
A Parametric Grasping Methodology for Multi-Manual Interactions in

Real-Time Dynamic Simulations

Adnan Munawar, Nishan Srishankar, Loris Fichera & Gregory S. Fischer

Abstract— Interactive simulators are used in several im-
portant applications which include the training simulators
for teleoperated robotic laparoscopic surgery. While state-
of-art simulators are capable of rendering realistic visuals
and accurate dynamics, grasping is often implemented using
kinematic simplification techniques that prevent truly multi-
manual manipulation, which is often an important requirement
of the actual task. Realistic grasping and manipulation in simu-
lation is a challenging problem due to the constraints imposed
by the implementation of rigid-body dynamics and collision
computation techniques in state-of-the-art physics libraries.
We present a penalty based parametric approach to achieve
multi-manual grasping and manipulation of complex objects
at arbitrary postures in a real-time dynamic simulation. This
approach is demonstrated by accomplishing multi-manual tasks
modeled after realistic scenarios, which include the grasping
and manipulation of a two-handed screwdriver task and the
manipulation of a deformable thread.

I. INTRODUCTION

Interactive computer simulations play an important role

in robotic teleoperation by enabling human operators to

practice and gain experience with a system before operating

the actual physical hardware. One important application is

training for robotic surgery where new surgeons are trained

to get accustomed to the telemanipulated interface. Towards

this end, the surgeons can interact with simulated dynamic

objects (such as soft-tissues, rigid-body puzzles, peg and hole

tasks, etc.) using telemanipulated simulated end-effectors

mimicking the actual robot.
An important aspect of natural interaction is the ability

to grasp and manipulate dynamic objects. Such interaction

includes the dynamic deformation of skin tissue in the

vicinity of contact points as shown in Fig. 1(a). To be

perceived realistic, interactive simulators need to compute

the real-time physics of the interaction between the robot

and its environment. This encompasses, among other things,

the interplay between the forces created by the user through

his/her actions, the forces created by the objects present in

the simulated environment, and the resulting changes in the

environment.
While most interactive simulators excel at rendering re-

alistic physics, grasping is implemented using simplified

Adnan Munawar is with the Computer Science Department at the
Johns Hopkins University, Baltimore, MD, USA. Nishan Srishankar,
Loris Fichera & Gregory S. Fischer are with the Department of
Robotics Engineering, Worcester Polytechnic Institute, MA, 01609,
USA amunawar@jhu.edu, [nsrishankar, lfichera,
gfischer]@wpi.edu

This work is supported by the National Science Foundation (NSF)
through National Robotics Initiative (NRI) grant: IIS-1637759 and NSF
AccelNet grant: 1927275

Deformation of
Skin to Match

Underlying Body

Balancing
Forces for

Static Grasp

Average
Contact Point

(FThumb)

Average
Contact Point

(FIndex)

BODY WEIGHT

(a)

Initial
Grip

Controlled Slip
Using the Weight

Controlled Slide
Using the Ground

(b)

Fig. 1: (a) Natural grasping with skin deformation resulting

in increased surface contact. (b) Controlled slip and slide for

manipulation by leveraging weight or external obstacles.

techniques that do not mimic natural contact dynamics as

shown in Fig. 1(a). As an example, a commonly used

technique for simulated grasping [1], [2] deactivates the

dynamic properties of the grasped object and treats it as

a kinematic body affixed to the grasper. This approach has

obvious shortcomings as it limits multi-manual manipulation.

Moreover, an important aspect of natural grasping is the

ability to allow controlled “slip and slide” of the grasped

object as shown in Fig. 1(b). This is useful in training

applications, modeled after realistic tasks, that require multi-

handed interactions.
We present an approach that utilizes a form of penalty

based parametric sensors [3] [4] that can be mounted on any

grasper to emulate adequate friction for easy grasping. The

concepts presented in this paper were implemented on the

Asynchronous Multi-Body Framework (AMBF) [5] using a

variety of different simulated graspers and friction surfaces.

These graspers were then used to perform complex tasks

that involve the manipulation of various dynamic objects,

interaction with simulated surgical robots, and controlling

deformable bodies (modeled using finite primitives). The

implementation is generic and can be expanded to any

physics library.

II. RELATED WORK

A summary of notable work addressing the problem of

grasping using contact dynamics in simulation is described

in this section. GraspIt! [6] by Miller et al. was a prominent

simulator that contained multiple robotic hands, contact body

dynamics, and a basic grasp planner, but lacked an API

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 8712

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

and a modular architecture which limited its functionality. A

proposed improvement by Léon et al., called OpenGRASP

[7] simulated contact sensors for grasping and attempted to

create a realistic simulation of grasping rigid objects using

soft contacts.
Moisio et al. [8] used the OpenGRASP toolkit to improve

an existing model of simulated tactile sensors that used

a soft contact approach without modeling stick-slip. The

improvements were made by using a parametric contact

force model for surface forces, holding torques and stick-

slip as well as generating the sensors using a geometry

patch. The resulting simulated framework was compared

with real-world robot grasping. However, the authors stated

that the computational efficiency of the tactile sensor model

could be improved by using a non-brute force collision

detection solver. Ciocarlie et al.[9] worked on a general

analytical method to model fingertip gripping with friction

by analyzing friction constraints on non-planar contacts of

elastic materials, formulating a linear complementary prob-

lem (LCP), and removing any assumptions about the objects

geometries. Goldfeder et al.[10] implemented a grasp planner

in GraspIt! that was generalizable to various object/hand

geometries/kinematics by decomposing and representing an

object as a tree of super-quadratics, hence defining a smaller

search space of potentially successful grasps as those which

have good grasps on sub-components of the object in the

decomposition tree.
Hawkes et al. [11] proposed an alternative to gripping an

object purely using the normal force. Their work used gecko-

inspired controllable fibrillar adhesives that utilize tangential

shear forces mimicking the curvature of an object. Such a

gripper could grasp convex objects that are relatively large

and featureless as well as delicately grab objects without

squeezing. Malvezzi et al. [12] developed a lightweight

Matlab toolbox called SynGrasp. In addition to providing

an easy way to load hand models, it allowed grasping

performance analysis and grasps quality measures such as

minimizing contact forces for a given grasp based on a

specified cost function.
Interactive training in simulation may involve non-convex

shapes and articulated mechanisms that require within-hand

and multi-manual manipulation in real-time. By default, the

links (belonging to a simulated grasper) have uniform surface

friction. As discussed in [13], however, mechanical equiv-

alents of a biological finger can have surface regions with

different friction coefficients. We thus present a generalizable

approach to interactive training using penalty based contact

sensors that complement the underlying collision constraints

provided by the physics solver [14].

III. PROBLEM FORMULATION

For manipulation in real-time dynamic simulations, it

is impractical to model grippers such as Fig. 1. Instead,

rigid bodies are preferred which require rigid-body collision

methods. These methods can be separated based on primitive

versus non-primitive collision shapes. Consider a simulation

involving spherical bodies that can be modeled using either

the corresponding analytical function (primitive shape) or the

non-primitive discrete mesh. The collision computation only

requires that the center Pw
Bi

of each Body B maintain its

radius rBi
from all the other bodies. This constraint can

be expressed simply as ||Pw
B1

− Pw
B2

|| >= (rB1
+ rB2

).
To compute the collision forces, the system of equations

representing the dynamic simulation is evaluated at time-

steps [n0, n1, n2, ...nd]. The resulting error Dp = rB1
+

rB2
− ||Pw

B1
− Pw

B2
||, called the penetration depth, is used

to calculate a resulting correction force which serves to

“repel” the penetrating bodies to re-satisfy the constraint. For

a real-time dynamic simulation, the time-step dt is variable,

which affects the penetration depth. With this basic setup,

the challenges associated with grasping in simulation are as

follows:

A. Limitations Associated with Geometric Representation of

Rigid Bodies

Simulated rigid bodies have an infinite surface stiffness in

the sense that the surface in the vicinity of a contact point for

a simulated rigid-body does not deform. Moreover, individual

faces (of shapes and meshes representing simulated bodies)

are locally smooth whereas the contact surfaces of physical

bodies are rough at a microscopic level as illustrated in Fig.

1(a). This roughness plays a major role in both the static and

sliding friction response.

Fig. 2: The penetration depth Dp (maximum fall distance vs

equilibrium) of three collision shapes (Spheres) with mass =

50 Kg, radius 0.5 m, non static ground plane position at 0

m and drop height = 2 m.

The inherent softness rendered by collision algorithms, in

the form of the penetration depth Dp, in a way counteracts

the infinite stiffness of rigid bodies. At a glance, this may be

leveraged to mimic the softness inherent to real-world bodies.

However, this penetration depth varies based on a few factors

such as the length of the time-step dt, the collision shape

type and the complexity of the body’s geometry for non-

primitive shapes. As demonstrated in Fig. 2, a primitive and

two non-primitive spherical shapes (of a different number

of mesh faces) of identical scale are dropped onto a static

plane at various physics update frequencies. The difference in

geometry and physics update frequency alters the penetration

depth of each object. This varying behavior of the resulting

penetration depth Dp limits the use of implicit softness ren-

dered by collision algorithms for contact dynamics purposes.

8713

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Visualization of the commonly used friction cone

B. Dynamics Calculation in Physics Libraries

The computation of the normal force FN is used for

the derivation of both the static and sliding friction. The

analytical approach to modeling the static friction force, de-

picted in Fig. 3 is trivial for specifically optimized examples

modeled using non-stiff differential equations. On the other

hand, for real-time rigid-body dynamics, as in our case,

iterative techniques are preferred where the collisions are

modeled as instantaneous inequality constraints. Examples

of these methods include both velocity (such as Sequential

Impulse (SI) [15] [16]) and position based methods (PBD)

[17]). These methods counter the penetration by applying

corrective impulses (proportional to penetration) or position

correction respectively. The application of corrective impulse

instead of direct position rectification makes velocity based

methods more suitable for simulating friction. However,

even for SI solvers, the dependence of the normal force

on the penetration depth makes the friction constraint non-

linear and not strictly convergent. Moreover, it is difficult

to compute the correct contact area for non-primitive shapes

without some simplifications. Thus especially for real-time

simulations, where the accuracy of the solver has to be

comprised to some extent, the varying penetration depth

makes even an acceptable friction model using velocity based

method insufficient for rendering adequate stick-slip friction.
Penalty based contact modeling approaches [3], which are

forms of Force Based methods, are usually avoided in real-

time simulations. These methods under-perform in terms of

achieving impenetrability as a high enough velocity of a

colliding body may result in tunneling [18]. However, in

our case, it is their exact penetrability that is leveraged to

simplify grasping and emulate stick-slip friction as discussed

in the next section.

IV. METHODS

The following section provides details about the methods

used to model sensor based friction for grasping and manip-

ulation. The section uses several coefficients which are listed

in Table I for clarity.

A. Resistive Sensors for Preemptive Contact Computation

Ray Shooting (Ray Tracing) [19], [20] can be used for

rendering realistic scenes. Since this technique essentially

computes the intersecting point of an object along the path,

it can also be used for a variety of other applications as in our

TABLE I: Symbols used in this Manuscript.

Symbol Description
~FS , ~FV , ~FN Static, Sliding, Normal Friction Force
~eT , ~eV , ~eN Tangential , Velocity and Penetration Contact Error
µS , µV Static and Sliding Friction Coefficient
KN ,KD Normal Contact Stiffness and Damping
~V C
[A,B]

General Notation to Express ~V C
A and ~V C

B which can

be read as ~VA and ~VB expressed in C

PrayStart
nW

PAC

PrayEnd

FN

σa

eT
eN

PBC

Fig. 4: (a) A single Resistive sensor (left) and the visualiza-

tion of contact (green spheres) of an array of sensors (red

spheres) mounted on a cube.

case where we combine this ray and some additional para-

metric data and call it a Resistive sensor (shown in Fig. 4).

Each Resistive sensor can be computed independently or in a

group which is important as Ray-Tracing is computationally

expensive.

B. Anatomy of a Resistive Sensor

A Resistive sensor in Fig. 4 visually illustrates some

coefficients from Table I. The sensor can be defined w.r.t. a

start ~PrayStart and an endpoint ~PrayEnd and is “triggered”

when it intersects with another object. In addition to the start

point, the sensor is parameterized by a range and an offset

(or a depth) from the surface of its parent body. To specify

multiple sensors, a separate triangular mesh can be used as

discussed later in Alg. 2.
Due to the challenges associated with implementing the

static friction cone, as discussed in section III, one alternative

is to use a fully deterministic analytical approach represented

in Fig. 5. A torque ~τ[GA,GB] is being applied to both fingers

by an external controller. To solve for the contact normal

force at points ~PAC and ~PBC , we require the knowledge of

the torque ~τ[GA,GB] at JG, and the lengths ~PGA and ~PGB .

This example can easily be expanded to non-quasi-static

problems, where the gripper is accelerating while holding

Body Z (Fig. 5). In such cases, the Inertial and Coriolis

components need to be considered in addition to the contact

dynamics and gravitational components. Furthermore, addi-

tional bodies may interact with the gripper’s finger and as a

result, increase the complexity of contact force computation

at ~PAC and ~PBC .
Secondly, the vector of Tangential force ~FT is required

to compute the Resultant force ~FR. This tangential force is

balanced by the static friction force ~FS under the constraint
~FT <= ~FS and thus preventing tangential displacement.

Without using the implicit integration methods, it is not

possible to compute the static force before a deflection

occurs, which is a challenge to modeling the trivial friction

cone. Considering this limitation, σa and KN are utilized.

8714

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

PGAPAC

PGB

Base JG

𝜏[GA,GB]
Grasped
Body Z

Contact
Normal
Force

PBC

Fig. 5: Grasping an object using a simple two finger gripper.

A displacement along the tangential direction results in

error ~eT = (TW
A

~QA
C − TW

B
~QB
C)projT , where projT is the

projection of the contact error in the tangential plane to the

direction of the sensor and is then used to compute ~FS as:

~FS = µS ∗ ~eT ∗ ‖~FN‖ (1)

Eq. 1 does not rely on the limit ~FT <= ~FS but instead

on the limiting error ~eT . Once a Resistive sensor triggers as

a result of contact with another body, the sensed point ~PW
C

is recorded. This sensed point is then used to calculate ~QA
C

and ~QB
C as:

~Q
[A,B]
C =

{

(TW
[A,B])

−1 ~PW
C , if ‖~eT ‖ <= σa,

Recompute, otherwise.
(2)

Here ~QA
C is the position of the sensed point ~PW

C in Body

A and ~QB
C is the sensed point’s position in Body B. If the

limiting condition ‖~eT ‖ <= σa is exceeded, the new value

of ~PW
C is used to compute ~QA

C and ~QB
C based on Alg. 1.

Algorithm 1 Store Contact Points in Body Frames

1: if Sensor Triggered == True then

2: ~PW
C = Get SensedPoint()

3: ~e = TW
A

~QA
C − TW

B
~QB

C

4: if ~eprojT > σa then

5: ~P
[A,B]
C

= (TW
[A,B])

−1 ~PW
C

6: ~Q
[A,B]
C

= ~P
[A,B]
C

7: end if

8: end if

Similarly ~FN is calculated as:

~FN = KN~eN +KDδ~eN/dt (3)

This force is based on the penetration depth of the sensed

point w.r.t. the sensor limits. This depth is normalized using

Eq. 4 and then projected along the sensor’s direction in the

World frame.

~eN =

(~PW
C − TW

A
~PA
rayStart

TW
A (~PA

rayStart −
~PA
rayEnd)

)

projNA

(4)

The terms ~PA
rayStart and ~PA

rayEnd are the start and end

points of the Resistive sensor in the Body A frame, and

δ~eN/dt is to provide damping to the contact normal force.

The normal penetration depth for Body A is a projection of

the contact error onto the normal plane of A (projNA
).

Finally, the sliding friction force is computed from the

relative velocities of contact points of Body A and Body B.

~FV = µV ∗ ~eV (5)

If the velocity of Body A and Body B are (~V W
A , ~ωW

A) and

(~V W
B , ~ωW

A) in the world frame respectively, then:

(~vC[A,B]) =(RW
[A,B])

−1~V W
[A,B]+

(RW
[A,B])

−1~ωW
[A,B] × T

[A,B]
W

~PW
C

(6)

In Eq. 6, the rotation (RW
[A,B])

−1 is not collected outside

as the cross product (RW
[A,B])

−1~ωW
[A,B] × T

[A,B]
W

~PW
C is not

commutative. These velocities are converted back to the

World frame using Eq. 7. The ~vWC[A,B] notation emphasizes

that the velocity of sensed point (C) relative to Body A, and

Body B, is expressed in world frame:

~vWC[A,B] = RW
C[A,B]~vC[A,B] (7)

Which leads to the sliding error:

~eV = (~vWCA − ~vWCB)projT (8)

The three components of force are summed together as:

~Ftotal = ~FN + ~FV + ~FS (9)

This force can now be used to compute the resulting

moment on Body A and Body B by converting it back to

Body Frames.

~ωW
[A,B] = RW

[A,B]((R
W
[A,B])

−1 ~Ftotal × (TW
[A,B])

−1 ~PW
C) (10)

The final force and moment are then applied to both Body

A and Body B as action/reaction wrenches. The magnitude

of the static friction force calculated from the Resistive

sensor can be visualized as an inverse cone shown in Fig.

4(a). Fig. 4(b) shows the deformation of the contact surface

formed by Resistive sensors as they penetrate another body.

The normal force introduces “softness” to contact dynamics

and improves the friction response, which can be leveraged

to loosely mimic natural manipulation using soft contacts

without the explicit use of deformable body simulations.

However, a normal force might not be desirable in certain

applications for which Eq. 1 is modified as:

~FS = µS ∗ ~eT ∗ ‖~eN‖ (11)

Where the depth is the normalized fraction of the sen-

sor’s penetration depth. The underlying equations used to

represent the behavior of Resistive sensors are based on the

combination of both penalty based methods for contact com-

putation and the classical Coulomb friction model. However,

these equations are slightly different in their application.

This difference results from the fact that instead of two

bodies colliding with each other, it is the Resistive sensors

mounted on Body A which penetrate Body B. Thus, there is

no common normal of collision at this instance, instead, it is

the direction of the sensor that is used for the computation of

the normal force ~FN (Eq. 3) as well as the static and sliding

friction force ~FS (Eq. 1) and ~FV (Eq. 5). The damping

KD stabilizes the normal force by reducing “jitter” that is

generally associated with penalty based methods.

8715

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

3 Different
Discrete Sensor

Arrays

Wrapped Sensor
Patches

Primitive Resistive
Sensor Patches

(a)

Prismatic
Gripper

Resistive
Sensors

Asymmetric
Posture

Multi-mesh
Object

Right LinkLeft Link

(b)

Fig. 6: (a) Skin-wrapping 2D planes for contoured resistive

surface. (b) A simple prismatic gripper mounted with Resis-

tive sensors used for grasping at asymmetric postures.

C. Automating Sensor Placement

It is impractical to manually place an array of Resistive

sensors on simulated dynamic bodies represented by complex

meshes. Thus we propose two approaches for sensor place-

ment, (1) based on the visual mesh of the object and (2) based

on a separate parametric mesh specified alongside the visual

mesh. These meshes are called the “source meshes” and are

used according to Alg. 2. The resulting sensor placement is

shown in Fig. 6(a). The primitive patches are wrapped around

the visual mesh using Alg. 3.
Based on the vertex and triangle data of the source mesh,

the surface is covered using the trivial Alg. 2. This algorithm

can be expanded to cover edges and vertices. Using a

separate mesh to define the surface of placement has many

advantages over using the visual mesh of the object. For

gripping tasks, the resistive surface forming the grasp closure

is of more interest. Thus a mesh covering only the specific

surfaces may be used. Furthermore, the parametric mesh

can be defined to smooth out sharp corners of the visual

/ collision mesh.
Real-world rigid bodies may contain surfaces that are

represented by different friction coefficients [13]. While it

is possible to create different friction response at different

areas on a rigid-body using existing physics APIs, the use

of Resistive sensor patches streamlines the process.

Algorithm 2 Populate Sensors Along Body Surface

1: D := Param. Depth, R := Param. Range, M := Mesh

2: Triangles←M
3: for T ∈ Triangles do

4: ~vtx0, ~vtx1, ~vtx2 ∈ T
5: ~edge0 = ~vtx1 − ~vtx0, ~edge1 = ~vtx2 − ~vtx1

6: midpoint = ~vtx0 + ~vtx1 + ~vtx2

7: nf = ~edge0 ×
~edge1/‖

~edge0 ×
~edge1‖

8: ~PrayStart = midpoint− ~nfD

9: ~PrayEnd = ~PrayStart + ~nfR
10: end for

Several free software can be used to generate and modify

meshes. Blender is a popular software for graphics design

and animation and was used in this study for creating skinned

meshes.

Algorithm 3 Wrapping Primitive Around Visual Shape

1: S ← Visual Shape, M ← Primitive Mesh

2: ~poff := Param Offset between a body and its sensor mesh

3: for v ∈M.V ertices do

4: pv := v.position, nv := v.normal
5: ~pc := Contact Point on S of Ray along nv

6: if Contact Occurred then

7: fc := Nearest Face of S to ~pc

8: ~nc := fc.normal
9: if dot(~nc, ~nv) < 0 and ~poff <= (~pc − ~pv) then

10: ~lv = ~pc −
(~pc−~pv)

||(~pc−~pv)||
∗ ~poff

11: pv = lv
12: else

13: Discard v
14: end if

15: end if

16: end for

17: Recompute Normals for M

16.2 16.6 17.016.816.4
Time (s)

0.0
8

0.0
9

0.1
0

0.1
1

Ta
ng

en
tia

l E
rr

or
 (e

T)

(a)

2.0

-0
.0

5

2.4 2.8 3.2

0.
0

0.0
5

P
os

iti
on

s
(m

)

Time (s)

(b)

Fig. 7: (a) Constant force stick-slip friction response. (b)

Equilibrium on an inclined plane. m = 0.5Kg, Ks = 5000,

σa = 0.001, Kn = 1, KD = 50 and µv = 0.1.

V. RESULTS

The interactions presented in this section are carried out

using various haptic devices and surgical robot controllers

[21]. The dynamic environments shown in this section have

been designed specifically for the demonstration of manip-

ulation using the proposed methods. The PC setup consists

of an Intel(R) Core(TM) i7-3770 CPU (3.40GHz), 32 GB

DDR3 RAM (1333 MHz) and an Nvidia GTX 1060 GPU

running Ubuntu 18.04. Fig. 7(a) demonstrates the stick-slip

phenomenon of a box mounted with Resistive sensors and

subject to a constant horizontal force. The stability of the

same box is tested by placing it on an inclined plane and

then recording its position over time. The response is shown

in Fig. 7(b).
The approach for modeling contact dynamics using Re-

sistive sensors presented in this manuscript allows for com-

puting interactions with real-time physics simulations. The

interactions are not limited to quasi-static objects but in

fact, manipulation can be carried out at high speeds. This

is demonstrated with an accompanying video submitted

alongside this paper.
Natural manipulation involves grasping complex objects

at asymmetric postures and is demonstrated in Fig. 6(b).

Such interactions show potential scenarios that are not only

applicable to interactive simulators for surgical training but

also entertainment and gaming simulators. The procedure

of contact dynamics using Resistive sensors takes away the

factor of varying geometrical shapes from grasp mechanics.

8716

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 8: (a) Bi-manual screwdriver manipulation. (b) De-

formable thread manipulation.

TABLE II: Parametric Data for Specified Tasks

Task Obj. Mass (Kg) µs µv KN KD σa(m)

Obj. Grasp 0.4-0.8 1000 0.5 1.0 5 0.001

Screwdriver 0.6 5000 0.8 0.8 0.1 0.001

Thread 0.002/Prim. 1000 0.3 0.05 5 0.005

Fig. 8(a) shows a more challenging scenario that mimics

a two-handed screwdriver operation. The screwdriver is first

grasped and then inserted into the cast (matching the tip

shape of the screwdriver) via bi-manual manipulation (con-

trolled via haptic input interface device). After insertion into

the cast, the minor hand softens the grip, thereby reducing

static friction according to Eq. 1 and the dominant hand

rotates the screwdriver to rotate the cast underneath. The

task can be carried out repeatedly by tightening the non-

dominant hand, softening the dominant hand and re-orienting

to a comfortable pose for rotating the screwdriver. Using

constraint-based grasping, such a scenario would require pre-

planning at the time of picking such that the user holds the

screwdriver to accommodate switching between the hands as

the dominant hand would require the release of the grasped

object by the non-dominant hand for rotation. Lastly, using

kinematic simplification by rigidly affixing the screwdriver to

either hand would make the two handed rotation impossible.
Similarly, multiple connected objects can be grasped and

manipulated. Fig. 8(b) illustrates a task involving the ma-

nipulation of a deformable thread around the puzzle. The

parametric values used for these three examples are presented

in Table. II. The response of the AMBF simulator during the

two handed screw-driver operation is shown in Fig. 9. As

illustrated, the dynamic frequency of the simulation varies

throughout but the Real Time Factor (RTF) stays constant.

The Real-Time Factor is an indication that the simulation

runs in real-time and can be used for training users since the

simulation clock concurrently tracks a real-world clock.
The stiffness achieved through the inclusion of Eq. 3

introduces a soft feel to grasping. This is significant as the

objects do not have to be grasped symmetrically as is the

case with natural manipulation.

VI. DISCUSSION

We have presented a parametric approach to tackle the

problem of grasping and manipulation in simulation us-

ing Resistive sensors. The implementation relies on Bullet

Physics APIs for appending the calculated friction/normal

R
TF

Fr
eq

ue
nc

y
(H

z)

Time(s)Time(s)

Fig. 9: Real Time Factor for the screw driver task.

forces in addition to the internal collision constraints. For the

specific demonstrations in this paper, the Sequential Impulse

(SI) solver has been used which incorporates the symplectic

Euler method for integrating the equations of motions as well

the external forces provided by the Resistive sensors. While

the initial results are promising, the approach has a few

limitations. The first limitation is the number of parameters

required to define the friction response of individual Resistive

sensors. These parameters vary based on the scope of sim-

ulation and require tuning using a combination of empirical

and analytical methods. The problem is compounded by

the unboundedness of friction coefficients as high values

can render the grasp unstable and lower values result in

insufficient grip forces.

Each Resistive sensor requires the calculation of ray-

tracing which is an expensive operation. For a large array

of Resistive sensors, the required computation time will

adversely affect the speed of the dynamics solver for real-

time physics. The advent of hardware specialized for Ray

Tracing [22] can potentially be leveraged to compute the

response from Resistive sensors in parallel. The encapsu-

lation of relevant data for the Resistive sensors means that

each sensor can be computed independently at each time-step

of the physics simulation. Rather than relying on dedicated

GPU hardware, the computation can also be performed in

parallel by using multi-threading and batching a group of

sensors together.

The next steps involve the implementation of the Resis-

tive sensors for soft-body simulations. We distinguish the

term “soft-body” from a “deformable body”. Soft-bodies

are represented by a single mesh, comprising of connected

vertices that form faces. The vertices can interact with

other objects in the environment and result in the defor-

mation of the corresponding faces. Deformable bodies, on

the other hand, are represented by a finite group of rigid-

body meshes (nodes), connected via constraints. Unlike soft-

bodies, the deformable bodies have no faces between the

inter-connected nodes. We have shown the manipulation of

deformable bodies in the paper but more work needs to be

done for soft-body simulations. Towards this end, the AMBF

Simulator already provides support for soft-body dynamics

which should potentially allow a generic implementation for

both rigid bodies and soft-bodies.

REFERENCES

[1] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE

Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

8717

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

[2] G. A. Fontanelli, M. Selvaggio, M. Ferro, F. Ficuciello, M. Vendittelli,
and B. Siciliano, “A v-rep simulator for the da vinci research kit
robotic platform,” in 2018 7th IEEE International Conference on

Biomedical Robotics and Biomechatronics (Biorob), pp. 1056–1061,
IEEE, 2018.

[3] K. Yamane and Y. Nakamura, “Stable penalty-based model of fric-
tional contacts,” in Proceedings 2006 IEEE International Conference

on Robotics and Automation, 2006. ICRA 2006., pp. 1904–1909, IEEE,
2006.

[4] D. C. Ruspini and O. Khatib, “Collision/contact models for dynamic
simulation and haptic interaction,” in Robotics Research, pp. 185–194,
Springer, 2000.

[5] A. Munawar, Y. Wang, R. Gondokaryono, and G. S. Fischer, “A real-
time dynamic simulator and an associated front-end representation
format for simulating complex robots and environments,” in 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1875–1882, Nov 2019.

[6] A. Miller, P. Allen, V. Santos, and F. ValeroCuevas, “From robotic
hands to human hands: a visualization and simulation engine for
grasping research,” Industrial Robot: An International Journal, vol. 32,
no. 1, p. 5563, 2005.

[7] B. Len, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner, and et al., “OpenGRASP: A
Toolkit for Robot Grasping Simulation,” Simulation, Modeling, and

Programming for Autonomous Robots Lecture Notes in Computer

Science, p. 109120, 2010.

[8] S. Moisio, B. Len, P. Korkealaakso, and A. Morales, “Model of
tactile sensors using soft contacts and its application in robot grasping
simulation,” Robotics and Autonomous Systems, vol. 61, no. 1, p. 112,
2013.

[9] M. Ciocarlie, C. Lackner, and P. Allen, “Soft Finger Model with Adap-
tive Contact Geometry for Grasping and Manipulation Tasks,” Second

Joint EuroHaptics Conference and Symposium on Haptic Interfaces

for Virtual Environment and Teleoperator Systems (WHC07), 2007.

[10] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, “Grasp Plan-
ning via Decomposition Trees,” Proceedings 2007 IEEE International

Conference on Robotics and Automation, 2007.

[11] E. W. Hawkes, D. L. Christensen, A. K. Han, H. Jiang, and M. R.
Cutkosky, “Grasping without squeezing: Shear adhesion gripper with
fibrillar thin film,” 2015 IEEE International Conference on Robotics

and Automation (ICRA), 2015.

[12] M. Malvezzi, G. Gioioso, G. Salvietti, D. Prattichizzo, and A. Bic-
chi, “Syngrasp: A matlab toolbox for grasp analysis of human and
robotic hands,” 2013 IEEE International Conference on Robotics and

Automation, 2013.

[13] A. J. Spiers, B. Calli, and A. M. Dollar, “Variable-friction finger
surfaces to enable within-hand manipulation via gripping and sliding,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, p. 41164123,
2018.

[14] E. Coumans, “Bullet physics engine,” Open Source Software:

http://bulletphysics. org, vol. 1, no. 3, p. 84, 2010.

[15] B. Chang and J. E. Colgate, “Real-time impulse-based simulation of
rigid body systems for haptic display,” in Proc. Symp. on Interactive

3D Graphics, pp. 200–209, 1997.

[16] B. V. Mirtich, Impulse-based dynamic simulation of rigid body sys-

tems. University of California, Berkeley, 1996.

[17] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based
dynamics,” Journal of Visual Communication and Image Representa-

tion, vol. 18, no. 2, pp. 109–118, 2007.

[18] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of colli-
sions, contact and friction for cloth animation,” in ACM Transactions

on Graphics (ToG), vol. 21, pp. 594–603, ACM, 2002.

[19] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in
ACM SIGGRAPH computer graphics, vol. 18, pp. 137–145, ACM,
1984.

[20] Y. M. Govaerts and M. M. Verstraete, “Raytran: A Monte Carlo
ray-tracing model to compute light scattering in three-dimensional
heterogeneous media,” IEEE Transactions on geoscience and remote

sensing, vol. 36, no. 2, pp. 493–505, 1998.

[21] A. Munawar and G. S. Fischer, “An Asynchronous Multi-Body Sim-
ulation Framework for Real-Time Dynamics, Haptics and Learning
with Application to Surgical Robots,” in 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 6268–6275,
Nov 2019.

[22] Nvidia, “Nvidia ray tracing.” https://developer.nvidia.

com/rtx, 2019. Online.

8718

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

