7.

For safety reasons, each callable instance of afObect and

afWorld in the client inherits a WatchDog timer which

enforces command resetting if the timing condition fails. The

Python Client is capable of throttling the dynamic update-

loop of the AMBF Simulator, in which case, it provides a

clock to step the dynamic update-loop. This clock is provided

using “Clock” field in the afCommand message for afWorld

and number of jump steps can be set to > 1. All this is

done automatically by the Python Client as the user/training

agent sets the corresponding parameters at run-time.

F. Online Training and Control and Associated Challenges

Based on the considerations in Section III-E, the Commu-

nication Payloads for online training and control are designed

accounting for the communication overheads and the slower

execution speeds of Python applications. In this regard, the

contents of afObjects and afWorlds communication payload

are shown in table I. The naming convention is designed to

be self-explanatory, however, some fields pertaining to the

scope of this manuscript are explained. The message field

Ena Throttle is used to control the flow of simulation based

on the toggle of Clock. The Jump Steps is the number of

steps the simulation must take between each clock toggle

(event). The requirement for throttling the simulation comes

from the action-reward pair for the valid Markov States in

RL problems. This requirement mandates the states to have

associated rewards which are meaningless if the simulation is

not throttled between the update-steps of training (forward

and backward pass of the Neural Network). Server Time

is the time (to nano secs precision) of the clock running

in AMBF Simulator, and the Sim Time is the time of the

inner-clock of dynamic simulation. This time is incremented

at each iteration of the dynamic solver such that:

tnsim = tn−1

sim + dtd (7)

Since the dynamic update-loop (Dyn Freq) runs asyn-

chronously without any real-time constraints, using a fixed dt
causes time dilation between the wall (world) and simulation

clock (shown in Figure 8a with one input device and dynamic

time-step dt = 0.001). The reason for this dilation is evident.

Lacking a real-time kernel and custom sleep function makes

it harder to meet the desired frequency which shifts the two

clocks. Even with a real-time kernel, the start-up time for

initializing haptic devices can throw off the simulation clock.

Moreover, the nature of collision computation techniques in

physics simulation libraries makes the computational time

variable, and in effect, non-deterministic as it depends on the

varying number of bodies in contact and their geometries.

Fig. 7: The Python Client communicates with the AMBF Simulator using
ROS as a middle-ware, AMBF ENV retrieves the requested handles for
objects from Python Client and provides a GYM compatible interface

(a) (b)

Fig. 8: (a) Time dilation between Application Clock & Simulation Clock
using fixed time-step (dt=0.001) (b) Time tracking between Application
Clock & Simulation Clock using dynamic time-step
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TABLE I: afObjects and afWorlds payloads for closed loop control and
training via online data

afWorld afObject

afState afCommand afState afCommand

- - Base Frame Base Frame

Msg Num - Msg Num Msg Num

Server
Time

Client Time Server Time Client Time

Sim Time - Sim Time -

Num Devs Ena Throttle Name Ena Pos Ctrl

Dyn Freq Clock Mass & Inertia Pose

- Jump Steps Transform Wrench

- - Children[] Pos Ctrlr Mask[]

- - Joint Positions[] Joint Cmds[]

The necessity of using the dynamic time-step is that

the simulation can run at any frequency while keeping the

two clocks synchronized. Figure 8b depicts this behavior.

It is important to mention the case where the dynamic-

loop’s frequency drops to < 100Hz, this mostly occurs

during collision computation for a relatively high number

of objects during contact or explicit throttling by learning

agents using the Ena Throttle. In such cases, the time-

step is still calculated dynamically, however, the number of

sub-iterations the dynamic solver is allowed to progress at

once needs extra attention. Bullet uses 3 parameters which

include the time-step δt, maximum number of sub-iteration

Nmax and the default integration time-step δti. The goal is

to interpolate rather than recalculate the motion for δt if:

δt < δti ×N ; N ∈ Z
+ & N ≤ Nmax (8)

Ideally, δt should not exceed δtiNmax, but there is no

guarantee this will not occur. Therefore, in order to have

an accurate motion calculation for the degraded dynamic-

loop’s frequency, Nmax needs to be updated accordingly.

However, increasing Nmax also increases the computational

time which leads to circular deterioration. Finding the right

balance between Nmax and δt is challenging. However, to

mitigate this limitation, Nmax is capped at a soft maximum.

Another proposed solution to avoid the degradation of

the dynamic update-loop’s frequency is to use collision

primitives. Relatively advanced shapes can be created using

a compound of various collision primitives. Primitive shapes

have the advantage of utilizing implicit collision techniques

rather than the costlier computation using state of the art

algorithms such as Minkowski Distance and Gilbert Johnson

Keerthi (GJK) algorithm [23]. Implicit collision computation

is significantly faster and more reliable than explicit collision

techniques, especially for a low-frequency dynamic update-

loop. However, since creating collision primitives can be

undesirable for complex shapes, mesh decimation techniques

may be preferred.

IV. RESULTS AND DISCUSSIONS

A PC setup consisting of an Intel(R) Core(TM) i7-3770

CPU (3.40GHz), Fujitsu 32 GB DDR3 RAM (1333 MHz)

and an Nvidia GTX 1060 (8 GB RAM) GPU running Ubuntu

18.04 was used for the demonstration of results. To test

Fig. 9: Reponse of haptic controllers with degrading dynamic-loop’s
frequency

the Asynchronous Framework for Assistive Intelligence and

Control, we analyzed the response of haptics and control of

the Simulated Dynamic end-effectors (SDEs) as the dynamic

simulation slows down. Since such a scenario is difficult to

reproduce for performance metrics without careful prepara-

tion, we explicitly throttled the dynamic-loop’s frequency by

using the “step throttling” functionality discussed in Section

III-F. Next, to generate consistent input motion profiles, we

use mock devices by exploiting the DVRK Arm plugin

interface (shown in Figure 6) to spawn two input devices

(MTM-R and MTM-L) in the AMBF Simulator. We then

generated a customizable trajectory of the form:

Pinput = Poff + [apsin(tct), bpcos(tct), cpsin(tct)]
′S (9)

In the above equation Pinput is the commanded position

of the Input Device while the R.H.S consists of offset Poff ,

time constant tc, scale S, system time t and ap, bp, cp, which

are the major/minor axes but in a 3 Dimensional space.

In order to generate a high velocity, during our testing

procedures, we set tc = 4.0, S = 0.1m and ap = 1, bp =
1, cp = 2. A script systematically throttles the dynamic-

loop’s frequency and records the controllers’ performance

as the magnitude of error from set-point. Figure 9 shows the

output of the controllers performance for n = 5000 readings.

It is evident that controllers’ response only begins to suffer as

the dynamic-loop’s frequency falls below 60 Hz. The reason

we are using the controller performance as such for haptic

response is due to the shared-data structures discussed in

Section III-A. For the force-feedback computation for both

the device and SDEs, we only used the error from their set-

points. The remaining control schemes, such as the gravity

compensation, were added modularly from the device drivers

or distributed controllers that were running in conjunction

with the dynamic update-loop.

Next, we demonstrate an example for manipulating and

solving a complex puzzle using two users controlling a

pair of devices each (Figure 10). Two devices had haptic

feedback (dVRK MTMs visible as PIP on the top right) while

the remaining two were simply tracker devices with lower
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Fig. 10: These sub-figures show the progression (left to right) of a bi-manual task using the AMBF Simulator. The Two end-effectors holding the green
multi-link puzzle piece are controlled by dVRK Masters (shown as Picture in Picture on top right) and the other two end-effectors are controlled via Razer
Hydra (shown as Picture in Picture on top left)

Fig. 11: Communication speed of several afObjects for an overloaded
dynamic environment. The desired communication frequency is set to 2
kHz Dynamic-Loop’s Frequency ∼ 300 Hz, afObjComm frequency ∼ 2
kHz

update-rates (PIP on the top left). The puzzle involved several

pieces including a multi-link Puzzle (Green Plate with Or-

ange Handles), a Puzzle Base (Yellow Mesh) and three single

link rigid body puzzles which included the Triangle Puzzle

(Green cylindrical shape), Square Puzzle (Blue cylindrical

shape) and the Circle Puzzle (Red cylindrical shape). The

Puzzle base and the multi-link Puzzle had a matching set

of extrusions and holes respectively, while the three rigid

body puzzles had intruded cuts to match the three extrusions

of the puzzle base. It is important to note that all of the

grasping interactions in the simulation were purely dynamic.

Hence, they involved a combination of friction due to contact

geometry, grip force, slip, and slide. We did not use any

simplification techniques for appending the grasped object

as a fixed body to the end-effector link. While this dynamic

grasping helps provide a natural feel by allowing gripping

slack, it makes puzzle solving more challenging.

Fig. 12: (a) Histogram of the time difference between the embedded time of
a received packet and the current time for synchronous communication using
Step Throttling (b) Difference between embedded times of consequently
received packets (green dots) vs the time they are read (red dots).

Figures 10 show the progression of a sub-task that involves

manipulation of a multi-link puzzle. The multi-link puzzle

requires at least two inputs to be lifted and placed on the Puz-

zle Base. This is followed by the Single link Puzzle pieces

being placed on top. All of the four simulated end-effectors

can interact with each other and the remaining puzzles. The

close-loop constraint formed by the multi-link Puzzle is felt

by the dVRK Masters which constrains the range of motion,

thus allowing better control and manipulation.

Requirements that drive the design guidelines of the puzzle

pieces are multi-manual manipulation, moderately complex

maneuvering and ease of grasping. Given that the goal of

this study was to demonstrate the flexibility and utility

of the Asynchronous Framework, the puzzles utilized here

were not developed formally for a particular clinial sub-

task. Moreover, designing these types of puzzles based on

any specification is trivial using Solidworks / Blender or any

mesh creation software. The corresponding lower-resolution

collision meshes were generated using mesh-decimation

techniques. The lower resolution collision meshes are helpful

for maintaining higher frequency dynamic update-loop. In

this study we used CPU for Physics computation and a GPU

for graphics processing. The addition of Open-CL (Open

Compute Language) for both rigid-body solvers and collision

computation is a future goal.

For the purpose of training neural networks and agents

for assistive intelligence, we discuss the interfaces exposed

by the Python Client (Section III-E). The focus here is the

ease of creating learning agents using tools such as GYM,

Keras, TensorFlow/Theano and Keras-RL from the Python

Client and not result of the trained models. The Python

Client exposes compatible interfaces for Keras since each

dynamic body in the simulation can be probed using afState

and manipulated using afCommand. While it is trivial to use

a limited number of dynamic objects (shown in Figure 10)

for training NN or RL agents, we show the possibility of

training a larger number of simulated bodies. In Figure 11,

200 dynamic boxes were added to the AMBF Simulator.

ROS introspection tools were used to probe the frequency

of afState for a few boxes with the desired communication

frequency set to 2 kHz. Due to the excessive load on the

AMBF Simulator, the dynamic-loop’s frequency dropped to

around 300 Hz. However, the communication speed for all

afObjects was ∼ 2kHz as shown in Figure 11.
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An essential feature of the Python Client is controlling

the AMBF Simulator synchronously for satisfying Markov’s

action-reward pair property under the umbrella of the Asyn-

chronous Framework. Immediate feedback is difficult to

achieve in a distributed architecture since it involves delay

due to (1) round-trip communication of packets and (2) pro-

cessing time in between for computing kinematics, dynamics

and updating packet data. The latency caused by the round-

trip of data is presented in Figure 12(a) and (b). As illustrated

in Figure 12 (b), the bottleneck is caused by the execution

speed of Python. This jitter is expected as a result of the

longer queue sizes. Hence, the latency increases as newer

data needed to wait in a queue while the program execution

processed older data. For synchronous control, however, we

are concerned with the latest data, and thus, the queue-size

is set to 1. The limited queue-size helps to drive down the

round-trip communication latency to ≤ 0.001secs for 2 kHz

of communication speed (Figure 12(a)).

With regard to the evolution of the Asynchronous Frame-

work, we intend on integrating flexible body dynamics

and visualizations to create realistic surgical training ap-

plications using simulated body tissues, organs, cloths and

threads. The foreseeable challenges include the complexity

of implementation, stability, performance, dynamic-update

to track real-world clock and manipulation using haptic

devices. Moreover, new guidelines for the communication

interfaces afState-afCommand need to be developed. Lastly,

the inclusion of flexible body dynamics should employ a

generic framework design to allow for universal adaptation

as opposed to a more targeted application.

In this manuscript, we discussed the motivation behind

the design philosophy of an Asynchronous Framework for a

distributed application that is intended for training learning

agents via real-time input from a dynamic-haptic simulation.

The entire framework is available at the public repository

[24]. The challenges to such an implementation are discussed

throughout the text, and we have concluded with the perfor-

mance analysis of the proposed Asynchronous Framework.
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