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Abstract— Over the past decade, Robot-Assisted Surgeries
(RAS), have become more prevalent in facilitating successful
operations. Of the various types of RAS, the domain of
collaborative surgery has gained traction in medical research.
Prominent examples include providing haptic feedback to sense
tissue consistency, and automating sub-tasks during surgery
such as cutting or needle hand-off - pulling and reorienting the
needle after insertion during suturing. By fragmenting suturing
into automated and manual tasks the surgeon could essen-
tially control the process with one hand and also circumvent
workspace restrictions imposed by the control interface present
at the surgeon’s side during the operation. This paper presents
an exploration of a discrete reinforcement learning-based
approach to automate the needle hand-off task. Users were
asked to perform a simple running suture using the da Vinci
Research Kit. The user trajectory was learnt by generating a
sparse reward function and deriving an optimal policy using Q-
learning. Trajectories obtained from three learnt policies were
compared to the user defined trajectory. The results showed a
root-mean-square error of [0.0044mm, 0.0027mm, 0.0020mm]
in R3. Additional trajectories from varying initial positions were
produced from a single policy to simulate repeated passes of
the hand-off task.

I. INTRODUCTION

With about 1.2 million successful surgeries performed
world-wide in 2019 using the da Vinci Surgical Systems
[1], Robot Assisted Surgery (RAS) [2], [3], [4] has become
increasingly prevalent in clinical environments. A particular
field that has helped RAS gain recognition is Minimally
Invasive Surgery (MIS). In MIS, surgeons attempt to min-
imize damage to tissue by operating through small inci-
sions (laparoscopy) using advanced imaging tools. RAS have
been successful in performing a wide range of complicated
surgical procedures such as coronary artery bypass, skull-
based surgeries, cardiac surgeries, cholecystectomies, and
organ transplants [5], [6], [7]. Busch et al. [8] quantitatively
compared robotic surgery using the da Vinci with conven-
tional laparoscopy and concluded superiority of surgeries
performed using the da Vinci for MIS. One caveat was a
higher learning curve as compared to traditional open cavity
surgery [9].

Teleoperated surgeries with the da Vinci can be
particularly laborious for novice surgeons due to the
repetitive use of clutching - an action used to reorient
the Master Tool Manipulator (MTM) without moving the
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Fig. 1: User using the dVRK system to perform hand-off
suturing task

Patient Side Manipulator (PSM). A previous user study
[10] conducted at Worcester Polytechnic Institute on using
the MTM to manipulate grippers in a small workspace
created in a simulation environment showed an average
variation in a user’s clutching frequency between 1 and 11
times, and an average path length coverage of 15.7cm -
356cm. Similar studies motivated other research groups to
investigate techniques to automate surgical tasks. Automated
procedures employ some iteration of the following concepts,
Learning from Demonstration (LfD) [11], Deep Learning
(DL) [12], Sequential Convex Optimization [13], Vision
Guided Systems [14], etc. Although these works do justice
to automating entire procedures, they fall short when
addressing scenarios that require intraoperative assistance
from a robot with the surgeon controlling the flow,
also known as collaborative surgery. Padoy et. al. [11]
demonstrated through a LfD technique that collaborative
tasks between users and RAS were possible. In their
research, recorded demonstrations by users were provided
as inputs to a Dynamic Time Warping (DTW) algorithm to
learn the trajectory using the da Vinci Research Kit (dVRK).

This paper explores the use of discrete Reinforcement
Learning (RL) to assist in collaborative suturing. The prob-
lem of suturing was first broken down into sub-tasks of which
the task of needle hand-off was explored. User trajectories
were collected and an algorithm was designed to generate
sparse rewards and create a custom reward function. Q-
learning was then implemented with this generated reward
function to derive an optimal policy. Based on the state
of the tool-tip, a trajectory was computed to complete the
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Fig. 2: Visual representation of the tasks being performed in this paper: M1 - needle insertion performed by PSMM; M2 -
grasping the needle manually performed by PSMA, A1 - pulling the needle and translating it, performed by PSMA, and A2
- reorient the needle and hand-off task performed by PSMA. Mi indicates all manual tasks and Ai indicates all automated
tasks. (i ∈ 1,2)

needle hand-off task. To verify the implementation of the
algorithm, three optimal policies were derived from a single
user trajectory (reference trajectory). Each policy was used
to compute a trajectory which were quantitatively compared
to the reference trajectory. To ascertain the robustness of
the algorithm, the initial states were distributed away from
the reference trajectory’s initial state and trajectories were
calculated from a single policy. An illustration showing
consecutive passes of the hand-off task was also presented.
Finally, a conclusion from the results was drawn and pre-
sented, along with the advantages and drawbacks of using
this technique.

II. BACKGROUND AND RELATED WORK

A. da Vinci Research Kit

The dVRK [15] system is an open-source mechatronics
system based on the first generation da Vinci surgical robot
developed by Intuitive Surgical Inc. The CISST libraries and
Surgical Assistant Workstation (SAW) software allow for the
control of the two PSMs, an Endoscopic Camera Manipulator
(ECM) through the two MTMs and a foot pedal tray [2]. The
MTM and PSM consists of 7 active joints with a gripper
attached at the end of the PSM arms (shown in Figure (1)).

B. Reinforcement Learning for Motion Planning

RL is a subset of learning algorithms in which the surgical
robot (an agent), learns how to perform in an environment
based on numerical rewards. The aim is to make the robot
learn from its own interactions with the environment while
trying to maximize the rewards received. The problem is
formed as a Markov Decision Process (MDP). Classical
RL is based on discrete-event Dynamic Programming (DP).
It works on two principles: Bellman Optimality Equation
(BOE) and the Bellman Policy Equation (BPE). Motion
planning from the context of RL is the process of finding
the optimal policy to carry out a motion to match the desired
trajectory. Some notable research in automating motion plan-
ning for surgical tasks in RAS include research done by Osa
et. al. in which the authors used LfD, DTW and force control
techniques to automate surgical tasks [16]. The authors men-
tioned one of the shortcomings as the performance depended
on the quality of learned demonstrations and as a result the
system could never outperform human users. Nonetheless,

Fig. 3: Breakdown of suturing tasks and convention assumed

RL has the potential to find optimum trajectories to complete
a task when applied to motion planning.

Selecting a suitable reward function is one of the most
crucial and challenging tasks of practically applying RL. A
good reward function would define how efficiently the PSM
arm would learn to interact with the operating environment
to find an optimal policy - how well it has learned to perform
hand-off task after grabbing the needle.

C. Robotic Suturing

Suturing is the procedure of closing wounds using a thread
to promote healing. It primarily consists of two main tasks,
stitching and knot tying, with compounded sub-tasks such
as needle aligning and tissue handling. In order to improve
the performance of robotic suturing while still keeping the
surgeon in charge, the process of collaborative suturing can
be distributed into sets of automated and manual tasks. By
automating certain sub-tasks of suturing, promising results
can be achieved through clutch-less suturing, a step which
can allow faster movements and reduce fatigue on the
surgeon during teleoperated surgeries [11].

This paper explores a new technique to effectively assist
surgeons during suturing tasks and goes on to accommodate
the variant suturing styles of surgeons by generating sparse
rewards for the desired trajectory. Figure 3 describes the
repetitive flow of robotic suturing and a breakdown of tasks
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considered in this paper. The tasks mentioned generalize
gestures obtained from the JIGSAWS public data set [17]
- a database of action recognition and skill assessment for
automated surgery.

Since the targeted application is that of collaborative
suturing, a consistent task definition convention can be
assumed for the remainder of the paper. Tasks with Mi denote
teleoperated tasks performed by the user. Tasks with Ai
denote automated tasks performed by the methods described
in this paper.
M1 Inserting the needle through the tissue with PSM arm

(PSMM).
M2 Grabbing the needle with the PSM arm (PSMM).
A1 Tightening the suture and translating to the next suture

point.
A2 Aligning the needle with PSMA’s jaw for completing

hand-off.
Figure 2 demonstrates various stages of the suturing.

III. METHODOLOGY

Fig. 4: Demonstration of the entire suturing procedure. At
bottom right, pose of the needle grasped by PSMA is shown,
where ô is the orientation vector, â is the approach vector,
and n̂ is the normal vector.

This section introduces a summary of problems - identify-
ing an optimal trajectory, and addressing the varying suture
style of surgeons. Users were instructed to perform a running
suture (M1,M2,A1,A2) on a suture pad by teleoperating the
PSM with the MTM. Data from a single hand-off task was
collected. The collected data was sampled into a discrete
gridspace defined in R3 to create sparse rewards to help fol-
low a custom trajectory. Finally, Q-learning was implemented
to identify the optimal policy for completing task A1. The
policy can then be tested on the dVRK with the user now
having to perform tasks M1 and M2 only, with the tasks A1
and A2 automated.

A. Problem Definition

Problem 1: Identifying optimal trajectory for completing
Task A1.

Given a distinct value function of the environment, an
optimal policy is to be computed to provide actions to the
PSM to perform the hand-off task autonomously.

Problem 2: Addressing the varying suture styles of sur-
geons.

Surgeons are known to have varying suture styles. To ac-
curately assist surgeons during procedures it is required to
reciprocate their respective suture styles.

Assumption: Tasks M1 - M2 have been completed before
hand-off task. The needle has been identified by the dVRK
endoscope and the PSMA has grabbed the needle in an
orientation with the normal vector parallel to the needle
profile, and the approach vector normal to the needle [Figure
(4)].

Algorithm 1: Sparse Reward Generation
Result: Sparse rewards generated along the trajectory

drawn by the operator
/* Rewardgoal much greater than Rewardvisited */

Rewardgoal � Rewardvisited > Rewardother
Input: StateToIndex(array(x,y,z))
Output: Rewards[gridsize3]
while rid in Rewards do

if rid == goal then
Rewards[rid ] = Rewardgoal

else if rid == visited then
Rewards[rid ] = Rewardvisited

else
Rewards[rid ] = Rewardother

end
end

B. Data Collection

The users involved in the data collection process were
members of the team, no external users were involved in
this experiment. Since the purpose of this work is to learn a
particular user’s style rather than generalizing the whole pop-
ulation, only a small number of users were required for the
study. Each of the user had less than 10 hours of experience
in teleoperating the dVRK system prior to this experiment.
The MTM was used to control the PSM arm during the suture
needle hand-off task. The recorded data included the PSM
pose and joint position data, the clutching frequency of the
operator, and the MTM pose and joint positions. A python
script implementing the StateToIndex function was created
to process the operator specified trajectories and to generate
sets of state-action pairs with appropriate discretization of
action value ranges and concurrent states. The function
StateToIndex converts each point Pi in the processed array
to its associated index between 0 to gridsize3. The gridsize
decides the number of points present in the grid world. In
this work, the gridsize is set to 11 and therefore a total of
1331 points are present in the grid world.

The algorithm designed to generate an appropriate reward
function is shown in Algorithm (1). The data collected from
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Fig. 5: Comparison of reward functions obtained for an user using IRL with Value Iteration (left) and sparse reward with
Q-learning (right). The size and color of the dots indicate the rewards received by the PSM for visiting the corresponding
states in the grid world.

the dVRK was discretized into an array of points Pi(x, y, z)
in the 3D grid world.

C. Motion Planning for RL

The PSM and it’s workspace was considered to be the
agent and environment respectively. The dVRK system was
controlled using the CISST-SAW libraries. Since RL algo-
rithms using DP are known to be computationally exhaustive,
a minimal representation of the input states was considered.
As a result, the problem was formulated as a discretized
world problem in R3 with a grid of size 11× 11× 11.
An unit grid world corresponds to a 5× 5× 5mm3 cube in
the real world. The range of the grid world was selected
such that the robot tip followed a smooth trajectory in
R3, without hampering the performance of the algorithm.
From the collected user data, the change in orientation of
the needle during the hand-off task was observed to be
negligible until the point of handing the needle over to
the PSMM . This observation allowed sequential automation
of the task, with the RL algorithm learning the desired
trajectory as a simple translation, after which a set of rotation
transformations were performed. In addition, the state space
was significantly reduced, making the implementation of a
discrete RL algorithm more plausible. The action space for
the robot was designed to ensure all possible configurations
out of a total of [−ve,0,+ve]3 = 27 actions from the current
state, where 0 indicates no change in position value, −ve
and +ve indicate a unit decrease and unit increase in the
end-effector position value respectively.

Initially, Value Iteration was explored and implemented
using the MDP environment created for the PSM [18].
However, the agent was unable to learn a trajectory despite
iterating over varying parameters and integrating maximum
entropy Inverse RL (IRL) to generate a task specific reward

function. Maximum entropy IRL is a probabilistic approach
in which equal probability is allocated to plans when they
encounter equal rewards, and the probability of being chosen
exponentially increases for plans with higher rewards. The
implementation of this algorithm lacked sufficient explo-
ration causing it to converge at a local minima instead of
it following the desired trajectory.

Figure (5) shows the computed reward function using
Maximum Entropy IRL (left) and Sparse Rewards (right).
In the plot generated by Sparse rewards, equal rewards to
the visited states (threshold < 0.1) and higher reward at the
goal state can be seen (threshold > 0.1). This helped the Q-
learning algorithm to track the visited states before reaching
the goal state. In comparison, no such relation could be
deduced in the Maximum Entropy IRL plot, which made
it harder for the Value Iteration to track the desired trajectory.

Due to the unsatisfactory outcome of the aforementioned
techniques, the authors explored the use of Q-learning - a
technique that uses function approximation techniques to find
the measure of the overall expected reward received by the
agent (Q values) of a state. The state-action value function
Qπ(S,A) was derived to follow a policy π(S,A) and take
an action A from state S using Equation (1) [18]. Upon the
completion of each iteration, the agent’s expected value of
a state was evaluated and stored to be used to calculate
the expected reward. The following conditions warranted
termination:

• To ensure the PSM doesn’t keep moving around in the
environment indefinitely, a maximum number of steps
was assigned to terminate an episode (set to 100)

• During learning phase it is possible that the PSM can
get stuck at a position. Therefore, the maximum amount
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of time allotted to the PSM to complete an episode was
set to 30 minutes.

• Task completion (when the PSM reaches the goal state)

Q∗(S,A)←− Q∗(S,A)+α[R+ γmaxaQ∗(S′,a)−Q∗(S,A)]
(1)

where R is the reward received when moving from the
state S to the next state S′ and α is the learning rate, γ

represents the discount factor ( 0 < α , γ ≤ 1), . Once the
agent estimates the value functions for each state, it chooses
the path leading to the goal state by selecting the maximum
value of rewards and repeats itself until the goal state is
reached.

D. Realigning PSMA Jaw

After gathering the suture data, the user indicated a
preference for the PSMA’s tip to approach the PSMM’s tip
orthogonally, and have the normal vector of PSMA’s jaw be
parallel to the approach vector of PSMM’s jaw to help make
the hand-off task easier [Figure (4)].

IV. RESULTS

Fig. 6: Raw and discretized input trajectory for one of the
user’s data

For finding the ideal discretization factor, the factors con-
sidered was the collected user’s data, required computational
resources and the largest step the PSM could move without
resulting in jerky movements. The grid size was set to
11×11×11 and all the values were rounded off to nearest
5mm value as data loss observed was minimal without
compromising the performance of the algorithm. Figure (6)
shows that the discretized trajectory manages to retain the
features of the desired raw input trajectory of the user.

Given the required suture points are computed beforehand
and provided to the algorithm, the same model can be used to
perform repeated suturing hand-off task (A1, A2) by aligning
and stacking the grid world with respect to the goal position
as shown in Figure (7). This is possible since the agent has

Fig. 7: Application of learnt RL policy for successive A1 and
A2 tasks

learnt the policy to follow the user trajectory, even if there is
a change in initial position. Since the exploration factor in Q-
learning is dependent on the random numbers generated by
the system, different iterations of the algorithm generated a
slightly new policy. Each policy differs in state-action pairs,
but as it can be seen from Figure (8), the agent was still able
to successfully learn the user’s trajectory.

Mean Standard Deviation
X Y Z X Y Z

2.857 1.488 0.774 3.388 2.286 1.808

TABLE I: The mean and standard deviation of the dissim-
ilarity between the average of the three learnt trajectories
[Figure 8] and a single user trajectory (all values are in mm)

To show the effectiveness of the technique presented in
the paper, the authors decided to measure the similarity of
the generated trajectory and the user defined trajectory. DTW
[19] with Manhattan distance as the distance measure, was
used to establish this metric. DTW is a common method
to compare the similarity between two sets of data which
vary in length or time. Table (I) shows the mean [2.857mm,
1.488mm, 0.774mm] and standard deviation [3.388mm,
2.286mm, 1.808mm] of three learnt policies shown in Figure
(8) from the user defined trajectory shown in Figure (6).
For reference, perfectly similar trajectories would have a 0
mean and 0 deviation from the reference trajectory. Figure
(8) also shows the deviations of the learnt policies from
the user trajectory, where the black dashed lines symbolize
the DTW produced mapping from the policy to the user
trajectory. Root-Mean-Square Error (RMSE) was used to
evaluate the goodness of the generated trajectories. The
RMSE was found to be [0.0044mm, 0.0027mm, 0.0020mm]
for the three trajectories shown in Figure (8) with reference
to the user trajectory.
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Fig. 8: Learnt RL and discretized user trajectory for 3 different computed policies with DTW to measure similarity

Fig. 9: Trajectory followed by PSM after change in the initial
state based on the learnt RL policy

Figure (9) shows the agent following the user’s trajectory
with a deviated initial state. The user’s initial position was
[-10mm, 55mm, -135mm] and the value of different initial
state tried for the learnt agent ranged between [-25mm, -
5mm] along the X-axis, [50mm, 60mm] along the Y-axis and
[-130mm, -135mm] along the Z-axis. As shown in the figure,
the agent was successful at learning the user’s trajectory even
after significant deviations in initial state of the agent.

V. DISCUSSION

A. Note on the Results

The results show the robustness of learnt RL algorithms
and repeatability of the model for successive hand-off tasks.
The results from Figure (9) show that the agent was able
to follow a trajectory close to that of the user’s despite
varying the initial position. This is a relevant scenario since

the needle may not present itself at the same position over
each step. The user’s trajectory was successfully learned
and reproduced on the dVRK to perform multiple passes of
the hand-off task with varied start points, with a similarity
mean of 1.706mm of the learned trajectory from the user’s
trajectory, and a cumulative standard deviation of 2.494mm
over the trial conducted by the user and the robot. By
automating the hand-off task, clutch-less suturing can be
performed and the user can ignore the workspace constraints
of the PSMA.

B. Applications

Due to the high dexterity required for suturing tissue
with the da Vinci, obtaining certification to be a trained da
Vinci user mandates certain requirements [20]. The methods
mentioned in this paper could be employed to train novice
users by replicating a reference trajectory of the hand-off task
performed by an expert user. Further modifications to the pre-
sented methods could be performed to allow haptic feedback
to jog the novice user through the trajectory and/or score the
novice user’s trajectory by evaluating it’s standard deviation
and mean from the expert user’s trajectory [10]. Furthermore,
a database of the varying suture techniques can be created
using Algorithm (1) to store expert user’s trajectories for
multiple types of sutures - running suture, figure of 8 suture,
simple buried suture etc. [21]. In comparison to current
state of the art supervised learning techniques that require
a significant amount of data to learn from demonstration,
the algorithm presented only required a single trial.

C. Drawbacks

The major drawback of employing discrete RL techniques
that follow Bellman’s Optimality equation (Dynamic Pro-
gramming etc.) is the curse of dimensionality [22]. As the
number of states and actions increase, deriving the optimal
policy becomes computationally exhaustive. Therefore, the
algorithm presented is not scalable and requires limited
observations at each state. For a system with s states and
a actions, a total of as computations are performed to obtain
the optimal policy at that state for one iteration [18]. Possible
workarounds would be to move towards employing Deep
RL techniques such as Deep Q-network (DQN) [23] or
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explore continuous state space RL algorithms such as Deep
Deterministic Policy Gradient (DDPG) [24].

D. Future Work

Although this paper assumes identification of the needle
and that the needle has been grasped using a traditional
control technique, attempts to further this proposed technique
would involve extending it’s domain to grasping and identify-
ing the needle as well. The authors are already exploring the
Deep RL and continuous state space techniques mentioned
in the prior section to overcome the curse of dimensionality
observed in this presented work. Hence, future work would
include implementing continuous action space algorithms
and using policy gradient methods such as DDPG [24],
Trust Region Policy Optimization (TRPO) [25] to automate
suturing task.

VI. CONCLUSION

This work is limited to demonstrating the viability of
a discrete RL technique to automate the needle hand-off
task for collaborative suturing. An algorithm to generate
a sparse reward function was designed and a successful
implementation of Q-learning was presented. Trajectories
obtained from three learnt policies were compared to the
user defined trajectory. A RMSE of [0.0044mm, 0.0027mm,
0.0020mm] was observed. The robustness of the algorithm
was calculated using multiple trajectories with varying initial
positions from a single policy. Finally, a qualitative analysis
of the results was presented.
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