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ABSTRACT

As the temporal and spatial resolution of monitoring data drastically increases by advances in sensing
technology, structural health monitoring applications reach the thresholds of big data. Deep neural
networks are ideally suited to use large representative training datasets to learn complex damage fea-
tures. One such real-time deep learning platform that was developed to solve damage detection and
localisation challenge in the authors previous paper. This network was trained by using simulated
structural connection with a variety of loading cases, damage scenarios, and measurement noise levels
for robust diagnosis of damage. In this article, this platform is validated by using the data collected by
Digital Image Correlation (DIC) which offers a non-contact method to measure full-field strain by
increasing the flexibility of their implementation. Nevertheless, the capabilities of DIC while measuring
small strain responses is limited. This article first investigates the accuracy of the strain measurements
of a structural component subjected to operational loads which are often smaller than 50 pe. The
accuracy of three DIC systems with different camera resolutions is compared with the measurements
collected by strain gauges and finite element model. Then, the performance and efficiency of damage
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diagnosis approach is evaluated on two induced damage conditions.

1. Introduction

Structural systems are subjected to deterioration and dam-
age during their service life due to environmental and oper-
ational Providing timely damage
becomes essential to improve lifetime safety, maintainability
and reliability of the structures and infrastructure systems.
Therefore, structural health monitoring (SHM) techniques
have been developed to inform engineers about the varia-
tions of the structures over their entire lifespan from the
collected sensor measurements (Fang, Luo, & Tang, 2005).

Strain response has been widely collected because they
are a direct indicator of stress, and can be used to assess
failure (Gulgec, Takdc, & Pakzad, 2017, 2020). Nevertheless,
the change in the strains does not occur only because of the
deterioration; for instance, strain gradients are often observ-
able near connections, or when material exceeds its elastic
limit. With the increase in the scale and complexity of the
specimen, determining the cause of these variations require
manual effort and experience. The authors previously pro-
posed a natural way of exploring the hidden knowledge in
raw strain field data by adopting deep learning-based
approach in Gulgec, Takac, and Pakzad (2019a). Learning
such damage features helps automatising the detection pro-
cedure and provides easy adaption to the varying loading
and environmental conditions.

factors. assessment

Wire strain gauges are one of the most widely used strain
measurement tools in SHM (Kim et al., 2007). Nevertheless,
large scale deployment of wired strain gauges poses several
fundamental limitations: they are laborious and expensive as
more spatial information is desired, as well as they are sus-
ceptible to drift and damages (Gulgec, Takdé, & Pakzad,
2019b). To address these limitations, digital image correl-
ation (DIC) was introduced in the early 1980s as a non-con-
tact sensing method which utilises the greyscale digital
images captured during the loading of the specimen and
performs image processing techniques to estimate the full-
tield deformation of the object without the need of attaching
to the structure (Sutton, Wolters, Peters, Ranson, &
McNeill, 1983). Since then, many studies have been pro-
posed to explore the potential of DIC as a feasible alterna-
tive to wire strain gauges for obtaining full-field strain
measurement in the laboratory and the field (Pan, 2018).

The DIC technique has been used to measure micro to
large amplitude strains due to its easy deployment.
Nevertheless, in practice, there are many factors that impact
the measurement accuracy of DIC (Amiot et al, 2013;
Haddadi & Belhabib, 2008; Reu, 2011; Siebert, Becker,
Spiltthof, Neumann, & Krupka, 2007). The systematic errors
caused by the shape functions (Schreier, Braasch, & Sutton,
2000), intensity interpolation (Bing, Hui-Min, Bo-Qin, &
Fu-Long, 2006; Hung & Voloshin, 2003), lens distortion
(Yoneyama, Kikuta, Kitagawa, & Kitamura, 2006; Zhang,
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Luo, & Arola, 2006), subset size (Bornert et al., 2009), the
speckle pattern (Crammond, Boyd, & Dulieu-Barton, 2013;
Lecompte et al., 2006), out-of-lane motion (Sutton, Yan,
Tiwari, Schreier, & Orteu, 2008), the contrast of the image
(Yaofeng & Pang, 2007), and the quality of devices
(Patterson et al., 2007) have been thoroughly investigated in
the literature. Furthermore, several studies demonstrated
that camera systems should be corrected for temperature
when there is a wide temperature fluctuations (Mehdi
Mirzazadeh & Green, 2018). For instance, average strain
errors vary 70-230 pe when camera temperature changes by
9-14°C (Ma, Pang, & Ma, 2012).

Literature has demonstrated promising results with DIC
while measuring medium-large strain levels (Berfield et al.,
2007; Grytten, Daiyan, Polanco-Loria, & Dumoulin, 2009;
Jerabek, Major, & Lang, 2010; Lagattu, Bridier, Villechaise,
& Brillaud, 2006; Pritchard, Lava, Debruyne, & Terentjev,
2013; Wang et al, 2010). However, non-negligible errors
have been observed when measuring strains below 0.1%
(1000 pe) (Chu, Ranson, & Sutton, 1985; Hung & Voloshin,
2003; Lee, Take, & Hoult, 2012; Périé, Calloch, Cluzel, &
Hild, 2002). Several studies reported various standard devia-
tions of the strain readings (i.e. noise floor) which are 50 pe
(Haddadi & Belhabib, 2008), 100 pe (Smith, Li, & Tong,
1998), 200 pe (Wattrisse, Chrysochoos, Muracciole, &
Némoz-Gaillard, 2001) and 1000 pe (Risbet, Feissel, Roland,
Brancherie, & Roelandt, 2010) depending on specific experi-
mental and equipment conditions. The reported deviations
are the amplitudes which are often observable in structures
under the operational load levels (Alampalli & Lund, 2006;
Tennyson, Mufti, Rizkalla, Tadros, & Benmokrane, 2001).
There are also several studies that searched for the capabil-
ities of DIC measuring strain readings smaller than 100 pe
(Acciaioli, Lionello, & Baleani, 2018; Desai, 2016; Dinh,
Hassan, Dyskin, & MacNish, 2015; Hutt & Cawley, 2009;
Pan, Xie, Wang, Qian, & Wang, 2008) for only small-scale
specimens. Therefore, the investigation of accurate full-field
strain information of large-scale structural components is
still a necessity to discover the current capabilities of DIC.

One of the primary purposes of this study is to explore
whether small strain responses (i.e. strain values smaller
than 50 pe) are achievable with the current DIC systems
and to present some recommended techniques for achieving
that. To accomplish this goal, a steel structural connection
introduced in Gulgec et al. (2019a) is tested on a controlled
laboratory environment by using three DIC systems with
different camera resolutions. The accuracy of dense strain
readings is compared with the measurements collected by
strain gauges and finite element model mimicking the speci-
men. The effect of camera resolution is also discussed.

After the investigation of the accuracy of DIC measure-
ments, this article evaluates the proposed deep learning
based damage diagnosis platform introduced in Gulgec et al.
(2019a) by using the collected data from the specimen.
Laboratory testing of the specimen mimicking the simulated
structural connection is performed with two induced dam-
age conditions. The network parameters from the designed

network are utilised to quantify the uncertainty existing in
the three DIC systems.

The rest of the article is organised as follows. First, an
overview of the proposed methodology is described in
Section 2; then, a brief explanation of related work and the
basic principles of DIC are provided in Section 3. In Section
4, test setup is described. Then, the analysis of data and
experimental validation of the test setup are presented in
Section 5 and Section 6, respectively. Conclusions and future
directions are given in Section 7.

2. Overview of the proposed methodolgy

Convolutional neural networks (CNN) are one of the most
widely used types of deep neural networks which was first
proposed by LeCun et al. in 1998 (LeCun, Bottou, Bengio,
& Haffner, 1998) to classify handwritten digits. CNNs are
designed to take advantage of the spatial correlation of data
and can be constructed by using three types of layers: con-
volution (CONV) layer, pooling (POOL) layer and fully-
connected (FC) layer.

The adopted CNN-based technique proposed in Gulgec
et al. (2019a) is briefly discussed in this section. More
detailed information can be found in the provided reference.
As presented in Figure 1, a general map of the algorithm is
composed of training and testing phases. Training phase
operates on the strain fields obtained from finite element
simulations which is then normalised by its absolute max-
imum. The design of the CNN architecture depends on the
selection of hyperparameters (e.g. the number of CONV
layers, learning rate, and many more). Once the network
architecture is built by these hyperparameters, it is trained
to determine the existence of damage (i.e. detection task)
and estimate the boundaries of the damaged area (i.e. local-
isation task). Both of the tasks share layers to extract local
features which are common for them. This provides more
efficient learning, shorter training time and lower computa-
tion cost.

The network architecture consists of three convolutional
layers followed by two task-specific fully connected layers.
The convolutional layers receive the input layer and pass
them through a filter size of 3 x 3. The network forms 8, 16
and 32 feature maps after these convolutional layers. The
max-pooling operation, which has the size of 2 x2 with a
stride of 2, performs right after first and second convolution
layer. The feature maps of the last convolutional layer are
stacked together in an array and employed as an input to
the task-specific layers. The FC layer sizes for the detection
task are [836-767], whereas they are [2058-881-534] for the
localisation task. The learning rate of 0.0451 and 0.0026 are
adopted for the detection and localisation parts, respectively.

Trained parameters are saved to test the performance of
strain field collected by digital image correlation system. In
this phase, raw strain fields collected from DIC are fed into
the proposed architecture to estimate the labels for detection
and localisation tasks.
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Figure 1. Proposed framework for damage diagnosis.

3. Background on digital image correlation

Digital image correlation techniques aim to measure the
deformations of the specimen from the images taken by
digital cameras. Cameras first capture a reference image in
an original unloaded state. They continue taking more pic-
tures as the specimen deforms (Desai, 2016). The reference
area in the image, which is called the region of interest
(ROI), is divided into square image fragments (i.e. subsets
or facets) which have a unique grey-scale pattern of pixels
(Figure 2). Each subset needs to be distinct enough to facili-
tate matching; therefore, the test specimen surface needs to
have random gray intensities and deform with the specimen
with the loading. The subsets in the reference and other
images are matched with the facet matching process (Pan,
Xie, & Wang, 2010). Such procedure finds the maximum
similarity between the deformed subset centred at point
P'(¥,y') and reference subset centred at P(x, y). Similarity
can be found by using different subpixel interpolations, e.g.
bilinear interpolation, bicubic interpolation and spline inter-
polation (GOM, 2013). After the matching process of all
subsets in the images, the displacement field computed
based on the centre points of the subsets. Strain values are
determined by calculating the gradients of the displacement.

3.1. Overview of three-dimensional digital image
correlation

The matching process of 3D-DIC consists of two steps:
stereo and temporal matching (Tang, Liang, Xiao, & Guo,
2012). The stereo tracking requires matching of the subsets
in the images taken by the left and right cameras; whereas,
temporal matching aims to track the subsets in the reference
and deformed images captured by the same camera as in
2D-DIC (Pan et al., 2008). After the matching of all subsets
in the images, 3D coordinates of all the points are obtained
through a triangulation method. Triangulation utilises the
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information obtained from sensor calibration to determine
the spatial coordinates of the corresponding image points
(Pan et al, 2010). During calibration, several images are
captured from different angles and focal lengths of the spe-
cimen to track the rotations and translations.

The 3D displacement of the subsets in each stage can be
obtained simply by comparing its 3D coordinates in the
deformed stage and the reference stage after the 3D recon-
struction of all the stages (GOM, 2013). The strains are
computed tangential to the surface by measuring the elong-
ation of neighbour point coordinates (LeBlanc, Niezrecki,
Avitabile, Chen, & Sherwood, 2013). The deformation gradi-
ent tensor can be calculated by using at least three points
which form triangles. The density of the selected points dif-
fers from region to region. The weighting factor can be
employed to choose the involved points and determine their
distance to the centre of the surface (GOM, 2013).

4. Experimental setup

A series of tests of a steel structural connection was con-
ducted in the structural laboratory to evaluate the perform-
ance of the DIC systems when measuring small strains and
quantifying the uncertainty in DIC for damage diagnostic.
The tests were performed by using three different camera
systems under two different damage scenarios.

The test setup including the specimen, GOM Aramis 3D
DIC system, and external light sources (i.e. dual Blue LED
attached to the DIC camera bars and high intensity LED
light kit) are illustrated in Figure 3a. The tensile loads were
applied by using the SATEC 2670kN (600kip) Hydraulic
Testing System at the end of connections with an eccentri-
city to obtain axial force and bending moment at the con-
nection. During the loading process, strains were measured
with the DIC technique on the front face of the specimen as
well as with the strain gauges on the back surface. Then,
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Reference image
Figure 2. Principle of DIC.
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Figure 3. (a) Test setup, (b) Dimensions of the steel connection, (c) Side view of the specimen (all units in mm).

both of these methods were compared with the finite elem-
ent model mimicking the specimen.

4.1. Description of the specimen

The tested specimen is composed of two 508 mm-long
C200 x 17.1 (mm x kg/m) (i.e. C8 x 11.5 (in. x Ib/ft)) chan-
nels welded to a steel plate with a dimension of
711 x 356 x 6 mm (28 X 14 x 1/4 inches) where all members
are made of steel with a yield strength of 250 MPa. Each
channel member has a 203 mm overlap with the main gusset
plate. The dimensions of the steel connection and its side

view are visualised in Figure 3b and c. The load was applied
at the ends of the specimen with the help of the steel plate
in the direction of the grips of the hydraulic testing system.
Dense strain measurements of the specimen were collected
during different stages of loading.

In order to track the changes in the gray-scale, a random
pattern was applied on the front surface of the specimen.
The background of the pattern was generated by spraying
white paint with primer; then, black speckles are randomly
spread with a rubber stamp. A closer look at the pattern is
presented in Figure 4a. The average dot size of 1.5mm was
obtained to have an optimum speckle size of 3-5 pixels
(Schreier, Orteu, & Sutton, 2009).The black to white area
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Figure 5. Loading Scheme.

ratio of the pattern was approximately 50%-50% which is
the desired ratio in common practice (Berfield et al., 2007).

On the back surface of the plate, sixteen FLA-1-11-1L]JC
type, 1 mm bondable strain gauges were installed which are
manufactured by Tokyo Sokki Kenkyujo Co., Ltd. Gauge
factor of 2.14 is utilised (Figure 4b). These gauges
(CH1-CH16) were attached to the steel at the locations
shown in Figure 4c.

4.2. Loading of the specimen

The test was conducted within the linear elastic range of the
material behaviour. The plate was gradually loaded to 222 kN
(50 kips) and unloaded to its zero-load position. The quasi-
static loading scheme is presented in Figure 5. After every
22 kN (5 kips) load increment, the load was held for a minute
to allow DIC to take pictures. For each constant load, 200 pic-
tures were acquired with the sampling rate of 4 Hz. The strain
gauge readings were collected with a frequency of 2 Hz.

4.3. DIC procedure

Digital images of the specimen were captured by using three
different 3D DIC systems (Aramis Adjustable 2.3 M, 6 M
and 12M, GOM mbH where M stands for Megapixel).
Table 1 summarises the system properties of the three
optical systems. Schneider high precision lenses with a focal
length of 24mm were used with 12M system, whereas
Kowa LM12HC-V 1” c-mount lenses are used for 2.3 M and
6M cameras. Cameras were mounted onto rigid support
integrated to rugged studio stand. The angle between the
cameras was adjusted to 25 degrees based on the manufac-
turer’s recommendations. Similar measurement volumes
were obtained for each system by adopting different cam-
era-specimen and camera-camera distances. Measurement
volumes were selected such that they capture the full steel
plate volume (711 x 356 x 6 mm). In order to eliminate the
error due to self-heating, the cameras were preheated for
1-2hours before the DIC experiment (Ma et al., 2012).

3D calibration was carried out before each test-session by
using a coded panel with a size of 356 mm by 279 mm.
After the calibration, rigid support and cameras were
rotated vertically to take advantage of the camera resolution.
To get consistent illumination, dual Blue LED attached to
the DIC camera bars with mounting arms and high inten-
sity LED light kit was used as an external lighting source.
These light sources were utilised to illuminate the specimen
and balance the effect of the ambient light existing in the
laboratory. To achieve more stable pictures, exposure time
was set less than 50 ms.

4.4. Damage scenarios

Cracks were ground in the coordinates which were not used
in the training data shown as black lines in Figure 6. Two
damage scenarios were considered in the assessment of the
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Table 1. DIC system properties.

Aramis 2.3 M

Aramis 6 M Aramis 12 M

Camera resolution
Maximum frame rate
Lense brand and size
Camera-specimen distance
Camera-camera distance
Measurement volume

1936 x 1216 pixel
130 Hz

Kowa, 12.5 mm
930 mm

380 mm
760/510/510 mm

2752 x 2200 pixel
25Hz

Kowa, 12.5mm
902 mm

361 mm
800/690/690 mm

4096 x 3068 pixel
335Hz

Schneider, 24 mm
890 mm

366 mm
790/640/640 mm

305

______ M~

1M | — — — — — —

1st damage:
(229,445) to (254,445)

—— — ———

A [AR5216)

2nd damage: L
(76,292) fo (102,292) | | ©ngin

(0.0)

—— 356
Figure 6. Crack locations (all units in mm).

— 1

methodology. First scenario included only the first crack
location in the coordinates (229,445) to (254,445). The first
crack location was defined by the bounding box of (229,445,
254,470). In the second case study, another crack in the
coordinates (76,292) to (102,292) was ground to have evolv-
ing crack scenario. The bounding box of this crack location
was defined as (76,292, 102,318).

4.5. Preparation of FE model

The finite element model, which mimics the test setup, was
simulated in Abaqus 6.14 by using shell elements. The
material was modelled as elastic-perfectly plastic with a yield
strength of 250 MPa. Mesh size of 13mm was adopted.
Damage was introduced as 26 mm long crack with the seam
option of the software and solved by the Newton method.
The welded connections were modelled as tie constraints
(Garifullin, Bronzova, Jokinen, Heinisuo, & Kovacic, 2016).
The distributed loads were applied to the end of the chan-
nels to simulate the constant loads shown in Figure 4a (e.g.
1.5kN/mm for 222kN). The other end is simulated as
encastre. Strain distribution in the direction of loading (,)
was utilised where an example strain distribution is visual-
ised in Figure 7.

5. Analysis of data

Digital images of the test object are subsequently processed
by using ARAMIS Professional 2017 software (GOM, 2013).
The software evaluates high-resolution images recorded
from the specimen during loading, then automatically com-
putes 3D coordinates for all loading stages and derives
strain results. The post-processing algorithm of software has
a stage-wise analysis, in which each stage consisted of
one image.

In this study, the reference image is selected as the first
image taken under the load of 22kN. The same reference
load level is also utilised while measuring with strain gauges.
The strain field (g,) in the direction of the loading is com-
puted. In order to reduce the noise floor and achieve higher
accuracy while measuring small strain values, a baseline is
constructed with the average of all images captured during
the 22kN loading stage. The calculated baseline is sub-
tracted from all images.

The subset size is an important factor in DIC data ana-
lysis. The increase in the subset size results in a lower error
but higher computation cost. On the other hand, a smaller
step size yields more points and provides higher spatial
resolution (Crammond et al., 2013) which causes a trade-off
between using large and small subset sizes. Several studies
have investigated how the subset size should be selected.
Sutton, Orteu, and Schreier (2009) suggests that subset size
should contain at least three speckles such that there is a
distinctive pattern in the subset. The subset size of 21 x 21
pixels is recommended as a minimum practical size by the
study referred in Reu (2012).

Another critical factor in DIC computations is the spac-
ing between the subset centres (i.e. step size). The step size
can be chosen such that subsets partially overlap with the
neighbour subsets. A common practice recommends a step
size of one-third to one-half of the subset size (Jones &
Iadicola, 2018). In this study, the subset size of 40 with a
step size of 20 is used while analysing 12M and 6 M DIC
systems. For the 2 M system, the subset size is selected as 22
with a step size of 11. Although filtering reduces the noise
and increases accuracy, it also reduces the spatial resolution
(GOM, 2013). Therefore, no spatial filtering is performed
during the analysis. Instead, a feature of Aramis software
called strain neighbourhood size is utilised where the strain
is computed from a weighted average of the involved points.
The size of five is adopted to smooth the measurements
without losing most of their spatial content.

Computed strain fields of the stages from each ten load
levels {22KkN, 45kN, ..., 222kN} is shown in Figure 8. The
axis of the colorbar is set to [-200, 1000] pm/m for all
stages to illustrate the effect of the crack on the axial strain.



STRUCTURE AND INFRASTRUCTURE ENGINEERING e 7

E, EN

SNEG, (fraction =-1.0]
(Avg: 75%)
+1.000e-03
+%.400e-04
+8.800e-04
+8.200e-04
+7.600e-04
+7.000e-04
+6.400e-04
+5.800e-04
+5.200e-04
+4.600e-04
+4.000e-04
+3.400e-04
+2.800e-04
+2.200e-04
+1.600e-04
+1.000e-04
+4.,000e-05
-2.000e-05
-8.000e-05
-1.400e-04
-2.000e-04

Figure 7. FE model of the plate under 200 kN.

P =22kN P =45kN P=67kN P =89 kN P=111kN

pm/m

P =133kN P =156 kN P =178 kN P =200 kN P =222 kN

Figure 8. Strain fields.
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It is noticeable that strain gradients start to occur near the
crack tips when the load is greater than 133kN. Another
observation is the development of the negative strains, espe-
cially near the section where plate is welded to the top
channel member. Such behaviour might be relevant to the
loading of the specimen given that only the top grip of the
hydraulic system moves. The potential small downward
movement of the top grip might cause a push at the top
end of the specimen during the holding of the load.

In order to better analyse the results, the strain measure-
ment obtained from several cross-sections (i.e. Plane
Y=241mm, Y=317mm, Y=393mm, Y=469mm) are
visualised in Figure 9 for the first damage scenario and Figure
10 for the second damage scenario. In the figures, each line
represents averaged strain measurements per each load level
for three different camera resolutions. Due to the linear load-
ing pattern, the strains should increase linearly in a similar
trend with each consecutive loading. In other words, the dif-
ference of the measurements at 222 kN (50 kips) and 200 kN
(45 kips) should be the same as the measurements at 200 kN
and 178 kN when material behaviour is within its linear range.
The strain curves of Figure 9 show that strains increase lin-
early in a similar trend with each consecutive loading for the
12 M DIC system. The only exception is observed for the sec-
tions Y =241 mm and Y =469 mm.

Another observation that strain measurements smaller
than 50pe are successfully achieved. Nevertheless, similar
accuracy is not accomplished for 6 M and 2.3M systems.
Although the trend and amplitudes match the ones meas-
ured by the 12 M system, the difference between consecutive
loads is not clear in lower resolution cameras. Similar con-
clusions can be drawn for the second damage scenario
shown in Figure 10. In the plots, the gradient change due to
the second crack can be easily observed in the cross-section
Plane Y =317 mm from X =50 to 150 mm.

In order to characterise the degree of linearity quantita-
tively, the statistics of the difference between each consecutive
load is presented with the cross-section plots. The fourth col-
umn of Figures 9 and 10 shows the mean (1) and standard
deviation (¢) pairs of the differences for each consecutive
loading pairs. The tables show that the difference in means
and the standard deviation of the differences are approxi-
mately 5pe and 7pe for 12 M DIC system, respectively. The
standard deviation of the differences and the fluctuations in
the mean increase with the reduction in the resolution.

The assessment of the performance of the sensors
includes the comparison of DIC systems and strain gauges
with the FE model for the front and back side of the speci-
men, respectively. This evaluation method is preferred due
to the eccentricity in the loading and asymmetry in the spe-
cimen. This section first compares the DIC measurements
with the FE model, then discusses the performance of strain
gauges for the first crack scenario.

5.1. Digital image correlation - FEM comparison

Figures 11-14 show the comparison between the strains meas-
ured using DIC systems and FE analysis. The specimen is

loaded within its elastic range of response. For this reason, the
normalised strain readings should give similar behaviour for
each consecutive loading. For each loading except the reference
load of 22kN, stages are normalised by the load level. Then,
the trajectories of the normalised strain readings are plotted in
red with their averages. This step is repeated for three DIC sys-
tems with different resolutions as described earlier. Similarly,
strain measurements from the FE model are normalised by the
load level and plotted in the same figures in blue.

Figures show that FE and DIC measurements have simi-
lar trends, especially closer to the crack location which can
be seen on the curves given in Figures 11 and 12.
Additionally, the better match between FEM and DIC is
observable with the increase in the resolution of the cam-
eras. 2.3M system introduces more uncertainty to the sys-
tem and causes more deviations in the measurements. The
largest difference between strain/load measured by FE and
DIC is observed in Figure 11 because of the negative strains
developed on the Y =469 mm. Although FE model captures
this compressive behaviour in the section (Figure 7), the
strains computed through FEA are higher than the test
setup. The difference might be due to the specimen align-
ment during the testing since even a small deviation in the
alignment may intensify the compressive strains in the sec-
tion Y=469mm. Another high variation between the FE
and DIC strains is seen from X=0 to 75mm and from
X =275 to 350 in Figure 14. It is because the section
Y=241mm is close to Y =203 mm where the cross section
changes (i.e. the cross section change is shown in Figure 3).

5.2, Strain gauge - FEM comparison

Figures 15-18 show the comparison between the strains
measured using strain gauges versus FE simulation. For each
loading except the reference load of 22 kN, gauge readings are
averaged together and normalised by the load level. Then, the
boxplots of the normalised strain readings are plotted in red.
This step is repeated for the tests performed while testing
three DIC systems with different resolutions. The strains from
FE model are also normalised by the load level and plotted in
the same figures in blue. Figures show that trend and ampli-
tude of the strain gauges often match well with FE results
except for the sections Y=241 mm and Y=469 mm. These
sections are close to the region between the gusset plate and
channel members. Therefore, the reasoning explained in
Section 5.1 applies to strain gauge - FEM comparison as well.

6. Experimental evaluation of the methodology

Full-field measurement data obtained by DIC was analysed
in Section 5. This section evaluates the performance of the
trained network on data collected from DIC for detection
and localisation tasks.

6.1. Detection results

The DIC data is sampled from every 13 mm to have the mesh
size as adopted in the FE model; thus, the strain fields with a
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Figure 9. Strain values of the cross sections for the first damage scenario. From top to bottom: Plane Y =469 mm - Plane Y =393 mm - Plane Y =317 mm -
Plane Y =241 mm. From left to right: 12M - 6 M — 2.3 M resolutions — The characterisation of the strain differences.

size of 28 x 56 x 1 are obtained. These strain fields from three
DIC systems which are normalised by its absolute maximum
are tested by the trained architecture presented in Figure 1.
Detection accuracy is defined as the correct prediction of a
sample being damaged or healthy. The detection performance
of the network for both damage scenarios is computed as
100% (Table 2). In other words, all 2000 samples per DIC sys-
tem and damage scenario are correctly identified. It is worth-
while to mention that high detection accuracy is
accomplished, although there were strain gradients caused by
other imperfections rather than the crack. High-stress con-
centrations are also observable near the welds. The detection
performances of the other studies using strain based inputs
are provided in Gulgec et al. (2019a).

6.2. Localisation results

Further analysis is achieved by performing the localisation
task since the data from healthy samples are not available.

In this task, the localisation marked as correct localisation if
the following criteria are satisfied with the pre-defined
threshold values:

(1)
2)
©)
(4)

where (?11,?12,131,192) are predicted box coordinates,
(a1,as, b1, by) are true box coordinates, and thr is the user-
defined threshold.

Three different thresholds are adopted, thr = 13 mm, thr
= 25mm and thr = 51 mm, to assess the accuracy of the
method with three different DIC systems. Figure 19 visual-
ises the localisation accuracy results for the first damage
scenario. According to the figure, the proposed architecture
localises the crack with 100% accuracy when the threshold
value is 13mm and the load is greater than 133kN when
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Figure 10. Strain values of the cross sections for the second damage scenario. From top to bottom: Plane Y =469 mm - Plane Y =393 mm - Plane Y =317 mm -
Plane Y =241 mm. From left to right: 12M - 6 M - 2.3 M resolutions — The characterisation of the strain differences.
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Figure 11. Strain values of the cross section at plane Y =469 mm for the cameras with the resolution of (a) 12 M, (b) 6 M, (c) 2.3 M.

the high-resolution camera system (i.e. 12M) is used.
Although the accuracy seems to decrease for the small loads
for thr = 13 mm, the accuracy reaches 80% when the crack
location is searched in the broader area by increasing the
threshold. With the increase in the threshold, the

localisation accuracy increases. Figure 19 also shows that the
reduction in the camera resolution results in lower accuracy
in the localisation task.

A similar analysis for each load level is also performed
on the second crack scenario to assess the evolving nature
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Figure 12. Strain values of the cross section at plane Y =393 mm for the cameras with the resolution of (a) 12 M, (b) 6 M, (c) 23 M.
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Figure 13. Strain values of the cross section at plane Y =317 mm for the cameras with the resolution of (a) 12 M, (b) 6 M, (c) 2.3 M.
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Figure 14. Strain values of the cross section at plane Y =241 mm for the cameras with the resolution of (a) 12 M, (b) 6 M, (c) 2.3 M.
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Figure 15. Strain values of the cross section at plane Y =469 mm for the experiment where (a) 12 M, (b) 6 M, (c) 2.3 M are utilised.

of the crack case. For each strain field, the first crack case is
defined as a baseline condition and subtracted from the
strain field in the second crack scenario. The mean and the
minimum of these fields are computed. The input is nor-
malised by subtracting the mean and adding the minimum
before feeding the trained network architecture.

Figure 20 shows the localisation accuracy results for the
second damage scenario. According to the figure, it can be
seen that the localisation result decreases for the second
crack location for the threshold value of 13 mm. With the
increase in the threshold value, higher accuracy for all load
levels is obtained for the high-resolution DIC system.
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Figure 16. Strain values of the cross section at plane Y =393 mm for the experiment where (a) 12 M, (b) 6 M, (c) 2.3 M are utilised.
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Figure 17. Strain values of the cross section at plane Y =317 mm for the experiment where (a) 12 M, (b) 6 M, (c) 2.3 M are utilised.
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Figure 18. Strain values of the cross section at plane Y =241 mm for the experiment where (a) 12 M, (b) 6 M, (c) 2.3 M are utilised.
Table 2. Detection performance of the network.
Load (kN)
45 67 89 111 133 156 178 200 222

First crack M 100% 100% 100% 100% 100% 100% 100% 100% 100%

6M 100% 100% 100% 100% 100% 100% 100% 100% 100%

1M 100% 100% 100% 100% 100% 100% 100% 100% 100%
Second crack 2M 100% 100% 100% 100% 100% 100% 100% 100% 100%

6M 100% 100% 100% 100% 100% 100% 100% 100% 100%

12M 100% 100% 100% 100% 100% 100% 100% 100% 100%

Nevertheless, using 2.3M and 6 M does not provide high
accuracy in smaller load levels.

7. Conclusions

The laboratory testing of a steel structural connection was
conducted by using Digital Image Correlation to address
two main scopes of the article: (i) exploring whether small
strain responses are achievable with the current DIC

systems, (ii) validating previously proposed real-time dam-
age diagnosis platform on the collected data.

To address the first purpose, strain responses of the spe-
cimen were measured via strain gauge and three different
DIC systems with three camera resolutions. The measured
small strain responses of the steel component using different
DIC systems were discussed and verified against those meas-
ured by strain gauge and the finite element method. The
findings of this article indicate that DIC measures small
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Figure 19. Localisation performance of the network for the first crack with
threshold values of (a) 13 mm, (b) 25 mm, (c) 51 mm.

strains of the large-scale specimens only with high-reso-
lution cameras and under highly controlled laboratory con-
ditions. Increasing the accuracy of DIC, especially for field
testing conditions, is still ongoing research in
SHM community.

As a second purpose, the performance and efficiency of
damage detection and localisation approach were evaluated
on two induced damage conditions. Deep learning achieves
remarkable generalisation when it is designed carefully such
that it can perform successfully even with unseen cases. The
designed architecture diagnoses damages on samples col-
lected by DIC with high accuracy, although training dataset
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Figure 20. Localisation performance of the network for the second crack with
threshold values of (a) 13 mm, (b) 25 mm, (c) 51 mm.

only includes finite element simulations. Moreover, this gen-
eralisation is observable for the localisation task. The loca-
tion of the crack was predicted successfully, although the
crack location was not given as input during training.

Digital image correlation is a promising sensing method
to overcome the limitations of strain gauges since it first
and foremost eliminates the installation costs associated
with fixed sensor networks, and in some cases may be the
only option if specific fixed sensors were not installed prior
to construction. DIC can also be utilised to automatise the
real-time structural damage diagnosis as discussed through-
out the manuscript.
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