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Abstract
Understanding diverse characteristics of human mobility pro‐
vides profound knowledge of urban dynamics and complexity. 
Human movements are recorded in a variety of data sources and 
each describes unique mobility characteristics. Revealing simi‐
larity and difference in mobility data sources facilitates grasping 
comprehensive human mobility patterns. This study introduces 
a new method to measure similarities on two origin–destination 
(OD) matrices by spatially extending an image‐assessment tool, 
the structural similarity index (SSIM). The new measurement, 
spatially weighted SSIM (SpSSIM), utilizes weight matrices to 
overcome the SSIM sensitivity issue due to the ordering of OD 
pairs by explicitly defining spatial adjacency. To evaluate SpSSIM, 
we compared performances between SSIM and SpSSIM with 
resampling the orders of OD pairs and conducted bootstrapping 
to test the statistical significance of SpSSIM. As a case study, 
we compared OD matrices generated from three data sources 
in San Diego County, CA: U.S. Census‐based Longitudinal 
Employer–Household Dynamics Origin–Destination employ‐
ment statistics, Twitter, and Instagram. The case study demon‐
strated that SpSSIM was able to capture similarities of mobility 
patterns between datasets that varied by distance. Some regions 
showed local dissimilarity while the global index indicated they 
were similar. The results enhance the understanding of complex 
mobility patterns from various datasets, including social media.
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1  | INTRODUC TION

Urban dynamics are built up based on diverse types of human movements, including migration, commuting, and lei‐
sure activities, and hence the study of human mobility is essential for understanding complex urban systems (Dodge, 
Weibel, Ahearn, Buchin, & Miller, 2016; Miller & Shaw, 2015). To examine human mobility and urban dynamics, 
various forms of data sources exist; for instance, census surveys, activity diaries, call detail records (CDRs) from 
cellphones, GPS points, and new media data. Among these, researchers have recently adopted social media data, 
which has produced a massive amount of publicly available individual‐scale time‐stamped geo‐referenced data, for 
discovering unrevealed travel patterns and activities. For example, finding major human flows (Gao, Li, Wang, Jeong, 
& Soltani, 2018; Poon & Pandit, 1996; Xu, Li, Shi, Zhang, & Jiang, 2015) can support decisions across multiple fields, 
including public health, epidemiology, and disaster response (Martín, Li, & Cutter, 2017; Nara, Yang, Machiani, & Tsou, 
2017; Panigutti, Tizzoni, Bajardi, Smoreda, & Colizza, 2017; Wesolowski et al., 2015). While previous studies have 
often examined and analyzed spatial distributions of movements, less research has focused on measuring similarities 
and differences between multiple data sources (Gao et al., 2018). Each data source has its own unique characteristics 
to describe human mobility due to diversities in survey participants or platform users who provide their mobility data, 
and methodologies to collect, manage, and publish geo‐referenced data. For instance, in the case of social media data 
demographic characteristics, Instagram use is more popular among female and younger populations than Twitter 
(Table 1), the variations of which may produce significant differences in mobility patterns and play a significant role in 
shaping the complexity of human mobility.

Therefore, it is crucial to understand the capabilities and limitations of each data source for describing human 
mobility. This can further help in grasping comprehensive human mobility patterns, where multiple mobility data 
sources complement one another in explaining different types of human movements. There have been attempts 
to develop new methodologies to measure similarities between mobility patterns from diverse sources (Xia, Wang, 
Zhang, Kim, & Bae, 2011; Yuan & Raubal, 2014), and to address those demographic biases on multiple social media 
data (Crooks et al., 2015; Gao et al., 2017). However, effectively and quantitatively measuring mobility similarities 
from multiple data sources continues to be a research challenge.

To address this research gap, the present article proposes a new method, the spatially weighted structural sim‐
ilarity index (SpSSIM), to measure the similarity of origin–destination (OD) flow matrices to compare mobility pat‐
terns from multiple data sources. SpSSIM adopted the structural similarity index (SSIM), an image quality assessment 
technique to measure the similarity between two images (Wang, Bovik, Sheikh, & Simmoncelli, 2004). SSIM has been 
applied to measure the similarity of human mobility by mapping the OD matrices into arrays of image values; how‐
ever, previous works do not consider the spatial configuration of flows on the OD matrices. We extended SSIM by 

TA B L E  1   Demographic characteristics of Instagram and Twitter users in the USA (Greenwood, Perrin, & 
Duggan, 2016)a 

  Instagram Twitter

All online adults 32 24

Gender Men 26 24

Women 38 25

Age 18–29 59 36

30–49 33 23

50–64 18 21

65+ 8 10

a% of online adults who use social media. 
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incorporating spatial adjacency by utilizing a series of spatial weight matrices. A key advantage of SpSSIM is that local 
similarities can be properly measured and investigated.

While SSIM utilizes a square moving window to calculate the similarity of images or matrices, SpSSIM employs 
a geographically defined range with spatial weights. This enables SpSSIM to calculate similarities of flows in a 
certain geographic boundary. As our case study, we compared each pair of OD matrices of human daily mobil‐
ity extracted from three mobility data sources: U.S. Census‐based Longitudinal Employer–Household Dynamics 
Origin–Destination employment statistics (LODES), Twitter, and Instagram, and aggregated at the subregional areas 
(SRAs) scale in San Diego County, CA. Two geo‐referenced social media data, Twitter and Instagram, were collected 
via publicly available application programming interfaces (APIs) in 2015. The case study demonstrated the capability 
of SpSSIM to measure the mobility similarities between each data source and to provide underlying knowledge of 
human mobility extracted from social media data, which can ultimately facilitate the understanding of the complex‐
ities of human mobility. The remainder of this article is organized as follows. Section 2 describes related works on 
measuring the similarity of human mobility and studying human mobility with social media data. Section 3 intro‐
duces the SpSSIM methodology and Section 4 describes the data used in this study. Section 5 details the results of 
comparative experiments between SSIM and SpSSIM and the interpretation of SpSSIM values, with a case study of 
San Diego County, CA. Finally, Section 6 discusses the implications of the results and our conclusions, along with 
suggested future work.

2  | REL ATED WORK

2.1 | Methodological approaches for quantifying similarity of mobility

Methodological approaches to characterize and compare mobility patterns have been, in essence, quantifying simi‐
larity in mobility data, which can identify major trends in movements and allow the comparison of trends from di‐
verse data sources. As a traditional approach, dominant flow analysis (Nystuen & Dacey, 1961) counted the amount 
of flow and detected major trends of human mobility, such as trading (Smith, 1970; Xu et al., 2015) and tourist 
travel (Pearce, 1996). Another approach was to employ principal component analysis (PCA) to identify the centers 
of mobility networks (Garrison & Marble, 1964). Components derived from PCA represent the similarity of regions 
regarding the amount of flow (Poon & Pandit, 1996). For example, Clayton (1977) categorized U.S. states in terms 
of the similarity of origins and the numbers of inter‐state immigrants. More recently, Gao et al. (2018) employed 
spatial scan statistics (Kulldorff, 1997) to compare major patterns of taxi trips in the morning and afternoon in New 
York City and county‐to‐county migration flows between age groups in the U.S. by clustering origins and destina‐
tions. While these methodological approaches have been effective in summarizing mobility patterns with a few 
major trends, the number of clusters was potentially arbitrary and the comparison was limited to detected clusters 
(Salvador & Chan, 2004). In other words, the similarities measured by clusters can be sensitive to the number of 
clusters and clustering methods.

Various methodologies have been explored to calculate the similarity between mobility data, which are often 
treated as trajectories (i.e., two sets of temporally sequenced location points). Common trajectory similarity mea‐
surements calculate distances between points on each trajectory. For example, Euclidian distance has been widely 
used to measure geographic gaps between two points from each trajectory (Zheng & Zhou, 2011). Meanwhile, the 
Levenshtein distance, or edit distance, developed from informatics to measure the distance between two strings 
has also been applied to geographic trajectories by matching each of their intermediate points and calculating 
the differences (Yuan & Nara, 2015; Yuan & Raubal, 2014). These approaches provide similarity measurements of 
individual sequential movements. More recently, Behara, Bhaskar, and Chung (2018) proposed a mean normalized 
Levenshtein distance for OD matrices (MNLdOD) by applying the Levenshtein distance to measure the similarity 
of two OD matrices. This measurement compares the descending order of destinations by the normalized flow 
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volume from each origin (i.e., a row of OD matrices) as strings, and calculates the similarity row by row to capture 
differences in the order of destination choices from the same origin. Since MNLdOD employs the orders by flow 
volumes rather than the actual amounts of flow, it is limited in fully incorporating flow volume variations in its 
similarity index.

2.2 | Human mobility and social media

Human mobility has been a long‐discussed issue in social and geographic sciences, and complex mobility dynamics 
and behaviors have been studied in a variety of applications, including migration, travel, and evacuation (Cresswell, 
2012; Noulas, Scellato, Lambiotte, Pontil, & Mascolo, 2012). Focusing on the daily human mobility, fundamental 
activities of human living such as commuting, shopping, and leisure trips often accompany movements, which 
further contribute to form complex urban dynamics through human–human and human–environment interactions 
in space and time (Huang & Wong, 2016; Sun, Fan, Li, & Zipf, 2015; Wu, Zhi, Sui, & Liu, 2014). Thus, investigat‐
ing human mobility is key to comprehending complex urban systems; yet it has been challenging (Larsen, Urry, & 
Axhusen, 2006; Yuan & Raubal, 2014), especially since traditional data collection methods (e.g., census surveys 
and travel diaries) were limited in observing and recording human mobility at full scale due to their high cost (Miller 
& Shaw, 2015). Nowadays, recent advancements in and adaptations of mobile information and communication 
technologies (mICTs) and location‐aware technologies (LATs) have enabled the recording of human mobility via 
mobile devices. This larger and finer‐scale spatiotemporal data can fulfill the investigation of daily human mobility 
and reveal undiscovered patterns not captured in the data collected through traditional methods (Hawelka et al., 
2014; Liu, Kang, Gao, Xiao, & Tian, 2012; Wu et al., 2014).

Social media is one of the data sources that can capture human mobility by taking advantage of mICTs 
and LATs. Recent studies have explored the potential of social media data to reconstruct individual trajectories 
and describe dynamic human movement behaviors in detail (Nara et al., 2017). For example, travel patterns 
and behaviors have been studied using check‐in data to detect hotspots and unusual visiting places (Sun et al., 
2015), and geo‐tagged Twitter posts to estimate the volume of country‐to‐country flows (Hawelka et al., 2014). 
Geo‐tagged social media posts have been applied to investigate human mobility and evacuation behavior during 
disastrous events (Li, Wang, Emrich, & Guo, 2018; Martín et al., 2017; Wang & Taylor, 2014). Despite the useful‐
ness of social media data to investigate human and urban dynamics, they are known to be biased by the uneven‐
ness of demographic, geographic, and temporal distributions. Furthermore, since each social media platform has 
its own unique usage and demographics, human mobility patterns extracted from social media data potentially 
differ by platform; however, few studies have investigated the similarity and difference in human mobility by 
social media platform.

To solve the bias of a single social media data source, some studies have integrated multiple social media data 
sources with other spatial and aspatial data to gain profound knowledge in human activities and urban contexts. 
For instance, Gao et al. (2017) synthesized multiple data sources from Flickr, Instagram, Twitter, Travel Blogs, and 
Wikipedia to extract semantics and identify cognitive regions based on a belief that each source represented dif‐
ferent user groups. They assumed that Flicker was more tourism‐oriented than other social media such as Twitter 
and Instagram, which showed daily activities, news, and visited places. Crooks et al. (2015) utilized open‐source 
crowdsourcing datasets ranging from GPS tracks and Foursquare to Twitter, Flickr, and weblogs to demonstrate 
how social media, trajectory, and traffic data could be analyzed to capture the evolving nature of a city's form and 
function. They argued that each data source represented part of a dynamic and complex urban function. These 
approaches highlighted the importance of integrating multiple data sources to gain deeper insights into urban 
dynamics. Despite the importance and necessity of data integration in mobility studies, it has been utilized less 
due to our limited understanding of the capabilities and limitations of each data source and their similarities and 
differences.
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3  | METHODOLOGY

This article proposes a novel index, SpSSIM, to measure the similarity of two OD flow matrices to compare mobil‐
ity patterns. Our method adopted the concept of the SSIM, which originally assessed image quality by comparing 
local patterns of image structure. We extended SSIM spatially by utilizing a series of spatial weight matrices that 
define the range of a neighborhood geographically. The following subsections demonstrate the SSIM algorithm, 
the process of spatial extension, and verification of SpSSIM.

3.1 | Spatially weighted structural similarity index

Wang et al. (2004) developed SSIM to measure the similarity between two images for assessing the quality of 
copied or generated images from an original image. As the human visual system is familiar with the overall arrange‐
ment of images rather than single values of cells to compare images, SSIM consideres the arrangement of image 
values by quantifying the local patterns of pixel intensities consisting of three components—luminance, contrast, 
and structure—with a moving window. SSIM calculates image similarity between two images X and Y as expressed 
in Equation (1):

where l (x, y)�, c (x, y)�, and s (x, y)� represent the three components of luminance, contrast, and structure, respec‐
tively. x and y denote black/white color values of pixels (0 to 255) in images X and Y. �, �2, and �xy refer to mean, 
variance, and covariance, respectively. C1, C2, and C3 are constants that enforce SSIM to be less than 1. Therefore, 
the value of SSIM equals 1 when two images are exactly the same, and it gets close to 0 when they are less similar. 
When we regard the importance of each component as identical (�=�= � =1), and C3 is equal to C2/2, Equation 
(1) can be simplified to:

Once SSIM is calculated in a window, it moves to the next cells and computes SSIM from the last cell of images. 
Then, the overall similarity of images X and Y is represented by the mean of local SSIM values, where M denotes 
the total number of local windows:

SSIM has been widely utilized to assess the quality of images and to evaluate the performance of image pro‐
cessing due to its simplicity and accuracy (Brunet, Vrscay, & Wang, 2012). The index has recently been employed 
to compare movements because the amount of flow in OD matrices can be considered as values of images (Djukic, 
2014; Pollard, Taylor, & Vuren, 2013). For example, Djukic (2014) used SSIM with a square window to evaluate the 
estimation of OD demands in traffic flows (Figure 1) since traditional statistics such as the mean square error are 
limited to considering the spatial correlation between OD pairs. Yet, SSIM is still problematic in terms of the sen‐
sitivity of OD pairs ordering because the order in a matrix is not always arranged by spatial contiguity or distance. 
For example, the contiguous cells in an OD matrix can be far from each other in real space when the order is based 

SSIM (x, y)= [l (x, y)� ⋅c (x, y)� ⋅s (x, y)� ]
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on the size of the population or is randomly distributed. In this case, a square window is limited to filtering out 
the spatial correlation between OD pairs because contiguous cells are not spatially adjacent. Moreover, the same 
values of OD matrices with different orders result in different SSIM values. To solve the problem, Djukic (2014) 
suggested finding the best way to represent spatial dependency of OD pairs by testing various window sizes, and 
Behara, Bhaskar, and Chung (2017) reordered OD pairs to group to the upper level and calculated SSIM within 
the new level; however, selecting the optimal window size and the optimal order of OD pairs remains challenging.

To overcome the SSIM ordering issue to compare OD matrices, SpSSIM (Equation 4) utilizes a series of spatial 
weight matrices instead of the moving window of SSIM. The range of locality is defined by multiplying a spatial 
weight matrix with an OD matrix using the Hadamard product (Equation 5). The spatial weight matrix consists of 
0 and 1, where flows (fij) in the distance range (dij) have a weight value of 1 (Equation 6). In other words, SpSSIM 
computes a similarity between two OD matrices only in a specific geographic range by blocking values from out‐
side the range, multiplying the value by 0 (Figure 2). As a result, SpSSIM will have a value between 0 and 1 and be 
close to 1 when two matrices are similar.

For the global similarity between two OD matrices, a series of spatial weight matrices is required to encom‐
pass the whole study area (Equation 7). For instance, if the first spatial weight matrix takes the value of 1 when 
the distance between two regions is less than 10 km (bin 1), then flows in the range 0–10 km are included for a 
local SpSSIM value. The second matrix then represents the spatial relationships between two regions in the range 
10–20 km to calculate another SpSSIM value in the next bin (bin 2). When the bin series covers the whole region 
(bin n), the average of the SpSSIM values in each bin is calculated to denote the overall similarity between two OD 
matrices. As for SSIM, the SpSSIM value equals 1 when two OD matrices have the exact same pattern.
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F I G U R E  1   Comparison of two OD matrices using SSIM (Pollard et al., 2013)
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Moreover, SpSSIM can compare local inbound flows (in‐flows) and outbound flows (out‐flows) (localized 
SpSSIM). The similarity of local directions of movement is measured by calculating SpSSIM with only columns or 
rows in a spatial weight matrix (Equation 8). When the ith rows of two matrices are compared in a geographic bin, 
the value of the localized SpSSIM represents the similarity of out‐flows starting from the ith region. In contrast, 
the similarity of flows moving into the jth region can be calculated by comparing the jth columns of two matrices.

3.2 | Bootstrap verification

To verify the statistical significance of SpSSIM, we employed bootstrapping to estimate the distribution. 
Bootstrapping generates a random distribution of a parameter by iteratively resampling the observed data 
(Westfall & Young, 1989). It simulates samples with the same size of observation and allows replacement (Efron, 
1979). For example, with the set of observations X=

{
x1, x2, x3,… ,xn

}
, a sample can be X̃1=

{
x3, x2, x2, … ,xn

}
.  

Then, the process of sampling is iterated a large number of times and the statistics of the created samples are 
computed. It is similar to Monte Carlo simulation regarding repeating a process, but Monte Carlo simulation gen‐
erates random cases under a null hypothesis rather than resampling from the existing dataset. In this study, we 
resampled the observed amounts of flow from each OD matrix due to difficulties in assuming a null hypothesis 
for mobility patterns. We randomly resampled 999 times to generate the probability distribution of SpSSIM and 
estimates p values of the index based on the mean and standard deviation of resampled values. The p values verify 
whether the observed mobility patterns from two data sources are randomly different or not.

4  | DATA

4.1 | Building OD matrices from social media data

As a case study to demonstrate SpSSIM to measure similarity in human mobility, we compared OD matrices gener‐
ated from three data sources, Twitter, Instagram, and LODES. First of all, we collected Twitter and Instagram geo‐
referenced posts using APIs from 12/07/2014 to 05/17/2015 (161 days) in San Diego County. To avoid duplicated 

(7)Global SpSSIM
(
X,Y

)
=
1

n

n∑
b=1

SpSSIM
(
X,Y,Wb

)

(8)Localized SpSSIM
�
X,Y

�
=

⎧
⎪⎨⎪⎩

SpSSIM
�
Xi,Yi,W

b
�
, outflow

SpSSIM
�
Xj,Yj,W

b
�
, inflow

F I G U R E  2   Comparison of two OD matrices using SpSSIM
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posts possibly generated by cross‐posting from Instagram to Twitter, we considered tweets only posted from 
mobile‐based Twitter application sources (e.g., Twitter for Android, Twitter for iPhone, etc.). This removed tweets 
cross‐posted from other social media platforms, including Instagram and Foursquare. The numbers of posts in the 
period were 1,916,580 for Twitter and 4,362,176 for Instagram, respectively. From these social media posts, we 
extracted individual daily trip segments by connecting any two temporally adjacent geo‐referenced points within 
the same day. For example, if a person posted a message on social media at location A in the morning and another 
at location B at night, then the segment from A to B is regarded as movement. If the person posts at three locations 
A, B, C sequentially in a day, the segment is regarded as two movements, A–B and B–C.

These extracted trip segments include irrelevant data such as no movements and movements with an un‐
realistically high velocity. To further clean up the irrelevant trip segments, we removed segments with zero dis‐
tance where their origin and destination are at the same location. We also removed segments whose average 
velocity was greater than 65 miles per hour (mph), which is California's general maximum speed limit (California 
Department of Transportation, 2019). Then, we aggregated these trip segments to build OD matrices based on 41 
San Diego SRAs as a spatial unit. SRAs represent local communities/neighborhoods that are suitable to describe 
regional contexts of human mobility. From the social media data, we extracted 116,253 and 297,339 individual 
daily movements between SRAs from Twitter and Instagram, respectively. Table 2 summarizes the number of data 
collected, processed, and generated for each social media platform.

To compare human mobility extracted from social media data with non‐social media‐based mobility data, we 
used the LODES data. It represents commuting patterns, or home‐to‐work flows, based on employer reporting 
records at census block level that can cover more than 90% of all employment categories except self‐employment 
or military personnel (Horner & Schleith, 2012). We aggregated LODES flows into the SRA level to investigate the 
regional context of human mobility patterns. A flow between two SRAs was defined as fij, indicating that a person 
moved from the ith SRA to the jth SRA in a day. We define origin regions as rows and destination regions as col‐
umns in an OD matrix, where the sum of the ith rows denotes the total amount of out‐flow from the ith SRA and 
the sum of the jth columns represents the total amount of in‐flow to the jth SRA. To understand flows between 
neighborhoods, we removed internal flows whose origins and destinations are in the same region (fii). Then, we 
normalized the flows between SRAs through probability of flows, which scale the value of flows from all datasets 
to be between 0 and 1.

4.2 | Data description

Table 3 describes descriptive statistics of flows in three data sources. Generally, all probability distributions of 
flows were positively skewed. Almost all movements from three sources traveled within 50  km. Twitter and 
Instagram have more movements within 20 km (78.8 and 73.0%, respectively) than LODES (57.5%). However, 
LODES has the largest total amount of flows and the lowest percentage of zero cells, which refer to no movements 
between two SRAs. In LODES, there are 23 (1.4%) OD pairs of SRAs with no flow out of 1640 pairs (41 × 40), 
excluding internal flows. On the contrary, there are many OD pairs with no flow in Twitter and Instagram. It de‐
scribes that the commuting‐based mobility (LODES) was more ubiquitously distributed in San Diego County than 
social media‐based mobility. This further indicates that social media was used more frequently within geographi‐
cally confined regions rather than overall regions. Between Twitter and Instagram, Instagram‐based flows (zero 

TA B L E  2   Data summary

Source of social 
media

No. of posts originally 
collected

No. of posts after removing cross‐
platform data

No. of extracted 
daily movements

Twitter 2,202,719 1,916,580 116,253

Instagram 4,362,176 — 297,339
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OD flows = 27.5%) were geographically sparser than Twitter‐based flows (zero OD flows = 13.4%) even though the 
amount of flows in Instagram is 2.5 times more than that in Twitter. One potential explanation for these patterns 
is that each type of social media has different usages and purposes. For example, Twitter users are more likely to 
post messages at their ordinary locations such as home and work while Instagram users are more willing to share 
their extraordinary experiences by posting pictures at places of social activity and entertainment. Section 5 pro‐
vides further discussions on the difference in flow between Twitter and Instagram.

Four maps in Figure 3 describe the density of total probability of flows in San Diego County and the spatial 
distributions of out‐flows from LODES, Twitter, and Instagram, respectively. The majority of flows were concen‐
trated in the western region of San Diego County, corresponding with the population distribution. Flows repre‐
sented by an arrow in the maps are major flows, where the amount of flow is over 1.5 standard deviations from 
the mean of each source. To avoid over‐cluttering, only flows larger than +1.5 standard deviations are displayed. 
The most frequent flows from LODES moved into two regions (highlighted by the yellow border in Figure 3a), 
Central San Diego—known as the Central Business District (CBD) of San Diego and Kearny Mesa—known as a new 
business district. Compared to LODES, flows from social media revealed that frequent destinations are not limited 
to those two business districts. Twitter users visited comparatively diverse destinations whereas Instagram users 
preferred traveling to coastal areas such as Coastal and Peninsula SRAs (Table 4).

5  | RESULTS

5.1 | SSIM and sensitivity

To test the sensitivity of the OD pairs ordering, we generated two sets of reordered OD matrices of each data 
source and compared the results of SSIM and SpSSIM. We resampled the orders of pairs twice based on: (a) the 
population size; and (b) the alphabetical order of the SRA name. For SSIM, we tested eight square windows, where 
the window size was increased from 5 to 40 cells in steps of 5 cells. For SpSSIM, we set 12 distance bins where the 
bin width is 10 km and the distance range is from 0 to 120 km. For each bin, we calculated SpSSIM using a spatial 
weights matrix determined by Equation (6). Cells of the nine heatmaps in Figure 4 represent the probabilities of 
movements, and rows and columns are origins and destinations, respectively. The LODES heatmaps illustrate an 
apparent tendency of central places to move within distinct lines whereas Twitter maps reveal relatively diverse 
patterns and Instagram maps look like mixed versions of the other two.

TA B L E  3   Descriptive statistics of flows

  LODES Twitter Instagram

Total amount 836,974 116,253 297,339

Mean 497.9 69.2 176.9

Median 91 8 14

Std. dev. 1,135.601 180.722 551.491

Max 10,438 1,539 7,163

1st quartile 19 2 0

3rd quartile 420 44 108

# of zero (ratio) 23 (1.4%) 219 (13.4%) 451 (27.5%)

Skewness 4.444 4.605 7.418

By 20 km 57.535% 78.849% 73.040%

By 50 km 96.490% 98.042% 98.116%
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We calculated SSIM by varying the sizes of windows to test the sensitivity of SSIM (Table 5). LODES and 
Twitter (L‐T) have the lowest similarity while Twitter and Instagram (T‐I) show similar patterns. However, the SSIM 
values differ by orders. For example, L‐T have all different values of SSIM when the orders were shuffled, regard‐
less of the window sizes. Reordered OD matrices basically represent the same phenomenon, but SSIM is incapable 
of identifying that they are the same patterns although the differences are slight. Moreover, SSIM fails to consider 

F I G U R E  3   Spatial distribution of probability of flows: (a) total; (b) LODES; (c) Twitter; and (d) Instagram
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spatial correlations between OD pairs. Since the two matrices were reordered by population and names, it is hard 
to guarantee that contiguous cells in a window are spatially close to each other. The sensitivity issues of pair or‐
dering make SSIM less reliable, and it is challenging to define pair orderings.

Contrary to SSIM, SpSSIM produces the same value regardless of the order of OD pairs. Because the weight 
matrices in SpSSIM define the spatial relationships between SRAs, reordering does not affect the spatial arrange‐
ments of OD pairs whereas SSIM compares contiguous cells in OD matrices regardless of OD pairs' spatial con‐
figurations. Table 6 shows the SpSSIM values calculated for 12 travel distance bins. Most SpSSIM values up to 
80 km travel distance range were significant at a 95% confidence level or better when compared to a random 

TA B L E  4   Top five flows between SRAs by data sources

Rank

LODES Twitter Instagram

Origin Destination Origin Destination Origin Destination

1 Southeastern Central Central Kearny Mesa Coastal Central

2 Kearny Mesa Central San Marcos Escondido Kearny Mesa Central

3 Mid‐City Central Kearny Mesa Central Central Coastal

4 Central Kearny Mesa Kearny Mesa Mid‐City Peninsula Central

5 Del Mar‐Mira Mesa Kearny Mesa Escondido San Marcos Central Peninsula

F I G U R E  4   Heatmaps of OD pairs
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distribution. This demonstrates that the similarity between mobility patterns from each pair of sources is statis‐
tically significant. These results imply that SSIM is less suitable to be a measurement of similarity than SpSSIM 
because the former fails to calculate the same values from the same events while the latter succeeds.

5.2 | SpSSIM in San Diego County

The SpSSIM values in Table 6 represent the degree of similarity in the mobility patterns derived from two dif‐
ferent data sources by distances. Overall, the mobility patterns between social media in San Diego County were 
more similar to each other (Global SpSSIM (T‐I) = 0.603) than to LODES flows (Global SpSSIM (L‐T) = 0.525; Global 
SpSSIM (L‐I) = 0.487). The mobility similarity between LODES and Twitter is relatively higher under 20 km (0.655 
and 0.744). It describes that Twitter users were more likely to make short trips, where origins and destinations 
were similar, to home and work locations reported in LODES in the travel distance range from 0 to 20 km. The 

TA B L E  5   The values of SSIM by window sizes

OD

Window size

5 10 15 20 25 30 35 40

Reference L–T 0.675 0.663 0.684 0.692 0.697 0.701 0.681 0.675

L–I 0.715 0.729 0.754 0.758 0.760 0.743 0.703 0.668

T–I 0.823 0.797 0.785 0.776 0.788 0.803 0.806 0.793

Reorder1 L–T 0.617 0.635 0.637 0.642 0.658 0.666 0.667 0.679

L–I 0.682 0.692 0.694 0.692 0.683 0.670 0.650 0.644

T–I 0.778 0.776 0.779 0.782 0.788 0.785 0.780 0.779

Reorder2 L–T 0.637 0.642 0.660 0.682 0.695 0.695 0.691 0.681

L–I 0.687 0.676 0.658 0.646 0.636 0.632 0.630 0.644

T–I 0.779 0.737 0.758 0.763 0.767 0.770 0.772 0.780

TA B L E  6   The values of SpSSIM by spatial weight distances

Dmax

min
 (km)

L–T L–I T–I

SpSSIM Mean Std. dev. SpSSIM Mean Std.dev SpSSIM Mean Std. dev.

0–10 0.655***  0.335 0.085 0.682**  0.371 0.113 0.841***  0.290 0.107

10–20 0.744***  0.257 0.054 0.680***  0.328 0.076 0.732***  0.205 0.064

20–30 0.467***  0.237 0.049 0.617***  0.318 0.069 0.793***  0.192 0.060

30–40 0.377*  0.252 0.052 0.610***  0.333 0.079 0.657***  0.206 0.066

40–50 0.466**  0.271 0.060 0.717***  0.344 0.087 0.623***  0.221 0.070

50–60 0.523***  0.285 0.062 0.704***  0.348 0.093 0.713***  0.228 0.073

60–70 0.520**  0.298 0.068 0.395 0.357 0.101 0.774***  0.251 0.085

70–80 0.594**  0.339 0.088 0.715**  0.377 0.117 0.878***  0.290 0.107

80–90 0.568 0.371 0.115 0.207 0.385 0.134 0.458 0.328 0.133

90–100 0.637 0.401 0.147 0.515 0.390 0.157 0.772*  0.371 0.157

100–110 0.753 0.419 0.246 0.000 0.411 0.257 0.000 0.406 0.251

110–120 0.000 0.425 0.316 0.000 0.392 0.328 0.000 0.000 0.000

Global 0.525**  0.344 0.018 0.487**  0.366 0.005 0.603***  0.249 0.098

***99.9%; **99%; and *95% significance level. 
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SpSSIM values, however, decrease steeply from 20 to 40 km (0.467 and 0.377). The dissimilarity increases since 
there are much fewer Twitter‐based flows than LODES commuter‐based flows in this distance range (Table 3). 
In addition, the majority of flows in LODES were heading to business districts such as Central San Diego and 
Kearny Mesa (see Figure 3b) while the destinations of Twitter users were diverse including beach areas (South 
Bay, Oceanside, and Del Mar‐Mira Mesa) and parks (Sweetwater and Poway), as well as business districts (see 
Figure 3c). From 40 km, the SpSSIM value gradually increases again by 110 km since the probabilities in longer‐
distance trips were close to 0 for both data sources. Note that the SpSSIM values are not statistically significant 
over the range of 80 km. Compared to Twitter, mobility patterns from Instagram were less similar to those from 
LODES. Similar to other comparisons, the SpSSIM values of LODES and Instagram are relatively higher within 0 
to 20 km. Unexpectedly, however, the similarity between LODES and Instagram peaked within 40 to 60 km. A 
potential explanation of this pattern is that the notable places in San Diego are concentrated in the downtown and 
coastal areas, where there are also many jobs. This similarity is also observed from Table 3 and Figures 3b and d. 
The most frequently visited destinations from two datasets are quite similar. It indicates that Instagram users are 
more willing to move longer distances than Twitter users if attractions are far away.

In contrast, travel patterns derived from Twitter and Instagram resemble each other. The SpSSIM value of 
Twitter and Instagram in the range of 0 to 10 km (0.841) is the highest in the same distance range bin and the 
second highest among all SpSSIM values. It explains that short daily trips observed from Twitter and Instagram 
users share similar origins and destinations, which are clustered in Central San Diego, Kearny Mesa, Peninsula, 
and Mid‐City (Figures 3c and d). The SpSSIM values of Twitter and Instagram decreased slightly in the range of 10 
to 20 km. Travel destinations of Twitter users in this distance range included suburban regions such as Escondido, 
San Marcos, Pendleton, and North San Diego whereas those of Instagram users were concentrated in the down‐
town regions of San Diego City such as Central San Diego, Coastal, and Peninsular. The SpSSIM values decreased 
further as the distance range increased to 30 to 50 km because the total probability of mobility derived from 
Twitter in the range (0.06) was smaller than that from Instagram (0.09). In addition, destinations of Twitter move‐
ments were more scattered than those of Instagram movements (Table 4).

5.3 | Localized SpSSIM

Localized SpSSIM helps investigate similarity in terms of local in‐flows and out‐flows. Figure 5 demonstrates an 
example of comparing localized in‐flow SpSSIM between LODES and Twitter from 10 to 40 km. Since in‐flows 
describe the number of people moving into a region, they represent the popularity of places. The mobility pat‐
terns from LODES and Twitter were less similar in Southeastern San Diego (highlighted by the blue border) within 
20 km than other regions, indicating the lowest SpSSIM values in each range (0.074 and 0.120, respectively) while 
the global SpSSIM is the highest in the range 10–20 km (0.744). In contrast, the Del‐Mar‐Mira Mesa region (green 
border in Figure 5) showed different patterns. While the SpSSIM value was high in the range of 0 to 20 km, the 
value dropped from 30 km. In the range of 20 to 40 km, SpSSIM values were 0.289 and 0.181, respectively when 
the global values are 0.467 and 0.377. Although the dissimilarities were not as large as for Southeastern San Diego, 
they denote that the flows moving into the region changed dramatically from 30 km.

Figure 6 illustrates localized SpSSIM of the in‐flows between Twitter and Instagram in the range of 0 to 40 km. 
Unlike the comparison of LODES and Twitter, most regions show relatively high values, indicating that Twitter 
and Instagram have similar mobility patterns. Within 10 km, the lowest localized SpSSIM value is 0.577 at the 
Southeastern San Diego SRA, denoting that the short‐trip patterns of Twitter and Instagram users are relatively 
very similar. However, in the range of 10 to 20 km, Coastal (blue border in Figure 6, localized SpSSIM = 0.298) and 
Central San Diego (green border in Figure 6, localized SpSSIM = 0.404) display dissimilarity patterns compared to 
the global value in the range (0.732). This suggests that in‐flow mobility patterns from two types of social media 
data in these two regions present notable dissimilarity when travel distances are 10–20 km (Figure 6b) or longer 
(Figures 6c and d).
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To further investigate the dissimilarity of the localized SpSSIM in these two regions, we mapped standard‐
ized differences of in‐flows between two data sources by dividing the differences by the standard deviation of 
the difference. Figure 7a illustrates the standardized differences between LODES and Twitter regarding in‐flows 

F I G U R E  5   Localized SpSSIM (in‐flows of L–T): (a) 10 km; (b) 20 km; (c) 30 km; and (d) 40 km
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into the Southeastern San Diego SRA. The negative values in Figure 7a represent the probability that the move‐
ments derived from Twitter were larger than those from LODES. In other words, more Twitter users entered into 
Southeastern San Diego than LODES‐based commuters within 20 km. In particular, the movements of Twitter 

F I G U R E  6   Localized SpSSIM (in‐flows of T–I): (a) 10 km; (b) 20 km; (c) 30 km; and (d) 40 km
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users between Central San Diego and National City, within 20  km from the origin, outnumbered the LODES 
movements. The localized SpSSIM detects the large differences with significantly low values (0.074 and 0.120). 
Similarly, Figure 7b demonstrates the differences between Twitter and Instagram flows moving into the Coastal 
SRA. Blue lines with negative values describe more Instagram users entering into the region than Twitter users. 
The localized SpSSIM also depicts a large inflow of Twitter users from the Mid‐City to the Coastal SRA (orange 
line) when travel distances are within 20 km (local SpSSIM = 0.298), while most shorter‐distance inflows to the 
Coastal SRA are dominated by Instagram users.

Although the localized SpSSIM values measure the differences between mobility patterns formed from 
OD matrices of diverse sources, the measurement itself does not provide the contexts behind the (dis)similar‐
ity. Here we provide potential explanations for the discovered patterns. Dissimilarities between LODES and 
Twitter in Southeastern San Diego (Figure 7a) can be explained by socioeconomic background. The Southeastern 
San Diego SRA has been one of the most impoverished areas in San Diego County (Joassart‐Marcelli, Bosco, & 
Delgado, 2014). Due to its economic decline, there have been fewer job opportunities and places of attraction. 
Furthermore, the region has historically been more ethnically diverse than other areas. According to the American 
Community Survey 5‐year (2007–2011) estimates, the Hispanic population made up over 50% of the total popu‐
lation, followed by the African and African‐American population (18.2%). Due to lack of job opportunities in the 
region, LODES commuter‐based in‐flows were identified as low. In contrast, Twitter has been more popular among 
Hispanic African and African‐American than other ethnic groups (Krogstad, 2015), which can explain the relatively 
large in‐flows into the region by Twitter users.

The discovered patterns can also be described by the differences in social media platform usage. Gao (2015) 
and Steiger, Westerholt, Resch, and Zipf (2015) pointed out that tweets are most likely associated with home and 
workplace activities. Instagram, in contrast, has more geo‐tagged pictures (18.8%) compared to Twitter (0.6%). 

F I G U R E  7   Standardized difference of in‐flows: (a) Southeastern San Diego (LODES–Twitter); and (b) Coastal 
(Twitter–Instagram)
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Since Twitter posts are more related to home and workplace activities, the similarity of LODES–Twitter is larger 
than that of LODES–Instagram (Table 6). Moreover, the dissimilarity of Twitter and Instagram in terms of in‐flows 
into the Coastal SRA (Figure 6) can arise from the fact that there are many photogenic spots in the coastal region, 
where people are willing to share their experiences.

6  | CONCLUSIONS

In this research, we introduced a new method, SpSSIM, to measure the similarity between two OD matrices. We 
demonstrated the capability of SpSSIM by conducting a case study to compare three mobility data sources—
LODES, Twitter, and Instagram—in San Diego County. In addition, we assessed the OD matrix ordering problem 
in SSIM when it is applied to spatial datasets. Our sensitivity test verified that SpSSIM is robust regardless of the 
arrangement of OD pairs while conventional SSIM is sensitive. This is achieved by employing a series of spatial 
weights matrices to resolve the sensitivity to the spatial configuration. SpSSIM is also verified statistically through 
bootstrapping, which generates the hypothetical distribution of SpSSIM values.

Our case study revealed notable similarities and differences in the mobility patterns from three data sources. 
In general, the mobility patterns of two social media types, Twitter and Instagram, resembled each other more so 
than when compared to LODES. The most frequent destinations of LODES were distributed in business districts 
while social media users were traveling to diverse points of interest. This is expected, since LODES flows are 
specifically comprised of employment‐based home–work trips whereas Twitter and Instagram flows are based on 
social media users who have various purposes for their trips. SpSSIM can depict similarity over travel distances. 
For example, the similarity between LODES and Twitter increased in the range of 0 to 20  km and decreased 
steeply in the range of 20 to 40 km, which is explained by the sparseness of the mobility probability and the diver‐
sity of destinations in Twitter. Furthermore, SpSSIM can help discover local outliers by mapping localized values. 
We demonstrated in‐flow (dis)similarities of LODES–Twitter and Twitter–Instagram. The localized SpSSIM values 
quantify and characterize the local mobility from different data sources by geographic distance.

While SpSSIM can successfully measure the similarity between two mobility datasets in the form of OD matri‐
ces, SpSSIM has two limitations. The first issue is that the distance ranges are defined arbitrarily and SpSSIM val‐
ues are sensitive to them. SpSSIM utilizes a series of pre‐defined distance bins to overcome the sensitivity of OD 
pairs and window sizes in SSIM. Further research is required to understand the sensitivity of defined distance bins. 
However, we argue that the use of the distance instead of the window size in SSIM can provide an explainable 
framework in terms of spatial context. Thus, SpSSIM helps measure the (dis)similarity of movements occurring in a 
specific spatial boundary in which researchers are interested. As another limitation, SpSSIM does not provide the 
amount of flow difference. Therefore, it is necessary to map the differences to understand the contexts of dis‐
covered mobility patterns (Figure 7). Nevertheless, SpSSIM, as an exploratory tool, provides spatial distribution of 
similarity with localized values and better understanding of the human dynamics and complexity in urban systems. 
By detecting outliers, researchers can selectively focus on investigating regions with high (dis)similarity and fur‐
ther study mobility contexts in those regions. In sum, this study provides a methodological approach to comparing 
mobility patterns in a spatial context and deepens our understanding of social media data in mobility analysis.
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