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ABSTRACT

Millions of drivers worldwide have enjoyed financial benefits and
work schedule flexibility through a ride-sharing economy, but mean-
while they have suffered from the lack of a sense of identity and
career achievement. Equipped with social identity and contest the-
ories, financially incentivized team competitions have been an ef-
fective instrument to increase drivers’ productivity, job satisfaction,
and retention, and to improve revenue over cost for ride-sharing
platforms. While these competitions are overall effective, the deci-
sive factors behind the treatment effects and how they affect the
outcomes of individual drivers have been largely mysterious. In
this study, we analyze data collected from more than 500 large-scale
team competitions organized by a leading ride-sharing platform,
building machine learning models to predict individual treatment
effects. Through a careful investigation of features and predictors,
we are able to reduce out-sample prediction error by more than
24%. Through interpreting the best-performing models, we discover
many novel and actionable insights regarding how to optimize the
design and the execution of team competitions on ride-sharing
platforms. A simulated analysis demonstrates that by simply chang-
ing a few contest design options, the average treatment effect of
a real competition is expected to increase by as much as 26%. Our
procedure and findings shed light on how to analyze and optimize
large-scale online field experiments in general.
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1 INTRODUCTION

The rise of the sharing economy has brought dramatic changes to
work and life in modern society. The financial benefits and work
schedule flexibility offered by online ride-sharing platforms, such
as Uber, Lyft, and Didi Chuxing, have attracted tens of millions of
drivers to serve as ride providers. While the drivers enjoy all the
values of the ride-sharing economy [9], they commonly complain
about new barriers to job satisfaction and retention, such as working
alone, having few bonds with colleagues, no clear career paths,
and a lack of a sense of achievement (e.g., [18]). How to retain
and incentivize service providers to better cover the dynamics of
demand has also been a critical problem for the platforms.

Team competitions, practices rooted in social identity theory [3]
and contest theories [33], have been recognized as a potential cure
for the pain on both sides. Through competing as teams, drivers
are able to (1) build team identity and social bonds with teammates;
(2) create a sense of achievement by winning a competition; and
(3) increase their satisfaction and performance at work [2]. The in-
crease in driver productivity often outweighs the cost of organizing
and providing financial incentives for these competitions, which
creates a win-win situation for both the drivers and the platform.

Indeed, Didi Chuxing (DiDi), one of the world’s leading ride-
sharing companies, has launched recommender systems to help
their drivers form teams and has organized many financially re-
warded team competitions to enhance their satisfaction and pro-
ductivity [35]. In 2018 alone, more than 1,400 team competitions
were successfully held across 180 cities, which together involved
more than 1 million drivers, who provided 130 million rides. These
competitions have yielded promising outcomes overall: the average
return on investment is larger than 5, indicating that the increased
platform revenue through these competitions is five times the cost.

Behind the overall success, however, plenty of unknowns, pit-
falls, and challenges remain. There is huge heterogeneity among
the cities, the competitions, the teams, and the drivers. Such hetero-
geneity produces variation in outcomes (or the treatment effects of
these experiments): What types of drivers and teams benefit more
from team competition? What competition designs better increase
driver performance? In what context is a competition more likely to
be effective? Why does a design work in one city but not in another?
Understanding how these factors predict the outcomes of individual
drivers would not only help the platforms find the optimal design
of team competitions for different populations of drivers, but would
also help them generalize the success to new contexts.

Addressing these questions is challenging not only for human op-
erational practitioners but also for data mining algorithms. First, it
is intrinsically difficult to measure the causal effect of experiments,
which requires a careful definition of individual outcome measures
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and targets of prediction. Second, the variable space to capture dri-
ver, team, contest, and context characteristics is high-dimensional,
with complex relationships among them. Identifying the potential
predictive factors calls for sophistication in both domain knowledge
and data analytics. Third, the large-scale data involve millions of
drivers and transactions and many real-world contexts, requiring
the prediction algorithms to be scalable and interpretable.

In this paper, we take a systematic approach to address these
challenges. We formulate the problem as a task to predict the treat-
ment effects of a team competition on individual drivers, to which
we apply both linear and non-linear machine learning models. Com-
bining insights from both business practice and literature on virtual
teams and team competition, we construct a large variety of fea-
tures and train the prediction model using the data of hundreds
of large competitions and half a million drivers. The objective of
this study is not to prove the causal effect of team competition but
to predict individual driver’s performance in out-of-sample/future
competitions. The former is analyzed in an earlier study based on a
rigorously randomized field experiment (with no self-selection or
pre-participation) using formal econometric analysis [2].

Evaluated on out-sample competitions, the best-performing model
is able to reduce the prediction error from the baseline by 24.50%.
A careful interpretation of the models reveals intriguing predictive
power of many factors (for individual treatment effects): some are
intuitive, such as team homophily, social influence, supply-demand
ratio, and weather conditions; some are rather surprising, such as
team diversity, pre-contest activities, and the design of monetary
incentives; and many of them have never been reported in the
literature. Some of the factors are directly actionable in business
practice, and a simulation analysis demonstrates that by simply
varying several contest design options, one is expected to increase
the average treatment effect of a competition by as much as 26%.

To summarize, we make the following major contributions:

We present the first study of individual treatment effects of
team contests in a sharing economy. While existing work
measures the average effect of an experiment, we analyze het-
erogeneous, per-driver outcomes across many experiments.
We define a robust estimation of individual treatment effects
and formulate a novel approach to predicting individual
treatment effects through machine learning.

We train effective machine learning models on large-scale
data collected from hundreds of historical experiments, which
combine a comprehensive set of features of individual dri-
vers, teams, contest designs, and experimental environments,
and we evaluate the models on out-sample experiments.
We reveal the predictive power of a variety of factors for the
outcome of individual drivers, most of which are novel.

We identify actionable implications for business practice and
demonstrate significant potential improvements in experi-
mental outcomes by varying several contest design options.

2 RELATED WORK

This study is related to the following lines of literature:
Sharing economy. A growing literature investigates the socio-
economic effects on and consequences of ride-sharing platforms,
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such as Uber and Lyft [36]. Inspired by the findings in [17] that eco-
nomic gains positively influence people’s intention to participate, a
stream of work quantifies the positive effect of financial incentives,
such as subsidy [14], on improving supply-demand efficiency. Our
study adds to this literature by investigating the effect of rewarded
team competitions on service provision in a ride-sharing economy.

Team competition. Team competitions have been increasingly
applied in online communities, such as crowdsourcing [27], educa-
tion [28], online games [11], and charitable giving [10]. It has been
shown that team competitions are effective in improving key met-
rics, such as participation [28]. Data-mining researchers have devel-
oped team matching algorithms to ensure team formation of high
efficiency, effectiveness, and fairness, taking into account factors
such as demographics, social networks, and tasks (e.g., [1, 4, 35]).

Most of these studies demonstrate the effect of team competitions
through either field experiments or analyzing observational data.
The former usually estimate the treatment effect at the experiment
level, averaged over all treated teams and participants (e.g., [10,
27, 28]). Studies of the latter have examined team-level properties
and their influences on team performance in online games, such
as the positive factor of diverse team composition [11]. To the
best of our knowledge, few have aimed to analyze and predict
the heterogeneous effect of team competitions on individual team
members, especially in the context of the sharing economy.

Individual treatment effects & counterfactual analysis. Re-
cent work in causal inference and machine learning has focused
on a finer granularity - individual treatment effect (ITE) estima-
tion, citing its potential in precision medicine [13] and online plat-
forms [23]. Estimating ITE has been done with random forests [6]
and deep neural networks [29], and it has taken into account hidden
confounders from network information [16]. We base our analysis
on a collection of online controlled experiments [21]. We are able
to estimate ITE with difference-in-differences (DID), as the team
contests already include randomly selected control groups. We thus
focus on the prediction of ITE.

Another related stream of literature is counterfactual learning,
where the focus is to learn what policies maximize some rewards,
such as engagement or conversion in online advertising [8, 31].
The counterfactual estimators are typically based on importance
sampling. Our paper also examines how policy (which is the contest
design in our setting) predicts ITE, but we study the predictors of
ITE in a much more complex socio-economic setting.

3 PROBLEM SETUP

3.1 Team Competitions on DiDi

Since 2017, team competitions (also referred to as team contests)
have been widely introduced as driver incentive campaigns in DiDi
[2]. A typical team contest is held in one city and consists of two
periods: a team building period and a contest period (see Figure 1).

Team building period. The team building period starts with a
call for participation and usually lasts 3-7 days. During this period,
interested drivers sign up for the contest and start teaming up. Dri-
vers can create a new team as captain or join an existing team by
invitation, and they can invite other drivers into a team either man-
ually or assisted by a recommender system [35]. All participating
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Figure 1: Workflow and Treatment Effect of a Team Contest

teams in one contest have the same size: one captain and 2 to 7
other regular members.

About half of the teams achieve the desired size during the team
building period; these are referred to as self-formed teams. At the
end of the team building period, the system randomly selects 90%
of the unteamed drivers and groups them into full-sized teams,
which we refer to as system-formed teams. The other 10% are not
assigned to any team and will not participate in the competition;
they are referred to as solo drivers. These solo drivers have the same
motivation level (to participate in the contest), productivity, and
other demographic properties compared to the drivers who are
assigned to teams, and they form a nice group for comparison. The
system keeps track of the solo drivers for control.

Contest period. Both self-formed and system-formed teams will
compete during the contest period. The teams are further parti-
tioned into smaller contest groups. Each contest group contains
the same number of (usually 5) teams of comparable competitive-
ness, measured by their productivity prior to the contest. A team
only competes with other teams within the contest group and will
win a cash reward according to its standing in that group. The
performance of a team is calculated by summing the productiv-
ity of team members, measured by their daily revenue, number of
rides, or a combination of both. During the contest period, a driver
can check the performance of their team members and competitor
teams through a real-time leaderboard. Under these general con-
straints, every city can choose among finer-grained design options
(such as incentive structures). We will summarize these contest
design options in Section 4.1.

These team contests have been quite successful in general. Dur-
ing a contest, a driver’s daily revenue on average increases by 22%,
and the revenue over investment (ROI, which measures revenue of
the platform over cost) is over 5. While the average treatment effect
provides an overall picture of the effectiveness of team contests, it
is critical to understand the treatment effect on individual drivers to
untangle the complex interplays among participants, teams, contest
design, and experimental environments. Only through this can the
platform optimize their recommender systems and contest designs,
provide targeted interventions for different population of drivers,
and to generalize the success to new contests, cities, and countries.

3.2 Estimating the Individual Treatment Effect

We need to first estimate the individual treatment effects before
analyzing and predicting them. Estimating the individual treatment
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effect by itself can be challenging in natural experiments and ob-
servational data [6, 23, 29]. In our scenario it is easier, as all the
competitions followed a rigorous experimental design.

The individual treatment effect (ITE) refers to the effect of a
single team contest on the revenue of an individual driver. In other
words, the effect measures how much additional revenue a driver
generates by participating in a team competition as opposed to oth-
erwise. Given the competition setting, we estimate the individual
treatment effect using a standard difference-in-differences (DID)
approach [5] in causal inference. The intuition of DID is to first
compute the difference in revenue before and during the contest for
each driver, aggregate such within-driver differences by treatment
status (treatment vs. control), and compare the differences between
the two conditions. In our case, the control group is clear - the solo
drivers (drivers who are not teamed). We have two possible defi-
nitions of the treatment group: (1) drivers in both system-formed
and self-formed teams; (2) drivers in system-formed teams only.
Ideally, drivers in system-formed teams are the most comparable
to solo drivers, as self-formed teams might differ in motivation or
pre-contest history, which introduces a potential selection bias. In
business operation, however, we do care about making predictions
for all drivers. We therefore separately analyze the two scenarios:
using “all teams” and using “system-formed teams” as treatment
group. If the results are consistent, that means the estimation of
ITE can generalize from system-formed teams to all teams.

Formally, we define R; 1 as the average daily revenue generated
by driver j in the time period T. T = Ty indicates the contest period
while T = Ty indicates a baseline period before contest starts. Tj is
selected as the most recent days prior to the call for participation,
conditioned on matching the length and the day(s)-of-the-week
of T;. The choice of Ty rules out day-of-the-week confounds on
revenue (see Figure 1 for illustration).

The within-driver difference in revenue between the contest

period and the baseline period can thus be calculated as
AR; =R;1, —Rj 13- (1)

We then aggregate the revenue change in the control group as

1
AR = — AR;. 2
control = Jeontrol| Z ! @
iecontrol
Finally, we can obtain the individual treatment effect as
ITE
ARj = AR — ARcontrols ®3)

for every driver j in a team. If we calculate the average value of the
ITE of a given contest, we will get the average treatment effect (ATE)
of that contest. More precisely, since we can only obtain the ITE of
treated drivers (participating in the team contest), the aggregated
ITE represents the average treatment effect on the treated (ATET).

3.3 Predicting the Individual Treatment Effect

We collect a dataset from all competitions held between January
1, 2018 and August 23, 2018. Contests that did not hold out the
10% solo drivers are excluded, as we lack the control condition to
calculate ITE. We also exclude the contests conducted during the
lunar new year, as the supply and demand pattern in that period
is irregular. For all selected contests, we collect the demographics
and historical activities of all drivers who sign up for the contests,
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Table 1: Summary of Statistics

Item Number || Item Number
# of Cities 143 # of Unique Drivers 520,611
# of Contests 520 # of Cumulative Participation | 887,842

regardless of whether they are in the treatment or control group.
Table 1 presents the summary statistics of the contests included.

Based on this dataset, given every contest C, we are able to
represent it with a list of driver-independent features (such as infor-
mation about the city and the contest design), ¥, . For every treated
driver j in Ci, we are able to estimate the treatment effect of C. on
J, ARgCEj. Let the start time of the team contest period of Cy. be #;;
we représent adriver j with a set of features about their demograph-
ics or activities that are observed before ty, denoted as Fj ;.. We
are also able to represent the team that j joins, team(j), with a set
of features Fieam( j)- Note that Fieam( ;) could contain aggregated
features of its members, or Fieam(j) ~ 9(Fi g |i € team(j)).

Given these notations, we define the problem of predicting the
individual treatment effect as finding a function f(-) that maps the
feature representations of the contest Cy, a driver j, and the team
team(j) to the treatment effect of Cy. on j, that is,

:f(?—ck,?-j,tk: 7:team(j))- (4)

The prediction problem as defined is intrinsically challenging.
First, predicting human behavior is hard given the great complexity
in cognition and decision making [30]. Second, ARICTkEj as defined

ITE
ARck N

is essentially a “change” in behavior, which is harder to predict
than the behavior itself. Moreover, the huge heterogeneity among
drivers, teams, contests, time, and environments results in a wide
variation in the ITE. These challenges call for a careful selection of
features and predictors. In the following sections, we show how to
extract the feature representations of Fc,, ¥ ¢, and Fieam ), and
how to find the function f(-) through a machine learning approach.

4 PREDICTIVE FEATURES

Our comprehensive dataset presents unprecedented opportunities
to measure a wide portfolio of conditions related to the driver,
the team, the contest, and the experimental environment. In this
section, we characterize these conditions as informative features,
generated based on the theoretical insights from the literature on
contest theory, social identity theory, and virtual teams, as well as
the domain knowledge from the operational practitioners at DiDi.

4.1 Contest Design

We start with contest design features, such as the winning condition
and the prize structure. This set of features determine the utility
function of the participants and directly affect their motivation and
efforts devoted. Currently, the platform relies on their intuitions to
decide contest designs. They are eager for actionable insights and
guidance on how to optimize these designs. Apart from execution
options such as team size, contest-group size, and timing, we build
upon the theoretical inferences in contest theory or social identity
theory to describe the incentive mechanisms in contest design.
For example, how to allocate the prizes in a contest group? Give
them all to the best-performing team or split over several place-
ments? Although this question has been analyzed in contest theory:
under certain assumptions, rewarding the best in the contest group
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is the optimal strategy [24], it is seldom tested in field. We code the
team bonus for each of the top 5 teams in a contest group.

4.2 Driver Properties

This set of features capture the demographics and behavioral pat-
terns of a driver before the contest, which we assume would affect
the outcomes. To depict driver behavioral patterns before compe-
titions, we retrieve drivers’ daily revenue, daily number of rides,
and daily hours on the platform, each in three periods: the baseline
period (see Section 3.2 and Figure 1), 7 days before the contest starts,
and 30 days before the contest starts. These features are designed
to capture the most comparable activities to the contest period, the
most recent activities before contest, and the longer-term work
habits. We also collect driver demographics, such as age, gender,
and number of months on platform (i.e., DiDi age).

4.3 Team Properties

This set of features are related to team-level characteristics that
may significantly influence the behaviors of a member. Apart from
basic team characteristics (e.g., size), we investigate team diversity,
team history, team competitiveness, and the influence of team on
individual driver, drawing upon previous literature [1, 25, 26, 34].

For example, we capture team diversity from three aspects: age
diversity, hometown diversity, and diversity in activity region. As
illustrated by Figure 2a, age diversity is shown to be a potential
strong predictor of ITE. For another example, to depict team history,
we calculate the average number of times that any two teammates
have been in the same team before this competition. While litera-
ture has reported both the positive and the negative effect of team
history on team performance [26], Figure 2b shows that the rela-
tionship between team history and ITE follows an inverse-U shape:
no history and too much history could be equally harmful! Teams
perform the best when on average half of the pairs of drivers have
been teammates before, or translated to roughly 70% old members
and 30% new members if a team is built on a previous team.

W T
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Figure 2: Relationship between Features and ITE
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4.4 City Properties

We also consider the environments where a contest is held, which
may influence the motivation and outcome of the contest. We de-
scribe the status quo of DiDi in the contest city with the number
of historical team contests, the number of DiDi drivers, and their
average hourly pay. Moreover, we consider general demographics
of the city, such as its development level and the province it belongs
to. We also retrieve the weather reports of the city during a contest.
A more comprehensive list of features can be found in Table 2.
Preliminary analysis has identified many correlations between these
features and the ITE, although we only show two of them due to
the space limit, promising the feasibility of predicting the ITE.
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Table 2: Feature Examples (More Details in Supplement Table 5)

Contest Design

Bonus Fixed Team Bonus in a competition group
Pooling Team Bonus in a competition group
Minimal performance threshold to get a team bonus
Captain extra bonus
Other Bonus (e.g, individual goal-setting bonus)
Team performance evaluation metric
Other # of teams in a competition group
# of workdays in the competition
Driver Properties
Demographics Basic demographics, such as gender and age
DiDi spedific, such as DiDi age (months after joining)
Behavioral Driver daily revenue Avg. & Std. in different periods
Historical competition participation and performance
Team Properties
Diversity Team diversity in age, hometown and region of activity
History # of times some teammates has teamed up before
Team Size Team size: # of drivers in the team
Formation System-formed versus self-formed teams

Competitiveness Absolute competitiveness of team Avg. daily revenue
Relative difference of team Avg. daily revenue from the best team
Social Influence Team on driver: A daily revenue (driver Avg. - team Avg.)

Best team on driver: A daily revenue (driver Avg. - best team's Avg.)

City Properties

DiDi Related Hourly pay Avg. of all drivers in the city

Supply-demand rate daily Avg. at the city level

# of active drivers in the city

# of other rewarded activities in the city during the competition
Demographics Province and geographical region of the city

Tier of city representing development. population. economics. etc.

5 PREDICTING ITE

To what extent can the combination of the factors in Section 4 jointly
predict the ITE? Practically, it is also valuable to know how these
predictions generalize to out-sample, new competitions. Building
machine learning predictors is a desirable solution for both aspects.

5.1

We expand the feature exploration and craft 555 features to repre-
sent factors of contests, drivers, teams, and cities (see Table 2).

We follow the standard practice and split the contests into train-
ing, validation, and test sets based on the timing of the contests.
Details can be found in the supplement. The performance of a
machine learning predictor can be measured with RMSE:

2
_ ITE PITE
RMSE = JZ (ARCW. - ARCW_) /> N(Ch).
k.j k

Model Training and Evaluation

®)

where N(Cy) is the number of drivers participating in contest Cy.

There are many machine learning models that can be used for
building the predictors. Our main goal is not to optimize the pre-
diction accuracy but rather to understand the effect of individual
predictive factors on the target — the ITE. Therefore, we consider
two objectives in selecting the machine learning algorithms: (1)
they should be able to capture the linear and non-linear effects
of features and their interactions; (2) they should provide an easy
mechanism to interpret the predictive power of individual features.
We select two standard and commonly used algorithms. One is
Lasso [32]. As a linear model, the learned coefficients provide a
natural interpretation of the predictive power of features. The other
is Gradient Boosted Regression Tree (GBRT) [15], which can cap-
ture the non-linearity and interactions of the features. The feature
importances reported by GBRT can help interpret the contributions
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of different features in predicting ITE.! We also train Ridge models
[20] to verify the robustness of linear models to different regulariza-
tion. We did not choose neural networks as it is harder to interpret
the importance of individual features with a deep neural network.

5.2 The Prediction Performance

We tune the hyperparameters of the machine learning models rigor-
ously based on validation RMSE and report the performance of the
models on test set (contests starting in August) in Table 3. We con-
struct two baseline predictors for comparison. The uniform baseline
predicts all ITE as the mean ITE in the training set, while the ran-
dom baseline draws from a Gaussian distribution estimated from
the ITEs in the training set. We separately train the models in two
settings, one with drivers in all teams and one with system-formed
teams only. From Table 3, GBRT, Lasso, and Ridge all achieve similar
performance, reducing RMSE from the better baseline (Uniform) by
up to 24.50% (p < .01) on all teamed drivers and 24.77% (p < .01) on
drivers in the system-formed teams only. The consistency between
the two settings suggests that the estimation of ITE can generalize
from the system-formed teams to all teams.

Note that both GBRT and Lasso are "selecting" features dur-
ing the training process. By examining the non-zero coefficients
in Lasso and the positive feature importances in the GBRT, we
can know which salient factors the two models rely on to make
predictions. As we can see from Table 3, the numbers of features
selected by the different models are quite different (251 vs. 119). In
other words, the two models achieve similar performance based on
different sets of features, due to the different model structures.

Table 3: Model Performance, Evaluated by RMSE

All-teams Drivers System-formed-teams Drivers
Model Val. R.  TestR. #Ftr. Val. R.  TestR.  #Ftr.
GBRT 139.19  147.96 251 125.00 139.67 248
Lasso 141.75  148.46 119 137.25 14140 116
Ridge 142.16  150.55 555 136.26  143.65 552
Uniform - 195.97 - - 185.66 -
Random - 266.34 - - 250.63 -

6 ANALYZING PREDICTION RESULTS
6.1 Which Features Predict Treatment Effects?

We examine the most predictive features nominated from both
models. Figure 3a and 3b each show 20 selected features from the
best-performing GBRT and Lasso models with all-teams dataset.
Both all-teams and system-formed-teams datasets produce similar
results, and we choose to report the former since we do care about
making predictions for everyone when deployed in the operations.

6.1.1 Contest Environment.
We start with a set of factors about the environment of the contest.
WEATHER. The largest (negative) factor by Lasso for the individ-
ual treatment effect is the proportion of snowstorm days during a
competition (p < .01). This is easy to understand as severe weather
conditions would limit travel activities and driving efficiency.
LocaTtioN. We observe clear heterogeneity of ITE in different
locations. Contests held in certain provinces or cities have signifi-
cantly higher/lower effects. Basic demographics of the city (such

'We use glmnet 3.0-2 package (https://cran.r-project.org/web/packages/glmnet/index.html)
for Lasso, Ridge; scikit-learn 0.20.0 package (https:/scikit-learn.org/stable/) for GBRT.
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T daily revenue (driver avg. - team avg.) (baseline period)
I Driver daily revenue avg. (pre-contest 7 days)
I Driver daily revenue avg. (baseline period)
I Driver daily driving time avg. (baseline period)
I A\ daily revenue (driver avg. - best team's avg.) (baseline period)
I Driver daily driving time std. (pre-contest 30 days)
I Driver daily rides avg. (baseline period)
Il Driver daily driving time avg. (pre-contest 7 days)
[l Driver daily revenue std. (pre-contest 30 days)
W Driver daily revenue std. (pre-contest 7 days)
W System-formed teams
B Driver daily driving time std. (baseline period)
I Driver daily revenue avg. (in last contest)
I Driver daily revenue avg. (pre-contest 30 days)
| # of workdays in contest
[Vehicle is rented from DiDi partner
| Driver age
| DiDi age
[Max Individual bonus (daily average)
[ A daily revenue (team avg. - best-team avg.) (pre-contest 7 days)
0.20 0.15 0.10 0.05 0.00
Importance

(a) GBRT
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- "Driver age (log)

-Vehicle is rented from DiDi partner

-# times pairs of members were teammates std.
-Jiangsu Province indicator

-Homophily by region of activity (quartile)

-Driver is the team captain

-Driver daily driving time avg. (pre-contest 7 days)
-# of drivers inactive in baseline period

-Additional weight for peak-hour revenue
-The worst performance counts towards team performance
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Figure 3: Importance Scores of Selected Features from the Best-performing GBRT and Lasso Model for All Teamed Drivers

as population) do not appear to be predictive. The geographical
heterogeneity may attribute to other properties of the locations.
SupPPLY-DEMAND RATE. Surprisingly, the second largest negative
factor identified by Lasso is the supply-demand ratio of the city
where a competition is held. Team competitions are more effective
in cities of greater supply shortage (p < .01). This makes sense, as
when supply can’t meet demand, more effort of a driver ensures
more profit. When supply exceeds demand, even if drivers intend to
work harder, they are unlikely to receive more orders. This finding
is directly actionable: sharing economy platforms should prioritize

incentive-based experiments in areas of a greater supply shortage.

6.1.2  Driver Demographics.

YounG MEANS HIGH? No! The sharing economy has been commonly
perceived as a "young people’s business." 2 However, we find that
middle-aged drivers and those who have joined the platform earlier
experience greater treatment effects. In both GBRT and Lasso, age
of driver is one of the most predictive features. Indeed, in Figure 4a,
we observe that the treatment effect of team competitions increases
with age, tops among drivers in their 40’s, and decreases when
drivers are over 50. One possible interpretation may be the high
economic pressure on the middle-aged group. ITE also increases
with a driver’s age on platform. A longer lifespan on the platform
indicates more experience and a greater motivation to stay in the
business. From Figure 4b, veterans (on DiDi for over a year) have
higher ITE (p < .05), and the trend does not drop down.

RENTAL CARs. Results show that drivers are more productive in
competitions when they don’t own their vehicles but have rented
from a DiDi partner (p < .01). One possible reason is that these
drivers are more motivated to earn extra rewards to cover the rental
cost, or simply the rental vehicles are in better conditions.

6.1.3  Pre-contest Activities.
The pre-contest activities of a driver show strong predictive power.
PRODUCTIVITY IN PREVIOUS COMPETITION. Results (see Figure 3a)
suggest that the individual treatment effect of this contest depends
on the revenue the same driver received in the previous contest
they participated in (p < .01). Not surprisingly, if a treatment was
effective on someone, the same thing would likely work again.
PRODUCTIVITY VARIATION. One of the most surprising factors
is the variance in pre-contest activity levels. Results show that

Zhttps://www.forbes.com/sites/homaycotte/2015/05/05/millennials-are-driving-the-
sharing-economy-and-so-is-big-data/, retrieved in October, 2019.
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Figure 4: Relationships between Features and ITE

the standard deviation of a driver’s daily revenue in the 30-day
period before the contest has a positive correlation to the treatment
effect (p < .01) from Figure 4c. Similar effects are observed when
productivity is measured by work time or number of orders. When
a driver’s work habits are irregular, inner-team coordination may
drag their behavior towards the social norm. Drivers of a high
variation are also likely to be working part-time, and they have
more room to improve through the competition.

6.1.4 Team Properties.
Team structures and interrelations between members are also pre-
dictive. In social network and organization literature, there are the-
oretical and empirical discussions about how structural properties
affect the functionality of a team or community (e.g., [7, 11]). Our
analysis provides empirical evidence (in the context of the sharing
economy) to these theories while also reveals novel findings.
HomoprHIry. From Figure 3b, we observe that homophily (simi-
larity of team members) by region of activities is a strong predictor
of the treatment effect. This effect is positive and almost linear (see
Figure 4d). Previous literature suggests that physical distance (the


https://www.forbes.com/sites/homaycotte/2015/05/05/millennials-are-driving-the-sharing-economy-and-so-is-big-data/
https://www.forbes.com/sites/homaycotte/2015/05/05/millennials-are-driving-the-sharing-economy-and-so-is-big-data/
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inverse of homophily) negatively influences the performance of
virtual work teams as it reduces shared contextual knowledge, emo-
tional attachment, and non-verbal cues in collaborations among
team members [22]. Our result extends previous work by finding
that physical distance is harmful (p < .01) even when it requires
little coordination and communication to complete the team tasks.

SyYSTEM-FORMED TEAMS. The method of team formation is an
important predictor in both models. Teams filled by the system on
average yield a smaller treatment effect than teams fully formed by
drivers (p < .01). We note an apparent confound that drivers who
form teams without the help of the platform already knew each
other: they may be acquaintances in real life (related to homophily)
or they may have been teammates in previous competitions.

RoLE OF cAPTAIN. We find that team captains generally have
higher ITE than other team members during competitions (p < .01,
see Figure 3b). This is intuitive, as drivers who volunteer to be cap-
tains are likely to be more dedicated. Another possible explanation
is that the captains are “leading by example” [19].

SOCIAL INFLUENCE. A rather intriguing finding by the GBRT is
that social influence, rather than individual behaviors, is a strong
predictor of ITE. As shown by Figure 3a, the top feature measures
the difference between the pre-contest productivity of a driver
and the average pre-contest productivity of the team. The lower
a driver’s pre-contest productivity is than the team average, the
higher their productivity increases through the team competition
(p < .01). This desirable outcome may be attributed to how a team
functions, as social influence drags the inactive or inexperienced
drivers towards the norm [12]. Note that for drivers who were
already significantly more productive than their team average, the
team may have also dragged them backwards towards the norm.
Do these drivers constitute a large proportion in each team? By
calculating the difference between the pre-contest productivity of
individual drivers and the most productive team member instead
of the team average (Figure 4e), we see that most drivers receive a
positive social influence, unless they are (or are close to) the most
productive ones in their teams (with this difference close to zero).

In contrast, drivers are more motivated when the pre-contest
productivity of their team is closer to that of their competitors. As
shown in Figure 4f, ITE is higher when the pre-contest productivity
of a team is closer to that of the winning team in its contest group.

These findings provide novel insights for both team formation
and contest design: it is desirable to mix drivers with different
activity levels, so that the more productive/experienced drivers
may help the others and improve team performance. However,
such a service role may hinder the motivation of the top drivers
and slow down their own productivity, so it is important to provide
additional incentives to the helpers. It is also important to match
the competitors so that all the teams are competitive in the group.

6.1.5 Contest Design.

More 1s Less! Contrary to common sense, our results show that
providing more bonuses does not necessarily lead to a better out-
come. Specifically, the Lasso model suggests that while in general
drivers work harder for high financial rewards, an ill-designed ex-
tra bonus could inhibit the treatment effect. For example, when
the 5th-performing team (the bottom team in most contests) in a
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contest group is rewarded, drivers become less motivated as ev-
eryone is guaranteed some reward (p < .01). In addition, if team
captains receive an extra bonus, drivers in general become less pro-
ductive (p < .01). The inequality between captains and members
might have shifted the team goal from fighting for team identity to
fighting for the captain, reducing the motivation of others.

INNER-TEAM COMPETITION. Adding enforced within-team com-
petition might hurt the treatment effect: drivers are less productive
if the revenue of the worst-performing driver is excluded from
calculating team performance and bonus allocation (p < .01). Note
that without this arbitrary mechanism, there is also implicit, natural
competition among team members, as in most contests, the rewards
are allocated based on the contributions of members.

In general, the above findings are directly actionable by contest
organizers, to improve the outcomes of team contests by simply al-
tering a few design options, at an even lower cost. We will show the
potential of these opportunities with more details in Section 7.1.1.

6.2 Which Cases are Harder to Predict?

While the the best-performing models have already improved the
baseline by 24% and generated lots of insights, the accuracy num-
bers do not look perfect. Indeed, individual treatment effect is per-
haps one of the hardest targets for a prediction task [13]. We conduct
an error analysis of the best-performing GBRT model, trying to
obtain insights into what have been the harder/easier cases.

We calculate both the prediction error (A}ngj - ARgfj) and its
absolute value for each driver in the test set and examine their cor-
relations with the features, using Pearson’s correlation coefficient
r for continuous and Student’s ¢-test score for dummy features.

We find that the GBRT is less accurate when drivers have a high
variance in pre-contest revenue, (r = 0.41, p < .01). This is intuitive:
when the activities of a driver are irregular, their future activities
are also hard to predict. This again highlights that predicting in-
dividual treatment effect is intrinsically challenging, especially in
our context due to the huge heterogeneity of drivers. It is harder
to predict for team captains than for team members (¢ = 12.74,
p < .01), and for drivers in self-formed teams than for those in
system-formed teams (¢t = 23.07, p < .01). Our model also tends
to underestimate the ITEs when the average hometown distance
between a driver and their teammates is larger (r = —0.02, p < .01).

In addition, the absolute prediction error is significantly higher
when there are more teams in one contest group (¢t = 18.93, p < .01
comparing groups of 3 vs. 5 teams) and when drivers’ average
hourly income of the city is higher (» = 0.23 and p < .01).

Overall, these factors that correlate with prediction errors are
not hard to understand. Although we did not observe concerning
biases, it is important to consider these patterns when applying the
prediction models to different driver groups and new contexts.

7 DISCUSSIONS

7.1 Design Implications

We have obtained promising and actionable implications for the fu-
ture design of team contests, which could affect the current practice
of two aspects: contest design and team recommender systems.
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Figure 5: Simulated ATE of Three Prototype Contests under the Best Design and the Worst Design

7.1.1  Contest Design. Many findings about better contest design
are immediately actionable. They are mostly about how to design
incentives to balance the intensity and fairness of inter- and intra-
team competitions. For example, (1) providing an extra bonus for
the captain of the top team creates an inequality between captains
and team members, which has a negative impact on the individual
treatment effect; (2) excluding the lowest-performing driver from
bonus allocation also results in unfair treatment within the team,
which hurts the team performance in general. In a competition
group, however, it is important to make sure that all teams have
comparable levels of performance, so that no one loses the moti-
vation to win. (3), it is also harmful to give awards to every team,
as free lunch hinders the motivation of active competitors. These
design options can all be easily reversed in future competition. To
demonstrate the potential benefit of such changes, we conduct a
simple counter-factual analysis through simulation.

First, we select three real contests with different choices on
the three dimensions above. We hypothetically vary these design
choices with everything else kept the same (such as participants,
team structures, etc.), and we simulate the “expected” outcome
through predicting the ITE of every driver in the three contests
under each new design. The benefit of changing a design option
can be measured by the difference between the simulated outcome
under the new contest design and the outcome of the true design.
Table 4 lists the original design choices of the selected contests.

Through simulations using the trained Lasso model, we can
compare the expected outcome of the best and the worst possible
configurations and the configuration in reality. Because the trained
predictor is not perfect, we further adjust the prediction results by
adding Gaussian noise following (1) the prediction error distribu-
tion of the training period or the test period (depending on which
period the simulated contest fell into) and (2) the prediction error
distribution of the original contest (with the unchanged design). In-
tuitively, because all other factors are controlled, we anticipate that
the expected prediction error for the simulated contest shouldn’t
diverge much from that of the original contest.

For each simulated competition, we bootstrap 1,000 times by
sampling the number of treated drivers in the competition with
replacement. Bootstrapping helps us estimate the confidence inter-
vals of the expected average treatment effect. In Figure 5, we report
the bootstrapped average treatment effect of different simulated
designs for the 3 prototype contests, including the best, the worst,
and the original designs. We report the simulated ATE with predic-
tion error uncorrected, corrected using period-level distribution,
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and corrected using contest-level distribution. Clearly, there is a
significant difference in average treatment effect between the best
and the worst design choices (26%, 39%, and 191% improvement
over the worst design respectively for Competition A, B, and C). In
Competition A and B, the expected ATE (prediction error corrected
at the contest-level) of the optimal design significantly outperforms
the ATE of the original competition (using the actual design), with
an improvement of as much as 26 percent. The expected ATE does
not outperform the true ATE in Competition C, as the original
design is already the best. Moreover, the design choices may also
affect the ROI (Revenue-over-Investment) of the competitions. As
shown in Table 4, the ROI can increase by as much as 55% from the
original to the best design in simulation.

The results above are promising. They demonstrate that by sim-
ply varying a few design options, both the drivers and the platform
can benefit significantly. Many other design options could be im-
proved based on the analysis in Section 6.1.5, although it’s harder
to demonstrate them through a simple counter-factual simulation.

Table 4: Performance of Three Prototype Contests under the
Original Design and Simulated New Designs

. . True  Best-design ROI Worst-design ROI
Period C1 C2 C3 Design por(with 95% C.I) (with 95% C.L)
A|Train Y Y Y Worst 286 4.43(4.09,4.76)  2.86 (2.58,3.13)
B| Test Y N Y Bad 10.61 13.50 (12.68, 14.30) 10.50 (9.61, 11.34)
C|Train N N N Best 258 258(2.21,2.94)  0.71(0.40, 0.99)

C1: Has captain bonus for top team; C2: Has team bonus for 5th team in group;

C3: Worst individual score included in team performance and bonus allocation.

7.1.2 Team Recommendation. Our findings also shed light on how
to better design team recommender systems. For example, it is better
to first team up friends and former teammates, and then introduce
new drivers to the team. It is beneficial to combine low-performing
and newer drivers with high-performing and experienced drivers
in one team. Teaming people who are from the same hometown
and who work in similar areas can also boost performance.

7.2 Limitations

First, this study focuses on exploring predictive factors that explain
the variance of ITE across individuals, teams, contests, and cities.
Although the estimation of the ITE follows the standard practice
of causal inference, the prediction model does not guarantee that
relations discovered between the features and the ITE are causal.
Future studies are needed to establish causal relationships between
the predictors identified and the ITEs. Second, we note that the
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benefit of optimized contest-design options is estimated based on
simulations. While the three design options are carefully selected
so that they are as independent as possible to other factors (so
we can control the confounds), it is not impossible that changing
these options may result in a change in others. For example, there
is a probability that dropping the bonus for the 5th team might
result in less participation. Finally, all analyses and findings are
based on field experiments and data collected from one ride-sharing
platform in one country. Our conclusions may be generalized to
other platforms, countries, and domains with caution.

8 CONCLUSION

We present the first predictive analysis of individual treatment
effects of team competitions in DiDi, a leading platform of the ride-
sharing economy. The analysis investigates hundreds of large-scale
team contests in 143 cities, involving half a million drivers, tens
of millions of rides, and a comprehensive set of features of the dri-
vers, teams, contest design, and experimental conditions. Through
linear and nonlinear machine learning algorithms, these features
demonstrate decent predictive power of individual outcomes in
team contests. Our findings present many new insights and useful
implications for the research and business practices of team compe-
tition, the sharing economy, and online field experiments in general.
Some of the findings are immediately actionable in optimizing the
design of upcoming team contests. Future directions of the work
include testing these insights with field experiments, investigating
the causal links between the heterogeneous factors and the ITE, and
generalizing the procedure to other sharing economy platforms.
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Table 5: Examples of Features with Detailed Description

Contest Design

Fixed
Team Bonus

Whether there is a fixed-amount team bonus for the 1st-rank team in each competition group
[Total fixed-amount bonus] & [Individual expectated bonus amount] for the 1st-rank team in each competition group

Daily Avg of total fixed-amount bonus for the 1st-rank team in each competition group

Pooling Whether the competition uses pooling (vs fixed) bonus for the 1st-rank teams in each competition group
Bonus Team Bonus [Total amount] & [Individual expectated bonus amount] of bonus pool for the 1st-rank teams in each competition group
Threshold Whether there is a minimal-performance requirement to get a team bonus
. Whether there is an extra bonus for the captain of the 1st-rank team in each competition group
Captain bonus
Total extra bonus for the captain of the 1st-rank team in each competition group
Other Bonus Whether there is an extra individual goal-setting bonus: one can get a reward as long as him/herself satisfies the requirement
Evaluation Metrics| Whether the worst individual performance counts towards team performance and bonus allocation
Other Team size Number of teams in a competition group
Day of week Number of workdays in the competition
Driver Properties
Basics Age and gender of driver
Demographics — - £ g
DiDi Specific DiDi age (time after joining DiDi) of driver
Productivity Daily revenue Avg. & Std. of the driver [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]
Behavioral . Number of historical competitions a driver has participated in before
Contest History
ITE of the driver in last competition participated
Team Properties
Age Std. of driver age in a team
Hometown Avg. pairwise geographical distance of hometowns
Diversity EP £eosrap
. . Avg. pairwise distance of the center locations of driving activities
Region of Activity
Avg. pairwise cosine similarity of the vectors representing number of rides taken in each sub-area
Avg. & Std. of pairwise number of times competing in the same team before this competition
History Team History & P peting P
Avg. & Std. of number of times any half of the team competing in the same team before this competition
. Absolute Avg. of team daily revenue [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]
Competitiveness -
Relative Difference of team Avg daily revenue between this team and [the mean of all teams] & [the best team] in the competition groups

Social Influence

Team-driver

Difference of driver Avg daily revenue between this driver and the mean of all drivers in the team

Best Team-driver

Difference of driver Avg daily revenue between this driver and the mean of the best team in the competition group

Team Size Number of drivers in the team
Other
Formulation System-formed versus self-formed
City Properties
Hourly Pay Avg. of hourly pay of all drivers in the city [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]
DiDi Related Supply-demand | Avg. of city-level daily supply-demand rate [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]
# of Drivers Number of drivers in the city worked [in the baseline period] & [in 7 days before the contest] & [in 30 days before the contest]
Rewarded Activity| Number of days that the city has other city-level rewarded activities events during the competition
Demographics Region Administrative (Province) and geographical region of the city
City Classification| Tier of the city which comprehensively represents the development, population, economics, etc. of the city

9 SUPPLEMENT

9.1 Examples of Features

training and contests that fell entirely in July are used as validation
set.
To determine the hyperparameters, we conduct grid-search us-

Table 5 shows more examples of the features with implementation
details. We construct more than 500 features in total, capturing
contest design, driver properties, team properties, and city-level
properties.

9.2 Data Split and Model Training

We follow the standard practice and split the contests in our analysis
into training, validation, and test sets based on the time of the
contests. Contests that ended on or before June 30, 2018 are used for
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ing the training and validation set. Apart from the model specific
hyperparameters, we also select the best configuration of feature
scales (i.e., original, Min-Max, standardization). We apply Min-Max
and standardization for Lasso and Ridge, finding standardization
performing the best. For GBRT models, the data of the original scale
out of all three scaling methods derives the best performance.

Finally, we use all contests that ended on or before July 31, 2018
to retrain the model and report its performance on the test set,
which contains the contests starting in August 2018.
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