2020 IEEE International Conference on Robotics and Automation (ICRA)

31 May - 31 August, 2020. Paris, France

A Parametric Grasping Methodology for Multi-Manual Interactions in
Real-Time Dynamic Simulations

Adnan Munawar, Nishan Srishankar, Loris Fichera & Gregory S. Fischer

Abstract— Interactive simulators are used in several im-
portant applications which include the training simulators
for teleoperated robotic laparoscopic surgery. While state-
of-art simulators are capable of rendering realistic visuals
and accurate dynamics, grasping is often implemented using
kinematic simplification techniques that prevent truly multi-
manual manipulation, which is often an important requirement
of the actual task. Realistic grasping and manipulation in simu-
lation is a challenging problem due to the constraints imposed
by the implementation of rigid-body dynamics and collision
computation techniques in state-of-the-art physics libraries.
We present a penalty based parametric approach to achieve
multi-manual grasping and manipulation of complex objects
at arbitrary postures in a real-time dynamic simulation. This
approach is demonstrated by accomplishing multi-manual tasks
modeled after realistic scenarios, which include the grasping
and manipulation of a two-handed screwdriver task and the
manipulation of a deformable thread.

I. INTRODUCTION

Interactive computer simulations play an important role
in robotic teleoperation by enabling human operators to
practice and gain experience with a system before operating
the actual physical hardware. One important application is
training for robotic surgery where new surgeons are trained
to get accustomed to the telemanipulated interface. Towards
this end, the surgeons can interact with simulated dynamic
objects (such as soft-tissues, rigid-body puzzles, peg and hole
tasks, etc.) using telemanipulated simulated end-effectors

mimicking the actual robot.

An important aspect of natural interaction is the ability
to grasp and manipulate dynamic objects. Such interaction
includes the dynamic deformation of skin tissue in the
vicinity of contact points as shown in Fig. 1(a). To be
perceived realistic, interactive simulators need to compute
the real-time physics of the interaction between the robot
and its environment. This encompasses, among other things,
the interplay between the forces created by the user through
his/her actions, the forces created by the objects present in
the simulated environment, and the resulting changes in the
environment.

While most interactive simulators excel at rendering re-
alistic physics, grasping is implemented using simplified

Adnan Munawar is with the Computer Science Department at the
Johns Hopkins University, Baltimore, MD, USA. Nishan Srishankar,
Loris Fichera & Gregory S. Fischer are with the Department of
Robotics Engineering, Worcester Polytechnic Institute, MA, 01609,
USA amunawar@jhu.edu, [nsrishankar, lfichera,
gfischer]@wpi.edu

This work is supported by the National Science Foundation (NSF)
through National Robotics Initiative (NRI) grant: IIS-1637759 and NSF
AccelNet grant: 1927275

978-1-7281-7395-5/20/$31.00 ©2020 IEEE

Average
Contact Point

Balancing
Forces for
Static Grasp

Average
Contact Point

(FTh\m\h)

Controlled Slide
Using the Ground

Controlled Slip
Using the Weight

BODY WEIGHT

(@) (b)
Fig. 1: (a) Natural grasping with skin deformation resulting
in increased surface contact. (b) Controlled slip and slide for
manipulation by leveraging weight or external obstacles.

techniques that do not mimic natural contact dynamics as
shown in Fig. 1(a). As an example, a commonly used
technique for simulated grasping [1], [2] deactivates the
dynamic properties of the grasped object and treats it as
a kinematic body affixed to the grasper. This approach has
obvious shortcomings as it limits multi-manual manipulation.
Moreover, an important aspect of natural grasping is the
ability to allow controlled “slip and slide” of the grasped
object as shown in Fig. 1(b). This is useful in training
applications, modeled after realistic tasks, that require multi-
handed interactions.

We present an approach that utilizes a form of penalty
based parametric sensors [3] [4] that can be mounted on any
grasper to emulate adequate friction for easy grasping. The
concepts presented in this paper were implemented on the
Asynchronous Multi-Body Framework (AMBF) [5] using a
variety of different simulated graspers and friction surfaces.
These graspers were then used to perform complex tasks
that involve the manipulation of various dynamic objects,
interaction with simulated surgical robots, and controlling
deformable bodies (modeled using finite primitives). The
implementation is generic and can be expanded to any
physics library.

II. RELATED WORK

A summary of notable work addressing the problem of
grasping using contact dynamics in simulation is described
in this section. Grasplt! [6] by Miller et al. was a prominent
simulator that contained multiple robotic hands, contact body
dynamics, and a basic grasp planner, but lacked an API

8712

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

and a modular architecture which limited its functionality. A
proposed improvement by Léon et al., called OpenGRASP
[7] simulated contact sensors for grasping and attempted to
create a realistic simulation of grasping rigid objects using
soft contacts.

Moisio et al. [8] used the OpenGRASP toolkit to improve
an existing model of simulated tactile sensors that used
a soft contact approach without modeling stick-slip. The
improvements were made by using a parametric contact
force model for surface forces, holding torques and stick-
slip as well as generating the sensors using a geometry
patch. The resulting simulated framework was compared
with real-world robot grasping. However, the authors stated
that the computational efficiency of the tactile sensor model
could be improved by using a non-brute force collision
detection solver. Ciocarlie et al.[9] worked on a general
analytical method to model fingertip gripping with friction
by analyzing friction constraints on non-planar contacts of
elastic materials, formulating a linear complementary prob-
lem (LCP), and removing any assumptions about the objects
geometries. Goldfeder et al.[10] implemented a grasp planner
in Grasplt! that was generalizable to various object/hand
geometries/kinematics by decomposing and representing an
object as a tree of super-quadratics, hence defining a smaller
search space of potentially successful grasps as those which
have good grasps on sub-components of the object in the
decomposition tree.

Hawkes et al. [11] proposed an alternative to gripping an
object purely using the normal force. Their work used gecko-
inspired controllable fibrillar adhesives that utilize tangential
shear forces mimicking the curvature of an object. Such a
gripper could grasp convex objects that are relatively large
and featureless as well as delicately grab objects without
squeezing. Malvezzi et al. [12] developed a lightweight
Matlab toolbox called SynGrasp. In addition to providing
an easy way to load hand models, it allowed grasping
performance analysis and grasps quality measures such as
minimizing contact forces for a given grasp based on a
specified cost function.

Interactive training in simulation may involve non-convex
shapes and articulated mechanisms that require within-hand
and multi-manual manipulation in real-time. By default, the
links (belonging to a simulated grasper) have uniform surface
friction. As discussed in [13], however, mechanical equiv-
alents of a biological finger can have surface regions with
different friction coefficients. We thus present a generalizable
approach to interactive training using penalty based contact
sensors that complement the underlying collision constraints
provided by the physics solver [14].

III. PROBLEM FORMULATION

For manipulation in real-time dynamic simulations, it
is impractical to model grippers such as Fig. 1. Instead,
rigid bodies are preferred which require rigid-body collision
methods. These methods can be separated based on primitive
versus non-primitive collision shapes. Consider a simulation
involving spherical bodies that can be modeled using either

the corresponding analytical function (primitive shape) or the
non-primitive discrete mesh. The collision computation only
requires that the center Py of each Body B maintain its
radius rp, from all the other bodies. This constraint can
be expressed simply as [|Pg — Py || >= (rp, + rB,).
To compute the collision forces, the system of equations
representing the dynamic simulation is evaluated at time-
steps [ng,n1, na,...ng]. The resulting error D, = rp, +
T, — ||Pg, — Pg,||, called the penetration depth, is used
to calculate a resulting correction force which serves to
“repel” the penetrating bodies to re-satisfy the constraint. For
a real-time dynamic simulation, the time-step dt is variable,
which affects the penetration depth. With this basic setup,
the challenges associated with grasping in simulation are as
follows:

A. Limitations Associated with Geometric Representation of
Rigid Bodies

Simulated rigid bodies have an infinite surface stiffness in
the sense that the surface in the vicinity of a contact point for
a simulated rigid-body does not deform. Moreover, individual
faces (of shapes and meshes representing simulated bodies)
are locally smooth whereas the contact surfaces of physical
bodies are rough at a microscopic level as illustrated in Fig.
1(a). This roughness plays a major role in both the static and
sliding friction response.

® Sphere: Implicit A ® Sphere: Explicit B

4 Primitive Vertices (~500)

Sphere: Explicit C
Vertices (~7000)

2

T

15Hz

(mm)

30Hz 60Hz 200Hz S500Hz 1000Hz

Fig. 2: The penetration depth D), (maximum fall distance vs
equilibrium) of three collision shapes (Spheres) with mass =
50 Kg, radius 0.5 m, non static ground plane position at 0
m and drop height = 2 m.

The inherent softness rendered by collision algorithms, in
the form of the penetration depth D), in a way counteracts
the infinite stiffness of rigid bodies. At a glance, this may be
leveraged to mimic the softness inherent to real-world bodies.
However, this penetration depth varies based on a few factors
such as the length of the time-step dt, the collision shape
type and the complexity of the body’s geometry for non-
primitive shapes. As demonstrated in Fig. 2, a primitive and
two non-primitive spherical shapes (of a different number
of mesh faces) of identical scale are dropped onto a static
plane at various physics update frequencies. The difference in
geometry and physics update frequency alters the penetration
depth of each object. This varying behavior of the resulting
penetration depth D,, limits the use of implicit softness ren-
dered by collision algorithms for contact dynamics purposes.

8713

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Visualization of the commonly used friction cone

B. Dynamics Calculation in Physics Libraries

The computation of the normal force Fl is used for
the derivation of both the static and sliding friction. The
analytical approach to modeling the static friction force, de-
picted in Fig. 3 is trivial for specifically optimized examples
modeled using non-stiff differential equations. On the other
hand, for real-time rigid-body dynamics, as in our case,
iterative techniques are preferred where the collisions are
modeled as instantaneous inequality constraints. Examples
of these methods include both velocity (such as Sequential
Impulse (SI) [15] [16]) and position based methods (PBD)
[17]). These methods counter the penetration by applying
corrective impulses (proportional to penetration) or position
correction respectively. The application of corrective impulse
instead of direct position rectification makes velocity based
methods more suitable for simulating friction. However,
even for SI solvers, the dependence of the normal force
on the penetration depth makes the friction constraint non-
linear and not strictly convergent. Moreover, it is difficult
to compute the correct contact area for non-primitive shapes
without some simplifications. Thus especially for real-time
simulations, where the accuracy of the solver has to be
comprised to some extent, the varying penetration depth
makes even an acceptable friction model using velocity based
method insufficient for rendering adequate stick-slip friction.

Penalty based contact modeling approaches [3], which are
forms of Force Based methods, are usually avoided in real-
time simulations. These methods under-perform in terms of
achieving impenetrability as a high enough velocity of a
colliding body may result in tunneling [18]. However, in
our case, it is their exact penetrability that is leveraged to
simplify grasping and emulate stick-slip friction as discussed
in the next section.

IV. METHODS

The following section provides details about the methods
used to model sensor based friction for grasping and manip-
ulation. The section uses several coefficients which are listed
in Table I for clarity.

A. Resistive Sensors for Preemptive Contact Computation

Ray Shooting (Ray Tracing) [19], [20] can be used for
rendering realistic scenes. Since this technique essentially
computes the intersecting point of an object along the path,
it can also be used for a variety of other applications as in our

TABLE I: Symbols used in this Manuscript.

Symbol | Description

F, 'S, FV, F '~ | Static, Sliding, Normal Friction Force

eér,ey,en Tangential , Velocity and Penetration Contact Error
s, v Static and Sliding Friction Coefficient

Kn,Kp Normal Contact Stiffness and Damping

V[g, B] General Notation to Express Vf and Vg which can

be read as \7,4 and VB expressed in C

Fig. 4: (a) A single Resistive sensor (left) and the visualiza-
tion of contact (green spheres) of an array of sensors (red
spheres) mounted on a cube.

case where we combine this ray and some additional para-
metric data and call it a Resistive sensor (shown in Fig. 4).
Each Resistive sensor can be computed independently or in a
group which is important as Ray-Tracing is computationally
expensive.

B. Anatomy of a Resistive Sensor

A Resistive sensor in Fig. 4 visually illustrates some
coefficients from Table I. The sensor can be defined w.r.t. a
start Pmygt,m and an endpoint Pmy End and is “triggered”
when it intersects with another object. In addition to the start
point, the sensor is parameterized by a range and an offset
(or a depth) from the surface of its parent body. To specify
multiple sensors, a separate triangular mesh can be used as

discussed later in Alg. 2.
Due to the challenges associated with implementing the

static friction cone, as discussed in section III, one alternative
is to use a fully deterministic analytical approach represented
in Fig. 5. A torque T|g4,¢p) is being applied to both fingers
by an external controller. To solve for the contact normal
force at points]3,40 and 1330, we require the knowledge of
the torque Tjga,gp] at Jg, and the lengths 130 4 and 1303.
This example can easily be expanded to non-quasi-static
problems, where the gripper is accelerating while holding
Body Z (Fig. 5). In such cases, the Inertial and Coriolis
components need to be considered in addition to the contact
dynamics and gravitational components. Furthermore, addi-
tional bodies may interact with the gripper’s finger and as a
result 1ncrease the complexity of contact force computation

at P 4c and PBC
Secondly, the vector of Tangential force FT is required

to compute the Resultant force Fr. This tangential force is
balanced by the static friction force FS under the constraint
Fr <= FS and thus preventing tangential displacement.
Without using the implicit integration methods, it is not
possible to compute the static force before a deflection
occurs, which is a challenge to modeling the trivial friction
cone. Considering this limitation, o, and K are utilized.

8714

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

A Fe |

[GA,GB]
Contact
Normal

Fig. 5: Grasping an object using a simple two finger gripper.

Grasped
Body Z

A displacement along the tangential direction results in
error ey = (TXVQé - Tg@g)pmﬁ, where projr is the
projection of the contact error in the tangential plane to the
direction of the sensor and is then used to compute Fy as:

Fs = pg « ép * || Fx| (1)

Eq. 1 does not rely on the limit Fr <= Fg but instead
on the limiting error 7. Once a Resistive sensor triggers as
a result of contact with another body, the sensed point PW
is recorded. This sensed point is then used to calculate QC
and QC as:

2

otherwise.

Sam _ [T)P i |Er]| <= o,
Qe =
Recompute,

Here QC is the position of the sensed point p’gy in Body
A and Qc is the sensed point’s position in Body B. If the
limiting condition |[é7|| <= o, is exceeded, the new value
of PC is used to compute QC and QC based on Alg. 1.

Algorithm 1 Store Contact Points in Body Frames

1 if Sensor T'riggered == TrTue then

PC = Get Sensed Point()

é= TXVQC TEVQC

if €, epm]T > o, then
pLABl _ (T[W

Q[C{& ,B] __ P[A B]

end if
. end if

2
3
4
5: yTLRY
6
7
8

Similarly Fly is calculated as:

Fy = Kyén + Kpdéy /dt 3)

This force is based on the penetration depth of the sensed
point w.r.t. the sensor limits. This depth is normalized using
Eq. 4 and then projected along the sensor’s direction in the
World frame.

BW w
- PC TA PrayStart
en == U5t @)
T (PrayStart PrayEnd) PTOJN 4
The terms P,,aysm,lt and P, myEnd are the start and end

points of the Resistive sensor in the Body A frame, and
d€n /dt is to provide damping to the contact normal force.
The normal penetration depth for Body A is a projection of
the contact error onto the normal plane of A (projn,).
Finally, the sliding friction force is computed from the
relative velocities of contact points of Body A and Body B

ﬁv = uy * gv (5)
If the ve1001ty of Body A and Body B are (VA , @) and
(V ,@%) in the world frame respectively, then:

(Ucia,B)) :(RE/X,B])_IV}X/B +
A
(RIS p) '@l gy > T P PY

In Eq. 6, the rotation (R[A, B])_1 is not collected outside

as the cross product (R})~ '@l g X THPIBY s not

commutative. These velocities are converted back to the
World frame using Eq. 7. The vc[A,B] notation emphasizes
that the velocity of sensed point (C) Telative to Body A, and
Body B, is expressed in world frame:

(6)

ﬁg/[A,B] - R}}JV[A,B]ﬁc[A,B] @)
Which leads to the sliding error:

év = (T¢4 — 6B)projr ®)
The three components of force are summed together as:
Fiota = Fy + Fy + Fs)

This force can now be used to compute the resulting
moment on Body A and Body B by converting it back to
Body Frames.

Gl p = R (RS)™ Frotar < (T4 5) ' PE) (10)

The final force and moment are then applied to both Body
A and Body B as action/reaction wrenches. The magnitude
of the static friction force calculated from the Resistive
sensor can be visualized as an inverse cone shown in Fig.
4(a). Fig. 4(b) shows the deformation of the contact surface
formed by Resistive sensors as they penetrate another body.
The normal force introduces “softness” to contact dynamics
and improves the friction response, which can be leveraged
to loosely mimic natural manipulation using soft contacts
without the explicit use of deformable body simulations.
However, a normal force might not be desirable in certain
applications for which Eq. 1 is modified as:

Fs =pg*ér*|ex|| (11)
Where the depth is the normalized fraction of the sen-
sor’s penetration depth. The underlying equations used to
represent the behavior of Resistive sensors are based on the
combination of both penalty based methods for contact com-
putation and the classical Coulomb friction model. However,
these equations are slightly different in their application.
This difference results from the fact that instead of two
bodies colliding with each other, it is the Resistive sensors
mounted on Body A which penetrate Body B. Thus, there is
no common normal of collision at this instance, instead, it is
the direction of the sensor that is used for the computation of
the normal force Fy (Eq. 3) as well as the static and sliding
friction force F: s (Eq. 1) and FV (Eq. 5). The damping
Kp stabilizes the normal force by reducing “jitter” that is
generally associated with penalty based methods.

8715

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

Primitive Resistive
Sensor Patches
/AN

________ Resistive
}.‘—} /I’ Sensors

(e[{]

: >
\ Multi-mesh

Object

3 Different
Discrete Sensor

(b)

Fig. 6: (a) Skin-wrapping 2D planes for contoured resistive
surface. (b) A simple prismatic gripper mounted with Resis-
tive sensors used for grasping at asymmetric postures.

C. Automating Sensor Placement

It is impractical to manually place an array of Resistive
sensors on simulated dynamic bodies represented by complex
meshes. Thus we propose two approaches for sensor place-
ment, (1) based on the visual mesh of the object and (2) based
on a separate parametric mesh specified alongside the visual
mesh. These meshes are called the “source meshes” and are
used according to Alg. 2. The resulting sensor placement is
shown in Fig. 6(a). The primitive patches are wrapped around
the visual mesh using Alg. 3.

Based on the vertex and triangle data of the source mesh,
the surface is covered using the trivial Alg. 2. This algorithm
can be expanded to cover edges and vertices. Using a
separate mesh to define the surface of placement has many
advantages over using the visual mesh of the object. For
gripping tasks, the resistive surface forming the grasp closure
is of more interest. Thus a mesh covering only the specific
surfaces may be used. Furthermore, the parametric mesh
can be defined to smooth out sharp corners of the visual
/ collision mesh.

Real-world rigid bodies may contain surfaces that are
represented by different friction coefficients [13]. While it
is possible to create different friction response at different
areas on a rigid-body using existing physics APIs, the use
of Resistive sensor patches streamlines the process.

Algorithm 2 Populate Sensors Along Body Surface

1: D := Param. Depth, R := Param. Range, M := Mesh
2 Triangles < M

3. for T € Triangles do

4 vf;a:o, vfwl, vfwz eT
5 edgey = vtz — vfmg,
6 midpoi'rkt = vsz+ vtﬂmljL vfxz R

7 ny = edgey X edge, /|ledgey X edge ||
8: If,.ayswrt :_‘midpoint —fyD

9 Prayend = Praystart + s R
10: end for

ed@el = vize — viT1

Several free software can be used to generate and modify
meshes. Blender is a popular software for graphics design
and animation and was used in this study for creating skinned
meshes.

Algorithm 3 Wrapping Primitive Around Visual Shape

1: S < Visual Shape, M < Primitive Mesh

2 Pofy := Param Offset between a body and its sensor mesh
3 for v € M.Vertices do
4 Py 1= v.position, n, := v.normal

5 P := Contact Point on S of Ray along n,

6 if Contact Occurred then

7: fe := Nearest Face of S to p

8 e := fe.normal

9 if dgt(ﬁc, Ty) < 0 and Poff <= (Pe — D») then

o R
1 po =y

12 else

13: Discard v

14: end if

15: end if

16: end for

17: Recompute Normals for M

—~ £ — X
EQ AQ9 ¥
5o g pmg
] 2
s o
E=AN =
= o Lo
5} o9
2® ae
E S

16.2 16.4 16.6 16.8 17.0 20 7 238 32

Time (s) Time (s)
(@) (b)

Fig. 7: (a) Constant force stick-slip friction response. (b)
Equilibrium on an inclined plane. m = 0.5K g, Ks = 5000,
o, =0.001, K, =1, Kp =50 and pu, = 0.1.

V. RESULTS

The interactions presented in this section are carried out
using various haptic devices and surgical robot controllers
[21]. The dynamic environments shown in this section have
been designed specifically for the demonstration of manip-
ulation using the proposed methods. The PC setup consists
of an Intel(R) Core(TM) i7-3770 CPU (3.40GHz), 32 GB
DDR3 RAM (1333 MHz) and an Nvidia GTX 1060 GPU
running Ubuntu 18.04. Fig. 7(a) demonstrates the stick-slip
phenomenon of a box mounted with Resistive sensors and
subject to a constant horizontal force. The stability of the
same box is tested by placing it on an inclined plane and
then recording its position over time. The response is shown
in Fig. 7(b).

The approach for modeling contact dynamics using Re-
sistive sensors presented in this manuscript allows for com-
puting interactions with real-time physics simulations. The
interactions are not limited to quasi-static objects but in
fact, manipulation can be carried out at high speeds. This
is demonstrated with an accompanying video submitted
alongside this paper.

Natural manipulation involves grasping complex objects
at asymmetric postures and is demonstrated in Fig. 6(b).
Such interactions show potential scenarios that are not only
applicable to interactive simulators for surgical training but
also entertainment and gaming simulators. The procedure
of contact dynamics using Resistive sensors takes away the
factor of varying geometrical shapes from grasp mechanics.

8716

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

Plus Shaped Gripper with
Resistive

Sensors

Visual
Markers

Multi Link
Graspers

i

(a) (b)
Fig. 8: (a) Bi-manual screwdriver manipulation. (b) De-
formable thread manipulation.

TABLE II: Parametric Data for Specified Tasks

[Task [Obj. Mass Kg) [ps | o | Kn [Kp| oa(m)]
Obj. Grasp 0.4-0.8 1000 | 0.5 | 1.0 5 0.001
Screwdriver 0.6 5000 | 0.8 | 0.8 0.1 | 0.001
Thread 0.002/Prim. 1000 | 0.3 | 005 | 5 0.005

Fig. 8(a) shows a more challenging scenario that mimics
a two-handed screwdriver operation. The screwdriver is first
grasped and then inserted into the cast (matching the tip
shape of the screwdriver) via bi-manual manipulation (con-
trolled via haptic input interface device). After insertion into
the cast, the minor hand softens the grip, thereby reducing
static friction according to Eq. 1 and the dominant hand
rotates the screwdriver to rotate the cast underneath. The
task can be carried out repeatedly by tightening the non-
dominant hand, softening the dominant hand and re-orienting
to a comfortable pose for rotating the screwdriver. Using
constraint-based grasping, such a scenario would require pre-
planning at the time of picking such that the user holds the
screwdriver to accommodate switching between the hands as
the dominant hand would require the release of the grasped
object by the non-dominant hand for rotation. Lastly, using
kinematic simplification by rigidly affixing the screwdriver to
either hand would make the two handed rotation impossible.

Similarly, multiple connected objects can be grasped and
manipulated. Fig. 8(b) illustrates a task involving the ma-
nipulation of a deformable thread around the puzzle. The
parametric values used for these three examples are presented
in Table. II. The response of the AMBF simulator during the
two handed screw-driver operation is shown in Fig. 9. As
illustrated, the dynamic frequency of the simulation varies
throughout but the Real Time Factor (RTF) stays constant.
The Real-Time Factor is an indication that the simulation
runs in real-time and can be used for training users since the
simulation clock concurrently tracks a real-world clock.

The stiffness achieved through the inclusion of Eq. 3
introduces a soft feel to grasping. This is significant as the
objects do not have to be grasped symmetrically as is the
case with natural manipulation.

VI. DISCUSSION

We have presented a parametric approach to tackle the
problem of grasping and manipulation in simulation us-
ing Resistive sensors. The implementation relies on Bullet
Physics APIs for appending the calculated friction/normal

1000 4

N

L 200 1.0 A

Iy L

S &

2 500 9.3

o

o

L 400 +— ; ; T T T
0 10 20 0 10 20

Time(s) Time(s)

Fig. 9: Real Time Factor for the screw driver task.

forces in addition to the internal collision constraints. For the
specific demonstrations in this paper, the Sequential Impulse
(SD) solver has been used which incorporates the symplectic
Euler method for integrating the equations of motions as well
the external forces provided by the Resistive sensors. While
the initial results are promising, the approach has a few
limitations. The first limitation is the number of parameters
required to define the friction response of individual Resistive
sensors. These parameters vary based on the scope of sim-
ulation and require tuning using a combination of empirical
and analytical methods. The problem is compounded by
the unboundedness of friction coefficients as high values
can render the grasp unstable and lower values result in
insufficient grip forces.

Each Resistive sensor requires the calculation of ray-
tracing which is an expensive operation. For a large array
of Resistive sensors, the required computation time will
adversely affect the speed of the dynamics solver for real-
time physics. The advent of hardware specialized for Ray
Tracing [22] can potentially be leveraged to compute the
response from Resistive sensors in parallel. The encapsu-
lation of relevant data for the Resistive sensors means that
each sensor can be computed independently at each time-step
of the physics simulation. Rather than relying on dedicated
GPU hardware, the computation can also be performed in
parallel by using multi-threading and batching a group of
sensors together.

The next steps involve the implementation of the Resis-
tive sensors for soft-body simulations. We distinguish the
term “soft-body” from a “deformable body”. Soft-bodies
are represented by a single mesh, comprising of connected
vertices that form faces. The vertices can interact with
other objects in the environment and result in the defor-
mation of the corresponding faces. Deformable bodies, on
the other hand, are represented by a finite group of rigid-
body meshes (nodes), connected via constraints. Unlike soft-
bodies, the deformable bodies have no faces between the
inter-connected nodes. We have shown the manipulation of
deformable bodies in the paper but more work needs to be
done for soft-body simulations. Towards this end, the AMBF
Simulator already provides support for soft-body dynamics
which should potentially allow a generic implementation for
both rigid bodies and soft-bodies.

REFERENCES

[1] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18-19, 2012.

8717

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

G. A. Fontanelli, M. Selvaggio, M. Ferro, F. Ficuciello, M. Vendittelli,
and B. Siciliano, “A v-rep simulator for the da vinci research kit
robotic platform,” in 2018 7th IEEE International Conference on
Biomedical Robotics and Biomechatronics (Biorob), pp. 1056-1061,
IEEE, 2018.

K. Yamane and Y. Nakamura, “Stable penalty-based model of fric-
tional contacts,” in Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006., pp. 1904-1909, IEEE,
2006.

D. C. Ruspini and O. Khatib, “Collision/contact models for dynamic
simulation and haptic interaction,” in Robotics Research, pp. 185-194,
Springer, 2000.

A. Munawar, Y. Wang, R. Gondokaryono, and G. S. Fischer, “A real-
time dynamic simulator and an associated front-end representation
format for simulating complex robots and environments,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1875-1882, Nov 2019.

A. Miller, P. Allen, V. Santos, and F. ValeroCuevas, “From robotic
hands to human hands: a visualization and simulation engine for
grasping research,” Industrial Robot: An International Journal, vol. 32,
no. 1, p. 5563, 2005.

B. Len, S. Ulbrich, R. Diankov, G. Puche, M. Przybylski, A. Morales,
T. Asfour, S. Moisio, J. Bohg, J. Kuffner, and et al., “OpenGRASP: A
Toolkit for Robot Grasping Simulation,” Simulation, Modeling, and
Programming for Autonomous Robots Lecture Notes in Computer
Science, p. 109120, 2010.

S. Moisio, B. Len, P. Korkealaakso, and A. Morales, “Model of
tactile sensors using soft contacts and its application in robot grasping
simulation,” Robotics and Autonomous Systems, vol. 61, no. 1, p. 112,
2013.

M. Ciocarlie, C. Lackner, and P. Allen, “Soft Finger Model with Adap-
tive Contact Geometry for Grasping and Manipulation Tasks,” Second
Joint EuroHaptics Conference and Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems (WHCO07), 2007.
C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, “Grasp Plan-
ning via Decomposition Trees,” Proceedings 2007 IEEE International
Conference on Robotics and Automation, 2007.

E. W. Hawkes, D. L. Christensen, A. K. Han, H. Jiang, and M. R.
Cutkosky, “Grasping without squeezing: Shear adhesion gripper with
fibrillar thin film,” 2015 IEEE International Conference on Robotics
and Automation (ICRA), 2015.

M. Malvezzi, G. Gioioso, G. Salvietti, D. Prattichizzo, and A. Bic-
chi, “Syngrasp: A matlab toolbox for grasp analysis of human and
robotic hands,” 2013 IEEE International Conference on Robotics and
Automation, 2013.

A. J. Spiers, B. Calli, and A. M. Dollar, “Variable-friction finger
surfaces to enable within-hand manipulation via gripping and sliding,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, p. 41164123,
2018.

E. Coumans, “Bullet physics engine,” Open Source Software:
http://bulletphysics. org, vol. 1, no. 3, p. 84, 2010.

B. Chang and J. E. Colgate, “Real-time impulse-based simulation of
rigid body systems for haptic display,” in Proc. Symp. on Interactive
3D Graphics, pp. 200-209, 1997.

B. V. Mirtich, Impulse-based dynamic simulation of rigid body sys-
tems. University of California, Berkeley, 1996.

M. Miiller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based
dynamics,” Journal of Visual Communication and Image Representa-
tion, vol. 18, no. 2, pp. 109-118, 2007.

R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of colli-
sions, contact and friction for cloth animation,” in ACM Transactions
on Graphics (ToG), vol. 21, pp. 594-603, ACM, 2002.

R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in
ACM SIGGRAPH computer graphics, vol. 18, pp. 137-145, ACM,
1984.

Y. M. Govaerts and M. M. Verstraete, “Raytran: A Monte Carlo
ray-tracing model to compute light scattering in three-dimensional
heterogeneous media,” IEEE Transactions on geoscience and remote
sensing, vol. 36, no. 2, pp. 493-505, 1998.

A. Munawar and G. S. Fischer, “An Asynchronous Multi-Body Sim-
ulation Framework for Real-Time Dynamics, Haptics and Learning
with Application to Surgical Robots,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6268-6275,
Nov 2019.

[22] Nvidia, “Nvidia ray tracing”” https://developer.nvidia.
com/rtx, 2019. Online.

8718

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on December 29,2020 at 02:00:56 UTC from IEEE Xplore. Restrictions apply.

