Engineering Structures 229 (2021) 111582

Contents lists available at ScienceDirect

ENGINEERING
| STRUCTURES

Engineering Structures

FI. SEVIER

journal homepage: www.elsevier.com/locate/engstruct

Check for

DynNet: Physics-based neural architecture design for nonlinear structural — [%&s
response modeling and prediction

Soheil Sadeghi Eshkevari® , Martin Takaé °, Shamim N. Pakzad *, Majid Jahani”

@ Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, USA
Y Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA

ARTICLE INFO ABSTRACT

Keywords:

Deep learning

Physics-based neural network
Ordinary differential equation
Structural dynamics
Earthquake engineering
Dynamic response prediction

Data-driven models for predicting dynamic responses of linear and nonlinear systems are of great importance due
to their wide application from probabilistic analysis to inverse problems such as system identification and
damage diagnosis. In this study, a physics-based recurrent neural network model is designed that is able to
estimate the dynamics of linear and nonlinear multiple degrees of freedom systems given the ground motions.
The model is able to estimate a complete set of responses, including displacement, velocity, acceleration, and
internal forces. Compared to the most advanced counterparts, this model requires smaller number of trainable
variables while the accuracy of predictions is higher for long trajectories. In addition, the architecture of the
recurrent block is inspired by differential equation solver algorithms and it is expected that this approach yields
more generalized solutions. In the training phase, we propose multiple novel techniques to substantially accel-
erate the learning process using smaller datasets, such as hardsampling, utilization of a trajectory loss function,
and implementation of a trust-region optimization approach. Numerical case studies are conducted to examine
the strength of the network to learn different nonlinear behaviors. It is shown that the network is able to capture
different nonlinear behaviors of dynamic systems with high accuracy and with no need for prior information or
very large datasets.

1. Introduction Artificial intelligence has been one of the most useful and promising

tools in science and technology over the past few decades. In particular,

Dynamic response prediction of structural systems has been a great
tool for design and assessment of individual buildings as well as reli-
ability analysis of infrastructure and large urban areas. Traditionally,
this process is executed by building numerical models of dynamic sys-
tems and predicting responses using numerical differential equation
solvers such as Newmark-$ method. However, this approach is suitable
for structures with known physical properties (i.e., mass, stiffness, and
damping matrices) with very accurate analytical models for the
nonlinear components of structures. Structural health monitoring (SHM)
methods have been effective in identifying mechanical properties of the
existing structures. Yet, the dynamic response simulation of an existing
system requires a comprehensive SHM phase for model updating [1-4].
In addition, for an accurate simulation of a structure with nonlinear
components, emerging technologies such as real-time hybrid simulation
are proposed [5-7]. This approach is also limited to individual nonlinear
structural components and requires advanced experimental and nu-
merical resources.
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machine learning has demonstrated a great potential for learning and
predicting nonlinear behaviors and trends in large and noisy datasets
[8]. Neural Networks (NN) have shown an exceptional potential as
universal function approximators with minimal need for prior infor-
mation about the underlying knowledge of a problem [9,10]. However,
in engineering applications, black-box function approximators are less
favored due to the fact that for many of those, solid underlying equa-
tions/models exist. Knowledge-based machine learning approach in-
tends to bridge this gap by contributing governing equations into
machine learning models [11].

1.1. Artificial intelligence in structural engineering

In general, the major applications of machine learning in structural
engineering can be divided into the following categories: (a) system
identification (SID); (b) damage detection; and (c) dynamic response
prediction of structural systems. A detailed overview of machine
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learning algorithms for damage detection is given in [12,13]. In sum-
mary, the methods use machine learning algorithms (e.g., support vector
machines (SVM) and multi-layer perceptrons (MLP)) for classification
between damaged and undamaged states of structural components
based on low-level inputs (e.g., motion sensor data). A multi-stage
damage detection method is proposed in [14] in which signal features
are extracted using wavelet transforms and an MLP network diagnoses
whether a damage has occurred. Gui et al. [15] proposed a method for
feature extraction from sensor signals and damage classification based
on these extracted features using SVM. More recently, end-to-end
damage detection algorithms are emerging in which feature extraction
and damage detection stages are combined in a single estimator.
Abdeljaber et al. [16] proposed a vibration-based convolutional neural
network (CNN) for direct damage detection and localization based on
sensor time signals. Gulgec et al. [17] proposed a one-step vision-based
damage detection and localization method via CNN which uses 2D strain
fields as input.

Fewer studies have investigated data-driven methods for system
identification due to the inherent model-dependency of this problem.
Some efforts have been made to reconstruct underlying equations using
data-driven algorithms. Brunton et al. [18] proposed a look-up approach
to reconstruct the governing equation of dynamic systems using sparse
identification. More recent studies investigate machine learning solu-
tions with model-guided constraints. Raissi and Karniadakis [19]
introduced hidden physics models that are able to identify underlying
physics of dynamic systems using small datasets. In structural engi-
neering, Sadeghi Eshkevari et al. [20] proposed a data-driven approach
for bridge modal identification using mobile sensing data. The model is
highly constrained by the modal superposition law of structural dy-
namics and could successfully identify complete modal properties.

In addition to diagnosis and monitoring tasks that are the objectives
of the previous studies, data-driven approaches for dynamic response
prediction of structural systems have been of great importance and in-
terest. Finite element analysis (FEA) along with nonlinear time history
analysis (NTHA) has enabled very accurate dynamic response estima-
tions; however, both techniques are computationally expensive and
require detailed information of the system. By the emergence of prob-
abilistic reliability analyses of individual and clusters of structures
subject to hazards (e.g., earthquake or hurricanes), it is realistically
impractical to carry out extensive FEA and NTHA analyses of increas-
ingly larger systems [21,22]. Therefore, faster, reliable, and more flex-
ible approaches are highly required.

1.2. Data-driven dynamic response prediction

Dynamic response prediction of structures using statistical methods
have been widely investigated over the last few years. The approaches
span from model-based predictions to data-driven models such as
autoregressive moving average (ARMA) models or neural networks. A
model-based full state predictor was proposed in [23] that incorporates
a prior nonlinear model of the building for experimental response pre-
diction. Mattson and Pandit [24] proposed an autoregressive model to
predict major trends of the dynamic response; however, the effect of the
exogenous input was remained unmet and considered as a residual. In
fact, despite their simplicity, ARMA-based models are limited to sta-
tionary and linear systems. To address that, Bornn et al. [25] proposed
an autoregressive SVM model that incorporates nonlinear functionalities
within the prediction equation. Neural networks (NN) have been the
most recent approach for dynamic response prediction due to their
flexibility and great performance in regression problems. The pioneer
studies were focused on simple MLP models for partial one-step ahead
response predictions (i.e., predictions include some but not all of the
followings: displacement, velocity, acceleration, and internal force of all
degrees of freedom). Lightbody and Irwin [26] proposed a single layer
neural network in which the output is a weighted sum of multiple
trainable AR models with Tanh activation. The study was a
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breakthrough that enhanced estimator complexities from an individual
linear model to a nonlinear ensemble of linear models. By recent
computational developments, deeper MLP networks were utilized for
more comprehensive dynamic response predictions of nonlinear cases.
Lagaros and Papadrakakis [27] proposed a MLP for one-step ahead
response prediction of nonlinear buildings. The method showed great
performance both numerically and experimentally, however, the pre-
diction was limited to displacement time histories. Note that in general
there is no guarantee for reasonable predictions of other response
components (e.g., velocity and accelerations) by using direct integration
or differentiation on a single component when using data-driven
regression methods. Therefore, yet more comprehensive predictive
models are required.

Theoretically, MLPs perform ideally when the input features are fully
independent. In the dynamic response prediction problem, however, a
high inter-dependency between responses at consequent time steps
exist. Therefore, other neural network architectures have been also
utilized for this specific problem. CNNs are known for their strength in
extracting local (e.g., spatial or temporal) features and incorporating
inter-dependency of the input nodes [28]. In addition, the variable space
of the models is dramatically reduced since fixed sized kernels are being
trained rather than large matrices from fully-connected layers. CNNs are
mostly used for computer vision applications in which 2D kernels are
applied on pixel pallets. In signal processing, 1D kernels are more proper
choices. A dynamic response predictor for linear systems using CNNs is
introduced in [29]. More recently, Wu and Jahanshahi [30] proposed a
CNN-based algorithm for different partial dynamic response predictions.
The most advanced case included the prediction of acceleration re-
sponses at the roof level of a multi degrees of freedom (MDOF) system
given the ground motion.

Comprehensive dynamic response prediction of nonlinear systems
has been investigated in a few recent studies. Zhang et al. [31] confirms
that recurrent neural networks (RNN) are great candidates in terms of
the architecture for structural dynamic response modeling, however,
technically they suffer from gradient-vanishing issues during the
training process. In fact, RNN models have been a frequently used ar-
chitecture in the previously mentioned models (i.e., all one-step ahead
response prediction models are basically RNN models). Based on this
argument, Zhang et al. [32] proposes a long short-term memory (LSTM)
architecture for the response modeling in order to address the gradient-
vanishing issue. The primary difference of LSTM models compared to
the vanilla RNN models is the special architecture that allows for
learning long-term temporal dependencies. This difference also resolves
the gradient-vanishing issue of the RNN models. The study successfully
predicted displacements, velocities, accelerations, and internal forces
using the ground motion in different nonlinear cases. However, the
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Fig. 1. Schematic diagram of DynNet and the conversion process from the
ground motion to the structural response.
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model consists of a large trainable variable space which requires very
long training process. For instance, the DeepLSTM-s model [32] requires
50,000 epochs for training and the network includes ~130, 000 trainable
variables.

The same research team has also recently introduced physics-guided
models using CNN and LSTM architectures for dynamic response pre-
diction problem [31,33]. The studies propose additional terms in the
loss function of the problem which penalizes deviations in the equation
of motion and equilibrium when predicted outputs are plugged in. The
studies showed that imposing this new physical constraint improved the
prediction accuracy and reduced overfitting issues. Despite their high
accuracy and completeness, the NN architectures are vanilla versions of
the common NN types with no guidance from the physics or the prob-
lem. This results in over-complicated networks that require high number
of training epochs (e.g., 10,000 for the first phase of the training only).
In addition, LSTM model requires a fixed signal length which is limiting.

In our study, we focus on designing the architecture of a recurrent
neural cell that updates the state from the current time step to the next (i.
e., one-step ahead predictor) with the neural connections that are
inspired by exact numerical differential equation solvers. We believe
that an ideal network is able to predict a response merely based on the
current time step of a full state space, as it is hardcoded in the simulation
algorithms such as Newmark-$.

1.3. Motivation

As the ubiquity of data-driven methods grows, the generalization and
reliability of these models become more important. The vast majority of
the available research train neural networks with no consideration for
the solid knowledge that governs the actual problem in hand. In addi-
tion, for engineering applications as opposed to the pure data science
problems, the available data is not extremely large and does not cover
the entire domain of application possibilities (e.g., data is available for a
limited domain of linear responses in operational conditions). These two
concerns demand for incorporating physical constraints into the archi-
tecture design of the NNs. On the other hand, as the problem holds more
constraints, the training process eventually becomes harder. This study
proposes a new approach to impose a special architecture that is inspired
by implicit numerical solvers of the differential equations into a recur-
rent cell for full response prediction of nonlinear MDOF systems. The
proposed network is termed DynNet in this article, standing for Dynamic
Network. Moreover, this study recommends multiple techniques so that
the training process becomes smoother and more reliable.

DynNet is a recurrent cell that performs one-step ahead prediction of
the full state space of a MDOF nonlinear dynamic system given a desired
ground motion. The schematic structure of the network is presented in
Fig. 1. This architecture has no limitation for the length of the signal (n is
the number of the ground motion discrete samples). Our contribution is
to design the architecture based on implicit dynamic simulation algo-
rithms for nonlinear time history analysis (e.g., nonlinear Newmark-$
method). The key idea is that if the numerical algorithm is suitable and
sufficiently accurate for nonlinear response analysis, a similar archi-
tecture has to be successful in learning the same nonlinear model from
raw data. In addition, the architecture design is inspired by Residual
Networks [34] (i.e., ResNets) that have shown outstanding perfor-
mances in learning partial differential equations from raw data. DynNet
has significantly smaller variable space compared to the most accurate
counterparts.

In terms of network optimization, this study utilizes second order
trust region method which significantly reduces required training iter-
ations. Training dynamic blocks for one-step ahead prediction is highly
sensitive to instability. To overcome this challenge, we introduce a
projection loss function. In addition, to accelerate learning ability of the
network for nonlinear transitions, an importance sampling technique is
proposed and implemented. Although DynNet is strongly constrained
which results in a more involved training, its smaller variable space and
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high constraints enable network training with very limited amount of
data. The physical interpretability of DynNet also alleviates modeling of
severe nonlinear behaviors as well as very long signals, as we will show
in the next sections.

In the following section, the detailed architecture of the network is
elaborated. In Section 3 the technical approaches for faster and more
robust training process of DynNet are presented (e.g., the optimization
algorithm, the customized loss function, and the importance sampling
technique). In Section 4 two numerical case studies are presented in
which different types of nonlinearity are imposed. The summary of the
method along with the highlights are presented in Section 5.

2. Physics-based neural network architecture design
2.1. Numerical solution for direct problems

For simulation of dynamic systems, implicit numerical solvers pro-
cess responses at time step i to derive responses at time step i + 1. In fact,
regardless of the complexity and level of nonlinearity of the problem,
simulators require no further information for one-step ahead pre-
dictions. Relying on this fact, an ultimate simulator that learns from data
should be a dynamic cell that is able to perform the one-step ahead
prediction with high accuracy and low cumulative error. In addition,
considering the causality of dynamic systems as well as their short
memory (i.e., a few recent samples are sufficient for the next step pre-
diction), LSTM models seem unnecessarily over-complicated. DynNet is
a robust one-step ahead dynamic cell that is very sharp in learning
nonlinearities as well as robust to noise. In this study, we do not use a
simplified version of existing networks such as CNN or LSTM, but
instead we design the internal cell connections in a way that conform
with common dynamic numerical solvers. The nonlinear version of
Newmark’s algorithm is shown in Algorithm 1 [35].

Algorithm 1.
1: Input: u;, 11',-,1'1,-,51'452‘?, TangentStiffness(.), NonlinearForce(.)
2: ay,0az,as,C1,Co,C3,C4,Cs,Co,M, T := Constant
3: §i+1 = erlg + a1y + axl; + ast;
4RO = §i+1
5:5 =0
6: K{ = TangentStiffness(u;, u;, i;, S;)

7: while abs(RY)) < threshold do

8: RO =p,, s 0

9: (Kfﬂ)(j) = (Kfiq)(j) +ta

100 aud) = ((K:,,)?) RO

11 WY =dd) + Aul)

12: Sg‘ll) = NonlinearForce(ug'll),Sl@)

13: j=j+1

14: end while

15:ujq = u[@l
16: Sy1 = SV,
17: ti1 = Ci (U1 —u;) + Catii + Csll
18: il = Cyq(uiy1 —u;) + Cstly + Coliy
19: Return uj;q, Ui, i1, Sic1

Newmark’s Method for Nonlinear Systems.

1~y

In this algorithm, u;, 1;,7; are displacement, velocity, and accelera-
tion vectors of current time step i, respectively. S; and 3¢ are respectively
the internal force vector and ground motion acceleration at time i. In this
algorithm, the detailed expressions for the constant coefficients are
discounted and can be found extensively in [36]. The algorithm consists
of a majority of linear expressions and some nonlinear functions - Tan-
gentStiffness(.) and NonlinearForce(.) - that depend on the defined
nonlinearity of the system (the first function returns the tangent stiffness
and the second function derives nonlinear story forces based on the
nonlinear model). In particular, the algorithm can be divided into three
blocks: (a) initialization (lines 1 to 5 in Algorithm 1); (b) equilibrium
solver (lines 6 to 14 in Algorithm 1); and (c) post-processing (lines 15 to
19 in Algorithm 1). In this organization, blocks (a) and (c) merely
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include linear operations. For instance, in lines 17 and 18, the equaions
for deriving velocity and acceleration of the future time step are linear.

In addition, block (b) contains a while loop which certifies the
equilibrium (i.e., Newton-Raphson root finding solution). Intuitively,
this while loop incrementally adds up values to its estimation of ;.1
every time the loop runs. This mechanics resemble the architecture of
Residual Networks (ResNet) [34] in which the output of the network is
added to the input and fed back to the network repeatedly. Studies have
shown that ResNets outperform other architectures in learning differ-
ential equations from data [37,38] due to their inherent resemblance to
the Euler’s method.

2.2. DynNet components

DynNet is designed to benefit from two intuitive ideas: (1) following
the structure of numerical implicit simulators; and (2) inspired by
ResNet structures for nonlinearity learning. The architecture of the
network is given in Fig. 2. The input of the network is identical to the
Newmark’s algorithm. All connections in the network are linear except
for the internal connections of the ResNet block. The network initially
adjusts the dimension of the input vector via a linear embedding layer.
Then, the velocity and acceleration of the structure in addition to the
ground motion acceleration of the current time step are fed into a linear
layer to produce R}, (equivalent to R in Algorithm 1). Then, the internal
force, displacement, and R, are concatenated and passed into the ResNet
block. The ResNet block is expanded in Fig. 2 as well. This block is the
sole component of the network that is able to learn the nonlinear
behavior of the dynamic system. The block is conveniently arranged
with stacked fully-connected layers that are connected with leaky
rectified linear units (i.e., LeakyReLU activation functions). The output
of the fifth fully-connected layer is added to the input of the ResNet
block to produce the terminal state of the ResNet block. This terminal
state is fed back to the ResNet block for N times (N is a user defined
parameter). After N repetitions, the output is linearly mapped to S;; and
Xi 1. Given Xj;1, the velocity and acceleration of the next time step are
derived by another linear map. Once the prediction of the time step i +1
is found, it will be fed back to DynNet for the response prediction of the
consecutive time step (e.g., i + 2).

Note that for inference using DynNet, the only required input is the
ground motion accelerations as well as the initial condition of the states
(the latter can be assumed a vector of zeros if structure is at rest). The
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network then predicts the full state at the next time step using the initial
condition and repeatedly feeds it back to predict the successive state
(therefore, the input and output dimensions of an n-DOF systems are
2+4 x n and 4 x n, respectively. Note that two consecutive values of
ground motion are needed for the one-step ahead inference). However,
in the training phase the full state responses are required to be available
which can be obtained from finite element models or implicitly derived
based on a subset of the full state and the governing equations. The
concentrated learning ability that is placed in the ResNet block enables
easy replacement of the simple MLP network with other nonlinear
structures (e.g., CNN or deeper networks). This feature decouples the
nonlinearity learning and state transitioning tasks in the network. In
other words, for very involved types of nonlinearities, one simply re-
quires to modify the structure of the ResNet block (e.g., add extra layers
or increase the number of hidden nodes in each layer). However, in this
study we found a five layer MLP sufficiently strong for the test cases. The
variable space of the network is highly dependent on the user-defined
embedding dimension. In this study, embedding size is set to eight for
all cases, yielding 5,320 trainable variables. The dimension is signifi-
cantly lower compared to other recently developed networks for the
same purpose (e.g., 130,000 variables in Zhang et al. [32]).

3. Accelerating techniques for the training phase
3.1. Selecting optimizer

Stochastic first-order methods, including SGD [39] and ADAM [40],
are currently standard optimization methods for training neural network
problems. These methods have a low per-iteration cost, enjoy optimal
complexity, and are easy to implement and applicable to many machine
learning tasks. However, these methods have several issues: (i) they are
highly sensitive to the choice of hyper-parameters (such as batch size
and learning rate); and more importantly (ii) they are not effective for
ill-conditioned problems, meaning that for a small change in the inputs,
the outputs can change dramatically. The second issue is quite likely
when dealing with nonlinear structural systems. For instance, in an
elasto-plastic model, there is a bounded relationship between force and
displacement within the elastic range. However, the variations of dis-
placements become extremely large when the system experiences larger
forces (i.e., forces beyond the elastic limit).

On the other hand, second-order methods by utilizing second-order
(i.e., curvature) information can address the aforementioned issues.

e Iz
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Fig. 2. The components of the DynNet recurrent cell.
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One class of second-order methods are Hessian-free methods, in which
no Hessian is needed to be constructed explicitly, and only Hessian-
vector multiplications are needed in order to update the neural
network parameters. In our study, we utilize a method in the Hessian-
free class which is called Newton trust-region approach (TRCG). This is
motivated by the results presented in Fig. 3 that illustrate the perfor-
mance of TRCG and some of the well-known stochastic first-order
methods with different choices of hyperparameters. As is clear from
the results, the performance of TRCG by utilizing the curvature infor-
mation is noticeably better than the stochastic first-order methods in
terms of loss function value with respect to both iteration and epoch
number. Similar behaviour is also observed in [41,42]. In every iteration
of TRCG, the following non-convex quadratic sub-problem needs to be
solved:

1
. € arg mi = pla+=p"H
pi € arg minycpe Qu(p) = p i +p' Hip oS

st pll<Ay,

where g is the (stochastic) gradient, Hy is the (stochastic) Hessian, and
Ay is the trust-region radius at iteration k. The above sub-problem can be
approximately and efficiently solved using CG-Steihaug [43] which is
summarized in Algorithm 2. The output of Algorithm 2, py, is the search
direction in order to update the neural network parameters. In other
words, assume we are at k™ iteration, and the neural network parame-
ters are updated as wy1 := @k + px. More details regarding the trust-
region algorithm, the strategy for updating Ay, and accepting or
rejecting the steps can be found in [43].

Algorithm 2. CG-Steihaug [43].

Input: < (termination tolerance), g (current gradient).
1:Setzp =0,79 =g, do = —To

2: if [|ro]| < e then

3: returnpy =20 =0

4: end if

5:forj=0,1,2,... do

6: if d/ Hdj<0 then
7: Find 720 such that py = 2; +7d; minimizes my (py) and satisfies ||px| = Ak
8 return py
9: end if

s
10: Set aj = — and z,, =2 + a;jd;

; Hid;
11: if ||zj41(>Ax then
12: Find 720 such that p; = z; +7d; and satisfies ||px|| = A
13: return py
14: end if
15: Setrj =r1j + (Xijdj
16: if ||rji11]| < <k then
17: return py = zj;1
18: end if
19: Setf;, = ﬁr{rjﬂ and djy1 = —1j + fiad

iTi

20: end for
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Fig. 4. Optimization trends using different projection lengths.

3.2. Projection loss

In order to train a recurrent block for the one-step ahead prediction,
the simplest approach is to minimize the residual between the pre-
dictions and the actual values over a mini-batch in each iteration.
However, this approach for training produces unstable networks, which
are prone to divergence when predicting a long trajectory of responses
given the initial conditions. To address this issue, we introduce and
utilize the projection loss that is the basis for the training process in this
study.

Projection loss is calculated as the mean squared error of a sequence
of responses predicted by DynNet when compared with the corre-
sponding actual responses. To produce the sequence of predicted re-
sponses, the only given value is the initial conditions at some randomly
selected time steps. This initial condition is then fed into the DynNet and
the responses are fed back for p times to predict a trajectory starting from
the random initial condition (p is a user-defined projection length).
Compared to the conventional loss function, the projection loss can
effectively control the instability issue of the trained neural network.
Fig. 4 demonstrates the effect of loss functions with different projection
lengths on the testing error. In this figure a preliminary training analysis
based on a four-DOF model with elastic perfectly plastic material is
presented (nonlinear type 1 in Section 4).

As shown in Fig. 4, the length of the projection directly affects the
robustness of the optimization. In fact, when the projection length is
two, the network’s inference diverges (i.e., after multiple steps of
recurrence, DynNet outputs explode and it is outside the shown range in
the figure). The best results on the testing data are observed when the
projection length equals to 25. Note that as the projection length in the
loss function increases, the model becomes more optimal for longer
trajectory predictions, however, the training time linearly increases as
well. In fact, for loss functions with longer projection lengths, the for-
ward pass and backpropagation steps take longer and these computa-
tions cannot be distributed over the processing resources (due to the
sequential nature of the network inference). In addition, by comparing
results from projection length = 5 and projection length = 25, it is
observed that the former performs better initially (i.e., in lower itera-
tions) while the latter shows its advantage later on. From this observa-
tion, we adopt a sequentially increasing projection length model in this

1000

10°
+ SGD-Ir:0.001 * SGD-Ir:0.001
102 =+ SGD-Ir:0.005 * SGD-Ir:0.005
== SGD-Ir:0.01 SGD-Ir:0.01
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Fig. 3. Optimization trends using different optimizers: the numerical values in the legend indicate the learning rates where applicable.
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study. In the following section, the models are trained by using loss
functions with projection lengths equal to 5, 10, and 25, respectively; for
each, the models are trained for a fixed number of iterations.

3.3. Importance sampling technique

For learning highly nonlinear systems, samples may be distributed
extremely unevenly in different behavioral regions. For instance, elasto-
plastic systems normally respond linearly to the major portion of a
ground motion, regardless of the intensity of the motion. In other words,
the system undergoes nonlinear deformations occasionally only when a
large impact occurs in the input. As a result, the fraction of the one-step
ahead response transitions that are within the elastic region is dramat-
ically larger than the inelastic region. This induces a severe imbalance in
the training data distribution, which turns out to be detrimental for
model robustness. Importance sampling is a technique for online batch
selection that is used to circumvent the problem with unevenly
distributed data.

A review of more common batch selection methods are given in
Section 7 of [44]. One of the simplest and most effective approaches for
adaptive batch selection is rank-based selection [45,44]. In this method,
during the training phase, samples of each batch are sorted in
descending order based on their function value, and then, their proba-
bility of re-selection is updated based on their ranking. The idea was first
employed for reinforcement learning using temporal difference (TD) as
the reference for sample sorting, and later was adopted for deep learning
applications and based on loss function values. In this study, a similar
approach is introduced which is inspired by the notion of ranked-based
batch selection.

In the implemented hardsampling technique, a hardsampling rate ris
defined which is the ratio of samples in each batch that are eventually
selected from the hardsamples. The model starts with randomly selected
samples in the first iteration. At the end of the iteration, k (is a user-
defined hyperparameter) samples with the maximum contributions in
the total batch loss are added to a list of hardsamples. In fact, the list of
hardsamples is a bag of samples that are not learned well by the model
yet. In the next iteration, the new batch samples are selected such that by
samples are randomly selected from the entire training samples and b,
samples are randomly selected from the the list of hardsamples and b2 =
[r x (b1 + b2)] (|| is arounding function that sets the value to the largest
integer smaller than the actual value of the argument). At the end of the
iteration, the list of hardsamples is updated and passed to the next
iteration. The process continues accordingly.

To evaluate the effectiveness of the technique, the optimization
process is performed with and without hardsampling technique and
results are compared in Fig. 5. In this example, the rate of hardsampling
r is 50%. The result clearly confirms the advantage of hardsampling
technique in fast and better learning of the model. Therefore, in this
study this technique is also used in the training process of the models.
The approach is adaptive, meaning that the algorithm automatically
picks hardsamples throughout the training process. In engineering
problems, we may have an a priori hypothesis about the hardsamples.
For instance, in the elastoplastic models, it is expected that one-step

0.00100
- no hardsampling

0.00095 1 — - 50% hardsampling

0.00090 1

0.00085 1

0.00080 +

0.00075 +

Loss function value

0.00070 +

0.00065 1

0.00060

iteration

Fig. 5. Optimization trends using different hardsampling ratios.
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ahead response transitions that go beyond the elastic limit are hard-
samples. In the next section, we will confirm that our adaptive hard-
sampling technique automatically detects these samples with no need
for externally imposed constraints.

4. Numerical case studies

In this section, two case studies are considered to validate the
strengths of DynNet in response prediction of different nonlinear (NL)
systems. These case studies differ in terms of the type of introduced
nonlinearity to the systems. The first case is a four-DOF shear building
system with elastic perfectly plastic springs. The second model consists
of a four-DOF shear building system equipped with nonlinear (3" order)
elastic stiffeners (schematics of the force displacement behaviors are
shown in Fig. 6). It is expected that DynNet performs equally well for
different structural types and therefore shear buildings are selected with
no loss of generality. The governing equations of motion (EOM) for these
two nonlinear systems are shown in Egs. 2 and 3.

mi + cx + f(x) = —mI'x,. 2)
. Kix  x<A,,
fi (x) = { F, x>A, 3)

£ (%) = Ki(ax + apx?).

For the numerical simulation, Newmark’s method for nonlinear
systems is used in MATLAB. For this purpose, 20 strong ground motions
are randomly selected from Center for Engineering Strong Motion
Database (CESMD) [46]. In addition to that, 10 band limited random
white time series are synthesized and added to the the library of the
input signals. The earthquake ground motions are scaled using the
wavelet algorithm proposed by Hancock et al. [47]. The target matched
spectra for twenty earthquake ground motions as well as the mean
matched and target spectra are shown in Fig. 7. The algorithm scales the
time histories in a way that the response spectrum optimally matches
with the target spectrum within the range of 0.2T; to 1.5T; (T is the
fundamental period of the structure).

For each case study, the scaled earthquake ground motions as well as
random time histories are analyzed to predict structure’s responses (i.e.,
displacement, velocity, and acceleration) at all four DOFs. This data
include both training and testing datasets. From 30 simulated ground
motions, eight ground motions are randomly picked to be used as the
training dataset and the rest for testing. Note that since DynNet is
heavily constrained by the physics of the problem and enjoys low
training variable space, it is expected that the model is easily trainable
with small amount of training data and also is desirably generalized for a
wide range of testing data.

4.1. Case 1: Elastic-perfectly plastic model (NL type 1)

In this section, the results on the first test case - a four-DOF shear
building with elastic perfectly plastic stiffness - are presented. The me-
chanical properties of the structure is presented in Table 1. In this table,
M1 —M4 and K1 —K4 stand for mass and elastic stiffness values of DOF1
to DOF4, respectively. Fy shows the stories’ yielding force. To consider

(a) NL type 1 (b) NL type 2

Displacement Displacement

/ fi(x) f2(x)

Fig. 6. Force-displacement relationships of two nonlinear cases.
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Fig. 7. Earthquake response spectra matched with respect to the target spec-
trum and the mean spectrum.

Table 1

Mechanical properties for NL type 1.
Mechanical props. Values Units
M1 0.259 kip.s?/in
M2/M1 1 -
M3/M1 0.75 -
M4/M1 0.5 -
Fy 50 kips
K1 168 kips/in
K2/K1 7/9 -
K3/K1 1/3 -
K4/K1 1/4 -

the robustness of DynNet, three levels of noise are also considered (0%,
5%, and 10% noise levels). For each noise case, the additional noise is
imposed proportionally with respect to the maximum amplitude of the
signal (e.g., 5% noise is associated with an additional Gaussian white
noise with maximum amplitude equal to 5% of the maximum amplitude
of the signal). The network is trained to predict the full response at all
DOFs including displacement, velocity, and acceleration time histories
given the earthquake ground motion.

As concluded in the previous section, the network is trained in a
multi-level manner: 1000 iterations with 10-step projection loss, then
1000 iterations with 25-step projection loss, and finally, 1000 iterations
with 50-step projection loss. During the training process, batch size was
set fixed at 1024 (i.e., 1024 one-step ahead transitions). In total, the
network is trained for less than 100 epochs using TRCG optimizer. The
learning curve is presented in Fig. 8 (NL type 1). The figure demonstrates
that by increasing the length of projection in the custom loss function, a
sharp drop in the loss function occurs.

As previously explained, the training phase incorporates the pro-
posed hardsampling technique. To evaluate the physical interpretation
of the automatically selected hardsamples, Fig. 9 is presented. In this
figure, the entire training dataset (including eight signals) are shown
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and divided by vertical lines. The signal sections that are labelled as
hardsamples are color coded in red. Interestingly, hardsamples are
mostly found when a sudden drop (due to a severe nonlinear behavior)
has happened. This observation confirms that the algorithm reuses
highly nonlinear samples to reinforce its learning ability.

To evaluate the prediction performance of the trained network, the
prediction results on one randomly picked testing signal with 5% noise
for short and long trajectories are presented in Figs. 10 and 11. The
predictions are compared with the reference simulated signals in both
time and frequency domains (velocity predictions are neglected for
brevity). Note that in all performance plots throughout the paper, the
quantities are normalized with reference values and therefore are unit-
less.. For short trajectories (i.e., five seconds prediction in Fig. 10), the
performance is promising. Note that the nonlinear baseline variations
are accurately predicted in the displacement time signals. In terms of
frequency, the accuracy of the predicted signal is very high. For longer
trajectories (i.e., 40 seconds prediction in Fig. 11), the prediction ac-
curacy is as high. The modal peaks in the frequency domain are captured
accurately. Notably, all the baseline variations in the displacement time
signal are predicted accurately using the trained network. Note that such
high accuracies for predicting severely nonlinear responses are un-
precedented in the literature.

To further quantify the accuracy of the predictions in all the testing
signals, Pearson correlation coefficients (PCC) are calculated between
predicted and ground truth signals (40 seconds predictions) and pre-
sented in Fig. 12. PCC is a measure to quantify the fitness of predicted
trajectories with respect to the ground truth signals [48]. The results for
all three noise levels are presented. The histograms demonstrate the
distribution of different prediction accuracy values. In general, for all
predicted quantities (i.e., displacement, acceleration, and internal force)
and all considered noise levels, more than 90% of DynNet’s predictions
have PCC above 0.8. Particularly, force and acceleration predictions are
exceptionally accurate. Intuitively, in those subsets of the full state that
oscillate around zero and do not have baseline shifts (i.e., velocity, ac-
celeration, and internal force), the predictions turned out to be more
accurate due to their more predictable temporal behavior. Note that in
the noisy cases, the likelihood of having very high PCC is inevitably low
due to the irreducible noise. Still, DynNet shows a very good perfor-
mance in response predictions of these highly nonlinear signals with
strong noise.

In general, recurrent networks are prone to instability in longer
trajectories [49]. Error accumulation due to feeding back the output of
the network is reported as the main source of this instability [50]. In this
study, by physically constraining the network as well as utilizing the
projection loss for training, the model enjoys stability for longer tra-
jectory predictions. Fig. 13 shows prediction errors for different noise
levels with respect to the length of the estimated signal (the projection
length). For the noiseless case, the mean squared error (MSE) gradually
increases as the trajectory lengthens. However, the error is still very low
for very long trajectories (i.e., 10,000 one-step ahead predictions

NL Type 1 NL Type 2
102 yP 102 yP
—>— noise=0%
—8— noise=5%
—¥— noise=10%
L
@]
=
1084
WSOt ¥ wesdoey
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
iteration iteration

Fig. 8. Loss function profile versus iteration: the projection length for loss function calculation changes at iteration 1000 and 2000 (projection length equals to 10,
25, and 50 for each portion). The sudden drops in the loss function values at those transitions show the effectiveness of the proposed training technique.
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Fig. 9. Locations of the hardsamples by using adaptive sampling in the NL type 1: as expected, the majority of hardsamples are located where large residual dis-
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Fig. 10. Predicted signals for five seconds with 5% noise. The plots show that the network is very accurate in predicting responses for a short future. A high level of
accuracy is visible in both time and frequency representations of the signals with more consistency in the time signals.

equivalent to 200 seconds). Interestingly, for the two noisy cases, except
for the lower range of trajectories, the error remains nearly constant for
longer trajectories. This implies that: (1) DynNet is quite stable
regardless of the trajectory length; and (2) noisier data tends to discount
the increasing error issue for longer trajectories.

Finally, to verify the strength of DynNet in identifying the nonlinear
behavior, hysteresis diagrams for a randomly picked signal and different
noise levels are shown in Fig. 14. The DynNet estimated signals could
very accurately capture the linear tangent of the spring force. In addi-
tion, the transition to nonlinear region is learned very accurately
(normalized force values are exactly bounded within —1 to 1). The same
level of accuracy is noticeable in all noise cases.

To further investigate the scalability and generalization of the
trained DynNet, the nonlinear responses of the structure subjected to
different magnitudes of a selected earthquake ground motion are
inferred and compared with the numerical solutions. Four levels of
magnitude are considered in this analysis: 0.50x, 0.85x, 1.00x, and
1.20x (compared to the normalized ground motion). The results are
presented in Fig. 15. In this plot, dotted lines show exact simulation
results while solid lines represent DynNet predictions. Results of internal
forces and displacements for the 1% DOF are shown for brevity. Internal

forces are very accurately predicted in all four levels of magnitude of the
ground motion. The accuracy is lower in the displacement predictions,
however, the overall trends and amplitudes are carefully captured by
DynNet. Note that the selected ground motion contains a strong shock-
wave at ~380" time step which causes severe nonlinear response and a
baseline shift (residual deformation) in the displacement predictions.
The model, however, is still successful in following the exact variations
of the building responses.

4.2. Case 2: Nonlinear elastic model (NL type 2)

In the second case study, a four-DOF structure with nonlinear elastic
springs is studied. For the nonlinear springs, a 3" order polynomial
behavior is introduced that models a hardening after initial pseudo-
linear phase (see Fig. 6). Due to the elasticity of the model, no resid-
ual displacements are expected here. Mechanical properties of the
building are presented in Table 2. In this table, M’s and K’s are defined
as explained before. ; and a5 are coefficients of the 3™ order restoring
force equation (Eq. 3). The training process is identical to the previous
case study. DynNet requires no pre-processing or special
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Fig. 11. Predicted signals for 40 seconds with 5% noise. The plots show that the network is still accurate in predicting responses for a longer time. A high level of
accuracy is visible in both time and frequency representations of the signals with more consistency in the time signals. Notice that the displacement signal for the NL
type 1 is strongly nonlinear. However, the network successfully estimates it.
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Fig. 15. Response predictions for a ground motion with different magnitudes (NL type 1). This figure demonstrates the generalization strength of the trained NN
model. Note that dashed lines show the actual responses from the numerical simulation. Despite strong nonlinear behavior, all four different magnitudes are pre-

dicted very accurately.

performance in nonlinear response predictions, both in time and fre-
quency domains, regardless of the length of the trajectory. To evaluate
the performance of the trained neural network on the entire testing data,
PCC coefficients are calculated and the histograms are shown in Fig. 16.
Note that similar to the previous test case, three levels of measurement

noise are considered for both training and evaluation phases of the

network.
In Fig. 16, the general note is that the number of very high accuracy

predictions (i.e., with PCC above 0.8) is not as high as the previous case,
especially when measurement noise is introduced. However, for
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Table 2

Mechanical properties for NL type 2.
Mechanical props. Values Units
M1 0.340 kip.s?/in
M2/M1 0.8 -
M3/M1 0.75 -
M4/M1 0.6 -
K1 100 kips/in
K2/K1 3/4 -
K3/K1 1/2 -
K4/K1 1/4 .
a 1 -
az 10 inz

noiseless and 5% additive noise cases, the results still show high accu-
racy. Histograms of the displacement and internal force predictions
show a unimodel distribution with the statistical mode at PCC € [0.95
1.0]. In terms of the prediction stability for longer trajectories, MSE er-
rors with respect to the length of the prediction trajectory is presented in
Fig. 13. Again, as observed in the PCC histograms, two lower noise cases
show a steady and downbeat trend of the MSE loss progression as the
trajectory length increases while the 10% noise case is not as stable.
Notice that the values of the MSE errors generally are significantly lower
in the NL type 2 (nonlinear elastic case) compared to the NL type 1
(elastic-perfectly plastic) while histograms show higher accuracy for
prediction of the latter model. This observation is explained by the in-
elastic behavior of the NL type 1 model which can cause baseline shifts
(i.e., residual deformations). We showed that DynNet is successful in
capturing baseline variations, even though a small discrepancy causes
much larger MSE errors for these response predictions. The baseline

)

Engineering Structures 229 (2021) 111582

variations are not expected in the elastic model.

Finally, in order to validate the ability of the neural network to
predict nonlinear elastic behavior of the spring forces, hysteresis dia-
grams are plotted in Fig. 14. The restoring force here includes both the
elastic spring force and the damping force (i.e., cx +f(x) in Eq. 2). Ac-
cording to these plots, DynNet predictions very accurately match with
the simulation results. The 3™ order behavior of the spring as well as the
small energy dissipation area caused by the damper force is identified
and correctly predicted. In higher noise levels, the prediction shows
higher fluctuations around the exact plots which can be simply
explained by the high level of noise.

5. Conclusion

In this study, we proposed a data-driven approach for comprehensive
prediction of nonlinear dynamic responses of multi degrees of freedom
(DOF) systems using Recurrent Neural Networks. In particular, inspired
by common implicit dynamic analysis algorithms, DynNet block is
designed as a one-step ahead response predictor. By repeatedly inferring
the block, long response trajectories are predicted. Compared to the
most advanced data-driven methods, DynNet has significantly smaller
variable space, resulting less computational effort per iteration. Due to
physics-based constraints of the proposed architecture, the network re-
quires more advanced optimizers for a smooth and efficient learning
process. With this regard, trust-region approach using CG-Steihaug
(TRCG) algorithm was implemented. In addition, for more efficient
learning, a simple importance sampling technique as well as a trajectory
loss function was developed and implemented which resulted in faster
learning of the severely nonlinear transitions.

For verification, DynNet was tested in two nonlinear case studies: a
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Fig. 16. Pearson correlation coefficient histograms for the predicted responses - NL type 2.
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four-DOF shear building (1) with elastic perfectly plastic stiffness, and
(2) with nonlinear elastic (3 order) stiffness. For each test case, three
levels of measurement noise were included to evaluate the noise prop-
agation characteristics of the proposed network. The networks were
trained using less than 30% of the available data and evaluated using the
remaining 70%. In both test cases, we showed that the network quite
successfully was able to predict a complete set of nonlinear responses
including displacement, velocity, acceleration, and internal force time
histories at all DOFs given the applied ground motions only. The sta-
bility of the predictions for longer trajectories was analyzed and
concluded that for the majority of cases, DynNet holds the error level
stably as the trajectory length grows. Due to the recurrent nature of this
approach, the inference computational time increases linearly with the
length of the ground motion. In addition, using hysteresis diagrams, we
showed that the performance of DynNet in capturing nonlinear behav-
iors of the systems is promising.

Data-driven function approximators are extremely popular in science
and technology, however, in engineering applications due to the avail-
ability of accurate governing equations and numerical solutions, fully
black-box function approximators are less accepted. This study tries to
bridge the gap between black-box models and available exact solutions
to create a fast learner function approximator. It is believed that DynNet
creates a great potential for faster and scalable regional sustainability
and health monitoring analyses.
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