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Abstract— Surgical robots for laparoscopy consist of several
patient side slave manipulators that are controlled via surgeon
operated master telemanipulators. Commercial surgical robots
do not perform any sub-tasks — even of repetitive or non-
invasive nature — autonomously or provide intelligent assistance.
While this is primarily due to safety and regulatory reasons, the
state of such automation intelligence also lacks the reliability
and robustness for use in high-risk applications. Recent develop-
ments in continuous control using Artificial Intelligence and Re-
inforcement Learning have prompted growing research interest
in automating mundane sub-tasks. To build on this, we present
an inspired Asynchronous Framework which incorporates real-
time dynamic simulation — manipulable with the masters of a
surgical robot and various other input devices — and interfaces
with learning agents to train and potentially allow for the
execution of shared sub-tasks. The scope of this framework
is generic to cater to various surgical (as well as non-surgical)
training and control applications. This scope is demonstrated
by examples of multi-user and multi-manual applications which
allow for realistic interactions by incorporating distributed con-
trol, shared task allocation and a well-defined communication
pipe-line for learning agents. These examples are discussed in
conjunction with the design philosophy, specifications, system-
architecture and metrics of the Asynchronous Framework and
the accompanying Simulator. We show the stability of Simulator
while achieving real-time dynamic simulation and interfacing
with several haptic input devices and a training agent at the
same time.

I. INTRODUCTION

Partial autonomy of sub-tasks has exciting prospects for
research aimed for the next generation of surgical robotics.
Research in this area focuses on assisting the surgeon in
accomplishing sub-tasks, thereby making the automation
passive in nature. Some notable research in this area includes
autonomous algorithms for performing soft-tissue suturing
[1], an automated approach for sinus surgery using computer
navigation techniques [2], characterization and automation
of soft-tissue suturing using a curved needle guide [3] and
automation of cutting/creasing sub-tasks while employing
learning by observation [4]. Additionally, [5] presents a
holistic approach to simplifying the task of manipulator
positioning prior to surgeon interaction, and [6] demonstrates
a telemanipulated surgical simulation designed for heart
surgery. A trainable infrastructure is presented in [7] with
controllable dominance and aggression factors for automat-
ing repetitive surgical tasks. Lastly, a shared infrastructure
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for collecting da Vinci Research Kit (dVRK) manipulators
and vision data, primarily for training learning agents by
motion decomposition of sub-tasks is developed in [8].

Recent developments in deep learning and Al have sparked
the interest of researchers from a variety of fields. Until very
recently, the scope of deep learning algorithms were limited
to discretized problems, and thus, most real world control
problems remained out of reach. However, the introduction
of Deep Deterministic Policy Gradients (DDPG) model [9] —
an improvement over Deterministic Policy Gradients — broke
new grounds while making the realization of smart agents
for continuous control problems seemingly possible. These
advancements led to the successful training of a simulated
human rag-doll capable of running, jumping and avoiding
obstacles [10]. Unsurprisingly, there has been an increase
in the number of software libraries targeted for machine
and reinforcement learning developed by the open source
community. Many of these libraries provide Python API’s
and are capable of utilizing high-bandwidth system resources
for faster training of data. Zamora et al. [11] present a useful
reinforcement learning toolkit catered towards mobile robots
that employs such a Python interface for reinforcement
learning by interconnecting the Gazebo simulator with Open-
Al's GYM [12].

ASYNCHRONOUS MULTI-BODY FRAMEWORK

HAPTICS +
DYNAMIC
SIMULATION

HARDWARE LOW LEVEL

LIBRARIES

BULLET

Fig. 1: An overview of components selected for the Asynchronous Frame-
work for Assistive intelligence, simulation and collaborative control.

We propose the use-case of an Intelligent Agent for col-
laborative control of real-time tasks, specialized for robotic
surgery. Given that we intend to assist the Master with
collaboration rather than fully automatic control, we use
the more appropriate term of Assistive Intelligence. The
coordination can range between two target types, (1) multi-
sensory feedback to the Master — visual, haptic and tactile
— and (2) cooperative control of one or more slaves in
conjunction with user-controlled manipulators. We propose a
framework to achieve both forms of assistance by providing
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the means to integrate modern surgical robots/haptics devices
with high fidelity asynchronous control, haptic feedback and
the implementation of a distributed asynchronous framework
for manipulating simulated dynamic bodies that allow for the
training of learning agents.

II. HIGH LEVEL SYSTEM ARCHITECTURE

An essential step towards the realization of the proposed
Asynchronous Framework is the stable and robust control of
multiple input devices in the simulated dynamic environment.
Section III-A discusses the challenge associated with this
multi-device control. The second, but equally important, step
is the selection of the right software components which is
driven either by the compatibility in our use-case (CISST-
SAW and dVRK - an open-source research kit based on the
clinical da Vinci surgical robot — [13] [14]) or the popularity
and adoption of the components in the research community.
As such, the existing components which have been chosen
to complement the Asynchronous Framework include CHAI-
3D [15], Bullet [16], Keras [17], Keras-RL [18], and Open-
Al's GYM [12]. Figure 1 shows a holistic view of the
inclusion of the aformentioned components in Asynchronous
Framework.

The motivation behind the selection of each component is
presented briefly, starting with the two integral components,
Bullet [16] and CHAI-3D [15]. Bullet’s Dynamics Engine
is already used in some open-source robotics simulators,
including Gazebo - the preferred dynamic simulator for the
Robot Operating System (ROS) community. While Open
Dynamics Engine (ODE) is another competitive physics
library, Bullet provides a built-in collision detection library.
CHAI-3D is an open-source library that supports a vast
majority of commercial haptic devices and offers a device
agnostic interface to applications rendered in Open-GL [19].
CHAI-3D lacks a built-in physics computation library but
has preliminary support for modules built around Bullet and
ODE.

Keras [17] is chosen because of its compatibility with
modern libraries for training Neural Networks, and its ease
of use. Keras-RL [18] is built to support Keras and provides
the implementations of various Reinforcement Learning al-
gorithms. OpenAl’s GYM allows for the creation of envi-
ronments and agents that expose an action-state interface for
input-output and is the default frontend for utilizing Keras-
RL (and consequently Keras for training Neural Networks
using TensorFlow).

The Asynchronous Framework is realized in an application
called the Asynchronous Multi-Body Framework (AMBF)
Simulator which provides a dynamic-haptic simulation (ren-
dered by utilizing CHAI-3D’s interfaces and Bullet as the
dynamics solver) and allows for high-fidelity control via
robust inter-process communication interfaces. The AMBF
Simulator utilizes a ground-up design philosophy that al-
lows for control of each dynamic object in an intuitive
asynchronous fashion (Figure 2). The details, discussions,
and metrics of the simulator are presented in Section III-B.
Additionally, we present a Python Client (AMBF Client) that

AMBF SIMULATOR afOBJECT / afWORLD API

Thread N
DYNAMIC SIM

Thread 2
BULLET B i
DYNAMIC

ENGINE

afObjCom
B)

afObjCom
1

Fig. 2: A visual representation of the Asynchronous Framework with
regards to the C++ AMBF Simulator where each simulated dynamic
object is represented as an afObject. The afObjects utilize independent
communication pipelines by exposing State/Command interfaces which
allow isolated control

utilizes the communication interfaces exposed by the AMBF
Simulator and complements it to provide robust and easy-to-
use interfaces for training on real-time dynamic tasks with
simulation in the loop haptic-feedback (Section III-E).

I1I. IMPLEMENTATION DETAILS
A. Asynchronous Control of Multiple Haptic Devices

Bullet Physics is used as a module in CHAI-3D to simulate
dynamic bodies while using haptic/input devices to interact
with them. This built-in module is designed to interface a
single haptic device while using a fixed time-step for the
dynamic update. The fixed time-step allows for a stable
performance, but it lacks accuracy as it does not track the real
world clock. A realistic multi-manual task requires multiple
input devices interacting with each other and bodies in the
simulation, all while maintaining a recommended haptic
update-rate (> 1kHz) and the dynamic simulation clock
in sync with the real-world clock. Achieving this setup is
not trivial as the challenges are inherent to the implemen-
tations of rigid body dynamics using numerical integration
and constraint solving methods. Regardless of the dynamic
engine used, the overall simulation typically has an update-
step in which it applies the forces/constraints/collisions to
children objects and numerically integrates over the given
time-step. In a sense, this update-step synchronizes all the
dynamic bodies, and hence, all the body constraints require
resolution prior to each step.

The computational time of each update-step depends on
several internal, as well as external, (OS scheduling) factors.
The internal factors are mainly the magnitude of the time-
step 0t and the collision computation of high-density meshes
during contact. To keep in sync with the real world clock,
the time-step needs to be calculated simultaneously on each
update-step. Adding several input devices to simulation adds
to the computational time, thereby increasing the duration of
successive time-steps. Getting bounds on the time-step is not
trivial in a non real-time OS and unbounded time-steps lead
to cyclic deterioration.

Each haptic device is represented by a simulated dynamic
end-effector (SDE) and is controlled using a dynamic control
law. In a trivial implementation, all the devices are sequen-
tially read to calculate and apply the action forces on their
SDEs, next, the simulated world is stepped forward by dt
which updates the states of dynamic bodies. Finally, the
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Fig. 3: A block diagram depicting the Design of Asynchronous Control
Scheme, the Simulated end-effectors and Devices maintain independent and
mutually exclusive Data Structures (DS) that are updated on successive
writes and are capable of asynchronous reads

reactionary forces are applied to the corresponding input
devices in the same time-step.
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Fig. 4: Figure (a) and (b) show the haptic update-rate of 5 devices when
controlled ’sequentially’ vs “asynchronously’, respectively. Figure (c) and
(d) show the corresponding rates for physics update-loops for ’sequential’
vs asynchronous’ control

Controlling each device in task-space requires a large num-
ber of matrix operations, including similarity transforms to
enable hand-eye (camera) coordination and offset-transforms
for clutch engaging/disengaging (presented in Section III-
C and equation 4). The drivers for several commercial
devices — Geomagic Phantom/Touch from (3D Systems Corp,
Rock Hill, SC, USA) and Falcon (Novint Technologies Inc.,
NY, USA) — impose a delay while commanding forces to
restrict the update-rate. Tracker devices (such as Razer Hydra
from (Razer Inc., CA, USA) operate at lower update-rates
(£ 400Hz), and hence pose additional challenges. There-
fore, the issue with the “sequential” implementation is that
reading/writing multiple devices throttles the update-rate of
the dynamic and haptic feedback loops. Moreover, mixing
devices with different update-rates makes the dynamic sim-
ulation unusable. This can be alleviated by withholding the
force commands in the main loop and executing them con-
currently in a separate thread. However, while this improves
the update-timing, it makes the devices and SDEs unstable
due to a non-deterministic delay between the computation of
control laws and the application of output forces.

To counteract these issues, an asynchronous control
scheme is implemented where the loop delays are isolated
from each other to prevent cyclic deterioration. A block
diagram representing this control scheme is shown in Figure
3. Implementation wise, the dynamic update-loop runs in a
separate thread and all of the haptic update-loops in separate
individual threads. Each input device owns a data-structure
which is shared to allow for asynchronous reads and writes.
This data-structure maintains the device’s states and has
fields to store the commanded forces. A similar, but non-
identical, data-structure is defined for each SDE. The novelty
in this implementation is the application of forces/commands
in dynamic and haptic threads, as the execution counters of
each thread are asynchronous by design. The difference be-
tween the two control schemes is analyzed by experimenting
with a multi-manual task of grasping, picking and placing
objects and recording the dynamic and haptic update-rates.

In one example configuration, the framework is stressed
by simultaneously testing five haptic devices including two
Novint Falcons, a Geomagic Touch, and two master telema-
nipulators (MTMs) from (Intuitive Surgical Inc., Sunnyvale,
CA, USA). As shown in Figure 4(a), (c) in the sequential
implementation, the update-rate never meets the 1 kHz set-
point. On the other hand, in Figure 4(b), and (d), the device
update-rates stay close to 1 kHz but the dynamic update-
rate can swing depending upon the collision computation
for high-density meshes during contact. The states and com-
mands are stored outside the haptic/dynamic update-loops
and are then used as “set-points” in the relevant threads to
prevent saturating the forces in both simulation and haptic
feedback loops.

B. Design of Asynchronous Framework (AMBF) Simulator

We used a design philosophy, motivated by several differ-
ent sources, which assimilates the concept of bodies in dy-
namic simulation as independent objects with self-contained
kinematic & dynamic properties, thereby mimicking real-
world objects. This philosophy is to distinguish from the
practical implementation where the simulated bodies are part
of an interconnected graph in a unified simulation and require
sequential updates. The goal of this design philosophy is to
allow for asynchronous manipulation and control of each
simulated body independently. As a result, objects in the
simulation are classified as either afObject or afWorld, where
‘af’ stands for ‘Asynchronous Framework’. An afObject is a
kinematic or dynamic rigid body which can have any number
of movable parts (including 0). At their core both afObject
and afWorld have two interfaces for communication, utilizing
afState | afCommand for state / command pair. These two
interfaces implement a generic input-output design that is
easy to scale and communicate in parallel through an Inter
Process Communication (IPC) medium (Figure 2).

The AMBF Simulator has a single world instance which
is responsible for managing all the visual, kinematic and
dynamic objects. This world instance supports features such
as step-throttling, step-skipping and reporting metrics (dis-
cussed in more detail in Section III-F).
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Fig. 5: These figures show the simulated end-effectors controlled by dVRK
Master with clutch/camera foot-pedals enabled. The clutch is used to move
the haptic device disengaged, and the camera foot-pedal is used to re-orient
the view-direction without affecting the end-effector
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Fig. 6: This block diagram depicts a plugin based interface for dVRK
manipulators using ROS as an IPC. The ROS functionality is sealed in
the Arm Bridge Class whereas the ARM Interface exposes API for user
applications.

C. Integration of Constraints

The AMBF Simulator may contain sets of constrained
bodies connected via sliding or rotating joints. Additionally,
realistic multi-manual simulations targeting surgical applica-
tions may require grippers, forceps or retractors as simulated
dynamic end-effectors (SDEs). For such SDEs, the abstract
control of the jaw angle is preferable over explicit joint
position or effort control. As a result, rather than providing
angular limits and independent joint control for the SDE’s,
we use a more straightforward range between 0.0 and 1.0 for
fully closed and fully open SDE jaw position. Interpolation
is used for the values in between.

Figure 5 shows a pair of SDEs which act as proxies for
dVRK MTMs and are controlled using a modified PD control
law Fy; = [f;n], where:

f = Kjdats + Bi6%x/dty (1)
n = (K,60ts + B,6%0/dtq)z (2)

Here f and 7 are the force and torque, while K anddB
ty

are Stiffness and Damping coefficients. The term ¢, = .
enables us to scale the time-step for asynchronous control
by taking the fraction of custom fixed time-step (dt) by the
dynamic time-step (dtgq). The control law outputs a spatial
wrench which is added at each dynamic update-step of the
physics simulation. Since the output wrench is added to the
existing external forces on a simulated body, t; prevents
the saturation of external forces for slower update-rates.
Conveniently, it is often the case that, t; = 1 (such as the
dynamic simulation running at intended speed). dx and /6

are the linear and angular offsets, and z is the axis of angular

offset. These quantities are calculated from equations 3 and

6 = 2" '+ Re(xp, — 28%) — 2, 3)
Re = R R(Ry)" RyRY (4)
(2,00) = AxisAngle(R;FRs) Q)

In equations 3 and 5, IR denotes the rotation matrix. The
super-script for the rotation matrix is ignored when it is
represented w.r.t. the world frame. Special use is made of
the superscripts p+ and p—. p+ denotes the event when the
clutch/camera button is pressed, and p— denotes the release
event. In this sense, Rf,'f is the recorded rotation matrix
when the camera/clutch button is pressed, whereas, RE™
is the simulated rotation recorded when the camera/clutch
button is released. The remaining subscripts are defined
as follows: | = linear, a = angular, s = simulated,
h = haptic device, ¢ = camera and g = gripper.

The force feedback on the dVRK Masters is computed ac-
cording to equation 6. The term (J(¢)7) Y (q, ¢, §)I1g is the
estimated gravity wrench and is appended to the computed-
wrench from the simulation. We have done previous work
on the development of a haptic interface for the dVRK
manipulators [20] for this purpose. The dVRK masters are
interfaced using a plugin called DVRK Arm demonstrated
in Figure 6 which abstracts the CISST-SAW [14] imple-
mentation. This plugin based interface fully supports the
Asynchronous Framework and hides all ROS-functionality
from the AMBF Simulator. The details of DVRK Arm are
beyond the scope of the current manuscript, but the source
code can be found at [21].

Fotm = (J(@)") Y (g, ¢ ) + TG (= Faim) — (6)
D. The Communication Medium

We experimented with shared memory and sockets as
IPCs in Linux. The complexity involved at the cost of
communication speed was not justified in creating a scal-
able solution for shared memory. Socket communication,
although relatively slower, is scalable and provides similar
implementations across all dominant Linux flavors and even
other operating systems and programming languages. It does,
however, require data-serialization and de-serialization. In
addition to enjoying substantial community support, ROS
[22] has the ability for serialization and socket communi-
cation together and thus, made it an appropriate candidate
for our Asynchronous Framework.

Each afObject (and the single instance of afWorld) utilizes
a plugin for afObjComm (afWorldComm in afWorld’s case)
while using ROS as a middleware. The communication
plugins use the same thread as their owners, and unlike other
solutions for independent nodes over a distributed network
(ROS Nodelets http://wiki.ros.org/nodelet), the
AMBF Simulator uses a single node and distributes/isolates
the callbacks using custom callback queues. This isolation
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provides the flexibility to launch the communication in-
stances from within the AMBF Simulator without the need
for ros-launch files.

Each communication instance owns a WatchDog timer
which has a primary and a secondary function for data
transmission control. The primary function of the Watch-
dog is to reset the afCommand if the timing condition —
the invocation frequency of the afObjComm/afWorldComm
callback — is not met. This keeps the asynchronous control
safe for physical devices connected to AMBF Simulator.
The Watchdog timer is re-initiated once a stream of new
commands starts flowing in. The secondary purpose of the
watchdog timer is to limit the publishing frequency of
afStates to lower values if the watchdog timer expires, thus
reducing the use of computing resources.

E. The Python Client

As discussed in section I, many of the popular libraries for
learning and training agents have Python interfaces (Keras,
GYM, Tensorflow/Theano, and Keras-RL). In alignment with
these preferred interfaces, we present a stand-alone Python
client that complements the AMBF Simulator. This client is
capable of creating callable instances of afObjects and af-
World (using ROS Communication) which are isolated from
one another to reduce communication and computational
overheads. We outlined various specifications that prioritize
robustness in handling load. These design specifications are
intended for real-time training on data as well as closed-loop
control by accounting for the communication overheads and
slower execution speeds of Python applications. Based on
these specifications, the Python Client uses data sequencing
techniques and payload time-stamps to keep track of states,
actions and rewards. The consequence of the design speci-
fications is reflected not only in the Python Client itself but
also in the AMBF Simulator and the Payload Types (Section
III-F). A block diagram representing the Python Client is
shown in Figure 7.

For safety reasons, each callable instance of afObect and
afWorld in the client inherits a WatchDog timer which
enforces command resetting if the timing condition fails. The
Python Client is capable of throttling the dynamic update-
loop of the AMBF Simulator, in which case, it provides a
clock to step the dynamic update-loop. This clock is provided
using “Clock” field in the afCommand message for afWorld
and number of jump steps can be set to > 1. All this is
done automatically by the Python Client as the user/training
agent sets the corresponding parameters at run-time.

F. Online Training and Control and Associated Challenges

Based on the considerations in Section III-E, the Commu-
nication Payloads for online training and control are designed
accounting for the communication overheads and the slower
execution speeds of Python applications. In this regard, the
contents of afObjects and afWorlds communication payload
are shown in table I. The naming convention is designed to
be self-explanatory, however, some fields pertaining to the
scope of this manuscript are explained. The message field

Ena Throttle is used to control the flow of simulation based
on the toggle of Clock. The Jump Steps is the number of
steps the simulation must take between each clock toggle
(event). The requirement for throttling the simulation comes
from the action-reward pair for the valid Markov States in
RL problems. This requirement mandates the states to have
associated rewards which are meaningless if the simulation is
not throttled between the update-steps of training (forward
and backward pass of the Neural Network). Server Time
is the time (to nano secs precision) of the clock running
in AMBF Simulator, and the Sim Time is the time of the
inner-clock of dynamic simulation. This time is incremented
at each iteration of the dynamic solver such that:

Sim = Ui+ dtq )
Since the dynamic update-loop (Dyn Freq) runs asyn-
chronously without any real-time constraints, using a fixed dt
causes time dilation between the wall (world) and simulation
clock (shown in Figure 8a with one input device and dynamic
time-step dt = 0.001). The reason for this dilation is evident.
Lacking a real-time kernel and custom sleep function makes
it harder to meet the desired frequency which shifts the two
clocks. Even with a real-time kernel, the start-up time for
initializing haptic devices can throw off the simulation clock.
Moreover, the nature of collision computation techniques in
physics simulation libraries makes the computational time
variable, and in effect, non-deterministic as it depends on the
varying number of bodies in contact and their geometries.

WORLD HANDLE PYTHON CLIENT

OBJECT HANDLE(S)

SYNCHRONOUS

STATE
COMMAND

AMBF ENV

SYNCHRONOUS

STATE
COMMAND

REGEX (ROSTOPICS)

WATCHDOG TIMERS

SYNCHRONOUS

STATE REWARD
OBSRV

Fig. 7: The Python Client communicates with the AMBF Simulator using
ROS as a middle-ware, AMBF ENV retrieves the requested handles for
objects from Python Client and provides a GYM compatible interface
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Fig. 8: (a) Time dilation between Application Clock & Simulation Clock
using fixed time-step (dt=0.001) (b) Time tracking between Application
Clock & Simulation Clock using dynamic time-step
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TABLE I: afObjects and afWorlds payloads for closed loop control and
training via online data

afWorld afObject
afState afCommand | afState afCommand
- - Base Frame Base Frame
Msg Num - Msg Num Msg Num
Server Client Time Server Time Client Time
Time
Sim Time - Sim Time -
Num Devs Ena Throttle Name Ena Pos Ctrl
Dyn Freq Clock Mass & Inertia Pose
- Jump Steps Transform Wrench
- - Children[] Pos Ctrlr Mask[]
- - Joint Positions|] Joint Cmds|]

The necessity of using the dynamic time-step is that
the simulation can run at any frequency while keeping the
two clocks synchronized. Figure 8b depicts this behavior.
It is important to mention the case where the dynamic-
loop’s frequency drops to < 100Hz, this mostly occurs
during collision computation for a relatively high number
of objects during contact or explicit throttling by learning
agents using the Ena Throttle. In such cases, the time-
step is still calculated dynamically, however, the number of
sub-iterations the dynamic solver is allowed to progress at
once needs extra attention. Bullet uses 3 parameters which
include the time-step d¢, maximum number of sub-iteration
Niaz and the default integration time-step dt;. The goal is
to interpolate rather than recalculate the motion for §t if:

0t < dt; x N NecZt & N < Nz (8)

Ideally, ¢ should not exceed dt;N,,q., but there is no
guarantee this will not occur. Therefore, in order to have
an accurate motion calculation for the degraded dynamic-
loop’s frequency, N,,., needs to be updated accordingly.
However, increasing N, also increases the computational
time which leads to circular deterioration. Finding the right
balance between N,,.. and dt is challenging. However, to
mitigate this limitation, N,,, iS capped at a soft maximum.

Another proposed solution to avoid the degradation of
the dynamic update-loop’s frequency is to use collision
primitives. Relatively advanced shapes can be created using
a compound of various collision primitives. Primitive shapes
have the advantage of utilizing implicit collision techniques
rather than the costlier computation using state of the art
algorithms such as Minkowski Distance and Gilbert Johnson
Keerthi (GJK) algorithm [23]. Implicit collision computation
is significantly faster and more reliable than explicit collision
techniques, especially for a low-frequency dynamic update-
loop. However, since creating collision primitives can be
undesirable for complex shapes, mesh decimation techniques
may be preferred.

IV. RESULTS AND DISCUSSIONS

A PC setup consisting of an Intel(R) Core(TM) i7-3770
CPU (3.40GHz), Fujitsu 32 GB DDR3 RAM (1333 MHz)
and an Nvidia GTX 1060 (8 GB RAM) GPU running Ubuntu
18.04 was used for the demonstration of results. To test
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Fig. 9: Reponse of haptic controllers with degrading dynamic-loop’s
frequency

the Asynchronous Framework for Assistive Intelligence and
Control, we analyzed the response of haptics and control of
the Simulated Dynamic end-effectors (SDEs) as the dynamic
simulation slows down. Since such a scenario is difficult to
reproduce for performance metrics without careful prepara-
tion, we explicitly throttled the dynamic-loop’s frequency by
using the “step throttling” functionality discussed in Section
III-F. Next, to generate consistent input motion profiles, we
use mock devices by exploiting the DVRK Arm plugin
interface (shown in Figure 6) to spawn two input devices
(MTM-R and MTM-L) in the AMBF Simulator. We then
generated a customizable trajectory of the form:

Pinput = Pors + [apsin(tct), bycos(tct), cpsin(tet)]'S (9)

In the above equation P;,,; is the commanded position
of the Input Device while the R.H.S consists of offset P,
time constant ¢., scale S, system time ¢ and a,,, by, ¢, which
are the major/minor axes but in a 3 Dimensional space.
In order to generate a high velocity, during our testing
procedures, we set tc = 4.0, S = 0.1m and a, = 1,b, =
1,¢, = 2. A script systematically throttles the dynamic-
loop’s frequency and records the controllers’ performance
as the magnitude of error from set-point. Figure 9 shows the
output of the controllers performance for n = 5000 readings.
It is evident that controllers’ response only begins to suffer as
the dynamic-loop’s frequency falls below 60 H z. The reason
we are using the controller performance as such for haptic
response is due to the shared-data structures discussed in
Section III-A. For the force-feedback computation for both
the device and SDEs, we only used the error from their set-
points. The remaining control schemes, such as the gravity
compensation, were added modularly from the device drivers
or distributed controllers that were running in conjunction
with the dynamic update-loop.

Next, we demonstrate an example for manipulating and
solving a complex puzzle using two users controlling a
pair of devices each (Figure 10). Two devices had haptic
feedback ({VRK MTMs visible as PIP on the top right) while
the remaining two were simply tracker devices with lower
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Fig. 10: These sub-figures show the progression (left to right) of a bi-manual task using the AMBF Simulator. The Two end-effectors holding the green
multi-link puzzle piece are controlled by dVRK Masters (shown as Picture in Picture on top right) and the other two end-effectors are controlled via Razer

Hydra (shown as Picture in Picture on top left)

topic (name) rate(Hz) min_delta(s) max_delta(s) std dev window
/chai/env/Box_55/State 1.967e+03 7.868e-06 0.01539 0.0006213 8516
/chai/env/Box_56/State 1.956e+03 8.106e-06 0.01444 0.0006179 8516
/chai/env/Box_57/State 1.962e+03 8.821e-06 0.01361 0.0005808 8480
/chai/env/Box_58/State 1.961e+03 7.868e-06 0.01471 0.000605 8480
/chai/env/Box_59/State 1.965e+03 6.914e-06 0.01263 0.0005788 8478
/chai/env/Box_60/State 1.954e+03 8.821e-06 0.01649 0.0005974 8478
/chai/env/Box_61/State 1.959e+03 9.06e-06 0.01357 0.0005925 8378
/chai/env/Box_62/State 1.954e+03 9.06e-06 0.01312 0.0005545 8378
/chai/env/Box_63/State 1.963e+03 7.868e-06 0.0136 0.0005484 8360
/chai/env/Box_64/State 1.958e+03 7.868e-06 0.01304 0.0005565 8360
/chai/env/Box_65/State 1.955e+03 7.868e-06 0.01275 0.0005779 8286

Fig. 11: Communication speed of several afObjects for an overloaded
dynamic environment. The desired communication frequency is set to 2
kHz Dynamic-Loop’s Frequency ~ 300 Hz, afObjComm frequency ~ 2
kHz

update-rates (PIP on the top left). The puzzle involved several
pieces including a multi-link Puzzle (Green Plate with Or-
ange Handles), a Puzzle Base (Yellow Mesh) and three single
link rigid body puzzles which included the Triangle Puzzle
(Green cylindrical shape), Square Puzzle (Blue cylindrical
shape) and the Circle Puzzle (Red cylindrical shape). The
Puzzle base and the multi-link Puzzle had a matching set
of extrusions and holes respectively, while the three rigid
body puzzles had intruded cuts to match the three extrusions
of the puzzle base. It is important to note that all of the
grasping interactions in the simulation were purely dynamic.
Hence, they involved a combination of friction due to contact
geometry, grip force, slip, and slide. We did not use any
simplification techniques for appending the grasped object
as a fixed body to the end-effector link. While this dynamic
grasping helps provide a natural feel by allowing gripping
slack, it makes puzzle solving more challenging.
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Fig. 12: (a) Histogram of the time difference between the embedded time of
a received packet and the current time for synchronous communication using
Step Throttling (b) Difference between embedded times of consequently
received packets (green dots) vs the time they are read (red dots).

Figures 10 show the progression of a sub-task that involves
manipulation of a multi-link puzzle. The multi-link puzzle
requires at least two inputs to be lifted and placed on the Puz-
zle Base. This is followed by the Single link Puzzle pieces
being placed on top. All of the four simulated end-effectors
can interact with each other and the remaining puzzles. The
close-loop constraint formed by the multi-link Puzzle is felt
by the dVRK Masters which constrains the range of motion,
thus allowing better control and manipulation.

Requirements that drive the design guidelines of the puzzle
pieces are multi-manual manipulation, moderately complex
maneuvering and ease of grasping. Given that the goal of
this study was to demonstrate the flexibility and utility
of the Asynchronous Framework, the puzzles utilized here
were not developed formally for a particular clinial sub-
task. Moreover, designing these types of puzzles based on
any specification is trivial using Solidworks / Blender or any
mesh creation software. The corresponding lower-resolution
collision meshes were generated using mesh-decimation
techniques. The lower resolution collision meshes are helpful
for maintaining higher frequency dynamic update-loop. In
this study we used CPU for Physics computation and a GPU
for graphics processing. The addition of Open-CL (Open
Compute Language) for both rigid-body solvers and collision
computation is a future goal.

For the purpose of training neural networks and agents
for assistive intelligence, we discuss the interfaces exposed
by the Python Client (Section III-E). The focus here is the
ease of creating learning agents using tools such as GYM,
Keras, TensorFlow/Theano and Keras-RL from the Python
Client and not result of the trained models. The Python
Client exposes compatible interfaces for Keras since each
dynamic body in the simulation can be probed using afState
and manipulated using afCommand. While it is trivial to use
a limited number of dynamic objects (shown in Figure 10)
for training NN or RL agents, we show the possibility of
training a larger number of simulated bodies. In Figure 11,
200 dynamic boxes were added to the AMBF Simulator.
ROS introspection tools were used to probe the frequency
of afState for a few boxes with the desired communication
frequency set to 2 kHz. Due to the excessive load on the
AMBF Simulator, the dynamic-loop’s frequency dropped to
around 300 Hz. However, the communication speed for all
afObjects was ~ 2kH z as shown in Figure 11.
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An essential feature of the Python Client is controlling
the AMBF Simulator synchronously for satisfying Markov’s
action-reward pair property under the umbrella of the Asyn-
chronous Framework. Immediate feedback is difficult to
achieve in a distributed architecture since it involves delay
due to (1) round-trip communication of packets and (2) pro-
cessing time in between for computing kinematics, dynamics
and updating packet data. The latency caused by the round-
trip of data is presented in Figure 12(a) and (b). As illustrated
in Figure 12 (b), the bottleneck is caused by the execution
speed of Python. This jitter is expected as a result of the
longer queue sizes. Hence, the latency increases as newer
data needed to wait in a queue while the program execution
processed older data. For synchronous control, however, we
are concerned with the latest data, and thus, the queue-size
is set to 1. The limited queue-size helps to drive down the
round-trip communication latency to < 0.001secs for 2 kHz
of communication speed (Figure 12(a)).

With regard to the evolution of the Asynchronous Frame-
work, we intend on integrating flexible body dynamics
and visualizations to create realistic surgical training ap-
plications using simulated body tissues, organs, cloths and
threads. The foreseeable challenges include the complexity
of implementation, stability, performance, dynamic-update
to track real-world clock and manipulation using haptic
devices. Moreover, new guidelines for the communication
interfaces afState-afCommand need to be developed. Lastly,
the inclusion of flexible body dynamics should employ a
generic framework design to allow for universal adaptation
as opposed to a more targeted application.

In this manuscript, we discussed the motivation behind
the design philosophy of an Asynchronous Framework for a
distributed application that is intended for training learning
agents via real-time input from a dynamic-haptic simulation.
The entire framework is available at the public repository
[24]. The challenges to such an implementation are discussed
throughout the text, and we have concluded with the perfor-
mance analysis of the proposed Asynchronous Framework.
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