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Abstract Given a multivariate data set, sparse principal component analy-
sis (SPCA) aims to extract several linear combinations of the variables that
together explain the variance in the data as much as possible, while control-
ling the number of nonzero loadings in these combinations. In this paper we
consider 8 different optimization formulations for computing a single sparse
loading vector: we employ two norms for measuring variance (L2, L1) and
two sparsity-inducing norms (L0, L1), which are used in two ways (constraint,
penalty). Three of our formulations, notably the one with L0 constraint and
L1 variance, have not been considered in the literature. We give a unifying
reformulation which we propose to solve via the alternating maximization
(AM) method. We show that AM is equivalent to GPower for all formulations.
Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes
(multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the
methods is aimed at i) speeding up computations (our GPU code can be 100
times faster than an efficient serial code written in C++), ii) obtaining solu-
tions explaining more variance and iii) dealing with big data problems (our
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cluster code can solve a 357 GB problem in a minute).

Keywords sparse PCA · alternating maximization · GPower · big data
analytics · unsupervised learning

1 Introduction

Principal component analysis (PCA) is an indispensable tool used for di-
mension reduction in virtually all areas of science and engineering, from ma-
chine learning, statistics, genetics and finance to computer networks (?). Let
A ∈ Rn×p denote a data matrix encoding n samples (observations) of p vari-
ables (features). PCA aims to extract a few linear combinations of the columns
of A, called principal components (PCs), pointing in mutually orthogonal di-
rections, together explaining as much variance in the data as possible. If the
columns of A are centered, the problem of extracting the first PC can be
written as

max{‖Ax‖ : ‖x‖2 ≤ 1}, (1.1)

where ‖ · ‖ is a suitable norm for measuring variance. The solution x of this
optimization problem is called the loading vector, Ax (normalized) is the first
PC. Further PCs can be obtained in the same way with A replaced by a new
matrix in a process called deflation (?). Classical PCA employs the L2 norm
in the objective; using the L1 norm instead may alleviate problems caused
by outliers in the data and hence leads to a robust PCA model (?). Robust
formulations using objective functions that are not functions of the covariance
matrix (as in ?) are also possible, but these are beyond our investigation.

As normally there is no reason for the optimal loading vectors defining the
PCs to be sparse, they are usually combinations of all of the variables. In some
applications, however, sparse loading vectors enhance the interpretability of
the components and are easier to store, which leads to the idea to induce spar-
sity in the loading vectors. This problem and approaches to it are known collec-
tively as sparse PCA (SPCA); for some fundamental work, refer to ?????????.
Recent reviews on the subject can be found in ? and ?. In addition, recently,
there has been great interest in establishing theoretical properties of sparse
PCA including consistency, rates of convergence, minimax risk bounds for es-
timating eigenvectors and principal subspaces and detection under various and
usually high-dimensional statistical models. See (?), (?), (?), and (?). The im-
portance of robust and sparse models is getting more attention from various
communities. For example, Robust Principal Component Analysis (RPCA),
sometimes referred to as the Principal Component Pursuit (PCP), which de-
composes a data matrix in a low-rank matrix and a sparse matrix has been
investigated for video and signal processing (????) and inducing sparsity into
robust estimators has been successful in robust outlier detection (?). A pop-
ular way of incorporating a sparsity-inducing mechanism into optimization
formulation (??) is via either a sparsity-inducing constraint or penalty. Two
of the most popular functions for this are the L0 and L1 norm of the loading
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vector x (the L0 “norm” of x, denoted by ‖x‖0, is the number of nonzeros in
x).

1.1 Eight optimization formulations

In this paper we consider 8 optimization formulations for extracting a single
sparse loading vector (i.e., for computing the first PC) arising as combina-
tions of the following three modeling factors: we use two norms for measuring
variance (classical L2 and robust L1) and two sparsity-inducing (SI) norms
(cardinality L0 and L1), which are used in two different ways (as a constraint
or a penalty). All have the form

OPT = max
x∈X

f(x), (1.2)

with X ⊂ Rp and f detailed in Table 1. Note that if we set s = p in the
constrained or γ = 0 in the penalized versions, the sparsity-inducing functions
stop having any effect1 and we recover the classical and robust PCA (??).
Choosing 1 ≤ s < p, γ > 0 will have the effect of directly enforcing or indirectly
encouraging sparsity in the solution x.

# Variance SI norm SI norm usage X f(x)

1 L2 L0 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} ‖Ax‖2

2 L1 L0 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} ‖Ax‖1

3 L2 L1 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s} ‖Ax‖2

4 L1 L1 constraint {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s} ‖Ax‖1

5 L2 L0 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖22 − γ‖x‖0

6 L1 L0 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖21 − γ‖x‖0

7 L2 L1 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖2 − γ‖x‖1

8 L1 L1 penalty {x ∈ Rp : ‖x‖2 ≤ 1} ‖Ax‖1 − γ‖x‖1

Table 1: Eight sparse PCA optimization formulations; see (??).

All 4 SPCA formulations of Table 1 involving L2 variance were previously
studied in the literature and are very popular. One of the earliest work, the
well-known SCoTLASS (Simplified Component Technique-LASSO) method in
?, was for the L1 penalized formulation. Although the original method is quite
slow, faster numerical algorithms using projected gradient (?) and penalized

1 In the L1 penalized formulations this can be seen from the inequality ‖x‖1 ≤√
‖x‖0‖x‖2.
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matrix composition (?) was developed for SCoTLASS. The later one is an
application of the conditional gradient algorithm as noted in (?). ? considered
a generalization of the problem with L1 penalty, in which a mixed norm of
L1 and L2 penalties is used. ? solved a series of convex relaxations, based on
semidefinite programming of the L0 constrained L2 variance problem, while ?
considered the L0 penalized and constrained formulations. While, ? studied the
L0 and L1 penalized versions, ? looked at all four. Enforcing sparsity directly
with an L0 constrained formulation is NP-hard and it can’t be approximated
by an efficient approximation algorithm as shown in ?. Therefore, there are
only a few works that attempt to solve this problem exactly; one recent notable
study is ?, which developed a branch and bound algorithm for this problem.
In addition, ? discussed a hierarchy of optimality conditions for this problem.

The L1 constrained L1 variance formulation was first proposed by ?. To the
best of our knowledge, the remaining three L1 variance formulations were not
considered in the literature before. In particular, the L0 constrained L1 vari-
ance formulation is new—and is perhaps preferable as it directly constraints
the cardinality of the loading vector x without using any proxies.

1.2 Reformulation and alternating maximization (AM) method

In all 8 formulations we introduce an additional (dummy) variable y, which
allows us to propose a generic alternating maximization method for solving
them: i) for a fixed loading vector, find the best dummy variable (one maximiz-
ing the objective), then ii) fix the dummy variable and find the best loading
vector; repeat steps i) and ii). This and the resulting algorithms are described
in detail in Section ??. The generic AM method is not limited to our choice of
SPCA formulations. Indeed, it is applicable, for instance, if instead of measur-
ing the variance using either the L1 or the L2 norm, we use any other norm.
One critical feature shared by the formulations in Table 1 is that steps i) and
ii) of the AM method can be performed efficiently, in closed form, with the
main computational burden in each step being a matrix-vector multiplication
(Ax in step i) and AT y in step ii)). Our method produces a sequence of loading
vectors x(k), k ≥ 0, with monotonically increasing values f(x(k)).

Our approach of introducing a dummy variable and using AM is similar to
that of ?, where it is done implicitly, but mainly to that of ?, where it is fully
explicit, albeit used for different purposes.

Besides providing a conceptual unification for solving all 8 formulations us-
ing a single algorithm (AM), the main theoretical result of this paper is estab-
lishing that, perhaps surprisingly, in all 8 cases, the AM method is equivalent
to the GPower method (?) applied to a certain derived objective function, with
iterates being either the loading vectors or the dummy variables, depending
on the formulation. This result is stated and proved in Section ??.
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1.3 Parallelism

Besides giving a new unifying framework and a generic algorithm for solving
a number of SPCA formulations, 5 of which were previously proposed in the
literature and 3 not, our further contribution is in providing efficient strategies
for parallelizing AM at two different levels: i) running AM in parallel from
multiple starting points in order to obtain a solution explaining more variance
and ii) speeding up the linear algebra involved. This is described in detail in
Section ??.

Moreover, we provide parallel open-source code2 implementing these par-
allelization strategies, for each of our 8 formulations, on 3 computing archi-
tectures: i) multi-core machine, ii) GPU-enabled computer, and iii) computer
cluster. We also provide a serial code; however, as nearly all modern com-
puters are multi-core, the serial implementation only serves the purpose of a
benchmark against which once can measure parallelization speedup. Hence, we
provide a total of 8× 3 = 24 parallel sparse PCA codes based on AM. Numer-
ical experiments with our multi-core, GPU and cluster codes are performed in
Section ??.

Parallelism in our codes serves several purposes:

1. Speeding up computations. As described above, the AM method computes
a matrix-vector multiplication at every iteration; this can be parallelized.
We find that our GPU implementations are faster than our multi-core im-
plementations, which are, in turn, considerably faster than the benchmark
single-core codes.

2. Obtaining solutions explaining more variance. In some applications, such
as in the computation of RIP constants for compressed sensing (?), it is
critical that a PC is computed with as high explained variance as possible.
The output of our 8 subroutines depends on the starting point used; it
only finds stationary solutions. Running them repeatedly from different
starting points and keeping the solution with the largest objective value
results in a PC explaining more variance. There are several ways in which
this can be done, we implement 4 (NAI = “naive”, SFA = “start-from-all”,
BAT = “batches” and OTF = “on-the-fly”); details are given in Section ??.
A naive (NAI) approach is to do this sequentially; a different possibility
is to run the method from several or all starting points in parallel (BAT,
SFA), possibly asynchronously (OTF). This way at each iteration we need
to perform a matrix-matrix multiplication which, when computed in par-
allel, is performed significantly faster compared to doing the corresponding
number of parallel matrix-vector multiplications, one after another.

3. Dealing with big data problems. If speed matters, for problems of small
enough size we recommend using a GPU, if available. Since GPUs have
stricter memory limitations than multi-core workstations (a typical GPU
has 6GB RAM, a multi-core machine could have 20GB RAM), one may

2 Open source code with efficient implementations of the algorithms developed in this
paper is published here: https://github.com/optml/24am.

https://github.com/optml/24am
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need to use a high-memory multi-core workstation if the problem size ex-
ceeds the GPU limit. However, for large enough (=big data) problems, one
will need to use a cluster. Our cluster codes partition A, store parts of it
on different nodes, and do the computations in a distributed way.

Notation. By x and y we denote column vectors in Rp and Rn, respec-
tively. The coordinates of a vector are denoted by subscripts (eg., x1, x2, . . . )
while iterates are denoted by superscripts in brackets (eg., x(0), x(1), . . . ). We
reserve the letter k for the iteration counter. By ‖x‖0 we refer to the cardinal-
ity (number of nonzero loadings) of vector x. The L1, L2 and L∞ norms are
defined by ‖z‖1 =

∑
i |zi|, ‖z‖2 = (

∑
i z

2
i )1/2 and ‖z‖∞ = maxi |zi|, respec-

tively. For a scalar t, we let [t]+ = max{0, t} and by sgn(t) we denote the sign
of t.

2 Alternating Maximization (AM) Method

As outlined in the previous section, we will solve (??) by introducing a dummy
variable y into each of the 8 formulations and apply an AM method to the
reformulation. First, notice that for any pair of conjugate norms ‖·‖ and ‖·‖∗,
we have, by definition,

‖z‖ = max
‖y‖∗≤1

yT z. (2.3)

In particular, ‖ · ‖∗2 = ‖ · ‖2 and ‖ · ‖∗1 = ‖ · ‖∞.

Now, let Y := {y ∈ Rn : ‖y‖2 ≤ 1} for the L2 variance formulations and
Y := {y ∈ Rn : ‖y‖∞ ≤ 1} for the L1 variance formulations. Further, let
F (x, y) be the function obtained from f(x) after replacing ‖Ax‖ with yTAx
(resp. ‖Ax‖2 with (yTAx)2). Then, in view of the above, (??) takes on the
equivalent form

OPT = max
x∈X

max
y∈Y

F (x, y). (2.4)

That is, the 8 problems from Table ?? can be reformulated into the form (??);
the details can be found in Table ??.

We propose to solve (??) via Algorithm ??.

Algorithm 1 Alternating Maximization (AM) Method.

Select initial point x(0) ∈ Rp; k ← 0
Repeat
y(k) ← y(x(k)) := arg maxy∈Y F (x(k), y)

x(k+1) ← x(y(k)) := arg maxx∈X F (x, y(k))
Until a stopping criterion is satisfied
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# X Y F (x, y)

1 {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} {y ∈ Rn : ‖y‖2 ≤ 1} yTAx

2 {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s} {y ∈ Rn : ‖y‖∞ ≤ 1} yTAx

3 {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s} {y ∈ Rn : ‖y‖2 ≤ 1} yTAx

4 {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s} {y ∈ Rn : ‖y‖∞ ≤ 1} yTAx

5 {x ∈ Rp : ‖x‖2 ≤ 1} {y ∈ Rn : ‖y‖2 ≤ 1} (yTAx)2 − γ‖x‖0

6 {x ∈ Rp : ‖x‖2 ≤ 1} {y ∈ Rn : ‖y‖∞ ≤ 1} (yTAx)2 − γ‖x‖0

7 {x ∈ Rp : ‖x‖2 ≤ 1} {y ∈ Rn : ‖y‖2 ≤ 1} yTAx− γ‖x‖1

8 {x ∈ Rp : ‖x‖2 ≤ 1} {y ∈ Rn : ‖y‖∞ ≤ 1} yTAx− γ‖x‖1

Table 2: Reformulations of the problems from Table ??.

2.1 Solving the subproblems

All 8 problems of Table ?? enjoy the property that both of the steps (subprob-
lems) of Algorithm ?? can be computed in closed form. In particular, each of
these 8× 2 subproblems is of one of the 6 forms listed in Table ??.

Subproblem # φ(z) Z z∗ φ(z∗)

S1 aT z or (aT z)2 ‖z‖2 ≤ 1 a
‖a‖2

‖a‖2 or ‖a‖22

S2 aT z ‖z‖∞ ≤ 1 sgn(a) ‖a‖1

S3 aT z ‖z‖2 ≤ 1, ‖z‖0 ≤ s
Ts(a)
‖Ts(a)‖2

‖Ts(a)‖2

S4 aT z ‖z‖2 ≤ 1, ‖z‖1 ≤
√
s

Vλs(a)
(a)

‖Vλs(a)(a)‖2
λs(a)

√
s + ‖Vλs(a)(a)‖2

S5 (aT z)2 − γ‖z‖0 ‖z‖2 ≤ 1
Uγ (a)

‖Uγ (a)‖2
‖Uγ (a)‖22 − γ‖Uγ (a)‖0

S6 aT z − γ‖z‖1 ‖z‖2 ≤ 1
Vγ (a)

‖Vγ (a)‖2
‖Vγ (a)‖2

Table 3: Closed-form solutions of AM subproblems; z∗ := arg maxz∈Z φ(z).

The proofs of these elementary results, many of which are of folklore na-
ture, can be found, for instance, in (?) (and partially in (?)). The columns
of Table ??, from left to right, correspond to the objective function, feasible
region, maximizer (optimal solution) and maximum (optimal objective value).
The first result will be used both with z = x and z = y, the second result with
z = y and the remaining four results with z = x.



8 Richtárik, Jahani, Ahipaşaoğlu, Takáč

Table ?? is brief at the cost of referring to a number of operators (Ts, Uγ ,
Vγ : Rm 7→ Rm and λs : Rm 7→ R), which we will now define. For a given
vector a ∈ Rm and integer s ∈ {0, 1, . . . ,m}, by Ts(a) ∈ Rm we denote the
vector obtained from a by retaining only the s largest components of a in
absolute value, with the remaining ones replaced by zero. For instance, for
a = (1,−4, 2, 5, 3)T and s = 2 we have Ts(a) = (0,−4, 0, 5, 0)T . For γ ≥ 0, we
define operators Uγ and Vγ element-wise for i = 1, . . . ,m as follows:

(Uγ(a))i := ai[sgn(a2i − γ)]+, (2.5)

(Vγ(a))i := sgn(ai)(|ai| − γ)+. (2.6)

Furthermore, we let

λs(a) := arg min
λ≥0

λ
√
s+ ‖Vλ(a)‖2,

which is the solution of the one-dimensional dual of the optimization problem
in line 4 of Table ??.

2.2 The AM method for all 8 SPCA formulations

Combining Algorithm ?? with the subproblem solutions given in Table ??, the
AM method for all our 8 SPCA formulations can be written down concisely;
see Algorithm ??.

Algorithm 2 AM method for solving the 8 SPCA formulations of Table ??.

Select initial point x(0) ∈ Rp; k ← 0
Repeat
u = Ax(k)

If L1 variance then y(k) ← sgn(u)
If L2 variance then y(k) ← u/‖u‖2

v = AT y(k)

If L0 penalty then x(k+1) ← Uγ(v)/‖Uγ(v)‖2
If L1 penalty then x(k+1) ← Vγ(v)/‖Vγ(v)‖2
If L0 constraint then x(k+1) ← Ts(v)/‖Ts(v)‖2
If L1 constraint then x(k+1) ← Vλs(v)(v)/‖Vλs(v)(v)‖2

k ← k + 1
Until a stopping criterion is satisfied

Note that in the methods described in Algorithm ?? it is (in theory) not
necessary to normalize the vector Uγ(v) (resp. Vγ(v), Ts(v), and Vλs(a)(v))

when computing x(k+1) since clearly the iterate y(k+1), which depends on
x(k+1), is invariant under positive scalings of x(k+1), and yk is being either
normalized, or is computed using sgn function. We have to remember, how-
ever, to normalize the output. When the matrix A is not well conditioned, it
is still recommended to normalize vectors Uγ(v), Vγ(v), Ts(v), and Vλs(a)(v))
to eliminate the effect of limited floating point precision.
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The method is terminated when a maximum number of iterations maxIt
is reached or when

F (x(k+1), y(k))

F (x(k), y(k−1))
≤ 1 + tol,

whichever happens sooner.

3 Equivalence of AM and GPower

GPower (generalized power method) (?) is a simple algorithm for maximizing
a convex function Ψ on a compact set Ω, which works via a “linearize and
maximize” strategy. If by Ψ ′(z(k)) we denote an arbitrary subgradient of Ψ at
z(k), then GPower performs the following iteration:

z(k+1) = arg max
z∈Ω
{Ψ(z(k)) + 〈Ψ ′(z(k)), z− z(k)〉} = arg max

z∈Ω
〈Ψ ′(z(k)), z〉. (3.7)

The following theorem, our main result, gives a nontrivial insight into the
relationship of AM and GPower, when the former is applied to solving any
of the 8 SPCA formulations considered, and GPower is applied to a derived
problem, as described by the theorem.

Theorem 1 (AM = GPower) The AM and GPower methods are equiva-
lent in the following sense:

1. For the 4 constrained sparse PCA formulations of Table ??, the x iterates
of the AM method applied to the corresponding reformulation of Table ??
are identical to the iterates of the GPower method as applied to the problem
of maximizing the convex function

FY (x)
def
= max

y∈Y
F (x, y)

on X, started from a feasible x(0), such that ‖Ax(0)‖ 6= 0.
2. For the 4 penalized sparse PCA formulations of Table ??, the y iterates of

the AM method applied to the corresponding reformulation of Table ?? are
identical to the iterates of the GPower method as applied to the problem of
maximizing the convex function

FX(y)
def
= max

x∈X
F (x, y)

on Y , started from a feasible y(0) (we assume that y(0), s or γ are chosen
such that FX(y0) > 0).

Proof Recall that we wish to solve the problem

OPT = max
x∈X

f(x) = max
x∈X

max
y∈Y

F (x, y)︸ ︷︷ ︸
FY (x)

= max
y∈Y

max
x∈X

F (x, y)︸ ︷︷ ︸
FX(y)

.

We will now prove the equivalence for all 8 choices of (f,X, Y, F ) given in
Tables ?? and ??. In the proofs we will also refer to the closed form solutions
of the subproblem (S1)–(S6), as detailed in Table ??.
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Consider first the constrained formulations: 1, 2, 3 and 4. By induction
assume that the k-th x-iterate (x(k)) of AM is identical to the k-th iterate of
GPower (for k = 0 this is enforced by the assumption that GPower is started
from x(0)). By considering all 4 formulations individually, we will show that
x(k+1) produced by AM and GPower are also identical.

Formulation 1: Here we have

f(x) = ‖Ax‖2, F (x, y) = yTAx,

X = {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s}, Y = {y ∈ Rn : ‖y‖2 ≤ 1}.

First, note that

FY (x) = max
y∈Y

F (x, y)
(S1)
= ‖Ax‖2,

the gradient of which is given by

F ′Y (x) =
ATAx

‖Ax‖2
. (3.8)

Given x(k), in the AM method we have

y(k) = arg max
y∈Y

F (x(k), y)
(S1)
=

Ax(k)

‖Ax(k)‖2
. (3.9)

One iteration of GPower started from x(k) will thus produce the iterate

x(k+1) (??)
= arg max

x∈X
〈F ′Y (x(k)), x〉 (??)

= arg max
x∈X

〈
ATAx(k)

‖Ax(k)‖2
, x

〉
(??)
= arg max

x∈X
〈AT y(k), x〉

(S3)
=

Ts(A
T y(k))

‖Ts(AT y(k))‖2
.

Observe that this is precisely how x(k+1) is computed in the AM method.
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Formulation 2: Here we have

f(x) = ‖Ax‖1, F (x, y) = yTAx,

X = {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖0 ≤ s}, Y = {y ∈ Rn : ‖y‖∞ ≤ 1}.

First, note that

FY (x) = max
y∈Y

F (x, y)
(S2)
= ‖Ax‖1,

the subgradient of which is given by

F ′Y (x) = AT sgn(Ax). (3.10)

Given x(k), in the AM method we have

y(k) = arg max
y∈Y

F (x(k), y)
(S2)
= sgn(Ax(k)). (3.11)

One iteration of GPower started from x(k) will thus produce the iterate

x(k+1) (??)
= arg max

x∈X
〈F ′Y (x(k)), x〉 (??)

= arg max
x∈X

〈
AT sgn(Ax(k)), x

〉
(??)
= arg max

x∈X
〈AT y(k), x〉

(S3)
=

Ts(A
T y(k))

‖Ts(AT y(k))‖2
.

Observe that this is precisely how x(k+1) is computed in the AM method.
Formulation 3: Here we have

f(x) = ‖Ax‖2, F (x, y) = yTAx,

X = {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s}, Y = {y ∈ Rn : ‖y‖2 ≤ 1}.

First, note that

FY (x) = max
y∈Y

F (x, y)
(S1)
= ‖Ax‖2,

the gradient of which is given by

F ′Y (x) =
ATAx

‖Ax‖2
. (3.12)

Given x(k), in the AM method we have

y(k) = arg max
y∈Y

F (x(k), y)
(S1)
=

Ax(k)

‖Ax(k)‖2
. (3.13)
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One iteration of GPower started from x(k) will thus produce the iterate

x(k+1) (??)
= arg max

x∈X
〈F ′Y (x(k)), x〉 (??)

= arg max
x∈X

〈
ATAx(k)

‖Ax(k)‖2
, x

〉
(??)
= arg max

x∈X
〈AT y(k), x〉

(S4)
=

Vλs(AT y(k))(A
T y(k))

‖Vλs(AT y(k))(AT y(k))‖2
.

Observe that this is precisely how x(k+1) is computed in the AM method.
Formulation 4: Here we have

f(x) = ‖Ax‖1, F (x, y) = yTAx,

X = {x ∈ Rp : ‖x‖2 ≤ 1, ‖x‖1 ≤
√
s}, Y = {y ∈ Rn : ‖y‖∞ ≤ 1}.

First, note that

FY (x) = max
y∈Y

F (x, y)
(S1)
= ‖Ax‖1,

the subgradient of which is given by

F ′Y (x) = AT sgn(Ax). (3.14)

Given x(k), in the AM method we have

y(k) = arg max
y∈Y

F (x(k), y)
(S2)
= sgn(Ax(k)). (3.15)

One iteration of GPower started from x(k) will thus produce the iterate

x(k+1) (??)
= arg max

x∈X
〈F ′Y (x(k)), x〉 (??)

= arg max
x∈X

〈
AT sgn(Ax), x

〉
(??)
= arg max

x∈X
〈AT y(k), x〉

(S4)
=

Vλs(AT y(k))(A
T y(k))

‖Vλs(AT y(k))(AT y(k))‖2
.

Observe that this is precisely how x(k+1) is computed in the AM method.

Consider now the penalized formulations: 5, 6, 7 and 8. By induction assume
that the k-th y-iterate (y(k)) of AM is identical to the k-th iterate of GPower
(for k = 0 this is enforced by the assumption that GPower is started from
y(0)). By considering all 4 formulations individually, we will show that y(k+1)

produced by AM and GPower are also identical. Let A = [a1, . . . , ap], i.e., the
i-th column of A is ai.
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Formulation 5: Here we have

f(x) = ‖Ax‖22 − γ‖x‖0, F (x, y) = (yTAx)2 − γ‖x‖0,

X = {x ∈ Rp : ‖x‖2 ≤ 1}, Y = {y ∈ Rn : ‖y‖2 ≤ 1}.
First, note that

FX(y) = max
x∈X

F (x, y)
(S5)
= ‖Uγ(AT y)‖22−γ‖Uγ(AT y)‖0 =

p∑
i=1

[(aTi y)2−γ]+,

the subgradient of which is given by

F ′X(y) = 2

p∑
i=1

[sgn((aTi y)− γ)]+(aTi y)ai
(??)
= 2AUγ(AT y). (3.16)

Given y(k), in the AM method we have

x(k+1) = arg max
x∈X

F (x, y(k))
(S5)
=

Uγ(AT y(k))

‖Uγ(AT y(k))‖2
. (3.17)

One iteration of GPower started from y(k) will thus produce the iterate

y(k+1) (??)
= arg max

y∈Y
〈F ′X(y(k)), y〉 (??)

= arg max
‖y‖∞≤1

〈2AUγ(AT y), y〉

(??)
= arg max

‖y‖2≤1
〈Ax(k+1), y〉

(S1)
=

Ax(k+1)

‖Ax(k+1)‖2
.

Observe that this is precisely how y(k+1) is computed in the AM method.
Formulation 6: Here we have

f(x) = ‖Ax‖21 − γ‖x‖0, F (x, y) = (yTAx)2 − γ‖x‖0,

X = {x ∈ Rp : ‖x‖2 ≤ 1}, Y = {y ∈ Rn : ‖y‖∞ ≤ 1}.
First, note that

FX(y) = max
x∈X

F (x, y)
(S5)
= ‖Uγ(AT y)‖22−γ‖Uγ(AT y)‖0 =

p∑
i=1

[(aTi y)2−γ]+,

the subgradient of which is given by

F ′X(y) = 2

p∑
i=1

[sgn((aTi y)− γ)]+(aTi y)ai
(??)
= 2AUγ(AT y). (3.18)

Given y(k), in the AM method we have

x(k+1) = arg max
x∈X

F (x, y(k))
(S5)
=

Uγ(AT y(k))

‖Uγ(AT y(k))‖2
. (3.19)
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One iteration of GPower started from y(k) will thus produce the iterate

y(k+1) (??)
= arg max

y∈Y
〈F ′X(y(k)), y〉 (??)

= arg max
‖y‖∞≤1

〈2AUγ(AT y), y〉

(??)
= arg max

‖y‖∞≤1
〈Ax(k+1), y〉

(S2)
= sgn(Ax(k+1)).

Observe that this is precisely how y(k+1) is computed in the AM method.
Formulation 7: Here we have

f(x) = ‖Ax‖2 − γ‖x‖1, F (x, y) = yTAx− γ‖x‖1,

X = {x ∈ Rp : ‖x‖2 ≤ 1}, Y = {y ∈ Rn : ‖y‖2 ≤ 1}.

Note that the functions y 7→ F (x, y) are linear and that, by definition,
FX(y) = maxx∈X F (x, y). Moreover, note that the gradient of y 7→ F (x, y)
at y is equal to Ax. Hence, if x is any vector that maximizes F (x, y(k))
over X, then Ax is a subgradient of FX at y(k). Note that this is precisely
how x(k+1) is defined in the AM method: x(k+1) = arg maxx∈X F (x, y(k)).
Hence, Ax(k+1) is a subgradient of FX at y(k) and one iteration of GPower
started from y(k) will produce the iterate

y(k+1) (??)
= arg max

y∈Y
〈F ′X(y(k)), y〉 = arg max

‖y‖2≤1
〈Ax(k+1), y〉 (S1)=

Ax(k+1)

‖Ax(k+1)‖2
.

Observe that this is precisely how y(k+1) is computed in the AM method.
Formulation 8: Here we have

f(x) = ‖Ax‖1 − γ‖x‖1, F (x, y) = yTAx− γ‖x‖1,

X = {x ∈ Rp : ‖x‖2 ≤ 1}, Y = {y ∈ Rn : ‖y‖∞ ≤ 1}.

Note that the functions y 7→ F (x, y) are linear and that, by definition,
FX(y) = maxx∈X F (x, y). Moreover, note that the gradient of y 7→ F (x, y)
at y is equal to Ax. Hence, if x is any vector that maximizes F (x, y(k))
over X, then Ax is a subgradient of FX at y(k). Note that this is precisely
how x(k+1) is defined in the AM method: x(k+1) = arg maxx∈X F (x, y(k)).
Hence, Ax(k+1) is a subgradient of FX at y(k) and one iteration of GPower
started from y(k) will produce the iterate

y(k+1) (??)
= arg max

y∈Y
〈F ′X(y(k)), y〉 = arg max

‖y‖∞≤1
〈Ax(k+1), y〉 (S2)= sgn(Ax(k+1)).

Observe that this is precisely how y(k+1) is computed in the AM method.

Having established equivalence between AM and GPower, convergence to
a stationary point of the AM method for all 8 SPCA formulations follows
from the theory developed by ? and ?.
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4 Embedding AM within a Parallel Scheme

In this section we describe several approaches for embedding Algorithm ??
(AM) within a parallel scheme for solving l identical SPCA problems, started
from a number of starting points, x(0,1), . . . , x(0,l). This is done in order to
obtain a loading vector explaining more variance and will be discussed in
more detail in Section ??.

As we will see, it may not necessarily be most efficient to solve all l prob-
lems simultaneously. Instead, we consider a class of parallelization schemes
where we divide the l problems into “batches” of r problems each, and solve
each batch of r problems simultaneously. In this setting at each iteration we
need to perform identical operations in parallel, notably matrix-vector multi-
plications Ax(k,1), . . . , Ax(k,r) and AT y(k,1), . . . , AT y(k,r). It is useful to view
the sequence of matrix-vector products as a single matrix-matrix product, e.g.,
A[x(k,1), . . . , x(k,r)] in the first case, and use optimized libraries for paralleliza-
tion. This simple trick leads to considerable speedups when compared to other
approaches. We use similar ideas for the parallel evaluation of the operators.
Note that even in the l = 1 case, i.e, if we wish to run SPCA from a single
starting point only, there is scope for parallelization of the matrix-vector prod-
ucts and function evaluations. Hence, parallelization in our method serves two
purposes:

1. to obtain solutions explaining more variance by solving the problem from
several starting points (we choose l > 1),

2. to speed up computations by parallelizing the linear algebra involved (this
applies to both l = 1 and l > 1 cases).

Fig. 1: Four ways of embedding Algorithm 2 (AM) in a parallel scheme. In
this example we run AM on the same problem l = 6 times, using different
(random) starting points.
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In particular, in this section we describe 4 parallelization approaches:

– NAI = “naive” (r = 1),
– SFA = “start-from-all” (r = l),
– BAT = “batches” (1 ≤ r ≤ l)
– OTF = “on-the-fly” (BAT improved by a dynamic replacement strategy

to reduce idle time).

The working of these 4 approaches is illustrated in Figure ?? in a situation
with l = 6. In what follows we describe the methods informally, in a nar-
rative style, with a suitable choice of numerical experiments illustrating the
differences between the ideas.

4.1 The hunt for more explained variance

As shown by ? and ? for GPower, and due to our equivalence theorem (The-
orem 1), we know that Algorithm 2 (AM) is only able to converge to a
stationary point rather than a global solution. Moreover, quality of the solu-
tion will depend on the starting point (SP) x(0) used. When the algorithm is
run just once, the quality of the obtained solution, in terms of the objective
value (or explained variance), can be poor. Hence, if the amount of explained
variance is important, it will be useful to run the method repeatedly from a
number of different SPs. We considered “AT&T Database of Faces” data set3,
which contains 400 images, and the size of each image is 92x112 pixels. Af-
ter reshaping the data set, the data matrix has 400 rows and 10304 columns.
We normalized each row of the matrix, and centralized each column of the
normalized matrix and solved the corresponding SPCA problems described in
Table ?? with s = 1, 2, 4, . . . , 4096. For each s we run AM from l = 1, 000
randomly generated SPs with maxIt = 200 and tol = 10−6. It is noteworthy
to mention that the explained variance for the cases with L2 and L1 vari-
ance are considered as ‖Ax‖22 and ‖Ax‖1, respectively. The results are given
in Figures ?? and ??. In the first two rows of Figures ?? and ??, the vertical
axis corresponds to the amount of explained variance of a particular solution
compared to the best solution found with respect to the target sparsity level
(horizontal axis) with the above setting. For the cases with L1 constrained, we
considered λs(a) to be updated for some predefined iterations (let’s say 10),
and λs(a) would be fixed afterwards in order to have a stable F (x, y). The
same trick can be applied to the cases with penalty (cases 5-8). That is, we
control sparsity level by γ for some predefined iterations; to do so, in order to
reach the sparsity level of s, first, we sort the vector “a” based on its squared
and absolute value for the operators Uγ(a) and Vγ(a), respectively. Then, we
set γ to be the sth element of the new sorted vector, and by doing so we can
guarantee the sparsity level of the output vector to be s for the predefined
iterations, and we make γ fixed afterwards. Overall, it means that there is no
need to tune γ in the aforementioned cases. In the third rows of the Figures

3 https://www.kaggle.com/kasikrit/att-database-of-faces/data

https://www.kaggle.com/kasikrit/att-database-of-faces/data
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Fig. 2: It may be easy to converge to a poor solution (corresponding L2 variance
SPCA problems) for AT&T Database of Faces.

?? and ??, the left ones show the best explained variance for the formulations
with L2 and L1 variances among 1000 runs; and the right ones highlight that
the best explained variance for all formulations are close to each other.

Clearly, for small s it is easy to obtain a bad solution if we run the method
only a few times; this effect is milder for large s but may be substantial never-
theless in real life problems. Hence, especially when s is small, it is necessary
to employ a globalization strategy such as rerunning AM from a number of
different starting points. This experiment illustrates that the simple strategy
of running the method from a number of randomly generated starting points



18 Richtárik, Jahani, Ahipaşaoğlu, Takáč
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Fig. 3: It may be easy to converge to a poor solution (corresponding L1 variance
SPCA problems) for AT&T Database of Faces.

can be effective in finding solutions with more explained variance. A “naive”
(NAI) approach would be to do this sequentially: solve the problem with one
starting point first before solving it for another starting point.

4.2 Economies of scale

Running AM in parallel, started from a number of SPs, increases the uti-
lization of computer resources, especially on parallel architectures. In order to
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demonstrate this, we generated 6 data matrices with p = 1000, 2000, . . . , 32000
and run the AM method for the L0 penalized L2 variance SPCA formulation
with l = 256 SPs (and maxIt = 10). By BATr we denote the approach with
batches of size r. Hence, SFA = BAT256 and NAI = BAT1. Besides these two
basic choices, we look at BAT4, BAT16 and BAT64 as well. The results can
be found in Figure ??.
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Fig. 4: Economies of scale: “Start-from-all” (SFA) is better than any of the
batching strategies on a single-core machine (LEFT); even more so on a multi-
core machine (RIGHT).

Different problem sizes p appear on the horizontal axis; on the vertical
axis we plot the speedup obtained by applying a particular batching strategy
compared to NAI. Note that even on a single-core computer (LEFT plot) we
benefit from running the methods in parallel (“economies of scale”) rather
than running them one after another. Indeed, we can obtain a 2−3× speedup
with BAT16 across the whole range of problem sizes, and 4× speedup with
SFA for large enough p. With 12 cores (RIGHT plot) the effect is much more
dramatic: the speedup for BAT16 is consistently in the 10 − 20× range, and
can even reach 50× for SFA.

4.3 Dynamic replacement

It often happens, especially when batch size is large, that some problems within
a batch converge sooner than others. The vanilla BAT approach described
above does nothing about it, and continues through matrix-matrix multiplies,
updating the already converged iterates, until the last problem in the batch
converges. A minor but not negligible speedup is possible by employing an
“on-the-fly” (OTF) dynamic replacement technique, where whenever a cer-
tain problem converges, it is replaced by a new one. Hence, no predefined
batches exist—OTF can be viewed as a greedy list scheduling heuristic. We
used l = 1024 starting points and compare SFA1024 with BAT64 and OTF64–
the dynamic replacement variant of BAT64.
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Fig. 5: Dynamic Replacement: “On-the-fly” (OTF) is better than “Batches”
(BAT), which is better than “start-from-all” (SFA).

Looking at the LEFT plot in Figure ??, we see that the average number of
iterations per starting point is much smaller for OTF. This results in speedup
of more than 2× when compared with SFA (RIGHT plot). Notably, SFA is
slower than both BAT64 and OTF64, which shows that it may not be optimal
to choose r = l.

5 Multi-core Processors, GPUs and Clusters

Accompanying this paper is the open source software package “24am”4 imple-
menting parallelization strategies described in Section ??, all with Algorithm
2 (AM) used as the underlying solution method, with the option of using any
of the 8 optimization formulations of SPCA described in Table ??. The name
24am comes from the fact that we implement the solver for 3 different parallel
architectures: multi-core processors, GPUs and computer clusters, leading to
24 = 8× 3 methods based on AM.

In the rest of this section we first perform several numerical experiments
illustrating the speedups obtained by parallelization on these three computing
architectures. We then conclude with a real-life numerical example (large text
corpora) and a few implementation remarks.

5.1 Multi-core speedup

Here we solve 9 random L1 constrained L1 variance SPCA instances of sizes
p = 100 × 2i, i = 1, . . . , 9, n = p/10, with 100 SPs each, on a machine using
1, 2, 4 and 8 cores; see Figure ??.

The plot on the LEFT shows the total computational time; the plot on the
RIGHT shows the speedup of multi-core codes compared to the single-core
code. Note that the speedup is consistently close to the number of cores for

4 https://github.com/optml/24am.

https://github.com/optml/24am
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Fig. 6: Multi-core speedup is proportional to the number of cores.

the 2 and 4-core setups across all problem sizes, and is growing with p from
5× to about 7.5× in the 8-core setup.

5.2 GPU speedup

Here we solve 8 random L1 penalized L1 variance SPCA instances with p vary-
ing roughly between 103 and 105, and n = p/200. We solved all formulations
with {1, 16, 256} SPs on a single-core CPU and a GPU; the results are shown
in Figure ??.
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Fig. 7: GPU code can achieve 125× speedup compared to single-core when
256 starting points are used.

The plot on the LEFT shows the total computational time. The red lines
with triangle markers correspond to the single-core setup, the “higher” the
line, the more starting points were used. The blue lines with square markers
correspond to our GPU codes. While the runtime increases linearly with prob-
lem size for the single-core codes, it grows slowly for the GPU codes. Note that
the GPU code may actually be slower for small problem sizes. Looking at the
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RIGHT plot, we see that the GPU code is capable of a 100-125× speedup; this
happens for large problem sizes and 256 SPs. The speedup can reach 100× for
16 SPs as well.

5.3 Cluster code

In this experiment we solved several L1 penalized L2 variance SPCA problems
with a fully dense matrix A ∈ Rn×p; the results are in Table ??. We focus our
discussion on the largest of the problems only (last three lines of the table),
one with n = 6× 103 and p = 8× 106. We used a cluster of 800 CPUs; storage
of the data matrix required 357.6 GB of memory. The matrix was first loaded
from files to memory; this process took t1 = 92 seconds. Subsequently, the
loaded data was distributed to CPUs where needed, which took additional
t2 = 713 seconds. Finally we run the AM method with 1, 32 and 64 starting
points and measured the average time of a single iteration; the results are
t13 = 4.1, t13 = 51.1 and t13 = 134.9 seconds, respectively. When using a single
starting point, the method would converge in about a minute. The tk3 column
of Table ?? depicts the time it takes for the solver to perform k iterations.
We treated the problem directly, without using any safe feature elimination
techniques (?). Such preprocessing could, however, be able to expand the reach
of our cluster code to even larger problem sizes.

n × p memory # CPUs GRID SP t1 t2 t13 t43 t163

104 × 2 · 105 14.9 GB 20 10 × 2 1 42.68 0.86 0.56 2.06 8.48

104 × 2 · 105 14.9 GB 20 10 × 2 32 - - 4.60 18.89 87.84

104 × 2 · 105 14.9 GB 20 10 × 2 64 - - 10.47 37.88 166.60

6 · 103 × 4 · 105 17.8 GB 40 10 × 4 1 26.89 86.33 0.78 3.15 9.96

6 · 103 × 4 · 105 17.8 GB 40 10 × 4 32 - - 7.39 27.72 125.14

6 · 103 × 4 · 105 17.8 GB 40 10 × 4 64 - - 13.19 58.36 201.51

6 · 103 × 106 44.7 GB 100 10 × 10 1 49.22 104.26 0.45 2.44 11.62

6 · 103 × 106 44.7 GB 100 10 × 10 32 - - 6.37 29.72 115.73

6 · 103 × 106 44.7 GB 100 10 × 10 64 - - 14.14 52.64 219.8

6 · 103 × 4 · 106 178.8 GB 400 10 × 40 1 129.69 611.69 1.24 5.12 31.46

6 · 103 × 4 · 106 178.8 GB 400 10 × 40 32 - - 17.50 61.36 255.80

6 · 103 × 4 · 106 178.8 GB 400 10 × 40 64 - - 31.36 141.61 525.08

6 · 103 × 8 · 106 357.6 GB 800 10 × 80 1 92.12 713.45 4.14 15.82 95.51

6 · 103 × 8 · 106 357.6 GB 800 10 × 80 32 - - 51.11 324.26 619.45

6 · 103 × 8 · 106 357.6 GB 800 10 × 80 64 - - 134.89 690.06 -

Table 4: Experiments with the cluster implementation. For the first experiment
(first three rows) the dimensions of the virtual grid matched the size of the
data matrix, whence t2 is small.

5.4 Large text corpora

In the first experiment we tested the AM method with L0 constrained L2

variance formulation (with s = 5) on two medium-size data sets from the
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NYT 1st PC NYT 2nd PC NYT 3rd PC NYT 4th PC NYT 5th PC

game companies campaign children attack
play company president program government

player million al gore school official
season percent bush student US
team stock george bush teacher united states

PubMed 1st PC PubMed 2nd PC PubMed 3rd PC PubMed 4th PC PubMed 5th PC

disease cell activity cancer age
level effect concentration malignant child

patient expression control mice children
therapy human rat primary parent

treatment protein receptor tumor year

Table 5: First 5 sparse PCs for NYTimes and PubMed data sets.

Machine Learning Repository5: news articles appeared in New York Times
and abstracts of articles published in PubMed. Each data set is formatted as
a matrix A ∈ Rn×p, where the rows of A correspond to news articles in the
NYTimes data set and to abstracts in PubMed, and the columns correspond
to words. The number of appearances of word j in article or abstract i is the
(i, j)-th entry of A; the matrices are hence clearly sparse. The NYTimes data
set has 300,000 articles, 102,660 words, and approximately 70 million nonzero
entries. The PubMed data set contains 8.2 million articles, 141,043 words,
and approximately 484 million nonzeroes. The matrices can be stored in 0.778
GB and 5.42 GB memory space, respectively. We have customized the AM
method to exploit sparsity as much as possible. In Table ?? we present the
first 5 sparse principal components (5 words each). Clearly, the first PC for
NYT is about sports, the second about business, the third about elections, the
fourth about education and the fifth about United States. Similar interpreta-
tions can be given to the PubMed PCs. We also tested the AM method with
other formulations reported in Table ?? for the NYTimes data set. Table ??
illustrates the first 5 sparse principal components regarding the formulations
with L2 variance6. We also provided the nonzero values of sparse principal
components corresponding to each word, and sort each principal component
based on the values for each word. Furthermore, Table ?? presents the first 5
sparse principal components regarding the formulations with L1 variance. For
each formulation, we ran AM method by starting from l = 20 random starting
points with maxIt = 20 and tol = 10−6. Moreover, Tables ?? and ?? show the
best variances (among 20 runs) with respect to the first 5 sparse PCs for the
NYTimes data set for the formulation with L2 and L1 variances, respectively.

5 http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
6 Note that the different colors in tables ?? and ?? are corresponding to the formulations

with the same color in Table ??.

http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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NYT 1st PC NYT 2nd PC NYT 3rd PC NYT 4th PC NYT 5th PC

2000778.58 1912905.67 1560637.32 1429685.36 1193802.56
2000778.59 1912905.66 1560637.45 1429685.37 1193803.32
2000778.60 1912906.01 1560637.21 1429685.37 1193838.99
1912905.56 2000778.59 1560636.59 1429685.34 1193792.20

Table 6: The best variance w.r.t. the first 5 sparse PCs for NYTimes data set
for L2 variance, with L0 constraint / L1 constraint / L0 penalty / L1 penalty.

NYT 1st PC NYT 2nd PC NYT 3rd PC NYT 4th PC NYT 5th PC

486843.78 462445.23 386907.51 320581.40 315784.42
486843.78 462445.23 384622.40 336912.52 347835.82
486843.78 462391.75 387579.36 309628.15 295577.97
486843.78 462445.23 387901.14 319704.28 306050.47

Table 7: The best variance w.r.t. the first 5 sparse PCs for NYTimes data set
for L1 variance, with L0 constraint / L1 constraint / L0 penalty / L1 penalty.

5.5 Implementation details

For single and multi-core architectures we developed our codes using the
CBLAS interface. In particular, we use both the GSL BLAS and the Intel
MKL7 implementations (single-core) and the GotoBLAS28 and Intel MKL im-
plementations (multi-core). Parallelization in the multi-core case is performed
by the OpenMP interface. When comparing the performance of single-core
and multi-core architectures, we use Intel MKL library for both serial and
parallel versions of the same algorithm for consistency. Nevertheless, in our
experience, GotoBLAS2 implementation of these algorithms are faster than
the Intel MKL implementation. We use CuBLAS9, version 4.0, on GPU (and
make use of Thrust whenever possible for operations such as sorting, memory
arrangements and data allocation on GPU). For comparisons between single-
core and GPU architectures, we use the GSL BLAS implementation on the
single-core. On a cluster, linear algebra is done with Intel MKL’s PBLAS,
while communication between nodes is via MPI.

6 Conclusion

We propose a unifying framework for solving 8 SPCA formulations in which all
have the same form and are solved by the same algorithm: the alternating max-
imization (AM) method. We observed that AM is in all cases equivalent to the

7 http://software.intel.com/en-us/articles/intel-mkl/
8 https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2
9 http://developer.nvidia.com/cublas

http://software.intel.com/en-us/articles/intel-mkl/
https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2
http://developer.nvidia.com/cublas
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NYT 1st PC NYT 2nd PC NYT 3rd PC NYT 4th PC NYT 5th PC

team percent al gore school official
(0.6118) (0.6768) (0.6115) (0.8143) (0.7183)
game company george bush student government

(0.4499) (0.5117) (0.4710) (0.5139) (0.4570)
season million bush program US
(0.4368) (0.3497) (0.4539) (0.1616) (0.3208)
player companies campaign teacher united states

(0.3833) (0.2868) (0.3284) (0.1549) (0.3064)
play stock president children attack

(0.2921) (0.2746) (0.3002) (0.1499) (0.2796)
team percent al gore school official

(0.6119) (0.6768) (0.6123) (0.8144) (0.7185)
game company george bush student government

(0.4498) (0.5117) (0.4728) (0.5138) (0.4567)
season million bush program US
(0.4369) (0.3497) (0.4509) (0.1617) (0.3208)
player companies campaign teacher united states

(0.3833) (0.2868) (0.3285) (0.1549) (0.3064)
play stock president children attack

(0.2920) (0.2746) (0.3001) (0.1499) (0.2796)
team percent al gore school official

(0.6119) (0.6771) (0.6115) (0.8144) (0.7184)
game company george bush student government

(0.4498) (0.5114) (0.4710) (0.5138) (0.4567)
season million bush program US
(0.4368) (0.3495) (0.4540) (0.1616) (0.3209)
player companies campaign teacher united states

(0.3833) (0.2867) (0.3284) (0.1549) (0.3065)
play stock president children attack

(0.2920) (0.2746) (0.3003) (0.1500) (0.2796)
percent team al gore school official
(0.6767) (0.6119) (0.6114) (0.8144) (0.7183)
company game george bush student government
(0.5118) (0.4498) (0.4708) (0.5139) (0.4571)
million season bush program US

(0.3497) (0.4368) (0.4543) (0.1615) (0.3208)
companies player campaign teacher united states
(0.2868) (0.3833) (0.3284) (0.1549) (0.3064)
stock play president children attack

(0.2746) (0.2920) (0.3003) (0.1500) (0.2796)

Table 8: First 5 sparse PCs for NYTimes data set for L2 variance, with L0

constraint / L1 constraint / L0 penalty / L1 penalty (the values inside the
parenthesis are corresponding to each word in the specified PCs).

GPower method applied to a suitable convex function. Five of these formula-
tions were previously studied in the literature and three were not; notably the
L1 constrained L1 (robust) variance seems to be new. For each of these formu-
lations we have written 4 efficient codes—one serial and three parallel—aimed
at single-core, multi-core and GPU workstations and a cluster. All these codes
are enabled with efficient parallel implementations of a multiple-starting-point
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NYT 1st PC NYT 2nd PC NYT 3rd PC NYT 4th PC NYT 5th PC

percent team official school united states
(0.6047) (0.5557) (0.5846) (0.6433) (0.4945)

company game government book country
(0.4915) (0.4780) (0.4789) (0.4421) (0.4631)
million season bush al gore attack
(0.4900) (0.4499) (0.4446) (0.3809) (0.4353)

companies player president student US
(0.2926) (0.3615) (0.3975) (0.36535) (0.4308)
market play george bush children leader
(0.2585) (0.3598) (0.2701) (0.3348) (0.4072)
percent team official campaign school
(0.6047) (0.5557) (0.5936) (0.5413) (0.6643)

company game government george bush women
(0.4915) (0.4780) (0.4955) (0.4812) (0.4544)
million season bush al gore student
(0.4900) (0.4499) (0.4511) (0.4702) (0.3919)

companies player president election children
(0.2926) (0.3615) (0.3699) (0.3905) (0.3578)
market play political palestinian tax
(0.2585) (0.3598) (0.2481) (0.3189) (0.2654)
percent team official school billion
(0.6047) (0.5741) (0.5487) (0.5814) (0.5698)

company game government group business
(0.4915) (0.4711) (0.4936) (0.5362) (0.5134)
million season bush program fund
(0.4900) (0.4432) (0.4408) (0.3838) (0.4105)

companies player president george bush money
(0.2926) (0.3562) (0.4100) (0.3473) (0.4093)
market play group student stock
(0.2585) (0.3534) (0.2775) (0.3261) (0.2747)
percent team official school group
(0.6047) (0.5557) (0.5856) (0.6527) (0.5768)

company game government program united states
(0.4915) (0.4780) (0.4788) (0.4523) (0.4750)
million season bush student US
(0.4900) (0.4499) (0.4463) (0.3628) (0.3903)

companies player president family american
(0.2926) (0.3615) (0.3951) (0.3458) (0.3861)
market play al gore children attack
(0.2585) (0.3598) (0.2690) (0.3435) (0.3742)

Table 9: First 5 sparse PCs for NYTimes data set for L1 variance, with L0

constraint / L1 constraint / L0 penalty / L1 penalty (the values inside the
parenthesis are corresponding to each word in the specified PCs).

globalization strategy which aims to find PCs explaining more variance; with
speedup per starting point achieving up to two orders of magnitude. The most
efficient of these implementations is “on-the-fly”. We demonstrated that our
cluster code is able to solve a very large problem with a 357 GB fully dense
data matrix.


