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Abstract— In contrast to traditional mobile robots, renew-
ably powered mobile robotic systems offer the potential for
unlimited range at the expense of highly stochastic mobility.
Robotic sailboats, termed sailing drones, represent one such
example that has received recent attention. After providing a
detailed model and corresponding velocity polar for a candidate
customized robotic sailboat, this paper presents a stochastic
dynamic programming (SDP) approach for time-optimal con-
trol of sailing drones in a stochastic wind resource, which
provides a feedback control policy to minimize expected time
to a prescribed waypoint. The paper provides a Monte Carlo
study of the impact of wind direction volatility on the resulting
routes, along with an assessment of robustness to mismatches
between actual and assumed volatility.

I. INTRODUCTION

Advancements in the robustness and mobility of robotic
systems have given rise to new opportunities for collecting
data in uncertain environments that were previously unreach-
able. Several hostile or remote regions have been explored
with the use of autonomous robotic systems, including
the surfaces of distant planets, deep waters of the ocean,
and the Arctic region [1]. Many desired mobile robotic
deployments, particularly those involving meteorological and
climatological studies, require the characterization of a spa-
tiotemporally varying system over a very large period of
time [2], thereby necessitating persistent exploration. This
presents a major challenge for traditional robotic systems,
which possess relatively predictable mobility but very limited
range, particularly for large payloads. This limited range
necessitates recharging stations [3], which in remote or
hostile environments are inconvenient at best and completely
unavailable at worst.

Out of the desire for unlimited range for conducting per-
sistent missions, significant recent research has focused on
the design of renewably powered robotic systems. Examples
of such systems include solar powered unmanned aircraft for
persistent aerial exploration (see [4]), tumbleweed rovers for
remote terrestrial or planetary surface exploration (see [5]),
and sailing drones (described in [6], [7] and depicted in Fig.
1) for oceanographic surface exploration.

While these systems are not hampered by limited range,
the mission planning and control of renewably powered
robotic systems is complicated by stochastic mobility. In
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particular, the achievable velocities of a renewably powered
robotic system, and consequently, the set of reachable loca-
tions for a given time horizon, are dictated by a spatiotem-
porally varying, stochastic resource. This gives rise to two
significant mission planning and control challenges:

• Persistent mission planning: Strategically selecting tar-
get waypoints without knowledge of the waypoint ar-
rival times (since waypoint arrival times will be dictated
by the stochastic, spatiotemporally varying resource);

• Control for maximum mobility: Selecting a route that
minimizes the time required to reach a waypoint in a
stochastic, spatiotemporally varying resource.

In this work, we focus on the second challenge, namely
control for maximum mobility, for a sailing drone applica-
tion. In fact, several studies have examined the problem of
maximizing mobility in sailing applications, through both
deterministic and stochastic time-optimal control problems.
For example, [8] examines optimal path planning in the
presence of direction-dependent velocity functions (which
is directly applicable to sailing drones, since achievable
velocity is dependent on the boat’s direction relative to the
wind) and in a deterministic environment. In fact, this work
shows that in a deterministic environment, the time-optimal
solution involves at most one direction change (a “one-
tack” solution in the case of sailing). Optimizing mobility
becomes more complicated in the presence of stochasticity,
and a handful of results have examined this problem in the
context of sailing. For example, [9] utilizes SDP to minimize
time spent on an upwind leg of a sailing race, whereas
[10] performs a subtle transformation of the aforementioned
problem by maximizing the odds of winning rather than
focusing on pure time optimality. This subtle adjustment is
also seen through the application of a utility function in place
of pure time optimality in [11].

(a) Saildrone [6] (b) Datamaran Mark 8 [7]

Fig. 1: Commercial Autonomous Sailboats. Image credits:
Saildrone (left), Autonomous Marine Systems (right).



In spite of the appreciable amount of prior research in
optimal control of sailing vessels, several key gaps in the
literature remain:

• There does not exist a comprehensive and transparent
analysis that evaluates the statistical properties of opti-
mized sailing routes as a function of the statistics that
describe the spatiotemporally varying wind resource (as
measured through temporal length scales and variance).

• There does not exist an empirical or theoretical result
that examines routes in the limits of volatility, which
should approach the results of [8] as wind variance
approaches zero and/or temporal length scales become
sufficiently large.

• There does not exist a comprehensive and transparent
assessment of the robustness of SDP-based algorithms
to mismatches between the assumed and actual wind
volatility statistics.

The present paper addresses the above gaps by providing an
analysis of SDP-based time-optimal sailing strategies under
a range of wind volatility parameters. In particular, we show
how SDP is used to derive a control policy that minimizes
expected time to a prescribed waypoint. Focusing on a cus-
tomized robotic sailboat design based on a Soling 1m hull,
we then perform a Monte Carlo study where we simulate
the performance of this policy over thousands of randomized
wind profiles with specified volatility parameters. We present
individual results (“spaghetti plots”) and aggregate statistics
for the resulting routes. Furthermore, we demonstrate con-
vergence of the SDP result to the deterministic result of [8]
when the temporal length scale of the wind exceeds the time
scale of the full simulation. Finally, we perform a detailed
robustness assessment of the stochastic time-optimal control
approach by considering scenarios where the assumed and
actual wind volatility differ.

The remainder of the paper is organized as follows.
Section II describes the force and moment model for the
customized sailing drone under consideration, along with
key design parameters. Section III describes the SDP setup
for time-optimal control in the spatiotemporally varying
wind environment. Section IV summarizes results from a
Monte Carlo study of the SDP approach, which provides
insight into the behavior of the time-optimal solutions as a
function of statistical wind volatility parameters, along with
an assessment of robustness.

II. MODELING

In this work, we focus on a customized robotic sailboat
design, based on the Soling 1-meter hull, which is depicted in
the CAD rendering of Fig. 2 and presently being prototyped
within the Control and Optimization for Renewables and
Energy Efficiency (CORE) Lab at North Carolina State Uni-
versity. The design incorporates a rigid wingsail and smaller
control sail above its hull, which is consistent with existing
robotic sailboat designs, guided by principles discussed in
[12], and simplifies both modeling and trim. A summary of
geometric design parameters is given in Table I.

(a) CAD rendering of
the characterized robotic
sailboat design.

(b) Top view diagram of the au-
tonomous sailboat with aggregate
forces and relevant variables

Fig. 2: Autonomous Sailboat CAD Model and Aggregate
Force Diagram

A. Basic Dynamic Model
To characterize the dynamics of the proposed design, a

high-level model was created using established aerodynamic
and hydrodynamic force equations, as detailed further below
and introduced in [13] and [14]. Critical geometric variables
in this model are shown in Fig. 2, whereas the specific forces
acting on the wingsail and trim sail, along with sail-related
geometric variables, are shown in Fig. 3. The dynamics that
describe the translational motion of the boat are given by:

ẋ = −u sinψ, (1)
ẏ = u cosψ, (2)

u̇ =
∑
i

Fu,i, (3)

where Fu,i represents the force generated by component i in
the boat’s longitudinal direction. Based on Fig. 2, Eqn. (3)
can be written as:

u̇ = FL,net sin(β)− FD,net cos(β)− FDf
− FDw

, (4)

where β is the apparent wind angle, FL,net and FD,net are
the respective net lift and drag forces acting acting on the
wingsail, and FDf

and FDw are hydrodynamic drag forces
further described in the ensuing subsections. The apparent
wind is defined to be the vector difference of the true wind,
Vt, with associated wind angle θ, and the velocity of the boat,
u, with associated heading, ψ. Ultimately, this model was
used to derive a velocity polar for the intended design, which
characterizes the steady-state speed at which the sailboat can
travel, as a function of the true wind speed and the heading
of the wind relative to the boat.

B. Aerodynamic Forces and Moments
The rigid wingsail assembly (which incorporates a main-

sail and separate control sail) rotates about the mast and can



Fig. 3: Free body diagram showing the forces and moments
acting on the wingsail assembly.

be represented by the free body diagram shown in Fig. 3.
Under steady state conditions, there will be no rotation of
the sail about the mast; thus, it must be true that:∑

~Mmast = 0. (5)

For any arbitrary mast and control surface pivot locations,
which should be ahead of the quarter chord location of each
respective airfoil for stability reasons beyond the scope of
this paper, equation (5) implies that:

0 = ~rm/qcw × (~FLw + ~FDw) + ~rm/qcc × (~FLc + ~FDc)

− ( ~Mw + ~Mc),
(6)

where the subscripts w and c denote variables associated
with the main wing and control sail, respectively. With this
convention, ~rm/qci represents a vector from the mast to the
the quarter chord of the specified airfoil. The forces due to
lift, ~FLi

, and drag, ~FDi
, as well as the resulting moment

about quarter chord, ~Mi, can be written in terms of the
density of air, ρ, the velocity of the apparent wind, ~Vapp,
and the area of the corresponding surface, S as:

~FLi
=

1

2
ρ~V 2

appCLS, (7)

~FDi
=

1

2
ρ~V 2

app

(
CD,0 +

C2
L

ARπe

)
S, (8)

~Mi =
1

2
ρ~V 2

appCMSc, (9)

where coefficients CL and CM are functions of the angle of
attack, α, and deflection angle δ for equations associated with
the control surface, whereas CD,0 represents parasitic drag
at the zero-lift angle of attack. The remaining variables are
associated with parameters of the wing, where c represents
the chord length, AR is the aspect ratio, and e is the Oswald
efficiency factor given by the shape of the wing. For the
rectangular plan view geometry used for both the mainsail
and control sail, AR = s/c, where s is the span and S =
sc. Values for these parameters are given in Table I. Both
aerodynamic surfaces are characterized by symmetric NACA
0018 airfoils.

Parameter Value Description
sw 1 m Span of the main sail
sc 0.316 m Span of the control sail
cw 0.2 m Chord length of the main sail
cc 0.063 m Chord length of the control sail
Sw 0.2 m2 Reference area of the main sail
Sc 0.02 m2 Reference area of the control sail
AR 5 Aspect ratio of both main and control

surface surface airfoils
e 0.85 Oswald efficiency factor of each airfoil

dsep 0.25 m Separation distance from trailing edge
of main sail to leading edge of control sail

rm/qcw 0.025 m Distance from mast location to quarter
chord of the main sail

rp/qcc 0.005 m Distance from the control sail pivot
to the quarter chord of the control sail

LOA 1 m Length overall of the Soling 1-meter hull
Shull 0.2 m2 Wetted surface area of the hull
Draft 0.254 m Distance from the bottom of the keel

to the waterline
Lwl 0.965 m Length of waterline on hull

Beam 0.229 m Width of hull at widest location

TABLE I: Design Parameter Values

C. Hydrodynamic Forces

The hull, as shown in Fig. 2, was modeled based on the
Soling 1-meter [15] design, which will be used for future
experimental validation of the control strategies developed
in this work. Hull hydrodynamic drag forces are computed
as:

~FDf
=

1

2
ρw ~U

2ShullCf , (10)

~FDw =
1

2
ρw ~U

2ShullCw, (11)

where ~FDf
represents frictional drag and ~FDw

represents
wave drag. In the above equations, ρw is the density of water,
~U is the speed of the hull relative to the water (~U = ~u in
calm water with no side slip), and Shull is the wetted surface
area of the hull. The frictional drag coefficient, Cf , is a
function of the Reynolds number using a characteristic length
of 0.7Lwl, and Lwl is the length of the waterline. The wave
drag coefficient, Cw, is a function of the Froude number and
can be approximated using the techniques described in [14].

D. Velocity Polar

The velocity polar characterizes the achievable steady-
state forward velocity, uss, as a function of two variables:
(i) the true wind speed, Vt, and (ii) the true wind direction
relative to the boat, denoted by TWA and given by TWA =
ψ − θ. This is computed by solving for the value of u
that renders the total longitudinal force acting on the boat,∑
i Fu,i, equal to zero under the assumption that the angle

of attack α is chosen such that the net force on the sail in
the direction of motion is maximized. Contours of attainable
velocities are plotted on a polar map, where the radial
coordinate represents the attainable velocity (uss) and the
circumferential coordinate represents TWA.

Fig. 4 provides the resulting velocity polar for the chosen
design. The polar indicates the obvious feature that no
forward motion is possible directly into the wind, and the



Fig. 4: Boat Velocity Polar

concavity of the velocity polar in this vicinity indicates
the degree that the boat should be sailed off the wind to
maximize the component of velocity in the intended direction
(the “velocity made good”). The velocity polar serves as the
basis for developing a time-optimal control law.

III. SDP METHODOLOGY

Our ultimate control objective is to minimize the expected
time required to reach a waypoint, given known or estimated
statistics regarding the wind environment. For this work, we
will focus on an upwind leg of a sailing race, where the mean
wind direction vector is directly opposed to the intended
direction of travel.

To design this controller, it is first necessary to characterize
the environment in which it will operate. To this end, a
constant wind speed was assumed, with an associated wind
direction that varied according to a Markov model. The
transition probabilities associated with the Markov chain
follow the following update law:

θi+1 = θi +R(θprevail − θi) +N (0, σ2
tr), (12)

where θi represents the absolute wind direction at step i,
θprevail represents the prevailing wind direction, and R and
σ2
tr are parameters that characterize the volatility of the wind

direction. Specifically, R represents the tendency of the wind
direction to return towards the prevailing wind direction, and
σ2
tr is the transition variance, or the variance associated with

a single transition, or step, in the model. This update law
for the Markov transitions can be used to populate a Markov
transition matrix where the element in the ith row and jth

column can be calculated by:

Mij =

∫ B

A

N (0, σ2
tr) dθ

A = µ+ θj −
δθ

2

B = µ+ θj +
δθ

2
µ = θi +R(θprevail − θi)

(13)

where Mij represents the probability of the wind direction
transitioning from θi to θj , and δθ is the step size on the
discretization of θ values.

It is more convenient to characterize wind conditions using
the overall variance (σ2), as well as the time scale (lt),
which qualitatively represents the amount of time that must
pass before a significant change in the wind direction can
be observed. Higher values of σ2 and lower values of lt
correspond to a more volatile wind environment. Subject to
proportionality constants k1 and k2, it can be shown that:

lt =
k1
R

and σ2 = σ2
tr

(
k2
R

+ 1

)
, (14)

Given a probabilistic model of the environmental condi-
tions in which the sailing drones will operate, stochastic
dynamic programming (SDP) is a powerful tool for mini-
mizing the expected travel time. Specifically, SDP enables
the calculation of an expected optimal travel time between
a set of waypoints, given a wind model and boat dynamics.
The inputs to the SDP solution are the Markov transition
matrix, M, the velocity polar, u(Vt,TWA), and a tacking
penalty, λ, along with the course length and width.

In order to formulate the optimal control problem, we
discretize the course into a grid of possible x, y positions.
The state is fully specified by the boat’s x position, current
wind angle, θ, and whether the boat is on a port or starboard
tack. It is also necessary to store y position as the stage
variable. We define our objective function as the expected
value of the time to reach a specified terminal waypoint. In
order to minimize this time, the decision variable able to be
chosen by a controller is the x position at the next y position,
which we denote by x

′
. For each of these states, the stage

cost, or cost associated with that particular state transition,
is calculated as follows:

g(δy, x, x′, k, θ) =

√
δy2 + (x− x′)2
u(Vt,TWA)

+ cλ,

TWA = tan−1
x− x′

δy
− θ,

(15)

where δy is the length of a single stage, x is the current
position along the width of the course, x′ is the next position
along the width of the course , k is a binary variable encoding
the current tack, and θ is the current wind direction. The
value λ is calibrated to appropriately penalize the amount of
time lost due to tacking across a headwind, and c is zero if
the current tack matches the previous tack and one otherwise.

Since the first calculated stage costs in a backward re-
cursion are the costs to reach a terminal state from each
originating state, they also represent an expected optimal cost
to go, denoted G(x, y, k, θ). After calculating the cost to go
from each state that can reach the set of terminal states, the
cost to go is then calculated via backward recursion for any
state that can reach any of those states as follows:



G(x, y, k, θ) = min
x′

[g(δy, x, x′, k, θ)

+
n∑
j=1

WjG(y + δy, x′, k, θj)],
(16)

where Wj represents the probability based on the Markov
model that the wind direction transitions from θ to θj , and
n is the number of discretized wind angles. In addition
to storing the expected optimal cost to go, the result of
the above minimization is stored in an optimal decision
matrix denoted as Π(x, y, k, θ). This matrix of policies is
implemented according to the following control law:

x′ = Π(x, y, k, θ), (17)

and can be used to simulate the performance of the sailing
drone when operating in wind conditions that may or may
not match the estimated volatility parameters. The number
of required function evaluations scales as O(n2xnynθnk),
where nx, ny , nθ, and nk represent the sizes of each of
the corresponding state variables. Because the number of
admissible values of the x state is identical to the number
of admissible values of the decision variable, the overall
computation time varies with the square of that term.

IV. SDP RESULTS

Using to the methodology presented in the previous
section, the expected optimal cost to go as well as an
optimal decision matrix were calculated over various wind
conditions. For each set of wind conditions, the course length
was set to 1600 meters, and the boat was restricted to remain
within 800 meters of the course centerline. Each course was
also set directly against the prevailing wind direction. The
true wind speed was set to 2 m/s, and the initial conditions
of each simulation were set with the boat on the centerline
of the course with a direct headwind.

By simulating 4,000 sets of wind data according to the
respective Markov model, Figs. 5, 6, and 7 were created.
Each red line represents the path a sailing drone would take
under one of the simulated wind conditions, using the pre-
calculated optimal decision matrix. By plotting 10th, 30th,
70th, and 90th percentile bounds (denoted Px) on these
paths, trends within the optimal decision matrix can be
visually interpreted and compared under varying levels of
wind direction volatility. Two important conclusions can be
drawn from these results:

Parameter Value Description
Vt 2 m/s True Wind Speed
δθ 5◦ Discretization of Wind Direction
θmin -45◦ Minimum Wind Direction
θmax 45◦ Maximum Wind Direction
δy 10 m Stage Length
yf 1600 m Course Length
δx 2 m x Position Discretization

xmax 800 m Maximum Allowable Deviation from Center
of Course

λ 5 sec Tacking Penalty

TABLE II: Model Parameter Values

(a) σ2 = 500 deg2 (b) σ2 = 3500 deg2

Fig. 5: Simulated boat paths for lt = 10 min. Note that P10/90

represents the 10th and 90th percentile bounds on the lateral
position along the course, whereas P30/70 represents the 30th

and 70th percentile bounds.

(a) σ2 = 500 deg2 (b) σ2 = 3500 deg2

Fig. 6: Simulated boat paths for lt = 40 min. Note that P10/90

represents the 10th and 90th percentile bounds on the lateral
position along the course, whereas P30/70 represents the 30th

and 70th percentile bounds.

(a) σ2 = 500 deg2 (b) σ2 = 3500 deg2

Fig. 7: Simulated boat paths for lt = 120 min. Note that
P10/90 represents the 10th and 90th percentile bounds on the
lateral position along the course, whereas P30/70 represents
the 30th and 70th percentile bounds.

1) As volatility gets larger, either through shorter time
scales (lt) or larger variance (σ2), optimal routes
become tighter. This correlates accurately with sailing
rules of thumb, which dictates that it becomes more
and more dangerous to explore the extreme left or right
side of the course (colloquially termed “banging the
corners”) as the wind resource becomes more volatile.

2) As volatility decreases, particularly when σ2 is small
and lt exceeds the average total course completion
time, the control strategies approach a “one tack”
approach, which is proven to be the optimal solution
in a deterministic environment in [8].



(a) Underestimating σ2 (b) Overestimating σ2

Fig. 8: Histograms of the percent difference between simu-
lated paths when under or overestimating the overall variance
with lt = 40 min

(a) Overestimating lt while un-
derestimating σ2

(b) Overestimating lt with accu-
rate σ2 prediction

Fig. 9: Histograms of the percent difference between simu-
lated paths when lt is overestimated

The simulated paths shown in Figs. 5, 6, and 7 are based
on the assumption that the estimated parameters, lt and σ2,
used to characterize wind volatility, match those experienced
by the boat along the course. In reality, the estimated pa-
rameters, along with the associated optimal decision lookup
table used to run SDP, will not exactly match the actual wind
parameters. Figs. 8, 9, and 10 show distributions comparing
simulated performance under incorrect wind information to
that under correct wind information. The extent to which the
differences in the histograms are significant depends on the
application (for example, a nearly 6 percent difference in
average time is certainly significant in a racing application,
whereas it may be less significant in observational missions
where the sailing drone is tasked with performing oceano-
graphic assessment). It is also noteworthy that incorrect time
scale estimations have a significantly larger impact than
incorrect variance estimations. This supports the conclusion
that it is more important to understand how quickly the
environmental parameters are changing, as compared to how
much the environmental parameters are changing.

V. CONCLUSIONS AND FUTURE WORK

The paper presented a model, corresponding velocity
polar, time-optimal control solution, and detailed simula-
tion results for a robotic sailboat operating in a stochastic,
spatiotemporally varying wind field. Results of a Monte
Carlo simulation study under various levels of uncertainty
confirmed trends in the optimal routes as volatility increases
or decreases, demonstrating in particular that the results
approach a proven deterministic solution when volatility is
extremely low. Finally, a robustness analysis was performed,

(a) Underestimating both lt and
σ2

(b) Underestimating lt while
overestimating σ2

Fig. 10: Percent difference between simulated paths under
mixed incorrect predictions for lt and σ2

which quantified the performance degradation resulting from
various levels of mismatch between the estimated and true
wind environment. Future work will focus on the extension
of the results within this paper to more general waypoint-
to-waypoint paths and the development of heuristic control
laws that approximate the results of the SDP optimization
while enhancing implementation simplicity and tunability.
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