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A B S T R A C T   

Data-driven models for predicting dynamic responses of linear and nonlinear systems are of great importance due 
to their wide application from probabilistic analysis to inverse problems such as system identification and 
damage diagnosis. In this study, a physics-based recurrent neural network model is designed that is able to 
estimate the dynamics of linear and nonlinear multiple degrees of freedom systems given the ground motions. 
The model is able to estimate a complete set of responses, including displacement, velocity, acceleration, and 
internal forces. Compared to the most advanced counterparts, this model requires smaller number of trainable 
variables while the accuracy of predictions is higher for long trajectories. In addition, the architecture of the 
recurrent block is inspired by differential equation solver algorithms and it is expected that this approach yields 
more generalized solutions. In the training phase, we propose multiple novel techniques to substantially accel
erate the learning process using smaller datasets, such as hardsampling, utilization of a trajectory loss function, 
and implementation of a trust-region optimization approach. Numerical case studies are conducted to examine 
the strength of the network to learn different nonlinear behaviors. It is shown that the network is able to capture 
different nonlinear behaviors of dynamic systems with high accuracy and with no need for prior information or 
very large datasets.   

1. Introduction 

Dynamic response prediction of structural systems has been a great 
tool for design and assessment of individual buildings as well as reli
ability analysis of infrastructure and large urban areas. Traditionally, 
this process is executed by building numerical models of dynamic sys
tems and predicting responses using numerical differential equation 
solvers such as Newmark-β method. However, this approach is suitable 
for structures with known physical properties (i.e., mass, stiffness, and 
damping matrices) with very accurate analytical models for the 
nonlinear components of structures. Structural health monitoring (SHM) 
methods have been effective in identifying mechanical properties of the 
existing structures. Yet, the dynamic response simulation of an existing 
system requires a comprehensive SHM phase for model updating [1–4]. 
In addition, for an accurate simulation of a structure with nonlinear 
components, emerging technologies such as real-time hybrid simulation 
are proposed [5–7]. This approach is also limited to individual nonlinear 
structural components and requires advanced experimental and nu
merical resources. 

Artificial intelligence has been one of the most useful and promising 
tools in science and technology over the past few decades. In particular, 
machine learning has demonstrated a great potential for learning and 
predicting nonlinear behaviors and trends in large and noisy datasets 
[8]. Neural Networks (NN) have shown an exceptional potential as 
universal function approximators with minimal need for prior infor
mation about the underlying knowledge of a problem [9,10]. However, 
in engineering applications, black-box function approximators are less 
favored due to the fact that for many of those, solid underlying equa
tions/models exist. Knowledge-based machine learning approach in
tends to bridge this gap by contributing governing equations into 
machine learning models [11]. 

1.1. Artificial intelligence in structural engineering 

In general, the major applications of machine learning in structural 
engineering can be divided into the following categories: (a) system 
identification (SID); (b) damage detection; and (c) dynamic response 
prediction of structural systems. A detailed overview of machine 

* Corresponding author. Current address: MIT Senseable City Lab. 
E-mail address: ssadeghi@mit.edu (S. Sadeghi Eshkevari).  

Contents lists available at ScienceDirect 

Engineering Structures 

journal homepage: www.elsevier.com/locate/engstruct 

https://doi.org/10.1016/j.engstruct.2020.111582 
Received 10 April 2020; Received in revised form 23 September 2020; Accepted 11 November 2020   

mailto:ssadeghi@mit.edu
www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2020.111582
https://doi.org/10.1016/j.engstruct.2020.111582
https://doi.org/10.1016/j.engstruct.2020.111582
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2020.111582&domain=pdf


Engineering Structures 229 (2021) 111582

2

learning algorithms for damage detection is given in [12,13]. In sum
mary, the methods use machine learning algorithms (e.g., support vector 
machines (SVM) and multi-layer perceptrons (MLP)) for classification 
between damaged and undamaged states of structural components 
based on low-level inputs (e.g., motion sensor data). A multi-stage 
damage detection method is proposed in [14] in which signal features 
are extracted using wavelet transforms and an MLP network diagnoses 
whether a damage has occurred. Gui et al. [15] proposed a method for 
feature extraction from sensor signals and damage classification based 
on these extracted features using SVM. More recently, end-to-end 
damage detection algorithms are emerging in which feature extraction 
and damage detection stages are combined in a single estimator. 
Abdeljaber et al. [16] proposed a vibration-based convolutional neural 
network (CNN) for direct damage detection and localization based on 
sensor time signals. Gulgec et al. [17] proposed a one-step vision-based 
damage detection and localization method via CNN which uses 2D strain 
fields as input. 

Fewer studies have investigated data-driven methods for system 
identification due to the inherent model-dependency of this problem. 
Some efforts have been made to reconstruct underlying equations using 
data-driven algorithms. Brunton et al. [18] proposed a look-up approach 
to reconstruct the governing equation of dynamic systems using sparse 
identification. More recent studies investigate machine learning solu
tions with model-guided constraints. Raissi and Karniadakis [19] 
introduced hidden physics models that are able to identify underlying 
physics of dynamic systems using small datasets. In structural engi
neering, Sadeghi Eshkevari et al. [20] proposed a data-driven approach 
for bridge modal identification using mobile sensing data. The model is 
highly constrained by the modal superposition law of structural dy
namics and could successfully identify complete modal properties. 

In addition to diagnosis and monitoring tasks that are the objectives 
of the previous studies, data-driven approaches for dynamic response 
prediction of structural systems have been of great importance and in
terest. Finite element analysis (FEA) along with nonlinear time history 
analysis (NTHA) has enabled very accurate dynamic response estima
tions; however, both techniques are computationally expensive and 
require detailed information of the system. By the emergence of prob
abilistic reliability analyses of individual and clusters of structures 
subject to hazards (e.g., earthquake or hurricanes), it is realistically 
impractical to carry out extensive FEA and NTHA analyses of increas
ingly larger systems [21,22]. Therefore, faster, reliable, and more flex
ible approaches are highly required. 

1.2. Data-driven dynamic response prediction 

Dynamic response prediction of structures using statistical methods 
have been widely investigated over the last few years. The approaches 
span from model-based predictions to data-driven models such as 
autoregressive moving average (ARMA) models or neural networks. A 
model-based full state predictor was proposed in [23] that incorporates 
a prior nonlinear model of the building for experimental response pre
diction. Mattson and Pandit [24] proposed an autoregressive model to 
predict major trends of the dynamic response; however, the effect of the 
exogenous input was remained unmet and considered as a residual. In 
fact, despite their simplicity, ARMA-based models are limited to sta
tionary and linear systems. To address that, Bornn et al. [25] proposed 
an autoregressive SVM model that incorporates nonlinear functionalities 
within the prediction equation. Neural networks (NN) have been the 
most recent approach for dynamic response prediction due to their 
flexibility and great performance in regression problems. The pioneer 
studies were focused on simple MLP models for partial one-step ahead 
response predictions (i.e., predictions include some but not all of the 
followings: displacement, velocity, acceleration, and internal force of all 
degrees of freedom). Lightbody and Irwin [26] proposed a single layer 
neural network in which the output is a weighted sum of multiple 
trainable AR models with Tanh activation. The study was a 

breakthrough that enhanced estimator complexities from an individual 
linear model to a nonlinear ensemble of linear models. By recent 
computational developments, deeper MLP networks were utilized for 
more comprehensive dynamic response predictions of nonlinear cases. 
Lagaros and Papadrakakis [27] proposed a MLP for one-step ahead 
response prediction of nonlinear buildings. The method showed great 
performance both numerically and experimentally, however, the pre
diction was limited to displacement time histories. Note that in general 
there is no guarantee for reasonable predictions of other response 
components (e.g., velocity and accelerations) by using direct integration 
or differentiation on a single component when using data-driven 
regression methods. Therefore, yet more comprehensive predictive 
models are required. 

Theoretically, MLPs perform ideally when the input features are fully 
independent. In the dynamic response prediction problem, however, a 
high inter-dependency between responses at consequent time steps 
exist. Therefore, other neural network architectures have been also 
utilized for this specific problem. CNNs are known for their strength in 
extracting local (e.g., spatial or temporal) features and incorporating 
inter-dependency of the input nodes [28]. In addition, the variable space 
of the models is dramatically reduced since fixed sized kernels are being 
trained rather than large matrices from fully-connected layers. CNNs are 
mostly used for computer vision applications in which 2D kernels are 
applied on pixel pallets. In signal processing, 1D kernels are more proper 
choices. A dynamic response predictor for linear systems using CNNs is 
introduced in [29]. More recently, Wu and Jahanshahi [30] proposed a 
CNN-based algorithm for different partial dynamic response predictions. 
The most advanced case included the prediction of acceleration re
sponses at the roof level of a multi degrees of freedom (MDOF) system 
given the ground motion. 

Comprehensive dynamic response prediction of nonlinear systems 
has been investigated in a few recent studies. Zhang et al. [31] confirms 
that recurrent neural networks (RNN) are great candidates in terms of 
the architecture for structural dynamic response modeling, however, 
technically they suffer from gradient-vanishing issues during the 
training process. In fact, RNN models have been a frequently used ar
chitecture in the previously mentioned models (i.e., all one-step ahead 
response prediction models are basically RNN models). Based on this 
argument, Zhang et al. [32] proposes a long short-term memory (LSTM) 
architecture for the response modeling in order to address the gradient- 
vanishing issue. The primary difference of LSTM models compared to 
the vanilla RNN models is the special architecture that allows for 
learning long-term temporal dependencies. This difference also resolves 
the gradient-vanishing issue of the RNN models. The study successfully 
predicted displacements, velocities, accelerations, and internal forces 
using the ground motion in different nonlinear cases. However, the 

Fig. 1. Schematic diagram of DynNet and the conversion process from the 
ground motion to the structural response. 
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model consists of a large trainable variable space which requires very 
long training process. For instance, the DeepLSTM-s model [32] requires 
50,000 epochs for training and the network includes ̃ 130,000 trainable 
variables. 

The same research team has also recently introduced physics-guided 
models using CNN and LSTM architectures for dynamic response pre
diction problem [31,33]. The studies propose additional terms in the 
loss function of the problem which penalizes deviations in the equation 
of motion and equilibrium when predicted outputs are plugged in. The 
studies showed that imposing this new physical constraint improved the 
prediction accuracy and reduced overfitting issues. Despite their high 
accuracy and completeness, the NN architectures are vanilla versions of 
the common NN types with no guidance from the physics or the prob
lem. This results in over-complicated networks that require high number 
of training epochs (e.g., 10,000 for the first phase of the training only). 
In addition, LSTM model requires a fixed signal length which is limiting. 

In our study, we focus on designing the architecture of a recurrent 
neural cell that updates the state from the current time step to the next (i. 
e., one-step ahead predictor) with the neural connections that are 
inspired by exact numerical differential equation solvers. We believe 
that an ideal network is able to predict a response merely based on the 
current time step of a full state space, as it is hardcoded in the simulation 
algorithms such as Newmark-β. 

1.3. Motivation 

As the ubiquity of data-driven methods grows, the generalization and 
reliability of these models become more important. The vast majority of 
the available research train neural networks with no consideration for 
the solid knowledge that governs the actual problem in hand. In addi
tion, for engineering applications as opposed to the pure data science 
problems, the available data is not extremely large and does not cover 
the entire domain of application possibilities (e.g., data is available for a 
limited domain of linear responses in operational conditions). These two 
concerns demand for incorporating physical constraints into the archi
tecture design of the NNs. On the other hand, as the problem holds more 
constraints, the training process eventually becomes harder. This study 
proposes a new approach to impose a special architecture that is inspired 
by implicit numerical solvers of the differential equations into a recur
rent cell for full response prediction of nonlinear MDOF systems. The 
proposed network is termed DynNet in this article, standing for Dynamic 
Network. Moreover, this study recommends multiple techniques so that 
the training process becomes smoother and more reliable. 

DynNet is a recurrent cell that performs one-step ahead prediction of 
the full state space of a MDOF nonlinear dynamic system given a desired 
ground motion. The schematic structure of the network is presented in 
Fig. 1. This architecture has no limitation for the length of the signal (n is 
the number of the ground motion discrete samples). Our contribution is 
to design the architecture based on implicit dynamic simulation algo
rithms for nonlinear time history analysis (e.g., nonlinear Newmark-β 
method). The key idea is that if the numerical algorithm is suitable and 
sufficiently accurate for nonlinear response analysis, a similar archi
tecture has to be successful in learning the same nonlinear model from 
raw data. In addition, the architecture design is inspired by Residual 
Networks [34] (i.e., ResNets) that have shown outstanding perfor
mances in learning partial differential equations from raw data. DynNet 
has significantly smaller variable space compared to the most accurate 
counterparts. 

In terms of network optimization, this study utilizes second order 
trust region method which significantly reduces required training iter
ations. Training dynamic blocks for one-step ahead prediction is highly 
sensitive to instability. To overcome this challenge, we introduce a 
projection loss function. In addition, to accelerate learning ability of the 
network for nonlinear transitions, an importance sampling technique is 
proposed and implemented. Although DynNet is strongly constrained 
which results in a more involved training, its smaller variable space and 

high constraints enable network training with very limited amount of 
data. The physical interpretability of DynNet also alleviates modeling of 
severe nonlinear behaviors as well as very long signals, as we will show 
in the next sections. 

In the following section, the detailed architecture of the network is 
elaborated. In Section 3 the technical approaches for faster and more 
robust training process of DynNet are presented (e.g., the optimization 
algorithm, the customized loss function, and the importance sampling 
technique). In Section 4 two numerical case studies are presented in 
which different types of nonlinearity are imposed. The summary of the 
method along with the highlights are presented in Section 5. 

2. Physics-based neural network architecture design 

2.1. Numerical solution for direct problems 

For simulation of dynamic systems, implicit numerical solvers pro
cess responses at time step i to derive responses at time step i + 1. In fact, 
regardless of the complexity and level of nonlinearity of the problem, 
simulators require no further information for one-step ahead pre
dictions. Relying on this fact, an ultimate simulator that learns from data 
should be a dynamic cell that is able to perform the one-step ahead 
prediction with high accuracy and low cumulative error. In addition, 
considering the causality of dynamic systems as well as their short 
memory (i.e., a few recent samples are sufficient for the next step pre
diction), LSTM models seem unnecessarily over-complicated. DynNet is 
a robust one-step ahead dynamic cell that is very sharp in learning 
nonlinearities as well as robust to noise. In this study, we do not use a 
simplified version of existing networks such as CNN or LSTM, but 
instead we design the internal cell connections in a way that conform 
with common dynamic numerical solvers. The nonlinear version of 
Newmark’s algorithm is shown in Algorithm 1 [35]. 

Algorithm 1. Newmark’s Method for Nonlinear Systems.   
1: Input: ui, u̇i, üi,Si, ẍg

i , TangentStiffness(.), NonlinearForce(.)

2: a1, a2, a3,C1,C2,C3,C4,C5,C6 ,M,Γ := Constant  
3: p̂i+1 = MΓẍg

i + a1ui + a2u̇i + a3üi  

4: R(0) = p̂i+1  

5: j = 0  
6: Kt

i = TangentStiffness(ui, u̇i, üi,Si)

7: while abs(R(j)) < threshold do  

8: R(j) = p̂i+1 −S(j)
i+1 −a1u(j)

i+1  

9: (Kt
i+1)

(j)
= (Kt

i+1)
(j)

+ a1  

10: Δu(j) = ((Kt
i+1)

(j)
)

−1
R(j)

11: u(j+1)

i+1 = u(j)
i+1 + Δu(j)

12: S(j+1)

i+1 = NonlinearForce(u(j+1)

i+1 ,S(j)
i )  

13: j = j + 1  
14: end while 
15: ui+1 = u(j)

i+1  

16: Si+1 = S(j)
i+1  

17: u̇i+1 = C1(ui+1 −ui) + C2u̇i + C3üi  

18: üi+1 = C4(ui+1 −ui) + C5u̇i + C6üi  

19: Return ui+1 , u̇i+1 , üi+1 ,Si+1   

In this algorithm, ui, u̇i, üi are displacement, velocity, and accelera
tion vectors of current time step i, respectively. Si and ̈xg

i are respectively 
the internal force vector and ground motion acceleration at time i. In this 
algorithm, the detailed expressions for the constant coefficients are 
discounted and can be found extensively in [36]. The algorithm consists 
of a majority of linear expressions and some nonlinear functions - Tan
gentStiffness(.) and NonlinearForce(.) - that depend on the defined 
nonlinearity of the system (the first function returns the tangent stiffness 
and the second function derives nonlinear story forces based on the 
nonlinear model). In particular, the algorithm can be divided into three 
blocks: (a) initialization (lines 1 to 5 in Algorithm 1); (b) equilibrium 
solver (lines 6 to 14 in Algorithm 1); and (c) post-processing (lines 15 to 
19 in Algorithm 1). In this organization, blocks (a) and (c) merely 
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include linear operations. For instance, in lines 17 and 18, the equaions 
for deriving velocity and acceleration of the future time step are linear. 

In addition, block (b) contains a while loop which certifies the 
equilibrium (i.e., Newton–Raphson root finding solution). Intuitively, 
this while loop incrementally adds up values to its estimation of ui+1 
every time the loop runs. This mechanics resemble the architecture of 
Residual Networks (ResNet) [34] in which the output of the network is 
added to the input and fed back to the network repeatedly. Studies have 
shown that ResNets outperform other architectures in learning differ
ential equations from data [37,38] due to their inherent resemblance to 
the Euler’s method. 

2.2. DynNet components 

DynNet is designed to benefit from two intuitive ideas: (1) following 
the structure of numerical implicit simulators; and (2) inspired by 
ResNet structures for nonlinearity learning. The architecture of the 
network is given in Fig. 2. The input of the network is identical to the 
Newmark’s algorithm. All connections in the network are linear except 
for the internal connections of the ResNet block. The network initially 
adjusts the dimension of the input vector via a linear embedding layer. 
Then, the velocity and acceleration of the structure in addition to the 
ground motion acceleration of the current time step are fed into a linear 
layer to produce Rn

u (equivalent to R in Algorithm 1). Then, the internal 
force, displacement, and Ru are concatenated and passed into the ResNet 
block. The ResNet block is expanded in Fig. 2 as well. This block is the 
sole component of the network that is able to learn the nonlinear 
behavior of the dynamic system. The block is conveniently arranged 
with stacked fully-connected layers that are connected with leaky 
rectified linear units (i.e., LeakyReLU activation functions). The output 
of the fifth fully-connected layer is added to the input of the ResNet 
block to produce the terminal state of the ResNet block. This terminal 
state is fed back to the ResNet block for N times (N is a user defined 
parameter). After N repetitions, the output is linearly mapped to Si+1 and 
Xi+1. Given Xi+1, the velocity and acceleration of the next time step are 
derived by another linear map. Once the prediction of the time step i +1 
is found, it will be fed back to DynNet for the response prediction of the 
consecutive time step (e.g., i + 2). 

Note that for inference using DynNet, the only required input is the 
ground motion accelerations as well as the initial condition of the states 
(the latter can be assumed a vector of zeros if structure is at rest). The 

network then predicts the full state at the next time step using the initial 
condition and repeatedly feeds it back to predict the successive state 
(therefore, the input and output dimensions of an n-DOF systems are 
2 +4 × n and 4 × n, respectively. Note that two consecutive values of 
ground motion are needed for the one-step ahead inference). However, 
in the training phase the full state responses are required to be available 
which can be obtained from finite element models or implicitly derived 
based on a subset of the full state and the governing equations. The 
concentrated learning ability that is placed in the ResNet block enables 
easy replacement of the simple MLP network with other nonlinear 
structures (e.g., CNN or deeper networks). This feature decouples the 
nonlinearity learning and state transitioning tasks in the network. In 
other words, for very involved types of nonlinearities, one simply re
quires to modify the structure of the ResNet block (e.g., add extra layers 
or increase the number of hidden nodes in each layer). However, in this 
study we found a five layer MLP sufficiently strong for the test cases. The 
variable space of the network is highly dependent on the user-defined 
embedding dimension. In this study, embedding size is set to eight for 
all cases, yielding 5, 320 trainable variables. The dimension is signifi
cantly lower compared to other recently developed networks for the 
same purpose (e.g., 130,000 variables in Zhang et al. [32]). 

3. Accelerating techniques for the training phase 

3.1. Selecting optimizer 

Stochastic first-order methods, including SGD [39] and ADAM [40], 
are currently standard optimization methods for training neural network 
problems. These methods have a low per-iteration cost, enjoy optimal 
complexity, and are easy to implement and applicable to many machine 
learning tasks. However, these methods have several issues: (i) they are 
highly sensitive to the choice of hyper-parameters (such as batch size 
and learning rate); and more importantly (ii) they are not effective for 
ill-conditioned problems, meaning that for a small change in the inputs, 
the outputs can change dramatically. The second issue is quite likely 
when dealing with nonlinear structural systems. For instance, in an 
elasto-plastic model, there is a bounded relationship between force and 
displacement within the elastic range. However, the variations of dis
placements become extremely large when the system experiences larger 
forces (i.e., forces beyond the elastic limit). 

On the other hand, second-order methods by utilizing second-order 
(i.e., curvature) information can address the aforementioned issues. 

Fig. 2. The components of the DynNet recurrent cell.  
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One class of second-order methods are Hessian-free methods, in which 
no Hessian is needed to be constructed explicitly, and only Hessian- 
vector multiplications are needed in order to update the neural 
network parameters. In our study, we utilize a method in the Hessian- 
free class which is called Newton trust-region approach (TRCG). This is 
motivated by the results presented in Fig. 3 that illustrate the perfor
mance of TRCG and some of the well-known stochastic first-order 
methods with different choices of hyperparameters. As is clear from 
the results, the performance of TRCG by utilizing the curvature infor
mation is noticeably better than the stochastic first-order methods in 
terms of loss function value with respect to both iteration and epoch 
number. Similar behaviour is also observed in [41,42]. In every iteration 
of TRCG, the following non-convex quadratic sub-problem needs to be 
solved: 

pk ∈ arg minp∈Rd Qk(p) = pT gk +
1
2
pT Hkp

s.t. ‖p‖⩽Δk,

(1)  

where gk is the (stochastic) gradient, Hk is the (stochastic) Hessian, and 
Δk is the trust-region radius at iteration k. The above sub-problem can be 
approximately and efficiently solved using CG-Steihaug [43] which is 
summarized in Algorithm 2. The output of Algorithm 2, pk, is the search 
direction in order to update the neural network parameters. In other 
words, assume we are at kth iteration, and the neural network parame
ters are updated as ωk+1 := ωk + pk. More details regarding the trust- 
region algorithm, the strategy for updating Δk, and accepting or 
rejecting the steps can be found in [43]. 

Algorithm 2. CG-Steihaug [43].   
Input: ∊ (termination tolerance), gk (current gradient).  
1: Set z0 = 0, r0 = gk, d0 = −r0  

2: if ‖r0‖ < ∊ then  
3: return pk = z0 = 0  
4: end if 
5: for j = 0, 1,2,… do  
6: if dT

j Hkdj⩽0 then  
7: Find τ⩾0 such that pk = zj +τdj minimizes mk(pk) and satisfies ‖pk‖ = Δk  

8: return pk  

9: end if 

10: Set αj =
rT
j rj

dT
j Hkdj 

and zj+1 = zj + αjdj  

11: if ‖zj+1‖⩾Δk then  
12: Find τ⩾0 such that pk = zj +τdj and satisfies ‖pk‖ = Δk  

13: return pk  

14: end if 
15: Set rj+1 = rj + αjHkdj  

16: if ‖rj+1‖ < ∊k then  
17: return pk = zj+1  

18: end if 

19: Set βj+1 =
rT
j+1rj+1

rT
j rj 

and dj+1 = −rj+1 + βj+1dj  

20: end for   

3.2. Projection loss 

In order to train a recurrent block for the one-step ahead prediction, 
the simplest approach is to minimize the residual between the pre
dictions and the actual values over a mini-batch in each iteration. 
However, this approach for training produces unstable networks, which 
are prone to divergence when predicting a long trajectory of responses 
given the initial conditions. To address this issue, we introduce and 
utilize the projection loss that is the basis for the training process in this 
study. 

Projection loss is calculated as the mean squared error of a sequence 
of responses predicted by DynNet when compared with the corre
sponding actual responses. To produce the sequence of predicted re
sponses, the only given value is the initial conditions at some randomly 
selected time steps. This initial condition is then fed into the DynNet and 
the responses are fed back for p times to predict a trajectory starting from 
the random initial condition (p is a user-defined projection length). 
Compared to the conventional loss function, the projection loss can 
effectively control the instability issue of the trained neural network. 
Fig. 4 demonstrates the effect of loss functions with different projection 
lengths on the testing error. In this figure a preliminary training analysis 
based on a four-DOF model with elastic perfectly plastic material is 
presented (nonlinear type 1 in Section 4). 

As shown in Fig. 4, the length of the projection directly affects the 
robustness of the optimization. In fact, when the projection length is 
two, the network’s inference diverges (i.e., after multiple steps of 
recurrence, DynNet outputs explode and it is outside the shown range in 
the figure). The best results on the testing data are observed when the 
projection length equals to 25. Note that as the projection length in the 
loss function increases, the model becomes more optimal for longer 
trajectory predictions, however, the training time linearly increases as 
well. In fact, for loss functions with longer projection lengths, the for
ward pass and backpropagation steps take longer and these computa
tions cannot be distributed over the processing resources (due to the 
sequential nature of the network inference). In addition, by comparing 
results from projection length = 5 and projection length = 25, it is 
observed that the former performs better initially (i.e., in lower itera
tions) while the latter shows its advantage later on. From this observa
tion, we adopt a sequentially increasing projection length model in this 

Fig. 3. Optimization trends using different optimizers: the numerical values in the legend indicate the learning rates where applicable.  

Fig. 4. Optimization trends using different projection lengths.  
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study. In the following section, the models are trained by using loss 
functions with projection lengths equal to 5, 10, and 25, respectively; for 
each, the models are trained for a fixed number of iterations. 

3.3. Importance sampling technique 

For learning highly nonlinear systems, samples may be distributed 
extremely unevenly in different behavioral regions. For instance, elasto- 
plastic systems normally respond linearly to the major portion of a 
ground motion, regardless of the intensity of the motion. In other words, 
the system undergoes nonlinear deformations occasionally only when a 
large impact occurs in the input. As a result, the fraction of the one-step 
ahead response transitions that are within the elastic region is dramat
ically larger than the inelastic region. This induces a severe imbalance in 
the training data distribution, which turns out to be detrimental for 
model robustness. Importance sampling is a technique for online batch 
selection that is used to circumvent the problem with unevenly 
distributed data. 

A review of more common batch selection methods are given in 
Section 7 of [44]. One of the simplest and most effective approaches for 
adaptive batch selection is rank-based selection [45,44]. In this method, 
during the training phase, samples of each batch are sorted in 
descending order based on their function value, and then, their proba
bility of re-selection is updated based on their ranking. The idea was first 
employed for reinforcement learning using temporal difference (TD) as 
the reference for sample sorting, and later was adopted for deep learning 
applications and based on loss function values. In this study, a similar 
approach is introduced which is inspired by the notion of ranked-based 
batch selection. 

In the implemented hardsampling technique, a hardsampling rate r is 
defined which is the ratio of samples in each batch that are eventually 
selected from the hardsamples. The model starts with randomly selected 
samples in the first iteration. At the end of the iteration, k (is a user- 
defined hyperparameter) samples with the maximum contributions in 
the total batch loss are added to a list of hardsamples. In fact, the list of 
hardsamples is a bag of samples that are not learned well by the model 
yet. In the next iteration, the new batch samples are selected such that b1 
samples are randomly selected from the entire training samples and b2 
samples are randomly selected from the the list of hardsamples and b2 =

⌊r × (b1 + b2)⌋ (⌊⌋ is a rounding function that sets the value to the largest 
integer smaller than the actual value of the argument). At the end of the 
iteration, the list of hardsamples is updated and passed to the next 
iteration. The process continues accordingly. 

To evaluate the effectiveness of the technique, the optimization 
process is performed with and without hardsampling technique and 
results are compared in Fig. 5. In this example, the rate of hardsampling 
r is 50%. The result clearly confirms the advantage of hardsampling 
technique in fast and better learning of the model. Therefore, in this 
study this technique is also used in the training process of the models. 
The approach is adaptive, meaning that the algorithm automatically 
picks hardsamples throughout the training process. In engineering 
problems, we may have an a priori hypothesis about the hardsamples. 
For instance, in the elastoplastic models, it is expected that one-step 

ahead response transitions that go beyond the elastic limit are hard
samples. In the next section, we will confirm that our adaptive hard
sampling technique automatically detects these samples with no need 
for externally imposed constraints. 

4. Numerical case studies 

In this section, two case studies are considered to validate the 
strengths of DynNet in response prediction of different nonlinear (NL) 
systems. These case studies differ in terms of the type of introduced 
nonlinearity to the systems. The first case is a four-DOF shear building 
system with elastic perfectly plastic springs. The second model consists 
of a four-DOF shear building system equipped with nonlinear (3rd order) 
elastic stiffeners (schematics of the force displacement behaviors are 
shown in Fig. 6). It is expected that DynNet performs equally well for 
different structural types and therefore shear buildings are selected with 
no loss of generality. The governing equations of motion (EOM) for these 
two nonlinear systems are shown in Eqs. 2 and 3. 

mẍ + cẋ + f (x) = −mΓẍg. (2)  

f1(x) =

{
Kix x⩽Δy,

Fy x > Δy.

f2(x) = Ki(α1x + α2x3).

(3) 

For the numerical simulation, Newmark’s method for nonlinear 
systems is used in MATLAB. For this purpose, 20 strong ground motions 
are randomly selected from Center for Engineering Strong Motion 
Database (CESMD) [46]. In addition to that, 10 band limited random 
white time series are synthesized and added to the the library of the 
input signals. The earthquake ground motions are scaled using the 
wavelet algorithm proposed by Hancock et al. [47]. The target matched 
spectra for twenty earthquake ground motions as well as the mean 
matched and target spectra are shown in Fig. 7. The algorithm scales the 
time histories in a way that the response spectrum optimally matches 
with the target spectrum within the range of 0.2T1 to 1.5T1 (T1 is the 
fundamental period of the structure). 

For each case study, the scaled earthquake ground motions as well as 
random time histories are analyzed to predict structure’s responses (i.e., 
displacement, velocity, and acceleration) at all four DOFs. This data 
include both training and testing datasets. From 30 simulated ground 
motions, eight ground motions are randomly picked to be used as the 
training dataset and the rest for testing. Note that since DynNet is 
heavily constrained by the physics of the problem and enjoys low 
training variable space, it is expected that the model is easily trainable 
with small amount of training data and also is desirably generalized for a 
wide range of testing data. 

4.1. Case 1: Elastic-perfectly plastic model (NL type 1) 

In this section, the results on the first test case - a four-DOF shear 
building with elastic perfectly plastic stiffness - are presented. The me
chanical properties of the structure is presented in Table 1. In this table, 
M1 −M4 and K1 −K4 stand for mass and elastic stiffness values of DOF1 
to DOF4, respectively. Fy shows the stories’ yielding force. To consider 

Fig. 5. Optimization trends using different hardsampling ratios.  Fig. 6. Force–displacement relationships of two nonlinear cases.  
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the robustness of DynNet, three levels of noise are also considered (0%,

5%, and 10% noise levels). For each noise case, the additional noise is 
imposed proportionally with respect to the maximum amplitude of the 
signal (e.g., 5% noise is associated with an additional Gaussian white 
noise with maximum amplitude equal to 5% of the maximum amplitude 
of the signal). The network is trained to predict the full response at all 
DOFs including displacement, velocity, and acceleration time histories 
given the earthquake ground motion. 

As concluded in the previous section, the network is trained in a 
multi-level manner: 1000 iterations with 10-step projection loss, then 
1000 iterations with 25-step projection loss, and finally, 1000 iterations 
with 50-step projection loss. During the training process, batch size was 
set fixed at 1024 (i.e., 1024 one-step ahead transitions). In total, the 
network is trained for less than 100 epochs using TRCG optimizer. The 
learning curve is presented in Fig. 8 (NL type 1). The figure demonstrates 
that by increasing the length of projection in the custom loss function, a 
sharp drop in the loss function occurs. 

As previously explained, the training phase incorporates the pro
posed hardsampling technique. To evaluate the physical interpretation 
of the automatically selected hardsamples, Fig. 9 is presented. In this 
figure, the entire training dataset (including eight signals) are shown 

and divided by vertical lines. The signal sections that are labelled as 
hardsamples are color coded in red. Interestingly, hardsamples are 
mostly found when a sudden drop (due to a severe nonlinear behavior) 
has happened. This observation confirms that the algorithm reuses 
highly nonlinear samples to reinforce its learning ability. 

To evaluate the prediction performance of the trained network, the 
prediction results on one randomly picked testing signal with 5% noise 
for short and long trajectories are presented in Figs. 10 and 11. The 
predictions are compared with the reference simulated signals in both 
time and frequency domains (velocity predictions are neglected for 
brevity). Note that in all performance plots throughout the paper, the 
quantities are normalized with reference values and therefore are unit
less.. For short trajectories (i.e., five seconds prediction in Fig. 10), the 
performance is promising. Note that the nonlinear baseline variations 
are accurately predicted in the displacement time signals. In terms of 
frequency, the accuracy of the predicted signal is very high. For longer 
trajectories (i.e., 40 seconds prediction in Fig. 11), the prediction ac
curacy is as high. The modal peaks in the frequency domain are captured 
accurately. Notably, all the baseline variations in the displacement time 
signal are predicted accurately using the trained network. Note that such 
high accuracies for predicting severely nonlinear responses are un
precedented in the literature. 

To further quantify the accuracy of the predictions in all the testing 
signals, Pearson correlation coefficients (PCC) are calculated between 
predicted and ground truth signals (40 seconds predictions) and pre
sented in Fig. 12. PCC is a measure to quantify the fitness of predicted 
trajectories with respect to the ground truth signals [48]. The results for 
all three noise levels are presented. The histograms demonstrate the 
distribution of different prediction accuracy values. In general, for all 
predicted quantities (i.e., displacement, acceleration, and internal force) 
and all considered noise levels, more than 90% of DynNet’s predictions 
have PCC above 0.8. Particularly, force and acceleration predictions are 
exceptionally accurate. Intuitively, in those subsets of the full state that 
oscillate around zero and do not have baseline shifts (i.e., velocity, ac
celeration, and internal force), the predictions turned out to be more 
accurate due to their more predictable temporal behavior. Note that in 
the noisy cases, the likelihood of having very high PCC is inevitably low 
due to the irreducible noise. Still, DynNet shows a very good perfor
mance in response predictions of these highly nonlinear signals with 
strong noise. 

In general, recurrent networks are prone to instability in longer 
trajectories [49]. Error accumulation due to feeding back the output of 
the network is reported as the main source of this instability [50]. In this 
study, by physically constraining the network as well as utilizing the 
projection loss for training, the model enjoys stability for longer tra
jectory predictions. Fig. 13 shows prediction errors for different noise 
levels with respect to the length of the estimated signal (the projection 
length). For the noiseless case, the mean squared error (MSE) gradually 
increases as the trajectory lengthens. However, the error is still very low 
for very long trajectories (i.e., 10,000 one-step ahead predictions 

Fig. 7. Earthquake response spectra matched with respect to the target spec
trum and the mean spectrum. 

Table 1 
Mechanical properties for NL type 1.  

Mechanical props. Values Units 

M1 0.259 kip.s2/in  
M2/M1 1 - 
M3/M1 0.75 - 
M4/M1 0.5 - 
Fy 50 kips 
K1 168 kips/in  
K2/K1 7/9 - 
K3/K1 1/3 - 
K4/K1 1/4 -  

Fig. 8. Loss function profile versus iteration: the projection length for loss function calculation changes at iteration 1000 and 2000 (projection length equals to 10, 
25, and 50 for each portion). The sudden drops in the loss function values at those transitions show the effectiveness of the proposed training technique. 
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equivalent to 200 seconds). Interestingly, for the two noisy cases, except 
for the lower range of trajectories, the error remains nearly constant for 
longer trajectories. This implies that: (1) DynNet is quite stable 
regardless of the trajectory length; and (2) noisier data tends to discount 
the increasing error issue for longer trajectories. 

Finally, to verify the strength of DynNet in identifying the nonlinear 
behavior, hysteresis diagrams for a randomly picked signal and different 
noise levels are shown in Fig. 14. The DynNet estimated signals could 
very accurately capture the linear tangent of the spring force. In addi
tion, the transition to nonlinear region is learned very accurately 
(normalized force values are exactly bounded within −1 to 1). The same 
level of accuracy is noticeable in all noise cases. 

To further investigate the scalability and generalization of the 
trained DynNet, the nonlinear responses of the structure subjected to 
different magnitudes of a selected earthquake ground motion are 
inferred and compared with the numerical solutions. Four levels of 
magnitude are considered in this analysis: 0.50x, 0.85x, 1.00x, and 
1.20x (compared to the normalized ground motion). The results are 
presented in Fig. 15. In this plot, dotted lines show exact simulation 
results while solid lines represent DynNet predictions. Results of internal 
forces and displacements for the 1st DOF are shown for brevity. Internal 

forces are very accurately predicted in all four levels of magnitude of the 
ground motion. The accuracy is lower in the displacement predictions, 
however, the overall trends and amplitudes are carefully captured by 
DynNet. Note that the selected ground motion contains a strong shock- 
wave at ̃380th time step which causes severe nonlinear response and a 
baseline shift (residual deformation) in the displacement predictions. 
The model, however, is still successful in following the exact variations 
of the building responses. 

4.2. Case 2: Nonlinear elastic model (NL type 2) 

In the second case study, a four-DOF structure with nonlinear elastic 
springs is studied. For the nonlinear springs, a 3rd order polynomial 
behavior is introduced that models a hardening after initial pseudo- 
linear phase (see Fig. 6). Due to the elasticity of the model, no resid
ual displacements are expected here. Mechanical properties of the 
building are presented in Table 2. In this table, M’s and K’s are defined 
as explained before. α1 and α2 are coefficients of the 3rd order restoring 
force equation (Eq. 3). The training process is identical to the previous 
case study. DynNet requires no pre-processing or special 

Fig. 9. Locations of the hardsamples by using adaptive sampling in the NL type 1: as expected, the majority of hardsamples are located where large residual dis
placements occur. 

Fig. 10. Predicted signals for five seconds with 5% noise. The plots show that the network is very accurate in predicting responses for a short future. A high level of 
accuracy is visible in both time and frequency representations of the signals with more consistency in the time signals. 
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accommodation for different nonlinear models. The model is trained for 
the same number of iterations and epochs as the previous test case. Loss 
function variation versus the number of iterations is shown in Fig. 8. 
Again, sudden drops in the loss values are observed when the projection 

length of the custom loss increases. 
The nonlinear response predictions for a randomly picked ground 

motion from testing data are presented in Figs. 10 and 11 (short and long 
trajectories, respectively). As before, DynNet shows a promising 

Fig. 11. Predicted signals for 40 seconds with 5% noise. The plots show that the network is still accurate in predicting responses for a longer time. A high level of 
accuracy is visible in both time and frequency representations of the signals with more consistency in the time signals. Notice that the displacement signal for the NL 
type 1 is strongly nonlinear. However, the network successfully estimates it. 

Fig. 12. Pearson correlation coefficient histograms for the predicted responses - NL type 1.  
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performance in nonlinear response predictions, both in time and fre
quency domains, regardless of the length of the trajectory. To evaluate 
the performance of the trained neural network on the entire testing data, 
PCC coefficients are calculated and the histograms are shown in Fig. 16. 
Note that similar to the previous test case, three levels of measurement 

noise are considered for both training and evaluation phases of the 
network. 

In Fig. 16, the general note is that the number of very high accuracy 
predictions (i.e., with PCC above 0.8) is not as high as the previous case, 
especially when measurement noise is introduced. However, for 

Fig. 13. MSE values of the predicted signals vs. the length of projection. As expected, the error increases as the projection length becomes longer. However, in most 
cases after a gain in the error at the beginning, the error flattens for longer projections. Notice that as expected, noisier signals have higher MSE errors. 

Fig. 14. Hysteresis diagrams in two NL cases at the first floor and for different noise levels. Both sets of results confirm the promising performance of the network in 
learning different nonlinear behaviors. 

Fig. 15. Response predictions for a ground motion with different magnitudes (NL type 1). This figure demonstrates the generalization strength of the trained NN 
model. Note that dashed lines show the actual responses from the numerical simulation. Despite strong nonlinear behavior, all four different magnitudes are pre
dicted very accurately. 
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noiseless and 5% additive noise cases, the results still show high accu
racy. Histograms of the displacement and internal force predictions 
show a unimodel distribution with the statistical mode at PCC ∈ [0.95,
1.0]. In terms of the prediction stability for longer trajectories, MSE er
rors with respect to the length of the prediction trajectory is presented in 
Fig. 13. Again, as observed in the PCC histograms, two lower noise cases 
show a steady and downbeat trend of the MSE loss progression as the 
trajectory length increases while the 10% noise case is not as stable. 
Notice that the values of the MSE errors generally are significantly lower 
in the NL type 2 (nonlinear elastic case) compared to the NL type 1 
(elastic-perfectly plastic) while histograms show higher accuracy for 
prediction of the latter model. This observation is explained by the in
elastic behavior of the NL type 1 model which can cause baseline shifts 
(i.e., residual deformations). We showed that DynNet is successful in 
capturing baseline variations, even though a small discrepancy causes 
much larger MSE errors for these response predictions. The baseline 

variations are not expected in the elastic model. 
Finally, in order to validate the ability of the neural network to 

predict nonlinear elastic behavior of the spring forces, hysteresis dia
grams are plotted in Fig. 14. The restoring force here includes both the 
elastic spring force and the damping force (i.e., cẋ +f(x) in Eq. 2). Ac
cording to these plots, DynNet predictions very accurately match with 
the simulation results. The 3rd order behavior of the spring as well as the 
small energy dissipation area caused by the damper force is identified 
and correctly predicted. In higher noise levels, the prediction shows 
higher fluctuations around the exact plots which can be simply 
explained by the high level of noise. 

5. Conclusion 

In this study, we proposed a data-driven approach for comprehensive 
prediction of nonlinear dynamic responses of multi degrees of freedom 
(DOF) systems using Recurrent Neural Networks. In particular, inspired 
by common implicit dynamic analysis algorithms, DynNet block is 
designed as a one-step ahead response predictor. By repeatedly inferring 
the block, long response trajectories are predicted. Compared to the 
most advanced data-driven methods, DynNet has significantly smaller 
variable space, resulting less computational effort per iteration. Due to 
physics-based constraints of the proposed architecture, the network re
quires more advanced optimizers for a smooth and efficient learning 
process. With this regard, trust-region approach using CG-Steihaug 
(TRCG) algorithm was implemented. In addition, for more efficient 
learning, a simple importance sampling technique as well as a trajectory 
loss function was developed and implemented which resulted in faster 
learning of the severely nonlinear transitions. 

For verification, DynNet was tested in two nonlinear case studies: a 

Table 2 
Mechanical properties for NL type 2.  

Mechanical props. Values Units 

M1 0.340 kip.s2/in  
M2/M1 0.8 - 
M3/M1 0.75 - 
M4/M1 0.6 - 
K1 100 kips/in  
K2/K1 3/4 - 
K3/K1 1/2 - 
K4/K1 1/4 - 
α1 1 - 
α2 10 in2   

Fig. 16. Pearson correlation coefficient histograms for the predicted responses - NL type 2.  
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four-DOF shear building (1) with elastic perfectly plastic stiffness, and 
(2) with nonlinear elastic (3rd order) stiffness. For each test case, three 
levels of measurement noise were included to evaluate the noise prop
agation characteristics of the proposed network. The networks were 
trained using less than 30% of the available data and evaluated using the 
remaining 70%. In both test cases, we showed that the network quite 
successfully was able to predict a complete set of nonlinear responses 
including displacement, velocity, acceleration, and internal force time 
histories at all DOFs given the applied ground motions only. The sta
bility of the predictions for longer trajectories was analyzed and 
concluded that for the majority of cases, DynNet holds the error level 
stably as the trajectory length grows. Due to the recurrent nature of this 
approach, the inference computational time increases linearly with the 
length of the ground motion. In addition, using hysteresis diagrams, we 
showed that the performance of DynNet in capturing nonlinear behav
iors of the systems is promising. 

Data-driven function approximators are extremely popular in science 
and technology, however, in engineering applications due to the avail
ability of accurate governing equations and numerical solutions, fully 
black-box function approximators are less accepted. This study tries to 
bridge the gap between black-box models and available exact solutions 
to create a fast learner function approximator. It is believed that DynNet 
creates a great potential for faster and scalable regional sustainability 
and health monitoring analyses. 
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