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ABSTRACT
We develop and analyze a variant of the SARAH algorithm, which does not require
computation of the exact gradient. Thus this new method can be applied to general
expectation minimization problems rather than only finite sum problems. While the
original SARAH algorithm, as well as its predecessor, SVRG, require an exact gradi-
ent computation on each outer iteration, the inexact variant of SARAH (iSARAH),
which we develop here, requires only stochastic gradient computed on a mini-batch
of sufficient size. The proposed method combines variance reduction via sample size
selection and iterative stochastic gradient updates. We analyze the convergence rate
of the algorithms for strongly convex and non-strongly convex cases, under smooth
assumption with appropriate mini-batch size selected for each case. We show that
with an additional, reasonable, assumption iSARAH achieves the best known com-
plexity among stochastic methods in the case of non-strongly convex stochastic
functions.

KEYWORDS
Stochastic gradient algorithms; variance reduction; stochastic optimization;
smooth convex

1. Introduction

We consider the problem of stochastic optimization

min
w∈Rd

{F (w) = E[f(w; ξ)]} , (1)

where ξ is a random variable and f has a Lipschitz continuous gradient. One of the
most popular applications of this problem is expected risk minimization in supervised
learning. In this case, random variable ξ represents a random data sample (x, y), or
a set of such samples {(xi, yi)}i∈I . We can consider a set of realizations {ξ[i]}ni=1 of ξ
corresponding to a set of random samples {(xi, yi)}ni=1, and define fi(w) := f(w; ξ[i]).
Then the sample average approximation of F (w), known as empirical risk in supervised
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learning, is written as

min
w∈Rd

{
F (w) = 1

n

n∑
i=1

fi(w)
}
. (2)

Throughout the paper, we assume the existence of unbiased gradient estimator, that
is E[∇f(w; ξ)] = ∇F (w) for any fixed w ∈ Rd. In addition we assume that there exists
a lower bound of function F .

In recent years, a class of variance reduction methods [1, 3, 5, 6, 11, 18] has been
proposed for problem (2) which have smaller computational complexity than both, the
full gradient descent method and the stochastic gradient method. All these methods rely
on the finite sum form of (2) and are, thus, not readily extendable to (1). In particular,
SVRG [3] and SARAH [11] are two similar methods that consist of an outer loop, which
includes one exact gradient computation at each outer iteration and an inner loop with
multiple iterative stochastic gradient updates. The only difference between SVRG and
SARAH is how the iterative updates are performed in the inner loop. The advantage of
SARAH is that the inner loop itself results in a convergent stochastic gradient algorithm.
Hence, it is possible to apply only one-loop of SARAH with sufficiently large number of
steps to obtain an approximately optimal solution (in expectation). The convergence
behavior of one-loop SARAH is similar to that of the standard stochastic gradient
method [11]. The multiple-loop SARAH algorithm matches convergence rates of SVRG
in the strongly convex case, however, due to its convergent inner loop, it has an additional
practical advantage of being able to use an adaptive inner loop size, as was demonstrated
in [11] for details).

A version of SVRG algorithm, SCSG, has been recently proposed and analyzed in
[7, 8]. While this method has been developed for (2) it can be directly applied to (1)
because the exact gradient computation is replaced with a mini-batch stochastic gradient.
The size of the inner loop of SCSG is then set to a geometrically distributed random
variable with distribution dependent on the size of the mini-batch used in the outer
iteration. In this paper, we propose and analyze an inexact version of SARAH (iSARAH)
which can be applied to solve (1). Instead of exact gradient computation, a mini-batch
gradient is computed using a sufficiently large sample size. We develop total sample
complexity analysis for this method under various convexity assumptions on F (w). These
complexity results are summarized in Tables 1-2 and are compared to the result for
SCSG from [7, 8] when applied to (1). We also list the complexity bounds for SVRG,
SARAH and SCSG when applied to finite sum problem (2).

As SVRG, SCSG and SARAH, iSARAH algorithm consists of the outer loop, which
performs variance reduction by computing sufficiently accurate gradient estimate, and
the inner loop, which performs the stochastic gradient updates. If only one outer iteration
of SARAH is performed and then followed by sufficiently many inner iterations, we refer
to this algorithm as one-loop SARAH. In [11] one-loop SARAH is analyzed and shown
to match the complexity of stochastic gradient descent. Here along with multiple-loop
iSARAH we analyze one-loop iSARAH, which is obtained from one-loop SARAH by
replacing the first full gradient computation with a stochastic gradient based on a
sufficiently large mini-batch.

All our complexity results present the bound on the number of iterations it takes to
achieve E[‖∇F (w)‖2] ≤ ε. These complexity results are developed under the assumption
that f(w, ξ) is L-smooth for every realization of the random variable ξ. Table 1 shows
the complexity results in the case when F (w), but not necessarily every realization
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f(w, ξ), is µ-strongly convex, with κ = L/µ denoting the condition number. Notice
that results for one-loop iSARAH (and SARAH) are the same in the strongly convex
case as in the non-strongly convex case. The convergence rate of the multiple-loop
iSARAH, on the other hand, is better, in terms of dependence on κ, than the rate
achieved by SCSG, which is the only other variance reduction method of the type we
consider here, that applies to (1). For example, if a small strongly convex perturbation
is added to a convex objective function, then κ = O(1

ε ), and the total complexity of
SCSG is O

((
κ
ε + κ

)
log
(1
ε

))
= O

(( 1
ε2

)
log
(1
ε

))
while iSARAH with multiple-loops has

O
(
max

{1
ε , κ

}
log
(1
ε

))
= O

((1
ε

)
log
(1
ε

))
. The non-strongly convex case is summarized

in Table 2. In this case, the multiple-loop iSARAH achieves the best convergence rate
with respect to ε among the compared stochastic methods, but this rate is derived under
an additional assumption (Assumption 5 – see (34)) which is discussed in detail in
Section 3. We note here that Assumption 5 is weaker than the, common in the analysis
of stochastic algorithms, assumption that the iterates remain in a bounded set. In recent
paper [15] a stochastic line search method is shown to have expected iteration complexity
of O

(1
ε

)
under the assumption that the iterates remain in a bounded set, however, no

total sample complexity is derived in [15].
For non-strongly convex and non-convex problems, we derive convergence rate for

one-loop iSARAH with only requiring E[‖∇f(w; ξ)‖2] finite at w∗ (non-strongly convex)
and w0 (non-convex). This convergence rate matches that of the general stochastic
gradient algorithm, i.e. O( 1

ε2 ), while the one-loop iSARAH can be viewed as a type of
stochastic gradient method with momentum. In order to derive the convergence results
in the non-strongly convex and non-convex cases, the learning rate of one-loop iSARAH
needs to be chosen in the order of O(ε), which could be practically undesirable. This is
a limitation of one-loop stochastic gradient algorithms.

Multiple-loop iSARAH method achieves the state-of-the-art complexity result of
O
(

σ
ε3/2 + σ2

ε

)
, under bounded variance assumption, which requires that E[‖∇f(w; ξ)−

∇F (w)‖2] ≤ σ2, for some σ > 0 and ∀w ∈ Rd. The analysis is a special case of the
analysis ProxSARAH [16] and hence we do not derive it here. This results matches those
for two new variants of SARAH, SPIDER and SpiderBoost, that have been proposed
in [2, 19]. SPIDER [2] uses the SARAH update rule as was originally proposed in [11]
and the mini-batch version of SARAH in [14]. SPIDER and SARAH are different in
terms of updated iteration, which are wt+1 = wt − η(vt/‖vt‖) and wt+1 = wt − ηvt,
respectively. Also, SPIDER does not divide into outer loop and inner loop as SARAH
does although SPIDER does also perform a full gradient update after a certain fixed
number of iterations. A recent technical report [19] provides an improved version of
SPIDER called SpiderBoost which allows a larger learning rate.

Note that, in the original SARAH paper, the result for non-strongly convex case is
also derived under the assumption F (w)− F (w∗) ≤M‖∇F (w)‖2 +N , for some M > 0
and N > 0, however this assumption was not explicitly stated.

2. The Algorithm

Like SVRG and SARAH, iSARAH consists of the outer loop and the inner loop. The inner
loop performs recursive stochastic gradient updates, while the outer loop of SVRG and
SARAH compute the exact gradient. Specifically, given an iterate w0 at the beginning of
each outer loop, SVRG and SARAH compute v0 = ∇F (w0). The only difference between
SARAH and iSARAH is that the latter replaces the exact gradient computation by a
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Table 1.: Comparison results (Strongly convex). Criteria: ‖∇F (wT )‖2 ≤ ε (*),
F (wT )−F (w∗) ≤ ε (**), and ‖wT −w∗‖2 ≤ ε (***). Assumption: E[‖∇f(w∗; ξ)‖2] ≤ σ2

∗
(A). Note κ = L/µ; “Ad. Asm.” is Additional Assumption

Method Bound Problem Ad. Asm.
SARAH (one-loop) N/A N/A N/A

SARAH (multiple-loop) O
(

(n+ κ) log
(

1
ε

))
(2) (*) None

SVRG O
(

(n+ κ) log
(

1
ε

))
(2) (*) None

SCSG O
((

min
{
σ2

∗
µε
, n

}
+ κ

)
log
(max{n,κ}

n
· 1
ε

))
(2) (**) (A)

SCSG O
((

σ2
∗
µε

+ κ

)
log
(

1
ε

))
(1) (**) (A)

iSARAH (one-loop) N/A N/A N/A

iSARAH (multiple-loop) O
(

max
{
σ2

∗
ε
, κ

}
log
(

1
ε

))
(1) (*) (A)

Table 2.: Comparison results (Non-strongly convex). Criteria: ‖∇F (wT )‖2 ≤ ε (*),
F (wT ) − F (w∗) ≤ ε (**). Assumption: E[‖∇f(w∗; ξ)‖2] ≤ σ2

∗ (A), F (w) − F (w∗) ≤
M‖∇F (w)‖2 +N (B). “Ad. Asm.” is Additional Assumption

Method Bound Problem Ad. Asm.
SARAH (one-loop) O

(
n+ L

ε2

)
(2) (*) None

SARAH (multiple-loop) O
((
n+ max

{
LM, LN

ε

})
log
(

1
ε

))
(2) (*) (B)

SVRG O
(
n+ L

√
n
ε

)
(2) (*) None

SCSG O
(

min
{
σ2

∗
ε2 ,

nL
ε

})
(2) (**) (A)

SCSG O
(
σ2

∗
ε2

)
(1) (**) (A)

iSARAH (one-loop) O
(

max{L,σ2
∗}

ε
+ max{L2,σ4

∗}
ε2

)
(1) (*) (A)

iSARAH (multiple-loop) O
(

max
{
LM,

max{LN,σ2
∗}

ε

}
log
(

1
ε

))
(1) (*) (A) and (B)

gradient estimate based on a sample set of size b.
In other words, given a iterate w0 and a sample set size b, v0 is a random vector

computed as

v0 = 1
b

b∑
i=1
∇f(w0; ζi), (3)

where {ζi}bi=1 are i.i.d.1 and E[∇f(w0; ζi)|w0] = ∇F (w0). We have

E[v0|w0] = 1
b

b∑
i=1
∇F (w0) = ∇F (w0).

The larger b is, the more accurately the gradient estimate v0 approximates ∇F (w0). The
key idea of the analysis of iSARAH is to establish bounds on b which ensure sufficient
accuracy for recovering original SARAH convergence rate.

The key step of the algorithm is a recursive update of the stochastic gradient estimate

1Independent and identically distributed random variables. We note from probability theory that if ζ1, . . . , ζb
are i.i.d. random variables then g(ζ1), . . . , g(ζb) are also i.i.d. random variables for any measurable function g.
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Algorithm 1 Inexact SARAH (iSARAH)
Parameters: the learning rate η > 0 and the inner loop size m, the sample set size b.

Initialize: w̃0.
Iterate:
for s = 1, 2, . . . , T , do
w̃s = iSARAH-IN(w̃s−1, η,m, b).

end for
Output: w̃T .

Algorithm 2 iSARAH-IN(w0, η,m, b)
Input: w0(= w̃s−1) the learning rate η > 0, the inner loop size m, the sample set size
b.
Generate random variables {ζi}bi=1 i.i.d.
Compute v0 = 1

b

∑b
i=1∇f(w0; ζi).

w1 = w0 − ηv0.
Iterate:
for t = 1, . . . ,m− 1, do

Generate a random variable ξt
vt = ∇f(wt; ξt)−∇f(wt−1; ξt) + vt−1.
wt+1 = wt − ηvt.

end for
Set w̃ = wt with t chosen uniformly at random from {0, 1, . . . ,m}
Output: w̃

(SARAH update)

vt = ∇f(wt; ξt)−∇f(wt−1; ξt) + vt−1, (4)

followed by the iterate update

wt+1 = wt − ηvt. (5)

Let Ft = σ(w0, w1, . . . , wt) be the σ-algebra generated by w0, w1, . . . , wt. We note
that ξt is independent of Ft and that vt is a biased estimator of the gradient ∇F (wt).

E[vt|Ft] = ∇F (wt)−∇F (wt−1) + vt−1.

In contrast, SVRG update is given by

vt = ∇f(wt; ξt)−∇f(w0; ξt) + v0 (6)

which implies that vt is an unbiased estimator of ∇F (wt).
The outer loop of iSARAH algorithm is summarized in Algorithm 1 and the inner

loop is summarized in Algorithm 2.
As a variant of SARAH, iSARAH inherits the special property that a one-loop

iSARAH, which is the variant of Algorithm 1 with T = 1 and m→∞, is a convergent
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algorithm. In the next section we provide the analysis for both one-loop and multiple-loop
versions of i-SARAH.

Convergence criteria. Our iteration complexity analysis aims to bound the total
number of stochastic gradient evaluations needed to achieve a desired bound on the
gradient norm. For that we will need to bound the number of outer iterations T which
is needed to guarantee that ‖∇F (wT )‖2 ≤ ε and also to bound m and b. Since the
algorithm is stochastic and wT is random the ε-accurate solution is only achieved in
expectation. i.e.,

E[‖∇F (wT )‖2] ≤ ε. (7)

3. Convergence Analysis of iSARAH

3.1. Basic Assumptions

The analysis of the proposed algorithm will be performed under apropriate subset of the
following key assumptions.

Assumption 1 (L-smooth). f(w; ξ) is L-smooth for every realization of ξ, i.e., there
exists a constant L > 0 such that

‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w − w′‖, ∀w,w′ ∈ Rd. (8)

Note that this assumption implies that F (w) = E[f(w; ξ)] is also L-smooth. The
following strong convexity assumption will be made for the appropriate parts of the
analysis, otherwise, it would be dropped.

Assumption 2 (µ-strongly convex). The function F : Rd → R, is µ-strongly convex,
i.e., there exists a constant µ > 0 such that ∀w,w′ ∈ Rd,

F (w) ≥ F (w′) +∇F (w′)T (w − w′) + µ
2‖w − w

′‖2.

Under Assumption 2, let us define the (unique) optimal solution of (2) as w∗, Then
strong convexity of F implies that

2µ[F (w)− F (w∗)] ≤ ‖∇F (w)‖2, ∀w ∈ Rd. (9)

Under strong convexity assumption we will use κ to denote the condition number
κ

def= L/µ.
Finally, as a special case of the strong convexity with µ = 0, we state the general

convexity assumption, which we will use for some of the convergence results.

Assumption 3 (Convex). f(w; ξ) is convex for every realization of ξ, i.e., ∀w,w′ ∈ Rd,

f(w; ξ) ≥ f(w′; ξ) +∇f(w′; ξ)T (w − w′).

We note that Assumption 2 does not imply Assumption 3, because the latter applies
to all realizations, while the former applied only to the expectation.

Hence in our analysis, depending on the result we aim at, we will require Assumption 3
to hold by itself, or Assumption 2 and Assumption 3 to hold together. We will always
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use Assumption 1.
We also assume that, the E[‖∇f(w; ξ)‖2 at w∗ is bounded by some constant.

Assumption 4. There exists some σ∗ > 0 such that

E[‖∇f(w∗; ξ)‖2 ≤ σ2
∗, (10)

where w∗ is any optimal solution of F (w); and ξ is some random variable.

3.2. Existing Results

We provide some well-known results from the existing literature that support our
theoretical analysis as follows. First, we start introducing two standard lemmas in
smooth convex optimization ([9]) for a general function f .

Lemma 1 (Theorem 2.1.5 in [9]). Suppose that f is convex and L-smooth. Then, for
any w, w′ ∈ Rd,

f(w) ≤ f(w′) +∇f(w′)T (w − w′) + L

2 ‖w − w
′‖2, (11)

f(w) ≥ f(w′) +∇f(w′)T (w − w′) + 1
2L‖∇f(w)−∇f(w′)‖2, (12)

(∇f(w)−∇f(w′))T (w − w′) ≥ 1
L
‖∇f(w)−∇f(w′)‖2. (13)

Note that (11) does not require the convexity of f .

Lemma 2 (Theorem 2.1.11 in [9]). Suppose that f is µ-strongly convex and L-smooth.
Then, for any w, w′ ∈ Rd,

(∇f(w)−∇f(w′))T (w − w′) ≥ µL

µ+ L
‖w − w′‖2 + 1

µ+ L
‖∇f(w)−∇f(w′)‖2. (14)

The following existing results are more specific properties of component functions
f(w; ξ).

Lemma 3 ([3]). Suppose that Assumptions 1 and 3 hold. Then, ∀w ∈ Rd,

E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2] ≤ 2L[F (w)− F (w∗)], (15)

where w∗ is any optimal solution of F (w).

Lemma 4 (Lemma 1 in [13]). Suppose that Assumptions 1 and 3 hold. Then, for
∀w ∈ Rd,

E[‖∇f(w; ξ)‖2] ≤ 4L[F (w)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2], (16)

where w∗ is any optimal solution of F (w).

Lemma 5 (Lemma 1 in [12]). Let ξ and {ξi}bi=1 be i.i.d. random variables with
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E[∇f(w; ξi)] = ∇F (w), i = 1, . . . , b, for all w ∈ Rd. Then,

E

∥∥∥∥∥1
b

b∑
i=1
∇f(w; ξi)−∇F (w)

∥∥∥∥∥
2 = E[‖∇f(w; ξ)‖2]− ‖∇F (w)‖2

b
. (17)

The proof of this Lemma is in [12].
Lemmas 4 and 5 clearly imply the following result.

Corollary 1. Suppose that Assumptions 1 and 3 hold. Let ξ and {ξi}bi=1 be i.i.d. random
variables with E[∇f(w; ξi)] = ∇F (w), i = 1, . . . , b, for all w ∈ Rd. Then,

E

∥∥∥∥∥1
b

b∑
i=1
∇f(w; ξi)−∇F (w)

∥∥∥∥∥
2

≤ 4L[F (w)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2]− ‖∇F (w)‖2

b
, (18)

where w∗ is any optimal solution of F (w).

Based on the above lemmas, we will show in detail how to achieve our main results in
the following subsections.

3.3. Special Property of SARAH Update

The most important property of the SVRG algorithm is the variance reduction of the
steps. This property holds as the number of outer iteration grows, but it does not hold,
if only the number of inner iterations increases. In other words, if we simply run the
inner loop for many iterations (without executing additional outer loops), the variance
of the steps does not reduce in the case of SVRG, while it goes to zero in the case of
SARAH with large learning rate in the strongly convex case. We recall the SARAH
update as follows.

vt = ∇f(wt; ξt)−∇f(wt−1; ξt) + vt−1, (19)

followed by the iterate update:

wt+1 = wt − ηvt. (20)

We will now show that ‖vt‖2 is going to zero in expectation in the strongly convex
case. These results substantiate our conclusion that SARAH uses more stable stochastic
gradient estimates than SVRG.

Proposition 1. Suppose that Assumptions 1, 2 and 3 hold. Consider vt defined by (19)
with η < 2/L and any given v0. Then, for any t ≥ 1,

E[‖vt‖2] ≤
[
1−

(
2
ηL − 1

)
µ2η2

]
E[‖vt−1‖2]

≤
[
1−

(
2
ηL − 1

)
µ2η2

]t
‖v0‖2.
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The proof of this Proposition can be derived directly from Theorem 1a in [11]. This
result implies that by choosing η = O(1/L), we obtain the linear convergence of ‖vt‖2

in expectation with the rate (1− 1/κ2).
We will provide our convergence analysis in detail in next sub-section. We will divide

our results into two parts: the one-loop results corresponding to iSARAH-IN (Algorithm
2) and the multiple-loop results corresponding to iSARAH (Algorithm 1).

3.4. One-loop (iSARAH-IN) Results

We begin with providing two useful lemmas that do not require convexity assumption.
Lemma 6 bounds the sum of expected values of ‖∇F (wt)‖2; and Lemma 7 expands the
value of E[‖∇F (wt)− vt‖2].

Lemma 6. Suppose that Assumption 1 holds. Consider iSARAH-IN (Algorithm 2).
Then, we have

m∑
t=0

E[‖∇F (wt)‖2] ≤ 2
η
E[F (w0)− F (w∗)]

+
m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2], (21)

where w∗ = arg minw F (w).

Proof. By Assumption 1 and wt+1 = wt − ηvt, we have

E[F (wt+1)]
(11)
≤ E[F (wt)]− ηE[∇F (wt)T vt] + Lη2

2 E[‖vt‖2]

= E[F (wt)]−
η

2E[‖∇F (wt)‖2] + η

2E[‖∇F (wt)− vt‖2]

−
(
η

2 −
Lη2

2

)
E[‖vt‖2],

where the last equality follows from the fact aT1 a2 = 1
2
[
‖a1‖2 + ‖a2‖2 − ‖a1 − a2‖2] .

By summing over t = 0, . . . ,m, we have

E[F (wm+1)] ≤ E[F (w0)]− η

2

m∑
t=0

E[‖∇F (wt)‖2] + η

2

m∑
t=0

E[‖∇F (wt)− vt‖2]

−
(
η

2 −
Lη2

2

)
m∑
t=0

E[‖vt‖2],

which is equivalent to (η > 0):

m∑
t=0

E[‖∇F (wt)‖2] ≤ 2
η
E[F (w0)− F (wm)]

+
m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2]
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≤ 2
η
E[F (w0)− F (w∗)]

+
m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2],

where the second inequality follows since w∗ = arg minw F (w).

Lemma 7. Suppose that Assumption 1 holds. Consider vt defined by (4) in iSARAH-IN
(Algorithm 2). Then for any t ≥ 1,

E[‖∇F (wt)− vt‖2] = E[‖∇F (w0)− v0‖2]

+
t∑

j=1
E[‖vj − vj−1‖2]−

t∑
j=1

E[‖∇F (wj)−∇F (wj−1)‖2].

Proof. Let Fj = σ(w0, w1, . . . , wj) be the σ-algebra generated by w0, w1, . . . , wj
2. We

note that ξj is independent of Fj . For j ≥ 1, we have

E[‖∇F (wj)− vj‖2|Fj ]
= E[‖[∇F (wj−1)− vj−1] + [∇F (wj)−∇F (wj−1)]− [vj − vj−1]‖2|Fj ]
= ‖∇F (wj−1)− vj−1‖2 + ‖∇F (wj)−∇F (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ]

+ 2(∇F (wj−1)− vj−1)T (∇F (wj)−∇F (wj−1))
− 2(∇F (wj−1)− vj−1)TE[vj − vj−1|Fj ]
− 2(∇F (wj)−∇F (wj−1))TE[vj − vj−1|Fj ]

= ‖∇F (wj−1)− vj−1‖2 − ‖∇F (wj)−∇F (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ],

where the last equality follows from

E[vj − vj−1|Fj ]
(4)= E[∇f(wj ; ξj)−∇f(wj−1; ξj)|Fj ] = ∇F (wj)−∇F (wj−1).

By taking expectation for the above equation, we have

E[‖∇F (wj)− vj‖2] = E[‖∇F (wj−1)− vj−1‖2]
− E[‖∇F (wj)−∇F (wj−1)‖2] + E[‖vj − vj−1‖2].

By summing over j = 1, . . . , t (t ≥ 1), we have

E[‖∇F (wt)− vt‖2] = E[‖∇F (w0)− v0‖2]

+
t∑

j=1
E[‖vj − vj−1‖2]−

t∑
j=1

E[‖∇F (wj)−∇F (wj−1)‖2].

2Fj contains all the information of w0, . . . , wj as well as v0, . . . , vj−1

10



3.4.1. Non-Strongly Convex Case

In this subsection, we analyze one-loop results of Inexact SARAH (Algorithm 2) in the
non-strongly convex case. We first derive the bound for E[‖∇F (wt)− vt‖2].

Lemma 8. Suppose that Assumptions 1 and 3 hold. Consider vt defined as (4) in
SARAH (Algorithm 1) with η < 2/L. Then we have that for any t ≥ 1,

E[‖∇F (wt)− vt‖2] ≤ ηL

2− ηL
[
E[‖v0‖2]− E[‖vt‖2]

]
+ E[‖∇F (w0)− v0‖2]. (22)

Proof. For j ≥ 1, we have

E[‖vj‖2|Fj ]
= E[‖vj−1 − (∇f(wj−1; ξj)−∇f(wj ; ξj)‖2|Fj ]
= ‖vj−1‖2

+ E
[
‖∇f(wj−1; ξj)−∇f(wj ; ξj)‖2 − 2

η (∇f(wj−1; ξj)−∇f(wj ; ξj))T (wj−1 − wj)|Fj
]

(13)
≤ ‖vj−1‖2 + E

[
‖∇f(wj−1; ξj)−∇f(wj ; ξj)‖2 − 2

Lη‖∇f(wj−1; ξj)−∇f(wj ; ξj)‖2|Fj
]

= ‖vj−1‖2 +
(
1− 2

ηL

)
E[‖∇f(wj−1; ξj)−∇f(wj ; ξj)‖2|Fj ]

(4)= ‖vj−1‖2 +
(
1− 2

ηL

)
E[‖vj − vj−1‖2|Fj ],

which, if we take expectation, implies that

E[‖vj − vj−1‖2] ≤ ηL

2− ηL
[
E[‖vj−1‖2]− E[‖vj‖2]

]
,

when η < 2/L.
By summing the above inequality over j = 1, . . . , t (t ≥ 1), we have

t∑
j=1

E[‖vj − vj−1‖2] ≤ ηL

2− ηL
[
E[‖v0‖2]− E[‖vt‖2]

]
. (23)

By Lemma 7, we have

E[‖∇F (wt)− vt‖2] ≤
t∑

j=1
E[‖vj − vj−1‖2] + E[‖∇F (w0)− v0‖2]

(23)
≤ ηL

2− ηL
[
E[‖v0‖2]− E[‖vt‖2]

]
+ E[‖∇F (w0)− v0‖2].

Lemma 9. Suppose that Assumptions 1 and 3 hold. Consider v0 defined as (3) in

11



iSARAH (Algorithm 1). Then we have,

ηL

2− ηLE[‖v0‖2] + E[‖∇F (w0)− v0‖2]

≤ 2
2− ηL

(
4LE[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2]− E[‖∇F (w0)‖2]
b

)

+ ηL

2− ηLE[‖∇F (w0)‖2]. (24)

Proof. By Corollary 1, we have

ηL

2− ηLE[‖v0‖2|w0]− ηL

2− ηL‖∇F (w0)‖2 + E[‖∇F (w0)− v0‖2|w0]

= 2
2− ηL

[
E[‖v0‖2|w0]− ‖∇F (w0)‖2

]
= 2

2− ηL
[
E[‖v0 −∇F (w0)‖2|w0

]
(18)
≤ 2

2− ηL

(
4L[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2]− ‖∇F (w0)‖2

b

)
.

Taking the expectation and adding ηL
2−ηLE[‖∇F (w0)‖2] for both sides, the desired

result is achieved.

We then derive this basic result for the convex case by using Lemmas 8 and 9.

Lemma 10. Suppose that Assumptions 1 and 3 hold. Consider iSARAH-IN (Algorithm
2) with η ≤ 1/L. Then, we have

E[‖∇F (w̃)‖2] ≤ 2
η(m+ 1)E[F (w0)− F (w∗)] + ηL

2− ηLE[‖∇F (w0)‖2]

+ 2
2− ηL

(
4LE[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2]− E[‖∇F (w0)‖2]
b

)
,

(25)

where w∗ is any optimal solution of F (w); and ξ is the random variable.

Proof. By Lemma 8, we have

m∑
t=0

E[‖∇F (wt)− vt‖2] ≤ mηL

2− ηLE[‖v0‖2] + (m+ 1)E[‖∇F (w0)− v0‖2]. (26)

Hence, by Lemma 6 with η ≤ 1/L, we have

m∑
t=0

E[‖∇F (wt)‖2] ≤ 2
η
E[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]

(26)
≤ 2

η
E[F (w0)− F (w∗)] + mηL

2− ηLE[‖v0‖2]

12



+ (m+ 1)E[‖∇F (w0)− v0‖2]. (27)

Since w̃ = wt, where t is picked uniformly at random from {0, 1, . . . ,m}. The following
holds,

E[‖∇F (w̃)‖2] = 1
m+ 1

m∑
t=0

E[‖∇F (wt)‖2]

(27)
≤ 2

η(m+ 1)E[F (w0)− F (w∗)] + ηL

2− ηLE[‖v0‖2] + E[‖∇F (w0)− v0‖2]

(24)
≤ 2

η(m+ 1)E[F (w0)− F (w∗)] + ηL

2− ηLE[‖∇F (w0)‖2]

+ 2
2− ηL

(
4LE[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2]− E[‖∇F (w0)‖2]
b

)
.

This expected bound for ‖∇F (w̃)‖2 will be used for deriving both one-loop and
multiple-loop results in the convex case.

Lemma 10 can be used to get the following result for non-strongly convex.

Theorem 1. Suppose that Assumptions 1, 3, and 4 hold. Consider iSARAH-IN (Algo-
rithm 2) with η = 1

L
√
m+1 ≤

1
L , b = 2

√
m+ 1 and a given w0. Then we have,

E[‖∇F (w̃)‖2] ≤ 1√
m+ 1

[
6L[F (w0)− F (w∗)] + 2σ2

∗

]
.

Proof. By Lemma 10, for any given w0, we have

E[‖∇F (w̃)‖2] ≤ 2
η(m+ 1)[F (w0)− F (w∗)] + ηL

2− ηL‖∇F (w0)‖2

+ 2
2− ηL

(
4L[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2]− ‖∇F (w0)‖2

b

)

≤ 2L√
m+ 1

[F (w0)− F (w∗)] + 1
2− ηL

4L√
m+ 1

[F (w0)− F (w∗)]

+ 2
2− ηL

E
[
‖∇f(w∗; ξ)‖2]
√
m+ 1

≤ 2L√
m+ 1

[F (w0)− F (w∗)]

+ 1√
m+ 1

[
4L[F (w0)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2]

]
(10)
≤ 1√

m+ 1

[
6L[F (w0)− F (w∗)] + 2σ2

∗

]
.

The second inequality follows since η = 1
L
√
m+1 and b = 2

√
m+ 1. The third inequality

follows since η ≤ 1
L , which implies 1

2−ηL ≤ 1.

Based on Theorem 1, we are able to derive the following total complexity for iSARAH-
IN in the non-strongly convex case.
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Corollary 2. Suppose that Assumptions 1, 3, and 4 hold. Consider iSARAH-IN (Al-
gorithm 2) with the learning rate η = 1

L
√
m+1 and the number of samples b = 2

√
m+ 1,

where m is the total number of iterations, then ‖∇F (w̃)‖2 converges sublinearly in
expectation with a rate of O

(
max{L,σ2

∗}√
m+1

)
, and therefore, the total complexity to achieve

an ε-accurate solution is

O
(

max{L, σ2
∗}

ε
+ max{L2, σ4

∗}
ε2

)
.

Proof. It is easy to see that to achieve E[‖∇F (w̃)‖2] ≤ ε we need

m+ 1 = (6L[F (w0)− F (w∗)] + 2σ2
∗)2

ε2
,

and hence the total work is

b+ 2m = 2
√
m+ 1 + 2m = O

(
max{L, σ2

∗}
ε

+ max{L2, σ4
∗}

ε2

)
.

3.4.2. Non-Convex Case

We now move to the non-convex case. We begin by stating and proving a lemma similar
to Lemma 8, bounding E[‖∇F (wt)− vt‖2], but without Assumption 3.

Lemma 11. Suppose that Assumption 1 holds. Consider vt defined as (4) in iSARAH-IN
(Algorithm 2). Then for any t ≥ 1,

E[‖∇F (wt)− vt‖2] ≤ E[‖∇F (w0)− v0‖2] + L2η2
t∑

j=1
E[‖vj−1‖2]. (28)

Proof. We have, for t ≥ 1,

‖vt − vt−1‖2 (4)= ‖∇f(wt; ξt)−∇f(wt−1; ξt)‖2
(8)
≤ L2‖wt − wt−1‖2 = L2η2‖vt−1‖2. (29)

Hence, by Lemma 7,

E[‖∇F (wt)− vt‖2] ≤ E[‖∇F (w0)− v0‖2] +
t∑

j=1
E[‖vj − vj−1‖2]

(29)
≤ E[‖∇F (w0)− v0‖2] + L2η2

t∑
j=1

E[‖vj−1‖2].

Lemma 12. Suppose that Assumption 1 holds. Consider vt defined as (4) in iSARAH-IN
(Algorithm 2) with η ≤ 2

L(
√

1+4m+1) . Then we have

L2η2
m∑
t=0

t∑
j=1

E[‖vj−1‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2] ≤ 0. (30)

14



Proof. For η ≤ 2
L(
√

1+4m+1) , we have

L2η2
m∑
t=0

t∑
j=1

E[‖vj−1‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2]

= L2η2
[
mE‖v0‖2 + (m− 1)E‖v1‖2 + · · ·+ E‖vm−1‖2

]
− (1− Lη)

[
E‖v0‖2 + E‖v1‖2 + · · ·+ E‖vm‖2

]
≤ [L2η2m− (1− Lη)]

m∑
t=1

E[‖vt−1‖2] ≤ 0,

since η = 2
L(
√

1+4m+1) is a root of the equation L2η2m− (1− Lη) = 0.

With the help of the above lemmas, we are able to derive our result for non-convex.

Theorem 2. Suppose that Assumption 1 holds and E[‖∇f(w0; ξ)‖2] is finite. Consider
iSARAH-IN (Algorithm 2) with η ≤ 2

L(
√

1+4m+1) ≤
1
L , b =

√
m+ 1 and a given w0. Then

we have,

E[‖∇F (w̃)‖2] ≤ 2
η(m+ 1)[F (w0)− F ∗] + 1√

m+ 1

(
E[‖∇f(w0; ξ)‖2]

)
, (31)

where F ∗ is any lower bound of F ; and ξ is some random variable.

Proof. Let F ∗ be any lower bound of F . By Lemma 6 and since w̃ = wt, where t is
picked uniformly at random from {0, 1, . . . ,m}, we have

E[‖∇F (w̃)‖2] = 1
m+ 1

m∑
t=0

E[‖∇F (wt)‖2]

≤ 2
η(m+ 1)E[F (w0)− F ∗]

+ 1
m+ 1

(
m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2]
)

(28)
≤ 2

η(m+ 1)E[F (w0)− F ∗] + E[‖∇F (w0)− v0‖2]

+ 1
m+ 1

L2η2
m∑
t=0

t∑
j=1

E[‖vj−1‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2]


(30)
≤ 2

η(m+ 1)E[F (w0)− F ∗] + E[‖∇F (w0)− v0‖2]

(17)
≤ 2

η(m+ 1)E[F (w0)− F ∗] + 1
b
E[‖∇f(w0; ξ)‖2].

For any given w0 and b =
√
m+ 1, we could achieve the desired result.

Based on Theorem 2, we are able to derive the following total complexity for iSARAH-
IN in the non-convex case.
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Corollary 3. Suppose that Assumption 1 holds and E[‖∇f(w0; ξ)‖2] is finite. Consider
iSARAH-IN (Algorithm 2) with the learning rate η = O

(
1

L
√
m+1

)
and the number

of samples b =
√
m+ 1, where m is the total number of iterations, then ‖∇F (w̃)‖2

converges sublinearly in expectation with a rate of O
(√

1
m+1

)
, and therefore, the total

complexity to achieve an ε-accurate solution is O(1/ε2).

Proof. Same as non-strongly convex case, since E[‖∇f(w0; ξ)‖2] is finite, to achieve
E[‖∇F (w̃)‖2] ≤ ε we need m = O(1/ε2) and hence the total work is

√
m + 2m =

O
(1
ε + 1

ε2

)
= O

( 1
ε2

)
.

3.5. Multiple-loop iSARAH Results

In this section, we analyze multiple-loop results of Inexact SARAH (Algorithm 1).

3.5.1. Strongly Convex Case

We now turn to the discussion on the convergence of iSARAH under the strong convexity
assumption on F .

Theorem 3. Suppose that Assumptions 1, 2, 3, and 4 hold. Consider iSARAH (Algo-
rithm 1) with the choice of η, m, and b such that

α = 1
µη(m+ 1) + ηL

2− ηL + 4κ− 2
b(2− ηL) < 1.

(Note that κ = L/µ.) Then, we have

E[‖∇F (w̃s)‖2]−∆ ≤ αs(‖∇F (w̃0)‖2 −∆), (32)

where

∆ = δ

1− α and δ = 4
b(2− ηL)σ

2
∗.

Proof. By Lemma 10, with w̃ = w̃s and w0 = w̃s−1, we have

E[‖∇F (w̃s)‖2]

≤ 2
η(m+ 1)E[F (w̃s−1)− F (w∗)] + ηL

2− ηLE[‖∇F (w̃s−1)‖2]

+ 2
2− ηL

(
4LE[F (w̃s−1)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2]− E[‖∇F (w̃s−1)‖2]
b

)
(9)
≤
( 1
µη(m+ 1) + ηL

2− ηL + 4κ− 2
b(2− ηL)

)
E[‖∇F (w̃s−1)‖2]

+ 4
b(2− ηL)E

[
‖∇f(w∗; ξ)‖2

]
(10)
≤
( 1
µη(m+ 1) + ηL

2− ηL + 4κ− 2
b(2− ηL)

)
E[‖∇F (w̃s−1)‖2]
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+ 4
b(2− ηL)σ

2
∗ (33)

= αE[‖∇F (w̃s−1)‖2] + δ

≤ αs‖∇F (w̃0)‖2 + αs−1δ + · · ·+ αδ + δ

≤ αs‖∇F (w̃0)‖2 + δ
1− αs
1− α

= αs‖∇F (w̃0)‖2 + ∆(1− αs)
= αs(‖∇F (w̃0)‖2 −∆) + ∆.

By adding −∆ to both sides, we achieve the desired result.

Based on Theorem 3, we are able to derive the following total complexity for iSARAH
in the strongly convex case.

Corollary 4. Let η = 2
5L , m = 20κ− 1, and b = max

{
20κ− 10, 20σ2

∗
ε

}
in Theorem 3.

Then, the total work complexity to achieve E[‖∇F (w̃s)‖2] ≤ ε is O
(
max

{
σ2
∗
ε , κ

}
log
(1
ε

))
.

Proof. With η = 2
5L , m = 20κ− 1, and b = max

{
20κ− 10, 20σ2

∗
ε

}
, from (33), we have

E[‖∇F (w̃s)‖2] ≤
(1

8 + 1
4 + 1

8

)
E[‖∇F (w̃s−1)‖2] + ε

8

≤ 1
2E[‖∇F (w̃s−1)‖2] + ε

8
≤ 1

2s ‖∇F (w̃0)‖2 + ε

4 .

Since E[‖∇f(w∗; ξ)‖2] is finite, to guarantee that E[‖∇F (w̃s)‖2] ≤ ε, it is sufficient to
make 1

2s ‖∇F (w̃0)‖2 = 3
4ε or equivalently s = log

(
‖∇F (w̃0)‖2

3
4 ε

)
. This implies the total com-

plexity to achieve an ε-accuracy solution is (b+m)s = O
((

max
{
σ2
∗
ε , κ

}
+ κ

)
log
(1
ε

))
=

O
(
max

{
σ2
∗
ε , κ

}
log
(1
ε

))
.

3.5.2. Non-Strongly Convex Case

We turn to the analysis of the convergence rate of the multiple-loop iSARAH in the
non-strongly convex case. As mentioned in the introduction, we are able to achieve best
sample complexity rates of any stochastic algorithm, to the best of our knowledge, but
under an additional reasonably mild assumption. We introduce this assumption below.

Assumption 5. Let w̃0,. . . ,w̃T be the (outer) iterations of Algorithm 1. We assume
that there exist M > 0 and N > 0 such that, k = 0, . . . , T ,

F (w̃k)− F (w∗) ≤M‖∇F (w̃k)‖2 +N, (34)

where F (w∗) is the optimal value of F .

Let us discuss Assumption 5. First, we note that the assumption only requires to
hold for the outer iterations w̃0,. . . ,w̃T of Algorithm 1 instead of holding for all w ∈ Rd
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or for all of the inner iterates. Moreover, this assumption is clearly weaker than the
Polyak-Lojasiewicz (PL) condition, which has been studied and discussed in [4, 10, 17]
which itself is weaker than strong convexity assumption. Under PL condition, we simply
have N = 0 in (34) and as we will discuss below we can recover better convergence rate
in this case. On the other hand, if PL condition does not hold but if the sequence of
iterates {w̃k} remains in a set, say W , on which the objective function is bounded from
above, that is for all w ∈ W , F (w) ≤ Fmax for some finite value Fmax, then Assumption
5 is satisfied with N = Fmax − F (w∗) and M = 0, where F (w∗) is the optimal value of
F . In other words, Assumption 5 is a relaxation of the boundedness assumption and the
PL condition. As an example, consider the following modification of the logistic function
(for some λ > 0)

F (w) =
{ log(1 + e−w) w ≥ −2

log(1 + e−w) + λ
2 (w + 2)2 w < −2

which is not strongly convex and does not satisfy the PL condition. This function
can be considered in practice instead of the usual logistic function as it simply adds
somewhat larger penalty on solutions that are far away from the optimal. Notice that
this function is continuous and continuously differentiable. When, w < −2, the function
is strongly convex and satisfies the PL condition. When w ≥ −2, the function is bounded
in (0, log(1 + e2)]. Therefore, it satisfies Assumption 5. This is a simplified example to
make derivations easy. However, it is possible to generalize this example by modifying
standard logistic loss by adding strongly convex penalty outside some ball containing
the optimal solution.

Theorem 4. Suppose that Assumptions 1, 3, 4, and 5 hold. Consider iSARAH (Algo-
rithm 1) with the choice of η, m, and b such that

αc = 2M
η(m+ 1) + ηL

2− ηL + 8LM − 1
b(2− ηL) < 1.

Then, we have

E[‖∇F (w̃s)‖2]−∆c ≤ αsc(‖∇F (w̃0)‖2 −∆c), (35)

where

∆c = δc
1− αc

and δc = 2N
η(m+ 1) + 8LN

b(2− ηL) + 4σ2
∗

b(2− ηL) .

Proof. By Lemma 10, with w̃ = w̃s and w0 = w̃s−1, we have

E[‖∇F (w̃s)‖2]

≤ 2
η(m+ 1)E[F (w̃s−1)− F (w∗)] + ηL

2− ηLE[‖∇F (w̃s−1)‖2]

+ 2
2− ηL

(
4LE[F (w̃s−1)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2]− E[‖∇F (w̃s−1)‖2]
b

)
(34)
≤
( 2M
η(m+ 1) + ηL

2− ηL + 8LM − 1
b(2− ηL)

)
E[‖∇F (w̃s−1)‖2]
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+ 2N
η(m+ 1) + 8LN

b(2− ηL) + 4E
[
‖∇f(w∗; ξ)‖2]
b(2− ηL)

(10)
≤
( 2M
η(m+ 1) + ηL

2− ηL + 8LM − 1
b(2− ηL)

)
E[‖∇F (w̃s−1)‖2]

+ 2N
η(m+ 1) + 8LN

b(2− ηL) + 4σ2
∗

b(2− ηL)
= αcE[‖∇F (w̃s−1)‖2] + δc

≤ αsc(‖∇F (w̃0)‖2 −∆c) + ∆c.

Now choosing the appropriate values for η, m, and b, we can follow the proof of
Corollary 4 to achieve the following complexity result.

Corollary 5. In Theorem 4, let η = 2
5L , m = max

{
40LM − 1, 120LN

ε − 1
}
, and

b = max
{

40LM − 5, 120LN
ε , 60σ2

∗
ε

}
. Then, the total work complexity to achieve

E[‖∇F (w̃s)‖2] ≤ ε is

(b+m)s = O
(

max
{
LM,

max{LN, σ2
∗}

ε

}
log
(1
ε

))
.

We can observe that, with the help of Assumption 5, iSARAH could achieve the best
known complexity among stochastic methods (those which do not have access to exact
gradient computation) in the non-strongly convex case.

4. Conclusion

We have provided the analysis of the inexact version of SARAH, which requires only
stochastic gradient information computed on a mini-batch of sufficient size. We provide
the one-loop results (iSARAH-IN) in the non-strongly convex and non-convex cases.
Moreover, we analyze the multiple-loop results (iSARAH) in the strongly convex case
and with an additional assumption (Assumption 5) in the non-strongly convex case.
With this Assumption 5, which we argue is reasonable, iSARAH achieves the best known
complexity among stochastic methods.
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