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ABSTRACT

This study explores structure-reactivity relationships for the degradation of emerging
perfluoroalkyl ether carboxylic acid (PFECA) pollutants with UV-generated hydrated electrons
(eaq ). The rate and extent of PFECA degradation depend on both the branching extent and the
chain length of oxygen-segregated fluoroalkyl moieties. Kinetic measurements, theoretical
calculations, and transformation product analyses provide a comprehensive understanding of
PFECA degradation mechanisms and pathways. In comparison to the traditional full-carbon-chain
perfluorocarboxylic acids (PFCAs), the distinct degradation behavior of PFECAs is attributed to
their ether structures. The ether oxygen atoms elevate the bond dissociation energy (BDE) of the
C—F bonds on the adjacent —CF>— moieties. This impact reduces the formation of H/F-exchanged
polyfluorinated products that are recalcitrant to reductive defluorination. Instead, the cleavage of
ether C—O bonds generates unstable perfluoroalcohols and thus promotes deep defluorination of
short fluoroalkyl moieties. In comparison to linear PFECAs, branched PFECAs has a higher
tendency of H/F exchange on the tertiary carbon and thus lower percentages of defluorination.
These findings provide mechanistic insights for an improved design and efficient degradation of

fluorochemicals.
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INTRODUCTION

Since the 1940s, per- and polyfluoroalkyl substances (PFASs) have been extensively used
in a wide range of applications due to their unique properties (e.g., hydrophobicity, lipophobicity,
and thermal stability) as well as their relative ease in chemical design and synthesis.!™ The highly
stable C—F bonds make PFAS molecules recalcitrant to natural and engineered degradation,®
leading to global PFAS pollution’ and worldwide efforts on PFAS regulation.®!! Fluorochemical
industries have been phasing out the production and use of some legacy PFASs (e.g., PFOA)* !2
due to their heavy pollution to the environment and high toxicities to humans.'* ' Perfluoroalkyl
ether carboxylic acids (PFECAs) that contain ether C—O bonds in molecules have been developed
as “less bioaccumulative alternatives” to the full-carbon-chain predecessor PFASs.!> However, as
toxicological studies have revealed even higher bioaccumulation potential and toxicity of some
PFECAs than PFOA,!'! PFECAs have been recognized as a new class of contaminants of
emerging concern (Figure 1).2°*3 At some sites in North America and in Europe, PFECAs have
been detected in much higher concentrations than legacy PFASs.?* 2> Furthermore, due to the
facile synthesis of PFECAs from a flexible choice of fluoroalkene oxide building blocks (e.g., SI
Figure S1)*¢ and the formation of byproducts,?’ the diversity of PFECA contaminants identified

in the environment has been rapidly increasing.?’-*’

While physical separation methods (e.g., carbon adsorption, ion exchange, and membrane
filtration) enable rapid PFAS removal from contaminated water,’® concentrated PFASs in the
carbon/resin regeneration wastes and membrane rejects still need degradation treatment. Various

1,>! sonochemical,*? radiolytic,* plasmatic,>* and other

novel methods, such as electrochemica
oxidative and reductive approaches,’” *> have been primarily developed for the degradation of

PFOA and PFOS. A few studies have investigated the destruction of selected PFECAs, including
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sonochemical oxidation with persulfate,’® photocatalytic oxidation with phosphotungstic acid
under pressurized O»,%” and reduction with UV-generated hydrated electrons (eaq ).>>3° These early
studies have revealed a variety of mechanistic insights on PFECA degradation. In particular,
reductive degradation of branched PFECAs (e.g., GenX in Figure 1) using e.q is much more
effective than oxidative degradation using sulfate radicals.’® 3 However, a systematic
understanding of reaction pathways and structure-reactivity relationships has not yet been

established.

Recently, our research team has systematically studied the reductive defluorination of full-
carbon-chain PFASs by e. produced from aqueous sulfite under UV irradiation.** The
degradation mechanisms for perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic
acids (FTCAs) are significantly different. FTCAs (Rr—CH>CH>—COQO™, Rr representing the
fluorocarbon moiety) are much more recalcitrant than PFCAs (Rr—COQ™), especially when the
chain length of Rr is short. The incomplete defluorination of PFCAs can also be attributed to the
formation of polyfluorinated Rr—CH>—COO™ products.*’ These findings indicate the importance
of a direct linkage between Rr and —COOQO™ to allow an effective degradation of full-carbon-chain
PFASs using e.q . In comparison, the flexible incorporation of ether linkages in PFECAs generates
various oxygen-segregated fluoroalkyl moieties, which can be either branched or linear in variable
lengths. This novel structural diversity raises fundamental questions regarding mechanistic
understanding and pollution control: (1) Mechanistically, what roles do the ether C—O bond and
other structural features play in PFECA degradation using eaq ? (2) Practically, in comparison to
full-carbon-chain PFCAs, can PFECAs be treated in higher effectivity by the promising reductive

technologies?
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To answer these questions, we investigated the reductive defluorination of ten PFECAs
with (i) varying numbers of ether C—O bonds, (ii) varying chain lengths of oxygen-segregated
fluoroalkyl moieties, and (iii) branched versus linear fluoroalkyl structures. To achieve a
comprehensive understanding, we conducted kinetic measurements on parent compound decay
and fluoride ion (F) release, theoretical calculations on C—F / C—O bond dissociation energies and
spontaneous bond cleavage upon reaction with e,q, and transformation product analyses with
high-resolution mass spectrometry. These results collectively reveal and confirm novel
mechanistic insights into PFECA degradation. The findings will advance the treatment
technologies for existing PFECA pollutants and facilitate the molecular design of fluorochemicals

with enhanced degradability.

MATERIAL AND METHODS

This study used ten PFECAs with fine-tuned structural variability in four categories (A1
through D2 in Table 1) and two special compounds (trifluoropyruvate CFz—CO—COO™ and
polyfluorinated CF;—O—CH>—COQ") for mechanistic investigation. Detailed information on these
chemicals is included in the Supporting information (SI). Preparation of PFECA stock solutions,
photochemical reaction settings, sample analysis, and theoretical calculations have been fully
described in our previous work (Open Access).*’ We used consistent reaction conditions to
compare the degradation behavior between PFECAs and traditional full-carbon-chain PFCAs.
Briefly, photochemical degradation of individual PFECAs was carried out in 600-mL closed-
system batch reactors equipped with a low-pressure mercury lamp (254 nm, 18 W, enclosed in a
quartz immersion well). Both the reactor and immersion well were connected to circulating cooling
water at 20°C. The reaction mixture contained 25 uM of PFECA, 10 mM of Na»SOs3, and 5 mM

of NaHCO3, and the pH was adjusted to 9.5 with NaOH. Released F~ was measured with an ion-
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selective electrode, which has been validated for the quantification accuracy by ion
chromatography. All reactions were conducted in triplicates of operations from the preparation of

stock solution to the quantification of defluorination percentage (deF%), which is defined as

deF% = —F x 100% (1)
Co*Nc—y

where Cr is the molar concentration of F~ ion released in solution, Co is the initial molar
concentration of the parent PFECAs, and Nc-r is the number of C—F bonds in the parent PFECA
molecule. Reaction samples were analyzed with a liquid chromatography—triple quadrupole mass
spectrometer (LC-MS/MS) for the quantification of parent compounds and transformation
products that have pure chemicals available as analytical standards, as well as a liquid
chromatography—high resolution mass spectrometer (LC-HRMS) for the screening of
transformation products without analytical standards. The quality assurance and quality control of
MS analyses have been addressed previously,*® with new details provided in the SI for the PFECA
degradation samples. Small ionic species including trifluoroacetate, trifluoropyruvate, oxalate,
CF;—O—CF,—COO", and CF;—O—CH;—COO~ were analyzed by ion chromatography (IC)

equipped with a conductivity detector (specific separation conditions are described in the SI).
RESULTS AND DISCUSSION

Degradation of PFECAs. Different Degradability between PFECAs and Traditional
PFCAs. Figure 2 shows the decay and defluorination of four PFASs representing full-carbon-
chain PFCAs, linear PFECAs, and branched PFECAs. The parent compound decay is the fastest
for the two traditional PFCAs and the slowest for the branched PFECA (Figure 2a). The order of
parent compound decay rates for these structures does not match the order of their defluorination

percentages. Figure 2b shows distinct defluorination profiles between PFECAs and traditional
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PFCAs, as well as between the linear and branched PFECAs. All four PFASs showed an initial
period of rapid F release, followed by slower F~ release before reaching a plateau. However, the
initial rates of defluorination from the two PFECAs are slower than those from the two PFCAs. In
particular, the linear PFECA showed a slower initial rate but a significantly deeper defluorination
than PFHpA (i.e., 75% vs. 55% of the 13 F atoms in both molecules). In contrast, the branched
PFECA showed both a slower rate and a less extent of defluorination than PFNA (i.e., 40% vs.
58% of the 17 F atoms in both molecules). These results suggest new structure-reactivity
relationships governing PFECA degradation. To systematically understand the mechanisms, we
extended the compound scope to ten individual PFECAs, which exhibited structure-specific

profiles of parent compound decay and defluorination (Table 1 and Figure 3).

Different Degradability of the Four PFECA Structure Categories. Category A includes
structures A1-A3 with branched —CF3 groups. They are the acid forms of hexafluoropropylene
oxide dimer, trimer, and tetramer (HFPO-DA, HFPO-TrA, and HFPO-TeA), respectively. The
initial rates of parent compound decay were similar (Figure 3a), but longer structures showed
lower deF% (Figure 3b). The defluorination percentages of these branched PFECAs (31-45%)
were significantly lower than that of traditional PFCAs (~55%) under the same reaction
condition.*’ Category B includes mono-ether structures BI—B3 with the CF30— head group and
linear —(CF2),— moieties (n = 1, 2, and 3, respectively) before the terminal —COO™ group. The
decay of B2 and B3 finished within 12 h (Figure 3c¢), and the time profiles for their parent
compound decay are similar to full-carbon-chain PFCAs (Figure 2a).** The final defluorination
percentages are also similar (61% and 52% for B2 and B3, respectively vs. 55% for PFCAs). In
stark contrast, while the decay of BI (n=1) was much slower than B2 and B3, the deF% was

substantially higher (91%). From the kinetic data, it seems that these CF;—O—(CF2),—COO™
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structures behave similarly to F(CF2)»—COO™ under reductive treatment. In our previous study,*’
the decay of CF3—COO™ took 24 h to complete while the deF% was almost 100%, whereas the
decay of all longer PFCAs took 8—12 hours to complete, but the maximal deF% was around 55%

(Table 1, entry E1 vs. E2).

We further tested two linear multi-ether PFECA categories, C and D. Both categories
contain tetrafluoroethylene oxide (TFEO) building blocks, but the head groups are CF30- and
C4F9O—, respectively. With the -O—CF,—COOH as the ending group, the parent compound decay
became slow again (Figures 3e and 3g). Like the decay profile for the long molecule A3 (Figure
3a), the decay of long molecule D2 was also incomplete within 48 h. The other three structures
Cl1, C2, and DI showed similar profiles of parent compound decay. The notable difference
between these two PFECA categories is that, CI and C2 with the short CF;0— head group yielded
significantly higher deF% (82% and 75%, respectively) than DI and D2 with the long C4FO—

head group (58% and 65%, respectively) (Figures 3f versus 3h).

Structural Effects on PFECA Degradation. The kinetic data shown above have indicated
the following characteristics of PFECA degradation in comparison to traditional PFCAs: (i)
branched PFECAs showed slower decay and lower defluorination; (2) linear PFECAs showed
slower decay if the end group is -O—CF>—COQO, or very similar rate of decay if more than one —
CF>— linkers are present in —O—(CF2),—COQ7; (3) linear PFECAs showed at least similar deF%,
while those containing shorter oxygen-segregated fluoroalkyl moieties showed even higher deF%.
To interpret these interesting results at the molecular level, we conducted theoretical calculations

and transformation product analyses.
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Theoretical Calculations of C—F and C—O Bond Dissociation Energies (BDEs). The
BDEs of C—F and ether C—O bonds in all PFECA structures were calculated with density
functional theory (DFT). Representative results are shown in Figure 4, and the full data sets are
collected in SI Figures S2—S5. We identified new trends for C—F BDEs in PFECAs comparing to
full-carbon-chain PFCAs. First, the ether oxygen elevates the BDE of C—F on the adjacent
fluorocarbons. While the terminal —CF3 in long fluoroalkyl chains has the typical C—F BDE <119
kcal mol ! (Figures 4d, 4f, 4h and 4i), the inclusion of ether oxygen atoms increased the C—F
BDE to 120—123 kcal mol ! (Figures 4a—4c and g). In fluorinated molecules, the ether oxygen
acts as an electron-donating group like the —CH>— group in FTCAs (Figure 4e). With multiple
oxygen atoms in the chain, the relatively weak C—F bonds in long-chain PFCAs were not found in
linear PFECAs (Figure 4f versus 4g and 4h). In particular, the typical weak C—F bond at the a-
position of PFCAs (i.e., BDE <108 kcal mol ™!, Figures 4d and 4f) does not exist in linear PFECAs
with an ether oxygen at the B-position (i.e., Rr—O—CF>—COO~, BDE >111 kcal mol ™!, Figures 4a,
4g, and 4h). However, when the fluoroalkyl chain adjacent to -COQO" is longer (i.e., n =2 or 3 in
Ry—O—(CF2),—COOQO"), the weak C—F bond at the a-position appears again (Figures 4b and 4c).
These novel trends on C—F BDEs in linear PFECAs corroborate the different rates of parent
compound decay. The two structures with weak a-position C—F bonds (B2 and B3 in Figure 3c)
showed a similar rate of decay as the full-carbon-chain PFCAs (Figure 2a), while other Rr—O—
CF>,—COO structures showed slower parent compound decay (B1, C1, and C2 in Figures 3¢ and

3e).

As for the branched PFECAs, the inclusion of ether oxygen atoms showed a similar effect
on elevating the C—F BDEs. In comparison to a full-carbon-chain branched PFCA that contains

very weak tertiary C—F bonds,*' the oxygen atoms in HFPO-TrA significantly strengthen all
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secondary and tertiary C—F bonds (Figure 4i versus 4j). Although the HFPO oligomer acids
contain distinctly weak tertiary C—F bonds (i.e., BDE <104 kcal mol '), the rates of parent
compound decay were slower than most of the linear PFECAs (Figure 3). Thus, other mechanisms
and considerations beyond the cleavage of weak C—F bonds are likely responsible for the

degradation of branched PFECAs.

As the cleavage of ether C—O bonds has been proposed for the degradation of HFPO-DA **
3% we further examined the BDEs of C—O bonds in all PFECAs. A very interesting phenomenon is
the “asymmetric” strength of the two C—O bonds on the first ether linkage counted from the
terminal —COQO™ (Figures 4k—4n). On this ether oxygen atom, the C—O bond away from —COO~
has a considerably lower BDE (63—73 kcal mol ') than the other one closer to -COO™ (81—94 kcal
mol!). This phenomenon was observed in all PFECAs regardless of the total number of ether
linkages, branched versus linear molecular backbone, or distance between —COO™ and the first
ether linkage (Figure 4k versus 4l). The BDE difference between those two C—O bonds in the
three branched PFECAs ranges from 14.7 to 18.3 kcal mol !, and the difference in linear PFECAs
is even greater, from 19.8 to 23.3 kcal mol™! (see SI Figures S2—S5 for full data sets). However,
if the PFECA molecule contains multiple ether oxygens, the pairs of C—O bonds in the remaining
ether linkages have similar BDEs (i.e., only with small differences ranging from 0.1 to 3.4 kcal
mol !, Figures 4m and 4n). In addition, due to the electron-withdrawing effect by —CF3 branches,
BDEs of these “normal” C—O bonds in branched multi-ether structures (82—84 kcal mol™!) are

lower than those in linear multi-ether structures (89—97 kcal mol ™).

Spontaneous Bond Cleavage in Electron-Added PFECA Radical Anion Structures. The
distinctly weak C—O in all PFECAs and relatively weak tertiary C—F bonds in branched PFECAs

imply the potential cleavage of these bonds during the reaction. To verify this hypothesis, we

9
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further conducted geometry optimization of the radical anion [RF—COO]e? upon adding an extra

electron (simulating the esq ) to the original PFECA anion (RF—COOQ").%

As expected,
spontaneous stretching of a-position C—F bonds (Figures 5a and 5b) and ether C—O bonds
(Figures Sc and 5d) were observed. The distance between the two atoms went considerably longer

than the normal length of C—O and C—F bonds (i.e., bond cleavage). The results for all PFECA

structures are collected in SI Figures S6 and S7.

Interestingly, although the calculated C—O bond cleavage in [RF—COQO]e?  structures
indeed occurred at the first ether linkage counted from —COO", the cleaved C—O bond was not the
“significantly weaker one” as calculated in the original R—COO™ (e.g., Figure Sc versus 4n). This
discrepancy could be due to the addition of the extra electron, which altered the bonding structure
of PFECA anions. More importantly, the calculation shows that C—O bond cleavage can be a major
pathway for PEECA degradation by e.q . The previously elucidated cleavage of weak C—F bonds*’
was also observed both from branched PFECAs (with very weak tertiary C—F bonds) and from the
linear structure B1 CF3—O—CF,—COQO™ where the a-position C—F BDE is relatively high (112 kcal
mol ). These results suggest that C—F bond cleavage can be another degradation pathway, even
if the inclusion of ether oxygen atoms makes many C—F bonds more recalcitrant than those in full-

carbon-chain PFCAs.

PFECA Degradation Product Analysis. The above theoretical calculations have indicated
the possibility of C—F and C—O bond cleavage. Based on our previous study, the decarboxylation-
hydroxylation-HF elimination-hydrolysis (DHEH) is another major degradation pathway for
structures with the fluoroalkyl moiety directly linked with —COO™.** Hence, we hypothesized that
the degradation of PFECAs takes place via at least three pathways: (i) cleavage of weak C—F bonds

and the formation of C—H bonds (i.e., H/F exchange), (i1)) DHEH, and (ii1) the characteristic

10



229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

cleavage of ether C—O bonds. To detect the transformation products (TPs) and confirm the
degradation pathways, we used both targeted analysis with triple quadruple mass spectrometry and
suspect screening with high-resolution mass spectrometry data (all results collected in SI Tables
S1-S9). A series of TPs was detected, well supporting all three proposed degradation pathways.
The overall TP detection and corresponding degradation pathways from the longest PFECA in
each of the four structure categories are discussed below (Figure 6, and Schemes 1 and 2). The

reaction schemes proposed for individual PFECAs are provided in SI Schemes S1-S10.

As shown in Figure 6a, the degradation of 43 HFPO-TeA generated 42 HFPO-TrA and
Al HFPO-DA daughter products. The maximum concentration of A2 (7.9 uM) and A1 (3.7 uM)
were detected at 8 h and 12 h, respectively. We attribute this transformation to the cleavage of the
first C—O bond counted from the terminal -COO™. The two fragments reacted with H,O to form
two perfluorinated alcohols, which were not stable and subject to HF elimination to acyl fluoride.**
* The subsequent hydrolysis generated the carboxylic acid, resulting in the net conversion from
Rr—CF>0H into Rr—COO™ and two F~ ions. The C—O cleavage on the first ether linkage counted
from —COO™ shortens HFPO-TeA into HFPO-TrA, then into HFPO-DA, which can be further
degraded into CF3CF,—COO™ via another C—O cleavage (Scheme 1). Each round of C—O cleavage
also generated the same product CF3CF(OH)—COO™, which underwent further HF elimination into
CF;—CO—COO (trifluoropyruvate, TFPy), as structures with F and OH on the same carbon (e.g.,
FCH,OH) are generally unstable.** We confirmed the formation of TFPy during the degradation
of HFPO-DA with IC detection (SI Figure S8). Like CF;—COQO™ (trifluoroacetic acid, TFA), the
pure TFPy also showed near-complete defluorination (SI Figure S9), and TFA is a possible

degradation intermediate (SI Figure S10). Although TFA was not detected in our samples from
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HFPO-DA degradation, we have elucidated that TFA can be generated from both CF;CF,—COO™

and TFPy, and then completely mineralized via the DHEH pathway (Scheme 1b).*

Suspect screening using the high-resolution MS data identified a series of H/F exchange
products from the HFPO oligomer acids. Based on the calculation results, we assign the C—H
bonds to the branched carbons (particularly the a-position branched carbon) where weak tertiary
C—F bonds are located (Figure 6b and Scheme 1a). We also observed products missing one or
more —CF3 groups (i.e., H/CF3 exchange). By comparing the results with those for linear PFECAs,
such TP structures missing —CF3 groups are specific for branched PFECAs. Therefore, we interpret
the transformation pathway to be the cleavage of the branching —CF; rather than the terminal —CF3.
In addition, the degradation products and reaction schemes from pure HFPO-TrA and HFPO-DA
(SI Tables S1-S2 and Schemes S1-S2) further corroborate the mechanistic insights obtained from

HFPO-TeA degradation.

For the degradation of B3 (CF;—O—CF.CF.CF,—COOQO"), the C—O bond cleavage
mechanism was confirmed by the detection of "OOC—CF,CF,—COO™ (Figure 6¢ and Scheme 2a).
The head CFs— group was thus believed to be fully defluorinated via the formation of unstable
CF;—OH. The DHEH mechanism was also confirmed by the generation of B2
CF3—O—CF2CF>—COO". The HRMS detection of two products with one and two H/F exchanges

on the parent compound (most probably at the a-position) is not surprising (Figure 6d).

The degradation of the two multi-ether linear PFECAs C2 and D2 also followed the three
reaction pathways, which are supported by the TPs identified (Figures 6e—6h). Although the C—F

BDEs of the a-position —CF>— in these structures are higher than in full-carbon-chain PFCAs
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(Figure 4g versus 4f), the H/F-exchanged TPs were detected, thus corroborating the spontaneous

C—F bond stretching by theoretical calculations (Figure 5a).

Additionally, the C—O bond cleavage in BI (also in category C and D structures that
contain —O—CF,—COQ") was supposed to generate HO—CF,—COO~, which should further
decompose into oxalate ((OOC—COQ"). IC detection confirmed the formation of oxalate (SI

Figure S11), thus further consolidating this C—O bond cleavage mechanism.

Overall Mechanistic Insights into Reductive PFECA Degradation. Based on the
degradation kinetics, theoretical calculation, and TP analysis, we have confirmed that the PFECAs
have three pathways for the reductive degradation by eaq : (1) ether C—O bond cleavage, (2) C—C
bond cleavage, including the decarboxylation step of DHEH and the cleavage of —CF3 from
branched PFECAs, and (3) direct C—F bond cleavage followed by H/F exchange. Here we
categorize the first two as indirect pathways for defluorination, and the third one as a direct
pathway for defluorination. It is worth noting here that all three independent pathways are enabled
upon the PFECAs interacting with eaq . First, control experiments with UV irradiation without
adding sulfite showed very slow and limited degradation (SI Figure S12). Second, spontaneous
C—O bond cleavage was observed after the PFECA anion received an extra electron (Figure 5).
Third, the generation of e,q~ from sulfite has been confirmed by spectroscopic observations,*> 4

and other chemicals such as iodide*’ and indole*® have also been used as the source of e,q~ and

achieved similar results for PFOA defluorination.

The cleavage of the C—O or C—C bond in PFECAs will generate perfluoroalcohols, which
will undergo HF elimination and the following hydrolysis to yield two F~ and the corresponding

carboxylic acids. This mechanism has been collectively supported by (1) the decay of HFPO and
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TFEO oligomer acids into shorter analogs (Figures 6a, 6e, and 6g, supporting C—O cleavage) and
the decay of B3 into B2 (Figure 6¢, supporting C—C cleavage), (2) the generation of
"O0C—CF>2CF,—COO" from B3 (CF3—O—CF,CF,CF>,—COOQO") and the generation of " OOC—COO"™
from Rr—O—CF>—COO" structures, and most importantly (3) the high deF% of linear PFECAs
with short oxygen-segregated fluorocarbon moieties. Results in Figures 3d, 3f, and 3h show the
clear trend that PFECAs containing longer fluorocarbon moieties (rather than the longer molecule)
yielded lower deF%. Since the perfluoroalcohol decomposition can only ensure the liberation of
two F~ ions, if this step yields a full-carbon-chain PFCA containing two or more fluorocarbons,
relatively easy H/F exchange on the a-position will occur, yielding Re—CH>—COO™. As previously
elucidated, the reductive defluorination of this product is very sluggish, especially when the Rr

moiety is short (i.e., lack of weak C—F bonds).*°

Among all PFECAs, BI (CF;—O—CF,—COOQO") allowed an outstanding deF% at 91%
because either C—O cleavage or decarboxylation will trigger the perfluoroalcohol decomposition
mechanism to liberate all five F~ ions from the two oxygen-segregated single fluorocarbons. We
hypothesized that the incomplete defluorination was attributed to the minor chance of H/F
exchange on the a-position (Figure 5a). To verify this hypothesis, we examined the degradation
of polyfluorinated CF;—O—CH2—COO™ under the same reaction condition (Figure 7). As
expected, the —CH,— group at the a-position leads to a high recalcitrance in comparison with B1
(Figure 3¢ and 3d). However, to our surprise, the degradation at 24 h (30%) was much higher than
the full-carbon-chain counterpart CF3CH2—COO™ (< 2%).*’ The overall deF% of 28% indicates a
near-complete defluorination of the decayed 30% fraction of the parent compound, and the time
profiles of parent compound decay and defluorination are highly symmetric. These results support

the degradation mechanism of C—O bond cleavage rather than a stepwise H/F exchange. Therefore,
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C—0 bond cleavage can still occur in a polyfluorinated ether structure with a hydrocarbon moiety
segregating the —COO™ group from the fluorinated moiety. The rate is faster than in a

polytluorinated full-carbon-chain structure but slower than in a perfluorinated ether structure.

For comparison, under the same reaction condition, the deF% for the full-carbon
CF3CF,—COO™ was 53%.% In our previous study, by assuming that CF3CF,—COO™ will take either
H/F exchange (forming the highly recalcitrant CF3CH2—COO™ with negligible further degradation,
thus the overall deF% is 40%) or DHEH (leading to 100% defluorination via forming CF;—COQO"),
we estimated that the chance for CF3CF,—COQ™ taking H/F exchange versus DHEH is 75% versus
25%.% Similarly, if all BI CF3—O—CF,—COO™ first undergoes C—O or C—C bond cleavage, 100%
defluorination would be achieved. If all BI first undergoes H/F exchange to yield
CF;—O—CH2—COO" (deF% = 40% at this step), which then undergoes slow degradation for up to
30%, this would result in 40% + 60% x 30% = 58% defluorination. Hence, to yield an overall
defluorination of 91% through the two competing pathways, the probability for BI to take H/F
exchange is only 21%. This significantly lowered probability of H/F exchange from 75% to 21%
should be attributed to the elevated a-position C—F BDE in the Rr—O—CF,—COQO" structures
(Figures 4a, 4g, and 4h). This mechanistic insight also explains the low deF% for B2
CF;—O—CF,CF,—COO™ and B3 CF3—O—CF,CF>CF,—COO™ as the lower a-position C—F BDEs
(Figures 4b and 4c) enabled easier H/F exchange. In Figure 3, the parent compound decay of B2
and B3 were faster than all Rr—O—CF,—COOQO™ compounds. The formation of —CH,— at the a-
position significantly slowed down the further degradation. In contrast, all PFECAs that allowed
higher deF% than PFCAs (~55%)* contain only short (C1 or C2) fluorocarbon moieties, which
suppress the direct defluorination via H/F exchange (unfavorable pathway, typically breaking

weak C—F bonds) and enhance the indirect defluorination via C—O or C—C bond cleavage
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(favorable pathway, breaking all C—F bonds on the carbon bearing the —OH, regardless of the

BDES ).

The above mechanistic insights also explain the degradation pattern of branched PFECAs.
The branching —CF3 generates distinctly weak tertiary C—F bonds, especially at the a-position
(Figure 4i and SI Figure S2). As shown in Figures 5b and 6b, these structures have a high
tendency to undergo H/F exchange. The following cleavage of the branching —CF3 leads to the
formation of —CH»>— at the a-position, thus retarding further degradation. The longest structure 43
has three tertiary C—F bonds; thus the parent A3 and the C—O cleavage products A2 and A1 all
have a high chance for the unfavorable H/F exchange. Therefore, 43 showed the lowest deF%
among the three branched PFECAs. From the HRMS data for all PFECAs (SI Tables S1-S9), in
general, the TPs with one H/F exchange increased at the beginning of the reaction, then slowly
decreased. In contrast, the two H/F exchange TPs slowly accumulated throughout the reaction,
indicating high recalcitrance. In comparison to linear PFECAs and full-carbon-chain PFCAs, the
slower parent compound decay of branched PFECAs is probably attributed to the kinetic hindrance

by the branching —CF3.

We note that earlier studies by Bao et al.’* 3’

on the degradation of HFPO oligomer acids
(A1, A2, and A3) observed significantly faster parent compound decay and higher deF% than our
observations. In comparison to our reaction settings (one UV lamp for a 600-mL solution, pH 9.5,
and 10 mM sulfite), Bao et al. used considerably more favorable conditions, including intense UV
irradiation (sixteen similar UV lamps for a 45-mL solution), tripled basicity (pH 10), and doubled
sulfite concentration (20 mM). Because the duplication of 20 mM sulfite at pH 10 in our

photoreactors (one UV lamp for a 600-mL solution) achieved limited improvements on deF% (SI

Figure S13), the significantly higher defluorination observed by Bao et al.>%*° should be attributed
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to the higher intensity of the 254-nm UV irradiation. Nonetheless, by comparing all PFECA
compounds, we have identified new structural features allowing much deeper defluorination than
HFPO oligomers. We expect that further enhanced degradation of PFECA structures can be

achieved under energy-efficient reaction conditions, which are under optimization in our lab.

Implications for Fluorochemical Design and Environmental Remediation. As seen
from the diverse PFECA structures involved in this study, the design of PFECA is highly flexible
as multiple fluorinated building blocks can be integrated into the molecule in various sequences.
Although the design rationale of individual PFECAs (e.g., branched vs. linear, and the length of
oxygen-segregated fluorocarbon moieties) and their targeted properties for specific industrial
applications remain largely unknown to the environmental chemistry community, we are able to
identify critical molecular features that can lead to enhanced PFECA degradation using reductive

approaches. UV irradiation (on sulfite, iodide, indole, or hydroxyl radical scavengers),***

plasma
treatment,>* and high-energy irradiation®’ all involve e,q~ as a primary reactive species. In general,
the switch from full-carbon-chain PFCAs to PFECAs has indeed brought in unique advantages
that enable deeper defluorination, including (1) spontaneous defluorination from alcohol
intermediates upon C—O cleavage and (2) suppressed H/F exchange due to the strong C—F bonds.
To minimize the incomplete defluorination caused by the conversion into recalcitrant products
(e.g., with —CH>— separating the fluoroalkyl moiety and the —COQ"), a desirable structural feature
is R—O—CF>—COO. In other words, the last building block of the PFECA molecule can be a
tetrafluoroethylene oxide; after the epoxide ring opens, the alcohol product R—O—CF,CF,OH will
transform to RF—O—CF>—COO™. As elucidated in earlier sections, the relatively high BDE of the

a-position C—F favors indirect defluorination through C—O cleavage and decarboxylation. The

other desirable structural feature is to limit the length of other fluorocarbon moieties segregated
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by ether oxygen atoms. If the chain length is C1 (either CF3—O— or —O—CF>—0-), the C-O
cleavage is expected to provide complete defluorination of that fluorocarbon moiety. This
prediction, which is based on model PFECAs studied in this work, can be further examined when
chemicals containing —O—CF,—O— moieties (e.g., CF3—(0—CF2)s—O—CF,—COO ", n = 1 to 3)**?%
become available for experimental tests. Because the oxygen atoms substantially elevate C—F
BDEs (Figure 4), direct H/F exchange on C1 or C2 fluorocarbon moieties (not linked with
—COO0O") is less likely. However, for C2 fluorocarbon moieties (e.g., —O—CF,CF>,—O-), the

formation of —O—CF>—COO™ will still induce a low probability of H/F exchange.

On the other hand, the mechanistic insights from this study will guide the development of
PFECA degradation technologies. In particular, if the direct defluorination cannot be fully
avoided, effective degradation of the recalcitrant polyfluorinated products will be necessary to
ensure a deep or complete defluorination. While we observed poor defluorination from the
branched PFECAs that contain very weak tertiary C—F bonds and a long C3 fluorocarbon moiety,
studies by Bao et al.*> % have achieved deep defluorination of those structures by applying high
UV intensity. Therefore, coordinated efforts from both fluorochemical design (e.g., developing
PFECAs with high degradability) and environmental remediation (e.g., optimizing the
consumption of energy and chemicals) can be expected to transform the development, use, and

treatment of fluorinated chemicals with minimal adverse impact to the environment.
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Table 1. Overall Defluorination Percentages of PFECAs after 48 Hours of Reaction.”

Entry Structure n deF%
A. Branched (HF PO oligomers)
1 449+53

FF (O
A2 F%{XO & 2 365429
A3 F'LoF e | 3 30.8+4.2
FIF

B. Mono-ether with head CF3;0-

0
o
BI F>(°{><|Jnko I 905+21
B2 F ot FF 2 612+75
B3 3 523 +3.1
C. TFEO oligomers with head CF3;0—
P FF 0
cI F*o&c’%o@ 1 823+44
C2 A 2 750+3.8
D. TFEO oligomers with head C4F9O—
F FF FF F 0
DI FNONOMO@ I 58.0+4.0
E. Full-carbon-chain PFCAs®
El O 1 98.2+5.0
E2 GO 210 54535

FF

“Reaction condition: PFAS (0.025 mM), Na>SO3 (10 mM),
carbonate buffer (5 mM), 254 nm irradiation (a 18 W low-
pressure Hg lamp for 600 mL solution) at pH 9.5 and 20°C.

’Data from Ref. 40 for comparison. The average and
standard deviation of the deF% value for n=2—10 is based
on 27 data points (nine PFCA structures with triplicates).
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FF
F FT>F NHs
F

Perfluoro(2-methyl-3-oxahexanoate)
(GenX,CAS No. 62037-80-3)

|=>ILF FF FF H

F o (o) OH

F F F F
3H-perfluoro-3-[(3-methoxy-propoxy)
propionic acid)]

(ADONA, CAS No. 958445-44-8)

F FF F O
F (o)
F%OXK %OH
F FFF F
Perfluoro[(2-ethyloxy-ethoxy)acetic acid]

(EEA, CAS No. 908020-52-0)
430

431  Figure 1. Examples of commercial perfluorinated (GenX and EEA) and polyfluorinated
432 (ADONA) ether carboxylic acids detected in the environment.
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Figure 2. Time profiles for (a) parent compound decay and (b) defluorination percentages for two
full-carbon-chain PFCAs with 13 and 17 F atoms, a linear PFECA with 13 F atoms, and a branched
PFECA with 17 F atoms. Reaction conditions: PFAS (0.025 mM), Na>SO3 (10 mM), carbonate
buffer (5 mM), 254 nm irradiation (a 18 W low-pressure Hg lamp for 600 mL solution) at pH 9.5
and 20°C.
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440  Figure 3. Time profiles of parent compound decay and defluorination for the four PFECA
441  structure categories. Reaction conditions are described in the title of Figure 2.
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Figure 4. Calculated C—F BDEs (a to j) and C—O BDEs (k to n) (in kcal mol™') of selected PFASs

at the B3LYP-D3(BJ)/6-311+G(2d,2p) level of theory. Results for all PFECA structures are
collected in SI Figures S2—S5. Data for (d)—(f) and (j) are from Ref 40 and Ref 41, respectively.
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Figure 5. Geometry-optimized structure of the adducts of PFECA anions with an ea;” (PFECA %)
at the B3LYP-D3(BJ)/6- 311+G(2d,2p) level of theory, showing the stretching of C—F (blue) and
C—O (red) bonds. Results for all PFECA structures are collected in SI Figures S6-S7.
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Figure 6. Representative degradation products of the longest compound in each structure category
(A3, B2, C2, and D2, Co= 25 uM). Reaction conditions are described in the title of Figure 2. For
each structure, quantified products with standard compounds are shown in the left panel, and
species without standard compounds are presented in peak areas in the right panel. All detected
species are listed in SI Tables S1-S9.
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457  Figure 7. Time profiles of parent compound decay and defluorination for polyfluorinated
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459  of Figure 2).
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Scheme 1. Degradation pathways for (a) HFPO oligomer acids starting from the longest
compound A3 and (b) the daughter product PFPrA. Detected transformation products are

highlighted.
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